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1. Introduction

All groups considered throughout this paper are finite. Over the last years, many 
authors have investigated the influence of conjugacy class sizes on the structure of finite 
groups. In the meantime, numerous studies in the framework of group theory have focused 
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in factorised groups. In this setting, a central question is how the structure of the factors 
affects the structure of the whole group, in particular when they are connected by certain 
permutability properties. The purpose of this paper is to show new achievements which 
combine both current perspectives in finite groups. More precisely, our aim is to get some 
information about a factorised group, provided that the conjugacy class sizes of some 
elements of its factors are square-free.

The earlier starting point of our investigation can be traced back to the paper of 
Chillag and Herzog ([5]), where the structure of a group in which all elements have 
square-free conjugacy class sizes was first analysed. Next, in [6], Cossey and Wang lo-
calised one of the main theorems in [5] for a fixed prime p, that is, they considered 
conjugacy class sizes not divisible by p2, for certain prime p. Later on, this study was 
improved by Li in [12], and by Liu, Wang, and Wei in [13], by replacing conditions on all 
conjugacy classes by those referring only to conjugacy classes of either p-regular elements 
or prime power order elements, using the classification theorem of finite simple groups 
(CFSG). These authors also first obtained some preliminary results in factorised groups. 
This research was extended in 2012 by Ballester-Bolinches, Cossey and Li in [2], through 
mutually permutable products. More recently, in 2014, Qian and Wang ([14]) have gone 
a step further by considering just conjugacy class sizes of p-regular elements of prime 
power order (although not in factorised groups).

In the context of factorised groups, and aiming to obtain criteria for products of 
supersoluble subgroups to be supersoluble, several authors have considered products in 
which certain subgroups of the factors permute (see [3] for a detailed account). In this 
scene, we are interested in mutually permutable products, factorised groups G = AB

such that the subgroups A and B are mutually permutable, i.e., A permutes with every 
subgroup of B and B permutes with every subgroup of A (see also [4]). Obviously, if A
and B are normal in G, then they are mutually permutable.

We recall that, for a group G, the set xG = {g−1xg : g ∈ G} is the conjugacy class
of the element x ∈ G, and 

∣
∣xG

∣
∣ denotes the conjugacy class size of x. If p is a prime 

number, we say that x ∈ G is a p-regular element if its order is not divisible by p, and 
that it is a p-element if its order is a power of p. Moreover, if n is an integer, let np

denote the highest power of p dividing n. The mth group of order n in the SmallGroups 
library [8] of GAP will be identified by n#m. The remainder notation is standard and 
is taken mainly from [7]. We also refer to this book for details about classes of groups.

In this paper, motivated by the above development, at first we focus on the case of 
p-groups, extending for factorised groups the well-known Knoche’s theorem (see [11]).

Theorem A. Let p be a prime number and let P = AB be a p-group such that p2 does 
not divide 

∣
∣xP

∣
∣ for all x ∈ A ∪ B. Then P ′ � Φ(P ) � Z(P ), P ′ is elementary abelian 

and |P ′| ≤ p2.

Our next goal in the paper is to prove the following theorem, regarding mutually 
permutable products.
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Theorem B. Let G = AB be the mutually permutable product of the subgroups A and B, 
and let p be a prime such that gcd(p − 1, |G|) = 1. If p2 does not divide 

∣
∣xG

∣
∣ for any 

p-regular element x ∈ A ∪B of prime power order, then:
(1) G is soluble.
(2) G is p-nilpotent.
(3) The Sylow p-subgroups of G/ Op(G) are elementary abelian.

In the particular case when G = A = B, we recover [14, Theorem A] (see Section 3, 
Corollary 1). We remark that both results use the CFSG.

Moreover, in relation to the third assertion, we have found a gap in one of the state-
ments in [6, Theorem 1], as it is reported in Remark 1 (a).

On the other hand, we point out that it is possible to find examples of groups factorised 
as a product of two (mutually permutable) subgroups which satisfy the hypotheses of 
Theorem B for some fixed prime p and, however, there exist elements x ∈ A ∪ B such 
that p2 divides either 

∣
∣xA

∣
∣ or 

∣
∣xB

∣
∣ (see Remark 1 (b)).

The next theorem generalises the last assertion of [2, Theorem 1.3] regarding p-soluble 
groups, by considering only prime power order elements:

Theorem C. Let G = AB be the mutually permutable product of the subgroups A and B, 
and let p be a prime. Suppose that for every prime power order p-regular element x ∈
A ∪B, 

∣
∣xG

∣
∣ is not divisible by p2. If G is p-soluble, then G is p-supersoluble.

In the line of [5, Theorem 1] and [6, Theorem 2], if we consider all prime numbers, then 
we obtain some information about the structure of the derived subgroup of a factorised 
group G.

Theorem D. Let G = AB be the product of the subgroups A and B, and assume that G
is supersoluble. Suppose that every prime power order element x ∈ A ∪B has square-free 
conjugacy class size. Then:

(1) G′ is abelian.
(2) The Sylow subgroups of G′ are elementary abelian.
(3) F(G)′ has Sylow p-subgroups of order at most p2, for every prime p.

If we limit our conditions only to p-regular elements, as a consequence of Theorems B
and C, we obtain the following result which extends [2, Corollary 1.5] (see Corollary 3) 
for prime power order elements, and also a theorem of [12], for products of groups.

Theorem E. Let G = AB be the mutually permutable product of the subgroups A and B. 
Suppose that for every prime p and every prime power order p-regular element x ∈ A ∪B, 
∣
∣xG

∣
∣ is not divisible by p2. Then G is supersoluble, and G/ F(G) has elementary abelian 

Sylow subgroups.
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We remark that the first statement in Theorem D is not further true under the weaker 
hypotheses of the above theorem, even for arbitrary groups not necessarily factorised, 
as pointed out in [14]. Indeed, as a result of Theorem E, the supersolubility condition in 
Theorem D can be exchanged by the mutual permutability of the factors.

On the other hand, with the stronger assumption that all p-regular elements of the 
factors (not only those of prime power order) have conjugacy class sizes not divisible 
by p2, we get extra information about the orders of the Sylow p-subgroups of G/F (G), 
extending partially [6, Theorem 2].

Theorem F. Let G = AB be the mutually permutable product of the subgroups A and B. 
Suppose that for every prime p and every p-regular element x ∈ A ∪ B, 

∣
∣xG

∣
∣ is not 

divisible by p2. Then the order of a Sylow p-subgroup of G/ F(G) is at most p2.

