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1. Introduction

We investigate étale algebras in the space of symmetric elements of a central simple 
algebra with involution over an arbitrary field, emphasizing the similarities between the 
various types of involutions and avoiding restrictions on the characteristic. In Section 2
and Section 3 we recall the terminology and some crucial techniques for algebras with 
involution. We enhance this terminology in a way that allows us to avoid unnecessary 
case distinctions in the sequel, according to the different types of involution and to 
the characteristic. To this end we introduce in Section 3 the notion of capacity of an 
algebra with involution. It is defined to be the degree of the algebra if the involution is 
orthogonal or unitary, and half the degree if the involution is symplectic. In Section 5
we isolate a notion of neat subalgebra, which captures the features of separable field 
extensions of the centre consisting of symmetric elements while avoiding the pathologies 
that may arise with arbitrary étale algebras. We prove their existence and determine 
their maximal dimension to be equal to the capacity (Theorem 4.1 and Proposition 5.6). 
In Section 6, given a neat quadratic subalgebra K, we establish the existence of a neat 
subalgebra L linearly disjoint from K and centralising K and such that the composite 
KL is a neat algebra of maximal dimension (Theorem 6.10). In Section 7 we apply this 
result to construct neat biquadratic subalgebras in the space of symmetric elements of 
central simple algebras of degree 4 with orthogonal or unitary involutions, and similarly 
of central simple algebras of degree 8 with symplectic involutions (Theorem 7.4). As a 
consequence, we obtain a conceptual proof of a theorem of Rowen, which asserts that 
division algebras of exponent 2 and degree 8 are elementary abelian crossed products, 
i.e., they contain a maximal subfield which is a triquadratic separable extension of the 
centre (Corollary 7.7). Actually we obtain directly a refined version of this result which 
says that any symplectic involution on a central simple algebra of degree 8 stabilizes 
some triquadratic étale extension of the centre (Theorem 7.6). This has been proven in 
[7, Lemma 6.1] for division algebras in characteristic different from two, but there the 
proof uses Rowen’s Theorem, which we obtain here as a consequence. This illustrates 
the usefulness of involutions in the investigation of central simple algebras of exponent 
two.

The results of this paper will be used in [4], which proposes a common approach to 
the definition of the first cohomological invariant (discriminant) of the involutions of 
capacity four of various types through Pfister forms in arbitrary characteristic.

2. Algebras

In this preliminary section we introduce and recall some definitions and facts from 
the theory of finite-dimensional simple and semisimple algebras. Our standard references 
are [11] and [8].

Let F be an arbitrary field. For a commutative F -algebra K we set [K : F ] = dimF K. 
Recall that an F -algebra is étale if it is isomorphic to a finite product of finite separable 
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field extensions of F . An étale F -algebra is said to be split if it is F -isomorphic to Fn

for some n ∈ N.

2.1. Lemma. Let L be a split étale F -algebra with |F | > [L : F ]. Then L = F [a] for an 
element a ∈ L× which is separable over F .

Proof. In Fn any element a = (a1, . . . , an) with distinct a1, . . . , an ∈ F× is invertible and 
has minimal polynomial 

∏n
i=1(X − ai) over F , which is separable of degree n, whereby 

L = F [a]. �
Let A be an F -algebra. We denote by Z(A) the centre of A and by Aop the opposite 

algebra of A.

2.2. Lemma. Let K = Z(A) and assume that K is an étale F -algebra. Let L be a commu-
tative semisimple F -subalgebra of A which is F -linearly disjoint from K. Then A is free 
as a left (resp. right) L-module if and only if A is free as a left (resp. right) KL-module.

Proof. We prove the statement for left modules, the proof for right modules is analogous. 
Note that the commutative L-algebra KL is isomorphic to K ⊗F L, which is free as an 
L-module. Hence, if A is free as a left KL-module, then it is free as a left L-module.

Suppose conversely that A is free as a left L-module. Then K ⊗F A is free as a left 
K⊗F L-module. We have K⊗F K � K [K:F ] as K-modules and thus obtain isomorphisms 
of left K ⊗F L-modules

K ⊗F A � K ⊗F K ⊗K A � K [K:F ] ⊗K A � A[K:F ] .

Identifying K ⊗F L with KL we conclude that A[K:F ] is free as a KL-module. We will 
show that this is only possible if A itself is free as a left KL-module.