In summary, when dealing with mutually permutable products, the next corollary 
follows directly from the above theorems.

Corollary G. Let G = AB be the mutually permutable product of the subgroups A and B. 
Suppose that 

∣
∣xG

∣
∣ is square-free for each element x ∈ A ∪B. Then G is supersoluble, and 

both G/ F(G) and G′ have elementary abelian Sylow subgroups. Moreover, G′ is abelian, 
and both groups G/ F(G) and F(G)′ have Sylow p-subgroups of order at most p2, for each 
prime p.

In Section 3 we prove Theorems A, B and C, which refer to class sizes not divisible 
by p2, for a fixed prime p. Theorems E, D and F, which consider square-free conjugacy 
class sizes (for all primes), are proved in Section 4. In both cases we will illustrate the 
scope of the results presented with some examples.

2. Preliminary results

We use the following elementary properties frequently, sometimes without further 
reference.

Lemma 1. Let N be a normal subgroup of a group G, and let p be a prime. Then:
(a) 

∣
∣xN

∣
∣ divides 

∣
∣xG

∣
∣, for any x ∈ N .

(b) 
∣
∣(xN)G/N

∣
∣ divides 

∣
∣xG

∣
∣, for any x ∈ G.

(c) If xN is a p-element of G/N , then there exists a p-element x1 ∈ G such that 
xN = x1N .

We need specifically the following fact about Hall subgroups of factorised groups. It 
is a reformulation of [1, 1.3.2] which is convenient for our purposes. We recall that a 
group is a Dπ-group, for a set of primes π, if every π-subgroup is contained in a Hall 
π-subgroup, and any two Hall π-subgroups are conjugate. In particular, all π-separable 
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groups are Dπ-groups for any set of primes π, and all groups are Dπ-groups when π
consists of a single prime.

Lemma 2. Let G = AB be the product of the subgroups A and B. Assume that A, B, 
and G are Dπ-groups for a set of primes π. Then there exists a Hall π-subgroup H of G
such that H = (H ∩ A)(H ∩ B), with H ∩ A a Hall π-subgroup of A and H ∩ B a Hall 
π-subgroup of B.

We collect here some results on mutually permutable products, which will be very 
useful along the paper.

Lemma 3. Let the group G = AB be the product of the mutually permutable subgroups A
and B. Then:

(a) ([3, 4.1.10]) G/N is the product of the mutually permutable subgroups AN/N and 
BN/N .

(b) ([3, 4.1.21]) If U is a subgroup of G, then (U ∩A)(U ∩B) is a subgroup, and U ∩A

and U ∩ B are mutually permutable. Moreover, if N is a normal subgroup of G, then 
(N ∩A)(N ∩B) is also normal in G.

Theorem 1. ([4, Theorem 1]) Let the non-trivial group G = AB be the product of the 
mutually permutable subgroups A and B. Then AGBG is not trivial.

The following lemma will be essential in the proofs of our theorems.

Lemma 4. ([2, Lemma 2.4]) Let p be a prime, and Q be a p′-group acting faithfully on 
an elementary abelian p-group N with |[x,N ]| = p, for all 1 �= x ∈ Q. Then Q is cyclic.

The next result is the first assertion of Theorem A in [14], which uses the CFSG.

Theorem 2. Let G be a group. For a fixed prime p with gcd(p −1, |G|) = 1, if p2 does not 
divide 

∣
∣xG

∣
∣ for any p-regular element x ∈ G of prime power order, then G is soluble.

Finally, the later lemma, which is a nice result due to Isaacs, will be very useful in 
the proof of Theorem D.

Lemma 5. ([10, 4.17]) Let K be an abelian normal subgroup of a finite group G, and let 
x ∈ G be non-central. Then |CG(x)| < |CG(y)|, where y = [k, x] and k ∈ K is arbitrary.

3. Class sizes not divisible by p2, for a fixed prime p

The well-known Knoche’s theorem (see [11]) asserts that if P is a p-group, p a prime, 
then the conjugacy class sizes of P are square-free if, and only if, |P ′| ≤ p. We begin this 
section by proving Theorem A, which clearly extends it for factorised groups.
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Proof of Theorem A. Since |P : CP (x)| ≤ p for each x ∈ A ∪B, it follows Φ(P ) � CP (x). 
Therefore, Φ(P ) commutes with both A and B, so P ′ � Φ(P ) � Z(P ). Hence P/ Z(P )
is elementary abelian, and xp ∈ Z(P ) for all x ∈ P . Since P ′ � Z(P ) and [x, y]p =
[xp, y] = 1 (see [7, A – 7.3(a)]) for any x, y ∈ P , it follows that P ′ is elementary abelian. 
Now it remains to prove that |P ′| ≤ p2.

Let [x, y] be a generator of P ′. Since P ′ � Z(P ) and y = yayb with ya ∈ A and 
yb ∈ B, then [x, y] = [x, yayb] = [x, yb][x, ya]yb = [x, yb][x, ya] ∈ [P, B][P, A]. Thus 
P ′ = [P, B][P, A]. Clearly, [P, B] is elementary abelian. Suppose [P, B] �= 1, and let 
1 �= [x, z] and 1 �= [x′, z′] be two generators of [P, B], with x, x′ ∈ P and z, z′ ∈ B. We 
distinguish three cases in order to prove that 〈[x, z]〉 = 〈[x′, z′]〉:

i) Suppose first z, z′ ∈ B \ Z(B). Let b ∈ B \ (CP (z) ∪ CP (z′)). Since |P : CP (z)| = p

then P = CP (z)〈x〉. Moreover, b /∈ CP (z) implies that 1 �= [b, z] = [xit, z] = [xi, z] =
[x, z]i, where b = txi with t ∈ CP (z). On the other hand, P = CP (b)〈z〉 so z′ = zjk, with 
k ∈ CP (b). Hence 1 �= [b, z′] = [b, zjk] = [b, z]j = [x, z]i+j . Finally, as b ∈ P = CP (z′)〈x′〉, 
then b = (x′)ms with s ∈ CP (z′). Therefore 1 �= [x, z]i+j = [b, z′] = [(x′)ms, z′] =
[x′, z′]m, and recall that [x, z] and [x′, z′] both have order p. Thus, 〈[x, z]〉 = 〈[x′, z′]〉.