Since K is étale and F -linearly disjoint from L, it follows from [5, Chap. V, §6, N◦ 7]
that KL � K1×· · ·×Kr for some fields K1, . . . , Kr. Consider a finitely generated module 
M over K1 × · · · ×Kr. Then M is of the form M1 × · · · ×Mr where Mi is a Ki-vector 
space for i = 1, . . . , r. Furthermore M is free if and only if the dimensions dimKi

Mi for 
i = 1, . . . , r are all the same. In particular, Mn is free for an arbitrary positive integer n
if and only if M is free. �

We call the F -algebra A central simple if dimF A < ∞, Z(A) = F and A is simple 
as a ring. Let A be a finite-dimensional simple F -algebra. Then K = Z(A) is a field 
and A is a central simple K-algebra. By Wedderburn’s Theorem (cf. [8, Theorem 2.1.3]) 
we have dimK A = n2 for some positive integer n, which is called the degree of A and 
denoted by degA. Moreover, A is Brauer equivalent to a central division K-algebra D, 
which is is unique up to K-isomorphism. The degree of D is called the index of A and 
denoted by indA. If indA = 1 then A is K-isomorphic to Mn(K) for n = degA, and in 
this case we say that A is split. We further set coindA = deg A and call this the coindex 
ind A
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of A. Hence, for any finite-dimensional division F -algebra D and any positive integer n
we have coindMn(D) = n.

Let A be an F -algebra. For any F -subalgebra B of A we obtain an F -subalgebra

CA(B) = {x ∈ A | xb = bx for all b ∈ B},

called the centraliser of B in A.
An element e ∈ A is called an idempotent if e2 = e. For any nonzero idempotent e ∈ A

the ring eAe with unity e becomes an F -algebra by identifying F with eF . Moreover, if 
A is a central simple F -algebra, then the F -algebra eAe is also central simple, and it is 
Brauer equivalent to A.

A crucial tool in the study of central simple algebras and their simple subalgebras 
is the Double Centraliser Theorem. We refer to [11, Sect. 12.7] for the statement. The 
following is an extension of this statement for the case of commutative subalgebras.

2.3. Proposition. Let A be a finite-dimensional simple F -algebra. Assume that Z(A) is 
separable over F . Let L be a commutative semisimple F -subalgebra of A that is F -linearly 
disjoint from Z(A). Then CA(L) is a semisimple F -algebra with centre L and

[L : F ] · dimF CA(L) � dimF A.

Moreover, the following conditions are equivalent:

(a) [L : F ] · dimF CA(L) = dimF A;
(b) all simple components of CA(L) have the same degree;
(c) A is free as a left L-module;
(d) A is free as a right L-module.

They hold in particular whenever L is a field or [L : F ] = degA.

Proof. Let K = Z(A). Note that [KL : K] = [L : F ], CA(KL) = CA(L) and further 
that dimF CA(L) = [K : F ] · dimK CA(KL) and dimF A = [K : F ] · dimK A. In view 
of the statement and of Lemma 2.2, we may therefore replace K by F and LK by L. 
Hence we may assume in the sequel that A is central simple as an F -algebra.

If now L is a field, then (a) holds by the Double Centraliser Theorem and furthermore 
conditions (b)–(d) are trivially satisfied. This case will be used to show the statement in 
general.

More generally, let e1, . . . , er be the primitive idempotents of L. For i = 1, . . . , r we 
set Ai = eiAei and Li = eiL. Thus, identifying F with Fei ⊆ Li, each Li is a finite field 
extension of F contained in the central simple F -algebra Ai, and in the decomposition 
A =

⊕r
i,j=1 eiAej we have

CA(L) = CA1(L1) ⊕ · · · ⊕ CAr
(Lr).
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Each CAi
(Li) is a simple F -algebra with centre Li, whereby CA(L) is a semisimple 

algebra with centre L. For i = 1, . . . , r we set �i = [Li : F ] and di = degCAi
(Li) and 

obtain from the Double Centraliser Theorem that

dimF Ai = [Li : F ] · dimF CAi
(Li) = �2i d

2
i ,

whereby degAi = �idi. It follows that degA =
∑r

i=1 �idi and

dimF CA(L) =
r∑

i=1
dimF CAi

(Li) =
r∑

i=1
�id

2
i .

As [L : F ] =
∑r

i=1 �i it follows that

[L : F ] · dimF CA(L) =
( r∑
i=1

�i

)
·
( r∑
i=1

�id
2
i

)

=
( r∑
i=1

�idi

)2
+
∑
i<j

�i�j(di − dj)2

= (degA)2 +
∑
i<j

�i�j(di − dj)2.

This proves the inequality in the statement as well as the equivalence of (a) and (b)
because the last term on the right hand side vanishes if and only if d1 = · · · = dr. To 
prove the equivalence of (b) with (c), note that for i = 1, . . . , r we have

dimF eiA = degAi · degA = �idi degA,

as one sees easily by reduction to the split case, and thus dimLi
eiA = di degA. Hence 

Condition (b) holds if and only if dimL1 e1A = · · · = dimLr
erA, which is Condition (c). 

The proof of the equivalence of (b) with (d) is completely analogous.
Finally, if [L : F ] = degA, then 

∑r
i=1 �i = [L : F ] = degA =

∑r
i=1 �idi, and thus 

d1 = · · · = dr = 1, which implies Condition (b). �
Let K be a quadratic étale F -subalgebra of A and let γ denote its nontrivial 

F -automorphism. We denote

C ′
A(K) = {x ∈ A | xk = γ(k)x for all k ∈ K} .

If A is a finite-dimensional semisimple F -algebra then for an element a ∈ A we denote 
by

PrdA,a(X) ∈ F [X]

its reduced characteristic polynomial (see [12, §9]).
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2.4. Proposition. Assume that A is a central simple F -algebra. Let K be an F -subalgebra 
of A isomorphic to F×F . Let e1 and e2 be the primitive idempotents of K and Ai = eiAei
for i = 1, 2. Suppose that degA1 = degA2. Let a ∈ C ′

A(K), u = e1ae2 and v = e2ae1. 
Then a = u + v and

PrdA,a(X) = PrdA1,uv(X2) = PrdA2,vu(X2) ∈ F [X] .

Proof. We have that ae1 = e2a and ae2 = e1a, hence e1a = e1ae2 = u and e2a =
e2ae1 = v, which yields that a = e1a + e2a = u + v,

uv = e1ae2ae1 = e1a
2e1 ∈ A1 and vu = e2ae1ae2 = e2a

2e2 ∈ A2.

To prove the equalities we may extend scalars to a splitting field of A. Thus we assume 
that A is split and identify A with a matrix algebra in such a way that e1 =

( 1 0
0 0

)
, 

e2 =
( 0 0

0 1

)
and a =

( 0 u
v 0

)
, where u and v are matrices. We have to show that the 

characteristic polynomials Pca, Pcuv, Pcvu are related by

Pca(X) = Pcuv(X2) = Pcvu(X2).

Since the coefficients of the characteristic polynomials are polynomial functions of the 
entries, it suffices to prove these equalities in the case where u and v are generic matrices 
over Z, for the general case then follows by specialization. Since we have Tr(a2k) =
2 Tr

(
(uv)k

)
= 2 Tr

(
(vu)k

)
and Tr(a2k+1) = 0 for any k ∈ N, we obtain the result by 

applying Newton’s Identities relating the coefficients of the characteristic polynomial of 
a matrix to the traces of its powers. �
2.5. Corollary. Assume that A is a central simple F -algebra. Let K be an étale quadratic 
F -subalgebra of A such that dimF CA(K) = 1

2 dimF A. Then

PrdA,a(X) = PrdCA(K),a2(X2) ∈ F [X] for any a ∈ C ′
A(K) .

Proof. To prove the equality we may extend scalars. Hence we may assume that K �
F × F . Then the equation follows from Proposition 2.4. �
3. Capacity

In this section we recall some basic facts and objects associated with involutions on 
central simple algebras. We recall the distinction of involutions into two kinds and into 
three different types. We further introduce some notation that will allow us to study 
involutions of different types and over fields of arbitrary characteristic in a unified way. 
Our main reference for involutions is [9].

Let A be an F -algebra. By an F -involution on A we mean an F -linear anti-
automorphism σ : A → A such that σ ◦ σ = idA. Given an F -involution on A we 
set



K.J. Becher et al. / Journal of Algebra 493 (2018) 381–409 387
Sym(σ) = {x ∈ A | σ(x) = x} ,
Skew(σ) = {x ∈ A | σ(x) = −x} ,
Symd(σ) = {x + σ(x) | x ∈ A} .

By an F -algebra with involution we mean a pair (A, σ) of a finite-dimensional 
F -algebra A and an F -involution σ on A with F = Z(A) ∩ Sym(σ) and such that 
A has no non-trivial two-sided ideal I with σ(I) = I.

In the sequel, let (A, σ) denote an F -algebra with involution. Then either Z(A) = F

or Z(A) is a quadratic étale extension of F with non-trivial automorphism σ|Z(A). One 
says that (A, σ), or the involution σ, is of the first kind or of the second kind, respectively, 
according to whether [Z(A) : F ] equals 1 or 2.