ii) Now suppose z, z′ ∈ Z(B). Then B � CP (z) ∩ CP (z′). There exists w ∈ P \
(CP (z) ∪ CP (z′)). Therefore, w = wawb with wa ∈ A and wb ∈ B � CP (z) ∩ CP (z′), so 
wa ∈ A \ (CP (z) ∪ CP (z′)). Arguing analogously as in case i) with wa instead of b, we 
conclude that 〈[x, z]〉 = 〈[x′, z′]〉 too.

iii) Finally, suppose z ∈ B \ Z(B) but z′ ∈ Z(B). Let z′′ = zz′ ∈ B \ Z(B). Therefore, 
we have [x′, z′′] = [x′, z′][x′, z]. If [x′, z′′] = 1 then 1 �= [x′, z′]−1 = [x′, z], and applying 
case i) to both [x, z] and [x′, z] we conclude that they generate the same cyclic group of 
order p. On the other hand, if [x′, z′′] �= 1 and [x′, z] = 1, then we apply again the first 
case. Finally, if both [x′, z′′] �= 1 �= [x′, z] then they generate the same cyclic group by 
case i) again. Thus 1 �= 〈[x′, z′]〉 = 〈[x′, z′′][x′, z]−1〉 � 〈[x′, z′′]〉. Since the last one has 
order p, it follows 〈[x′, z′]〉 = 〈[x′, z′′]〉. So we have 〈[x′, z′]〉 = 〈[x′, z′′]〉, which is equal to 
〈[x, z]〉 by i) again.

In conclusion, if [P, B] �= 1, then it has order p. Analogously with [P, A]. Hence 
|P ′| = |[P,B][P,A]| ≤ p2, and this establishes the result. �
Example 1. The converse of the above result is not true in general, in contrast to Knoche’s 
theorem. Let P be the group of the Small groups library of GAP with identification number 
32#35, which is the product of a cyclic group of order 4 and a quaternion group of order 
8. Then its derived group is P ′ = C2 × C2, and P ′ = Φ(P ) = Z(P ). Nevertheless, there 
are elements in the quaternion group with conjugacy class size equal to 4.

Example 2. Let G = Q8×D8 be the direct product of a quaternion group and a dihedral 
group of order 8. Then every element contained in each factor has conjugacy class size 
equal to either 1 or 2, so Theorem A applies. However, there are elements in G with 
conjugacy class size divisible by 4, and Knoche’s result cannot be applied.
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Now we proceed with a key result in the sequel.

Proposition 1. Let G be a group, and let p be a prime. Suppose that N is an abelian 
minimal normal subgroup of G, which is a p′-group. Then:

(1) If G is p-nilpotent, and 
∣
∣xG

∣
∣ is not divisible by p2 for every element x ∈ N , then 

|Op(G/N Op(G))| ≤ p.
(2) If K/N Op(G) = Op(G/N Op(G)) has order p, and P is a Sylow p-subgroup of K, 

then CN (P ) = 1.

Proof. (1) Suppose that the result is not true, and let G be a counterexample of minimal 
order. Since the hypotheses are inherited by quotients, we may assume by standard 
arguments that Op(G) = 1, and then also Φ(G) = 1. Since N is abelian, by a Gaschütz’s 
result ([9, 4.4]) N is complemented, that is, G = NS with N ∩ S = 1. We may assume 
that G/N is not a p′-group, so Op(G/N) ∼= Op(S) �= 1 by the minimality of G. Let 
P be a Sylow p-subgroup of S (so P is a Sylow p-subgroup of G). Hence it follows 
Op(S) ∩ Z(P ) �= 1. Let Z be a minimal normal subgroup of Op(S) ∩ Z(P ). Since S
is p-nilpotent, we get S = PL, where L is normal in S and P ∩ L = 1. It follows 
that [L, Z] � [L, Op(S)] � L ∩ Op(S) = 1, so Z � Z(S). Note that CN (Z) is normal 
in G = SN . Consequently, by the minimality of N , we have either CN (Z) = 1 or 
CN (Z) = N . If CN (Z) = N , then Z � Z(G), which implies that Z � Op(G) = 1, a 
contradiction. So we may affirm CN (Z) = 1, for every minimal normal subgroup Z of 
Op(S) ∩ Z(P ).

Now let 1 �= x ∈ N such that a Sylow p-subgroup of CG(x), say P0, is contained in P , 
so P0 = CP (x). By the hypotheses, 

∣
∣xG

∣
∣
p

= |G : CG(x)|p = |P : P0| is not divisible by 

p2, so it follows either |P : P0| = 1 or |P : P0| = p. The first case yields P = CP (x) and 
then x ∈ CN (Z) = 1, a contradiction. Therefore, we may assume that |P : P0| = p, and 
so P0 is normal in P . In addition, since Op(S) ∩Z(P ) is abelian, by the minimality of Z, 
we have either P0∩Z = 1 or P0∩Z = Z. The last case gives Z � CP (x), a contradiction 
again. Hence, P0 ∩ Z = 1 and it follows that P = P0 × Z and |Z| = |P : P0| = p. We 
only need to see that Z = Op(S) to finish the proof.

Note that Z(P ) = Z(P ) ∩P0Z = Z(Z(P ) ∩P0), so it follows Z(P ) ∩Op(S) = Z(Z(P ) ∩
P0) ∩ Op(S) = Z(Z(P ) ∩ P0 ∩ Op(S)). If Z(P ) ∩ P0 ∩ Op(S) �= 1, since it is normal in 
Op(S) ∩ Z(P ), we can choose a minimal normal subgroup Z1 of Op(S) ∩ Z(P ) such that 
Z1 � Z(P ) ∩P0∩Op(S). But then Z1 � P0 = CP (x), so x ∈ CN (Z1) = 1, a contradiction. 
Therefore, we may assume that Z(P ) ∩ P0 ∩ Op(S) = 1. On the other hand, we have 
Op(S) = Op(S) ∩ ZP0 = Z(P0 ∩ Op(S)). If P0 ∩ Op(S) is a non-trivial subgroup of P , 
since it is normal in P , we have a contradiction with Z(P ) ∩P0∩Op(S) = 1. Consequently 
we get the final contradiction Z = Op(S). The first assertion is then established.

(2) Let K/N Op(G) = Op(G/N Op(G)), which has order p, and let P be a Sylow 
p-subgroup of K. Then K = PN . Moreover, [K, N ] is normal in G and [K, N ] = [P, N ] �
N so, by the minimality of N , we have either [P, N ] = 1 or [P, N ] = N . The first case 
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leads to K = P ×N , and then P � Op(G), a contradiction. Thus we have [P, N ] = N , 
and by coprime action it follows CN (P ) = 1. �

Note that every dihedral group of order 2q (for q an odd prime) satisfies the hypotheses 
of the above proposition (take p = 2).