As long as Z(A) is a field it follows that A is central simple as a Z(A)-algebra. 
However, if (A, σ) is of the second kind, we may also have that Z(A) � F × F : in this 
case (A, σ) � (A0 × Aop

0 , sw) for a central simple F -algebra A0 and where sw is the 
so-called switch-involution given by sw(a1, a

op
2 ) = (a2, a

op
1 ) (see [9, (2.14)]).

If σ is an involution of the first kind, then we say that σ is symplectic if 
dimF Symd(σ) < dimF Skew(σ) and 1 ∈ Symd(σ), otherwise we say that σ is orthogonal. 
Considering the F -linear map x �→ x + σ(x) one sees that

dimF Skew(σ) + dimF Symd(σ) = dimF A,

hence dimF Symd(σ) < dimF Skew(σ) if and only if dimF Symd(σ) < 1
2 dimF A.

If σ is of the second kind then we also say that σ is unitary. We say that (A, σ) is 
unitary of inner type when Z(A) � F × F . (The term is motivated by a corresponding 
notion for algebraic groups.)

The property of the involution σ to be orthogonal, symplectic or unitary is called its 
type. Notions for properties of an involution (such as its kind and its type) shall also be 
employed for the algebra with involution as a pair.

Whenever Z(A) is a field we denote by degA, indA, coindA the degree, index or 
coindex of A, respectively, as a central simple Z(A)-algebra. In the case where Z(A) �
F × F , we define the same terms with reference to (any of) the two simple components 
of A. We say that the algebra with involution (A, σ) is split if indA = 1.

We have Symd(σ) ⊆ Sym(σ), and this is an equality unless charF = 2 and (A, σ) is 
of the first kind. (See [9, (2.17)] for charF = 2 and σ unitary.) To avoid case distinctions 
in our statements and arguments, we set

Sym∗(σ) =
{

Sym(σ) if σ is orthogonal or unitary,
Symd(σ) if σ is symplectic.

Note that Sym∗(σ) = Symd(σ) except when charF = 2 and σ is orthogonal.
Dealing with orthogonal involutions in characteristic two requires additional care, as 

one may see in the following statement.
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3.1. Proposition. Let e be a nonzero idempotent in Sym(σ) and σe = σ|eAe. Then 
(eAe, σe) is an F -algebra with involution of the same kind as (A, σ). Moreover, (eAe, σe)
is of the same type as (A, σ) except when charF = 2, σ is orthogonal and e ∈ Symd(σ), 
in which case σe is symplectic.

Proof. Obviously the F -algebra eAe is stable under the F -involution σe. Let K = Z(A). 
We first show that Z(eAe) = Ke. For this we may assume that A is split and identify 
A with EndK(V ) for a finitely generated free K-module V . Then eAe is identified with 
EndK(eV ). Moreover, the K-submodule eV of V is free; if K is a field this is trivial, 
and otherwise we have (A, σ) � (A0 × Aop

0 , sw) for a central simple F -algebra A0 and 
use that e ∈ Sym(σ) to obtain this conclusion. Hence the centres of EndK(V ) and 
EndK(eV ) consist of the scaling maps with scalars from K. This naturally identifies 
Z(eAe) with Ke.

Hence (eAe, σe) is an F -algebra with involution of the same kind as (A, σ). To compare 
the types of the involutions, we only need to consider the case where (A, σ) is of the first 
kind.

If a ∈ A is such that a +σ(a) equals 1 or e, then eae +σ(eae) = e. Hence, if 1 ∈ Symd(σ)
or e ∈ Symd(σ), then e ∈ Symd(σe). It remains to consider the dimensions of Symd(σ)
and Symd(σe).

Let f = 1 − e, and let n = degA, r = deg eAe, and s = deg fAf , so that n = r + s. 
The decomposition

A = eAe⊕ (eAf ⊕ fAe) ⊕ fAf

is stable under σ, hence

Symd(σ) =
(
eAe ∩ Symd(σ)

)
⊕
(
(eAf ⊕ fAe) ∩ Symd(σ)

)
⊕
(
fAf ∩ Symd(σ)

)
.

If a ∈ A satisfies a + σ(a) ∈ eAe, then a + σ(a) = eae + σ(eae). This shows that

eAe ∩ Symd(σ) = Symd(σe),

and it follows that dimF

(
eAe ∩ Symd(σ)

)
= 1

2r(r + εe) with εe = ±1. Likewise, 
dimF

(
fAf ∩ Symd(σ)

)
= 1

2s(s + εf ) with εf = ±1. Now, if a ∈ A is such that 
a + σ(a) = ebf + fce for some b, c ∈ A, then

ebf + fce = σ(ebf + fce) = eσ(c)f + fσ(b)e,

hence fce = fσ(b)e = σ(ebf) and a + σ(a) = ebf + σ(ebf). Therefore

(eAf ⊕ fAe) ∩ Symd(σ) = {x + σ(x) | x ∈ eAf},

and it follows that dimF (eAf ⊕ fAe) ∩ Symd(σ) = dimF eAf = rs. Therefore the above 
decomposition of Symd(σ) yields
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dimF Symd(σ) = 1
2r(r + εe) + rs + 1

2s(s + εf ) = 1
2 (n2 + rεe + sεf ).

As dimF Symd(σ) = 1
2n(n + ε) for ε = ±1, we conclude that ε = εe = εf . Hence, 

dimF Symd(σ) < 1
2 dimF A if and only if dimF Symd(σe) < 1

2 dimF eAe. �
We give an example for the exceptional case in the statement of Proposition 3.1.

3.2. Example. Write t for the transpose involution on M4(F ). Consider the matrices

m =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ and e =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

in M4(F ). The involution σ = Int(m) ◦ t is orthogonal because m is not alternating. It is 
further easy to see that e ∈ Symd(σ). Hence, if char(F ) = 2, we obtain that σ restricts 
to a symplectic involution on eM4(F )e.

We define

cap(A, σ) =
{

degA if σ is orthogonal or unitary,
1
2 degA if σ is symplectic,

and we call this integer the capacity of (A, σ). This terminology is inspired by the theory 
of Jordan algebras: when the characteristic is different from 2 and the algebra A is split, 
then Sym(σ) is a Jordan algebra of capacity equal to cap(A, σ); see [10, § I.5.1]. Note 
that with this definition there exist F -algebras with involution of any given type and 
any positive integer as capacity.

3.3. Proposition. Let L be an F -subalgebra of A contained in Sym(σ) and such that 
L/F is a separable field extension. Set C = CA(L) and σC = σ|C . Then (C, σC) is an 
L-algebra with involution of the same type as (A, σ) and such that

cap(A, σ) = [L : F ] · cap(C, σC) .

Proof. With σ(L) = L we also have that σ(C) = C. Let K = Z(A). Then [LK :
L] = [K : F ] and [LK : K] = [L : F ]. The Double Centraliser Theorem yields that 
CA(C) = KL and degA = [L : F ] · degC. As obviously KL ⊆ Z(C) ⊆ CA(C) we 
conclude that Z(C) = KL. Hence, (C, σC) is an L-algebra with involution, and σC is 
unitary if and only if σ is unitary. Using [9, (4.12)] in the cases where σ is of the first 
kind, we conclude that the L-algebra with involution (C, σC) has the same type as the 
F -algebra with involution (A, σ). Since degA = [L : F ] · degC, this implies the claimed 
equality for the capacity. �
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We are going to show in Theorem 4.1 that the capacity of (A, σ) is equal to the 
maximal degree [L : F ] where L is an étale F -algebra contained in Sym∗(σ). To this end 
we first consider the case where A is split and show that we even find then a split étale 
subalgebra in Sym∗(σ) of degree equal to cap(A, σ).

3.4. Proposition. Let d = cap(A, σ) and assume that (A, σ) is split. Then Sym∗(σ) con-
tains an F -subalgebra L of A with L � F d.

Proof. Assume first that Z(A) is not a field. Then (A, σ) can be identified with (Md(F ) ×
Md(F )op, sw). Letting L0 ⊆ Md(F ) be the algebra of diagonal matrices and L = {(x, x) |
x ∈ L0}, we obtain that L ⊆ Sym∗(σ) and L � F d.

Assume now that K = Z(A) is a field. We identify A with EndK V for some 
K-vector space V . Then σ is the adjoint involution of some nondegenerate F -bilinear 
form b : V × V → K, which is symmetric and non-alternating if σ is orthogonal, which 
is alternating if σ is symplectic, and which is hermitian with respect to the nontrivial 
F -automorphism of K if σ is unitary. If σ is orthogonal or unitary (resp. symplectic), 
we have dimK V = d (resp. dimK V = 2d), and we obtain a decomposition of V into a 
direct sum of 1-dimensional (resp. 2-dimensional) K-subspaces

V = V1 ⊕ . . .⊕ Vd

that is an orthogonal decomposition for b. Let e1, . . . , ed denote the orthogonal pro-
jections corresponding to this decomposition. Then e1, . . . , ed are idempotents in A =
EndK V . For i = 1, . . . , d and x, y ∈ V we have

b
(
x, ei(y)

)
= b

(
ei(x), ei(y)

)
= b(ei(x), y).