Theorem B (3) is indeed an immediate consequence of the next more general result.

Theorem 3. Let G = AB be a soluble group, which is the mutually permutable product 
of the subgroups A and B. Assume that G is p-nilpotent for a prime p. If p2 does not 
divide 

∣
∣xG

∣
∣ for any p-regular element x ∈ A ∪ B of prime power order, then G/ Op(G)

has elementary abelian Sylow p-subgroups.

Proof. Suppose that the result is false and let G be a minimal counterexample. We 
may assume by the minimality of G that Op(G) = 1, and therefore Φ(G) = 1 too. By 
Theorem 1, we can assume that there exists a minimal normal subgroup N of G such 
that N � A. Moreover, N is q-elementary abelian, for some prime q �= p. Furthermore, 
since N ∩ Φ(G) = 1, by Gaschütz’s lemma we may write G = SN , with S ∩ N = 1. 
Let P be a Sylow p-subgroup of S (so it is a Sylow p-subgroup of G). Let T = Op(S). 
By the minimality of G we have T ∼= Op(G/N) �= 1, and by Proposition 1 (1) it holds 
|T | = p. We may choose 1 �= x ∈ N such that P0 = CP (x) is a Sylow p-subgroup of 
CG(x). Since CN (T ) = 1 by Proposition 1 (2), it holds that P0 �= P , |P : P0| = p, and 
P0 ∩ T = 1. Hence P = P0 × T . Finally, since P0 ∼= P/T ∼= (PN/N)/ Op(G/N), which is 
elementary abelian by the minimality of G, it follows that P so is, and this leads to the 
final contradiction. �
Proof of Theorem B. Note that the quotients of G satisfy the hypotheses. Moreover, if 
N is a normal subgroup of G such that N = (N ∩ A)(N ∩ B), then N also inherits the 
hypotheses. (Observe that this occurs, for instance, if either N � A or N � B.)

(1) We first see that G is soluble by induction over |G|. Since every group of odd order 
is soluble, we may affirm that p = 2 because gcd(p − 1, |G|) = 1. By Theorem 1, we can 
assume that there exists a normal subgroup M of G such that 1 �= M � A. If M < G, 
then M is soluble by minimality. Analogously G/M is also soluble, and then so is G. If 
M = G, we apply Theorem 2.

(2) Suppose that the result is false and let G be a counterexample of minimal or-
der. Since the quotients of G inherit the hypotheses, the class of p-nilpotent groups is a 
saturated formation, and G is soluble, we may assume that G possesses a unique min-
imal normal subgroup N , with N = CG(N) = F(G). If N is a p′-group, since G/N is 
p-nilpotent by the minimality of G, it follows that G is p-nilpotent, which is a contra-
diction. Thus, we may assume that N = Op(G). By Theorem 1, we can assume without 
loss of generality that N � A, and that there exists a minimal normal subgroup E/N

of G/N such that either E/N ≤ A/N or E/N � BN/N . In the first case, we have 
E � A. In the second case, it follows E = E ∩BN = N(E ∩B) � (E ∩A)(E ∩B) � E. 
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Therefore, we have E = (E ∩A)(E ∩B), where the factors are mutually permutable by 
Lemma 3 (b). In both cases, E is normal in G and E satisfies the hypotheses. Hence, 
if E < G, then E is p-nilpotent by the minimality of G. Since N = Op(G), we get that 
E/N is q-elementary abelian for some prime q �= p, so it follows that E = QN , with Q
the normal Sylow q-subgroup of E. Hence, Q is normal in G which implies that E = N , 
a contradiction.

Therefore, we can assume that E = G. So we have G = E = NQ, where Q is an abelian 
Sylow q-subgroup of G. By Lemma 2, we may assume that Q = (Q ∩A)(Q ∩B), with either 
Q ∩A �= 1 or Q ∩B �= 1. Suppose first that Q ∩B �= 1, and take 1 �= x ∈ Q ∩B. Let E1 =
〈x〉N , which is normal in QN = G. Hence, we have E1 = 〈x〉N � (E1∩B)(E1∩A) � E1. 
If Q ∩B = 1, then G = A and we can choose 1 �= x ∈ Q, so that E1 = 〈x〉N is normal in 
QN = G. Thus, in both cases, we have that E1 inherits the hypotheses and, if E1 < G, 
it follows that it is p-nilpotent. Therefore 〈x〉 is a normal Sylow q-subgroup of E1, which 
is again a contradiction. Consequently, we may assume that G = E1 = 〈x〉N , for some 
q-element x.

Note that CN (x) is normal in G = 〈x〉N , since N is abelian. By the minimality of N , it 
follows that either CN (x) = 1 or CN (x) = N . The second case leads to x ∈ CG(N) = N , 
a contradiction. Hence, it follows that CG(x) = CG(x) ∩N〈x〉 = 〈x〉 CN (x) = 〈x〉. Then 
∣
∣xG

∣
∣ = |G : CG(x)| = |N〈x〉 : 〈x〉| = |N |, and so |N | = p, by the hypotheses. Now, we 

get that 〈x〉 ∼= G/N = NG(N)/ CG(N) is isomorphic to a subgroup of Aut(N) ∼= Cp−1, 
the cyclic group of order p −1. Hence, |〈x〉| divides both p −1 and |G|, which contradicts 
the fact that gcd(p − 1, |G|) = 1. This finishes the proof of the p-nilpotency of G.

(3) It follows from Theorem 3. �
In the particular case when G = A = B we recover:

Corollary 1. ([14, Theorem A]) Let G be a group. For a fixed prime p with gcd(p −1, |G|) =
1, if p2 does not divide 

∣
∣xG

∣
∣ for any p-regular element x ∈ G of prime power order, then 

G is soluble, p-nilpotent and G/ Op(G) has elementary abelian Sylow p-subgroups.

Note that if G is the direct product of two symmetric groups of degree 3, then G
satisfies the hypotheses of Theorem B for p = 2, but not those of Corollary 1. Moreover, 
the assumption that gcd(p − 1, |G|) = 1 is necessary, which can be seen by considering 
G = A5, the alternating group of degree 5, and the prime p = 3.