Thus e1, . . . , ed ∈ Sym(σ), and we conclude by Proposition 3.1 that e1, . . . , ed ∈ Sym∗(σ). 
Hence L = Fe1 ⊕ · · · ⊕ Fed is an F -subalgebra of A contained in Sym∗(σ) with L �
F d. �
4. Forms on the space of symmetrized elements

Certain statements on the existence for elements or subalgebras with special properties 
in an algebra with involution can be proven by reducing to the situation where the base 
field is algebraically closed. This requires a geometric description of the property in 
question. Here we are interested in elements and subalgebras contained in Sym∗(σ). To 
obtain a geometric formulation we introduce a polynomial χa ∈ F [X] associated to an 
arbitrary element a ∈ Sym∗(σ), whose degree is equal to cap(A, σ) and which has a as a 
root. It is defined as either the reduced characteristic polynomial PrdA,a or the Pfaffian 
characteristic polynomial Prpσ,a (see [9, (2.10)]):
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χa =
{

PrdA,a if σ is orthogonal or unitary,
Prpσ,a if σ is symplectic.

For the unitary case, note that, even though the coefficients of the reduced characteristic 
polynomial of any a ∈ A lie in Z(A), when σ(a) = a the coefficients of PrdA,a lie in F
(see [9, (2.16)]). (When (A, σ) = (A0×Aop

0 , sw), then a = (a0, a
op
0 ) for some a0 ∈ A0, and 

χa = PrdA0,a0 .) Thus we have χa ∈ F [X] in all cases. Note that χa is a multiple of the 
minimal polynomial of a over F and that the two polynomials have the same irreducible 
factors. Therefore, if χa is separable then χa is the minimal polynomial of a over F .

4.1. Theorem. Any étale F -subalgebra of A contained in Sym(σ) is contained in Sym∗(σ). 
Furthermore

cap(A, σ) = max{[L : F ] | L étale F -algebra with L ⊆ Sym(σ)}.

Proof. Let L ⊆ Sym(σ) be an étale F -algebra. To show that L ⊆ Sym∗(σ) and [L : F ] �
cap(A, σ), we may extend scalars and assume that F is algebraically closed. Then L and 
Z(A) are split. Let r = [L : F ] and let e1, . . . , er ∈ L be the primitive idempotents in L. 
Then eiej = δij for i, j ∈ {1, . . . r} and 

∑r
i=1 ei = 1. It follows that

degA =
r∑

i=1
deg(eiAei).

If σ is orthogonal or unitary, then we have Sym∗(σ) = Sym(σ) and further cap(A, σ) =
deg(A) � r, because deg(eiAei) � 1 for i = 1, . . . , r. Assume now that σ is symplectic. 
Then Proposition 3.1 shows for i = 1, . . . , r that σ restricts on eiAei to a symplectic 
involution, whereby deg(eiAei) � 2 and ei ∈ Symd(σ). We conclude that L ⊆ Symd(σ)
and cap(A, σ) = 1

2 degA =
∑r

i=1
1
2 deg eiAei � r. This shows that L ⊆ Sym∗(σ) and 

[L : F ] = r � cap(A, σ) in any case.
Back in the situation where F is an arbitrary field, it remains to show that Sym∗(σ)

contains an étale F -algebra L with [L : F ] = cap(A, σ). This follows from Proposition 3.4
if (A, σ) is split. In particular, we may assume that F is infinite. Let F denote an algebraic 
closure of F . Then Sym∗(σ) is Zariski-dense in Sym∗(σ) = Sym∗(σ) ⊗F F . An element 
a ∈ Sym∗(σ) is separable over F if and only if the discriminant of χa is nonzero. Since 
this is a polynomial condition, the elements of Sym∗(σ) which are separable over F form 
an open subset of Sym∗(σ), and by Proposition 3.4 and Lemma 2.1 this subset is not 
empty. Since Sym∗(σ) is dense in Sym∗(σ), we conclude that there exists an element 
a ∈ Sym∗(σ) which is separable over F , and thus separable over F . Hence χa is equal to 
the minimal polynomial of a over F . We conclude that F [a] is an étale F -algebra and 
[F [a] : F ] = deg(χa) = cap(A, σ). �

In the context of the last result we observe that Sym∗(σ) may contain (non-étale) 
commutative F -algebras L with [L : F ] > cap(A, σ).
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4.2. Example. Let L0 be the F -subalgebra of M4(F ) consisting of the matrices

⎛
⎜⎝
a 0 b c
0 a d e
0 0 a 0
0 0 0 a

⎞
⎟⎠

with a, b, c, d, e ∈ F . Then L = {(x, x) | x ∈ L0} is a 5-dimensional commutative 
F -subalgebra of A = M4(F ) ×M4(F )op. For the involution σ = sw on A we have that 
cap(A, σ) = 4 and L ⊆ Sym(σ) = Sym∗(σ).