We include here a theorem due to Cossey and Wang [6], which was the initial moti-
vation for our results, to notify a gap that we have found in one of the statements.

Theorem 4. ([6, Theorem 1]) Let G be a finite group, and p be a prime divisor of |G|
such that if q is any prime divisor of |G|, then q does not divide p − 1. Suppose that no 
conjugacy class size of G is divisible by p2. Then G is a soluble p-nilpotent group, and 
G/ Op(G) has a Sylow p-subgroup of order at most p. Further, if P is a Sylow p-subgroup 
of G, then P ′ has order at most p, and if P �= Op(G), then Op(G) is abelian.
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Remark 1. (a) The statement “G/ Op(G) has a Sylow p-subgroup of order at most p” in 
the above theorem (and so the corresponding one in [13, Theorem 6]) is not true.

To see this, consider the semidirect product G = [C5 × C5](Sym(3) × C2) (where 
Sym(3) is a symmetric group of degree 3), which is the group of the Small groups library 
of GAP with identification number 300#25, and the prime p = 2. Then G satisfies the 
hypotheses of Theorem 4 but O2(G) = 1 and |G|2 = 4. We reveal that this example has 
been communicated to us by John Cossey.

(b) The same example shows that the hypotheses in Theorem B for the conjugacy class 
sizes of the elements x ∈ A ∪B are not necessarily inherited by the factors, unless they 
are (sub)normal in G. The above group G can be factorised as the mutually permutable 
product of A = D10 ×D10 and B = [C5 ×C5]C3 (we checked this using GAP). It is clear 
that G = AB satisfies the hypotheses of Theorem B for p = 2, but there are elements 
x ∈ A with 

∣
∣xA

∣
∣ divisible by 4.

Remark 2. A natural question is how to extend the last assertion of Theorem 4 for 
(mutually permutable) products. Concerning this, we show the following example:

Let A = D8 be a dihedral group of order 8 and B = [C5]C4 = 〈a, b | a5 = b4 =
1, ab = a4〉, and consider the prime p = 2. Then G = A × B is a mutually permutable 
product of A and B, and G is 2-nilpotent. Moreover, 4 does not divide any conjugacy 
class size of elements in A ∪B. However, O2(G) = (O2(G) ∩A)(O2(G) ∩B) = D8 × C2
is not abelian.

Regarding the claim “P ′ has order at most p” in Theorem 4, we get the next extension 
for factorised groups, as an immediate consequence of Theorem A:

Corollary 2. Let G = AB be the product of the subgroups A and B, and let p be a 
prime. Assume that G is p-nilpotent, and that for all p-elements in the factors, p2 does 
not divide 

∣
∣xG

∣
∣. If P is a Sylow p-subgroup of G, then P ′ � Φ(P ) � Z(P ), with P ′

elementary abelian of order at most p2.

In particular, from this fact and Theorem B, we get [13, Theorem 7] as a corollary, 
taking G = A = B.

Finally, we prove Theorem C, which is motivated by [2, Theorem 1.3].

Proof of Theorem C. Suppose that the result is false and let G be a counterexample of 
minimal order. Note that G cannot be simple. Since the class of p-supersoluble groups 
is a saturated formation, we may assume that there exists a unique minimal normal 
subgroup N of G, and that Φ(G) = 1. By the minimality of G, we get that G/N is 
p-supersoluble. Since G is p-soluble, it follows that N is either a p-group or a p′-group. 
In the second case, since G/N satisfies the thesis by minimality, we get a contradiction. 
Consequently, we may assume that N is p-elementary abelian and we must show that 
|N | = p. As Φ(G) = 1 and G is p-soluble with Op′(G) = 1, by [7, A – 10.6] it follows 
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that F(G) = Soc(G) = N = CG(N), and also N = Op(G). Applying Theorem 1, we 
may assume that there exists a minimal normal subgroup Z/N of G/N such that Z/N �
AN/N , so Z = Z∩AN = N(Z∩A). Since G/N is p-soluble, it follows that Z/N is either 
a p-group or a p′-group. The first case leads to Z/N � Op(G/N) = Op(G/ Op(G)) = 1, 
a contradiction. Hence, we may assume that Z/N is a p′-group.

Let Q be a Sylow q-subgroup of Z ∩ A, where q �= p is a prime (so Q is a Sylow 
q-subgroup of Z). Therefore Q ∼= QN/N is a Sylow q-subgroup of Z/N , which acts 
faithfully on N . If 1 �= a ∈ Q � A, then N = [N, a] ×CN (a). By the hypotheses, since p2

does not divide 
∣
∣aG

∣
∣ = |G : CG(a)|, then neither divides |N : CN (a)| = |[N, a]|, so either 

|[N, a]| = 1 or |[N, a]| = p. The first case leads to a ∈ CG(N) = N , a contradiction. 
Thus, Lemma 4 yields QN/N is cyclic. Since this is valid for all primes q �= p, we get by 
[10, 5.15] that Z/N is soluble. By the minimality of Z/N , it follows that (Z/N)′ = 1 and 
Z/N is abelian with cyclic Sylow subgroups. Consequently Z/N = 〈xN〉, where x /∈ N

and the order of xN is q, for some prime q �= p.
We may assume that x ∈ Z ∩ A and Z = N〈x〉. Hence CN (x) = CN (Z). By the 

minimality of N , we have either CN (Z) = N or CN (Z) = 1. The first case leads to 
x ∈ Z � CG(N) = N , a contradiction. Therefore, since N = [N, x] × CN (x), it follows 
|N | = |[N,x]| = p, and this final contradiction establishes the theorem. �
Example 3. Let G be the symmetric group of degree 4. Then G = AB is a mutually 
permutable product, where A denotes the alternating group of degree 4 and B is a 
Sylow 2-subgroup of G, which satisfies the hypotheses of Theorem C, for p = 3.

4. Square-free class sizes

We begin this section with the proof of Theorem D.

Proof of Theorem D. (1) Suppose that the result is false and let G be a counterexample 
of least possible order. Since G supersoluble, G/ F(G) is abelian, and so G′ � F(G). 
Moreover, the quotients of G inherit the hypotheses and the class of metabelian groups 
is a formation, so we may assume that there exists a unique minimal normal subgroup 
N of G with |N | = p, for some prime divisor p of |G|. Hence, F(G) = Op(G) � P , 
a Sylow p-subgroup of G. Since G/ F(G) is abelian, P = Op(G) = F(G). Hence P =
(P ∩A)(P ∩B), where P ∩A and P ∩B are Sylow p-subgroups of A and B respectively, 
by Lemma 2. Applying Theorem A, we have P ′ � Φ(P ) � Z(P ), and P ′ is elementary 
abelian of order at most p2. Note that P ′ �= 1, because G′ ≤ P .