4.3. Proposition. Let Ψ : (A, σ) → (B, τ) be a homomorphism of F -algebras with in-
volution with cap(A, σ) = cap(B, τ). Then χΨ(a) = χa holds for every a ∈ Sym∗(σ). 
Furthermore, if (A, σ) and (B, τ) are of the same type, then Ψ is an isomorphism.

Proof. The characteristic polynomial is invariant under algebra isomorphisms and under 
scalar extension. Hence, the first part of the statement is obtained by extending scalars 
to an algebraically closure, where it is easy to verify. Finally, if (A, σ) and (B, τ) are of 
the same type then dimF A = dimF B and since Ψ is injective, it follows that it is an 
isomorphism of algebras with involution. �

We give some examples of split algebras with involution and embeddings between 
them. For a matrix α with coefficients in a ring we denote by αt the transpose matrix 
of α. If m is a positive integer and α and β are two m ×m matrices over a ring, then we 
denote by α× β the 2m × 2m matrix 

(
α 0
0 β

)
.

4.4. Proposition. Let m be a positive integer. Let

s : M2m(F ) → M2m(F ),
(

α β
γ δ

)
�−→

(
δt −βt

−γt αt

)
.

We have the following:

(a) (M2m(F ), s) is an F -algebra with symplectic involution of capacity m.
(b) Φ : (Mm(F ), t) → (M2m(F ), s), α �→ α × α is a homomorphism of F -algebras with 

involution.
(c) Ψ : (Mm(F ) ×Mm(F )op, sw) → (M2m(F ), s), (α, βop) �→ α× βt is a homomorphism 

of F -algebras with involution.

Proof. This is obvious. �
We consider the case m = 2.
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4.5. Example. Let I2 =
( 1 0

0 1

)
∈ M2(F ) and J =

(
0 I2

−I2 0

)
∈ M4(F ). The involution 

s : M4(F ) → M4(F ) of Proposition 4.4 is given by Int(J) ◦ t, where t is the transposition 
involution. The F -space Symd(s) consists of the matrices

⎛
⎜⎝

a b 0 e
c d −e 0
0 f a c
−f 0 b d

⎞
⎟⎠

with a, b, c, d, e, f ∈ F . For later use we note that the determinant of such a matrix is 
equal to (ad − bc + ef)2.

Let d = cap(A, σ). For a ∈ Sym∗(σ) we write

χa = Xd − c1(a)Xd−1 + c2(a)Xd−2 − · · · + (−1)dcd(a)

and observe that this defines a form ci : Sym∗(σ) → F of degree i for i = 1, . . . , d.

We recall some quadratic form terminology from [6, (7.17)]. Let q : V → F be a 
quadratic form over F , defined on a finite-dimensional F -vector space V . We denote by 
bq the polar form of q given by

V × V → F, (x, y) �→ q(x + y) − q(x) − q(y) .

We further set

rad(bq) = {x ∈ V | bq(x, y) = 0 for all y ∈ V }
rad(q) = {x ∈ rad(bq) | q(x) = 0}

and observe that these are F -subspaces of V with rad(q) ⊆ rad(bq). Moreover, if charF �=
2 then q(x) = 1

2bq(x, x) for all x ∈ V and thus rad(q) = rad(bq). We call the quadratic 
form q regular if rad(q) = {0} and nondegenerate if q is regular and dimF rad(bq) � 1.

4.6. Proposition. Assume that cap(A, σ) = 2 and set V = Sym∗(σ). Then

dimF V =

⎧⎪⎨
⎪⎩

3 if σ is orthogonal,
4 if σ is unitary,
6 if σ is symplectic

and c2|V : V → F is a nondegenerate quadratic form over F , also given by the rule 
x �→ xx where x = c1(x) − x for x ∈ V .

Proof. By the definitions of the capacity and of V the value of dimF V follows from [9, 
(2.6)]. For x ∈ V we have c2(x) = c2(x) − χx(x) = −x2 + c1(x)x = xx.
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To show that the quadratic form c2 is nondegenerate we may extend scalars and 
assume that F is algebraically closed. Note that (A, σ) is isomorphic to any F -algebra 
with involution of same type and of capacity 2. It thus suffices to prove that c2 is 
nondegenerate for a convenient choice of (A, σ).