By Lemma 2, we may consider H a Hall p′-subgroup of G, such that H =
(H ∩ A)(H ∩ B), where H ∩ A and H ∩ B are Hall p′-subgroups of A and B respec-
tively. Moreover, H ∼= G/ F(G) is abelian. Let x ∈ H ∩ A be a prime power order 
element. Since H � CG(x) � G, it follows by the hypotheses that 

∣
∣xG

∣
∣ ≤ p, and so 

Φ(G) � CG(x). Thus Φ(G) � CG(H∩A), and analogously for H∩B. Consequently we get 
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P ′ � Φ(P ) � Φ(G) � CG(H). Since P ′ � Φ(P ) � Z(P ), it follows P ′ � Φ(P ) � Z(G). 
In particular, Φ(G) �= 1 �= Z(G).

If A, B � P , then G = P and G′ = P ′ � Z(G), a contradiction. Hence we have 
either H ∩ A �= 1 or H ∩ B �= 1. Assume H ∩ A �= 1. Let QA be a Sylow q-subgroup 
of H ∩ A, for some prime q �= p. Note that QA �� Z(G), because Z(G) is a p-group. Let 
QA = QA Z(G)/ Z(G), which acts on P = P/ Z(G), which is elementary abelian because 
Φ(P ) � Z(G) � F(G) = P . Suppose w = w Z(G) ∈ CQA

(P ). Then [w, y] = 1 for all 
y = y Z(G) ∈ P , so [w, y] ∈ Z(G) � P . Let k = o(w) denote the order of w. Thus [w, y]k =
[wk, y] = 1. It follows [w, y] = 1 for all y ∈ P , so w ∈ CQA

(P ) = CQA
(F(G)) = 1. Then 

CQA
(P ) = 1 and the action is faithful. Let 1 �= αq = αq Z(G) ∈ QA. Therefore P =

[P , αq] ×CP (αq), with [P , αq] �= 1. Moreover, 
∣
∣[P , αq]

∣
∣ =

∣
∣P : CP (αq)

∣
∣ =

∣
∣
∣P : CP (αq)

∣
∣
∣ =

|P : CP (αq)|, which divides 
∣
∣αG

q

∣
∣, because P is normal in G. Since H � CG(αq) and αq is 

a non-central prime power order element in A, it follows 
∣
∣αG

q

∣
∣ = p, and so 

∣
∣[P , αq]

∣
∣ = p. 

Applying Lemma 4, we get that QA
∼= QA is cyclic. Since this is valid for each prime 

divisor q of |H ∩A|, we deduce that H ∩A has cyclic Sylow subgroups, but it is abelian, 
so H ∩A is cyclic. Analogously, if H ∩B �= 1, then it is cyclic.

Let H ∩A = 〈α〉. Assume first that 1 �= α is a q-element, for some prime q, and that 
G = P 〈α〉. By the above argument, 〈α〉 Z(G)/ Z(G) acts faithfully on P , and 

∣
∣[P , α]

∣
∣ =

|P : CP (α)| = p. Let y ∈ P \ CP (α). If [y, α] = 1, then [y, α] ∈ Z(G) � P . Hence 
[y, α]o(α) = [y, αo(α)] = 1, so [y, α] = 1 and y ∈ CP (α), a contradiction. Then [y, α] �= 1, 
and since 

∣
∣[P , α]

∣
∣ = p, it follows [P , α] = 〈[y, α]〉. Therefore we have [P, α] = [P , α] =

〈[y, α]〉 = 〈[y, α]〉, so [P, α] � [P, α] Z(G) = 〈[y, α]〉 Z(G), and then G′ = P ′[P, α] �
〈[y, α]〉 Z(G) which is abelian, a contradiction.

Hence, we may assume that, for every prime q, if αq is the q-part of α, then P 〈αq〉 < G. 
Note that P 〈αq〉 is normal in G, and P 〈αq〉 = (P 〈αq〉 ∩A)(P 〈αq〉 ∩B). Therefore, by the 
minimality of G, it follows that (P 〈αq〉)′ is abelian. Notice that (P 〈αq〉)′ = P ′[P, αq], 
since P is normal in G. Let K = P ′[P, αq], which is an abelian normal subgroup of G, 
and let t ∈ [P, αq] � K. Then Lemma 5 leads to |CG(αq)| < |CG([t, αq])|. If p divides 
∣
∣
∣[t, αq]G

∣
∣
∣ we get a contradiction, because 

∣
∣
∣[t, αq]G

∣
∣
∣ <

∣
∣αG

q

∣
∣ = p. Hence, P � CG([t, αq])

and [t, αq] ∈ Z(P ), for each t ∈ [P, αq]. By coprime action, P = [P, αq] CP (αq). Thus 
[P, αq] = [[P, αq] CP (αq), αq] = [P, αq, αq]. If k is a generator of [P, αq, αq], then k =
[t, αq] ∈ Z(P ) with t ∈ [P, αq], so [P, αq] = [P, αq, αq] � Z(P ). Since this is valid for each 
prime divisor q of the order of H ∩A = 〈α〉, we get:

[P,H ∩A] = [P, 〈αq1〉 × · · · × 〈αqt〉] = [P, αq1 ] · · · [P, αqt ] � Z(P ).

Analogously, if H ∩ B �= 1, then [P, H ∩ B] ≤ Z(P ). Since G′ = P ′[P, H] =
P ′[P, H ∩ A][P, H ∩ B], we get G′ ≤ Z(P ). This final contradiction establishes state-
ment (1).

(2) Suppose that the second assertion is not true and let G be a counterexample of 
minimal order. We point out that the hypotheses are inherited by every quotient group 
of G and, by (1), G′ is abelian. There exists a prime divisor p of |G′| such that G′ does 
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not have any elementary abelian Sylow p-subgroup. By the minimality of G, we may 
consider that Op′(G) = 1. Moreover, since G is supersoluble, then G/ F(G) is abelian, 
and F(G) = Op(G) = P is a normal Sylow p-subgroup of G such that G′ � P . Using 
Lemma 2 and Theorem A, we obtain respectively that P = (P ∩ A)(P ∩ B), and that 
P ′ is elementary abelian with P ′ � Φ(P ) � Z(P ).

Let GN be the nilpotent residual of G. Note that GN �= 1; in other case, G is a p-group 
and then G′ = P ′, a contradiction. Since GN � G′, it follows that GN is abelian. By using 
[7, III – 4.6, IV – 5.18], we have that GN is complemented in G, and its complements 
are precisely the Carter subgroups of G. Accordingly, G = GNH with H = NG(H) a 
nilpotent subgroup of G and GN ∩H = 1. These facts yield G′ = GN × (H ∩ G′), and 
CGN(H) = 1. On the other hand, the minimality of G implies that G′/GN ∼= (H ∩G′) is 
elementary abelian, and thus GN is not so. If CH(GN) �= 1, since CH(GN) is normal in 
G, by the minimality of G we have (G/ CH(GN))′ is an elementary abelian group, but

(G/CH(GN))′ = G′ CH(GN)/CH(GN) = GN CH(GN)/CH(GN) ∼= GN,

which is a contradiction. Hence, CH(GN) = 1. In particular, we deduce that Z(G) = 1.
By Lemma 2, there exists a Hall p′-subgroup H0 of G such that H0 = (H0∩A)(H0∩B). 

Let x ∈ H0 ∩ A be a non-trivial element of prime power order. Since H0 � CG(x), it 
follows that 

∣
∣xG

∣
∣ ≤ p, and so Φ(G) � CG(x). Thus Φ(G) � CG(H0∩A), and analogously 

for H0∩B. Consequently, we get P ′ � Φ(P ) � Φ(G) � CG(H0). Since P ′ � Φ(P ) � Z(P )
and G = PH0, it follows P ′ � Φ(P ) � Z(G) = 1, which implies that P is elementary 
abelian, the final contradiction.

(3) Assume that the result is false and take G a counterexample of minimal or-
der. Consider a prime p such that | F(G)′|p > p2. By minimality, we can affirm that 
Op′(F(G)) = 1. Since G is supersoluble, we get that F(G) = Op(G) = P is a normal 
Sylow p-subgroup of G. Then, we apply both Lemma 2 and Theorem A to get the final 
contradiction. �
Example 4. Let G = A ×B be the direct product of two symmetric groups of degree 3. 
Then G is supersoluble, and every element contained in each factor (not only those of 
prime power order) has square-free conjugacy class size, but neither the derived subgroup 
G′ nor G/ F(G) are cyclic, in contrast to [6, Theorem 2].

Example 5. In view of [6, Theorem 2], it is natural to wonder if we can affirm in the 
above result that the Sylow p-subgroups of G′ have order at most p2. This fact is not 
further true, as we show:

Let G = A ×B, where A = D14 is a dihedral group of order 14, and B = D14× [C7]C3
is the direct product of such a dihedral group and a semidirect product of a cyclic group 
of order 7 and a cyclic group of order 3 (B has identification number 294#9 in the 
Small groups library of GAP). Then G is supersoluble, and satisfies that all prime power 
order elements contained in each factor have square-free conjugacy class size, but G′ has 
order 73.
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Now we proceed with the proof of Theorem E.

Proof of Theorem E. Considering the smallest prime divisor of |G| and Theorem B, 
we conclude that G is soluble. Hence, it is p-soluble for each prime divisor p of |G|. 
Applying Theorem C, we get that G is p-supersoluble for each prime that divides |G|, 
so it is supersoluble.

Now we prove the second assertion by induction on |G|. Let p be an arbitrary prime, 
and P be a Sylow p-subgroup of G. We want to show that P F(G)/ F(G) ∼= P/ Op(G) is 
elementary abelian. Since G is supersoluble, we have that G/ F(G) is abelian. Moreover, 
we may assume by induction that Op(G) = 1. Therefore, we have that F(G) � H � G, 
where H is a Hall p′-subgroup of G. Consequently, H is normal in G and G is p-nilpotent. 
Finally, by Theorem 3 the result is established. �

When considering in the above theorem all p-regular elements in the factors, we get 
as a corollary:

Corollary 3. ([2, Corollary 1.5]) Let the group G = AB be the mutually permutable 
product of the subgroups A and B. Suppose that for every prime p and every p-regular 
element x ∈ A ∪B, 

∣
∣xG

∣
∣ is not divisible by p2. Then G is supersoluble.

Example 6. Consider G = A × B, where A = Sym(3) is a symmetric group of degree 3, 
and B = Sym(3) ×D10 is the direct product of such a symmetric group and a dihedral 
group of order 10. Then G satisfies the hypotheses of Theorem E. However there exists 
some 2-regular element in B, not of prime power order, such that 4 divides its conjugacy 
class size, so Corollary 3 cannot be applied.

In the particular case when A and B are normal in G, we obtain [13, Proposition 9].

Corollary 4. Let A and B be normal subgroups of G such that G = AB. Suppose that 
∣
∣xG

∣
∣

is square-free for every element x of prime power order of A ∪B. Then G is supersoluble.

This development has its origins in the contributions of Chillag and Herzog [5, Theo-
rem 1], and Cossey and Wang [6, Theorem 2]. Our next result Theorem F and Theorem D
can be considered somehow extensions of the ones above for (mutually permutable) 
products. In fact, Theorem F provides further information on the Sylow subgroups of 
G/ F(G).

Proof of Theorem F. Suppose the result is not true and let G be a counterexample of least 
order possible. Then if P is a Sylow p-subgroup of G, we have |P/Op(G)| ≥ p3. We can 
assume by the minimality of G that Op(G) = 1 = Φ(G) = Z(G), so |P | ≥ p3. By Lemma 2
we can choose P = (P ∩A)(P ∩B), with P ∩A and P ∩B Sylow p-subgroups of A and B
respectively. By Theorem E, we have that G is supersoluble and G/ F(G) has elementary 
abelian Sylow subgroups. In particular, P F(G) is normal in G. Hence Lemma 3 (b) 
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asserts that L = (P F(G) ∩A)(P F(G) ∩B) is normal in G, and it is a mutually permutable 
product. Moreover, P = (P∩A)(P∩B) � (P F(G) ∩A)(P F(G) ∩B) = L � P F(G). If we 
suppose L < G, by the minimality of G it follows |P/Op(L)| = |P | ≤ p2, a contradiction. 
Thus, we may assume L = G = P F(G), and so G is p-nilpotent.

Let N be a minimal normal subgroup of G. We can assume without loss of generality 
that it is contained in A by Theorem 1. Note |N | = q �= p. By Proposition 1 (1), it 
follows |Op(G/N)| ≤ p, and by the minimality of G we have |(PN/N)/Op(G/N)| ≤ p2. 
Since P ∼= PN/N , we may assume |P | = p3. As Φ(G) = 1, [7, A – 10.6 Theorem]
leads to F(G) = Soc(G). If N is the unique minimal normal subgroup of G, then P ∼=
NP (N)/ CP (N) which is isomorphic to a subgroup of Aut(Cq) ∼= Cq−1, so P is cyclic 
and elementary abelian, which implies that its order is p, a contradiction.

Now we denote by T the product of all minimal normal subgroups of G distinct of N , 
so T �= 1 and T ∩N = 1. It follows F(G) = Soc(G) = N × T . We denote Q1 = Op(PN)
and Q2 = Op(PT ). Since PN ∼= G/T (and PT ∼= G/N), by the minimality of G we 
may affirm Q1 �= 1 �= Q2. On the other hand, since [Op(PN), N ] � Op(PN) ∩ N = 1, 
we have Q1 � C1 = CP (N) (analogously Q2 � C2 = CP (T )). In addition, it follows 
C1∩C2 � CP (F(G)) � CG(F(G)) � F(G), so C1∩C2 = 1. Let P0 be a Sylow p-subgroup 
of CG(N) such that P0 � P . Hence P0 = C1 = CP (N). In addition, since N = 〈x〉
where x is a q-element contained in A, by the hypotheses it follows that p2 does not 
divide 

∣
∣xG

∣
∣
p

= |G : CG(x)|p = |P : C1|. Moreover, since |P | = |P : C1| · |C1| = p3, 
we may assume |C1| ≥ p2, and since 1 �= Q2 � C2, we have |C2| ≥ p. Accordingly 
|C1C2| = |C1| · |C2| ≥ p3, and since P is abelian, we have necessarily P = C1 ×C2. This 
leads to

G = P F(G) = C1C2NT = (C1T ) × (C2N).

Suppose T ∩ A �= 1, and let 1 �= y ∈ T ∩ A � C1T ∩ A. Let 1 �= x ∈ N � A. 
Then since xy ∈ F(G) ∩ A and F(G) is abelian, we have that xy is a p-regular element, 
so by the hypotheses p2 does not divide 

∣
∣(xy)G

∣
∣. As G is a direct product, we have 

∣
∣(xy)G

∣
∣ =

∣
∣xG

∣
∣
∣
∣yG

∣
∣. In addition, (N × C1T ) � CG(x) � G, and therefore 

∣
∣xG

∣
∣ divides 

|G : (C1T ×N)| = |C2| which is a p-number, so 
∣
∣xG

∣
∣ = p (recall that Z(G) = 1), and 

analogously 
∣
∣yG

∣
∣ = p, a contradiction. We conclude T ∩A = 1.

If F(G) = K × M with M normal in G and K a minimal normal subgroup of G
contained in B, by similar arguments we can deduce M∩B = 1. This means, in particular, 
that neither A nor B can contain two distinct minimal normal subgroups of G.

On the other hand, since F(G) is the unique p′-Hall subgroup of G, Lemma 2 leads to 
F(G) = (F(G) ∩ A)(F(G) ∩ B). Moreover, since F(G) ∩ A = NT ∩ A = N(T ∩ A) = N , 
it follows F(G) = N(F(G) ∩ B). Note that (F(G) ∩ B) ∩ N � N with |N | = q so we 
distinguish two cases: either (F(G) ∩B) ∩N = N or (F(G) ∩B) ∩N = 1. In the first case 
F(G) = F(G) ∩ B � B. Thus there exists another minimal normal subgroup contained 
in B and distinct of N , a contradiction. Hence we conclude (F(G) ∩ B) ∩ N = 1 so 
F(G) = N × (F(G) ∩B).
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Now suppose that F(G) is a q-group. Then, since F(G) = Soc(G), it follows that 
F(G) is q-elementary abelian. In addition, P ∩ A acts faithfully over F(G). Let 1 �= x ∈
P ∩ A � A, then F(G) = [F(G), x] × CF(G)(x), with CF(G)(x) < F(G) since Z(G) = 1
and P is abelian. By the hypotheses, q2 does not divide 

∣
∣xG

∣
∣, and therefore it does not 

divide 
∣
∣F(G) : CF(G)(x)

∣
∣. Thus we may affirm |[F(G), x]| = q. By Lemma 4 we conclude 

that P ∩ A is cyclic, and analogously P ∩ B is cyclic too. So they are both cyclic and 
elementary abelian, that is, they both have order p. Thus |P | = |(P ∩A)(P ∩B)| ≤ p2, 
a contradiction.

Hence we may suppose that there exists a prime r �= q such that r divides |F(G)|. 
Let 1 �= R be a Sylow r-subgroup of F(G) ∩ B (so it is a Sylow r-subgroup of F(G)). 
Then 1 �= R = Or(G) � B, and since F(G) = Soc(G), necessarily we have that Or(G) is 
the product of the minimal normal subgroups of G with order r. Let M � B be one of 
those minimal normal subgroups. Arguing exactly in the same way as with N , it follows 
F(G) = M×(A ∩F(G)). But A ∩F(G) = N so F(G) = N×M with both minimal normal 
subgroups of G, N � A and M � B. Let P1 be a Sylow p-subgroup of CG(N) = CG(x)
such that P1 � P . Then by the hypotheses we have 

∣
∣xG

∣
∣
p

= |P : P1| ≤ p. Since |P | = p3, 
it follows |P1| ≥ p2. However, P1 is normal in PN so P1 � Op(PN) ∼= Op(G/M), and 
by Proposition 1 (1) we have |Op(G/M)| ≤ p. This final contradiction establishes the 
theorem. �
Example 7. Under the hypotheses of Theorem E (even under those of Theorem D), it is 
not possible to assure that G/ F(G) has Sylow p-subgroups of order at most p2, as the 
following example shows:

Let {p1, p2, . . . , pn} be a finite set of pairwise distinct odd primes, and let G = D2p1 ×
D2p2 × · · ·×D2pn

be the direct product of dihedral groups of order 2pi, 1 ≤ i ≤ n. Then 
G = A ×B is a mutually permutable product of A = D2p1 and B = D2p2×· · ·×D2pn

, and 
each prime power order element contained in the direct factors has square-free conjugacy 
class size. However, G/ F(G) has order 2n.
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