Consider the F -linear map

Γ : F 6 → M4(F ) , (a, b, c, d, e, f) �−→

⎛
⎜⎝

a b 0 e
c d −e 0
0 f a c
−f 0 b d

⎞
⎟⎠ .

The characteristic polynomial of Γ(a, b, c, d, e, f) is (T 2−(a +d)T+(ad −bc +ef))2, hence 
its Pfaffian polynomial is T 2−(a +d)T+(ad −bc +ef). In particular, c2(Γ(a, b, c, d, e, f)) =
ad − bc + ef .

Suppose that σ is symplectic. Then (A, σ) is identified with (M4(F ), s), whereby 
V = Γ(F 6). Hence the form c2 is given by the polynomial X1X4 −X2X3 + X5X6, thus 
it is hyperbolic and in particular nondegenerate.

Suppose that σ is unitary. Then (A, σ) is identified with the image of Ψ, thus V =
{Γ(a, b, c, d, 0, 0) | a, b, c, d ∈ F}. Hence, c2 is given by the polynomial X1X4 − X2X3, 
thus it is hyperbolic and in particular nondegenerate.

Suppose that σ is orthogonal. Then (A, σ) is identified with the image of Φ. Thus we 
have V = {Γ(a, b, b, d, 0, 0) | a, b, d ∈ F}. Hence, c2 is given by the polynomial X1X4−X2

2 , 
thus it is nondegenerate. �
5. Neat subalgebras

Let (A, σ) be an F -algebra with involution. In this section we study étale subalgebras 
of A that are contained in Sym(σ). An F -subalgebra L of A is called neat in (A, σ) or 
a neat subalgebra of (A, σ) if L is étale, L ⊆ Sym(σ), A is free as a left L-module and 
for each nonzero idempotent e of L, the F -algebra with involution (eAe, σ|eAe) has the 
same type as (A, σ).

5.1. Example. Any separable field extension of F contained in Sym(σ) is neat in (A, σ); 
this follows by Proposition 3.3, using further Proposition 5.3 below in the case where 
(A, σ) is unitary of inner type.

By Proposition 3.1, in the definition of neatness the only case where the condition on 
the idempotents does not follow from the other conditions is when charF = 2 and σ is 
orthogonal.

5.2. Proposition. Assume that charF = 2 and that σ is orthogonal. Let L be an étale 
F -subalgebra of A with L ⊆ Sym(σ). Then the following are equivalent:



K.J. Becher et al. / Journal of Algebra 493 (2018) 381–409 395
(i) Symd(σ) contains no nonzero idempotent of L.
(ii) Symd(σ) contains no primitive idempotent of L.

(iii) For every nonzero idempotent e of L, the involution σ|eAe is orthogonal.

In particular, L is neat in (A, σ) if and only if A is free as a left L-module and any of 
the Conditions (i)–(iii) is satisfied.

Proof. If a nonzero idempotent e of L is contained in Symd(σ), then there exists a 
primitive idempotent e′ of L with e′e = e′, and writing e = a + σ(a) with a ∈ A we 
obtain that e′ = e′ae′ + σ(e′ae′) ∈ Symd(σ). Hence (i) and (ii) are equivalent.

For any nonzero idempotent e ∈ L, the involution σ|eAe on eAe is symplectic if and 
only if e ∈ Symd(σ). This shows that (i) and (iii) are equivalent. �

Neat subalgebras of algebras with unitary involution of inner type are described in 
the next proposition.

5.3. Proposition. Assume that (A, σ) = (A0 ×Aop
0 , sw) for a central simple F -algebra A0. 

Any étale F -subalgebra L0 of A0 gives rise to an étale F -subalgebra L = {(x, xop) | x ∈
L0} of A contained in Sym(σ) and isomorphic to L0. Conversely, any étale F -subalgebra 
L of A contained in Sym(σ) is obtained in this way. Furthermore, L is neat in (A, σ) if 
and only if A0 is free as an L0-left module.

Proof. This is obvious. �
The previous proposition allows us to reformulate the condition of neatness in different 

ways in all cases complementary to the case treated in Proposition 5.2.

5.4. Proposition. Assume that charF �= 2 or that σ is symplectic or unitary. Let L be an 
étale F -subalgebra of A with L ⊆ Sym(σ). The following conditions are equivalent:

(a) [L : F ] · dimF CA(L) = dimF A;
(b) all simple components of CA(L) have the same degree;
(c) L is neat in (A, σ).

Proof. In view of the hypothesis and Proposition 3.1, L is neat in (A, σ) as soon as A is 
free as a left L-module. If A is simple, then the equivalences follow directly from Propo-
sition 2.3. If A is not simple, then (A, σ) � (A0 ×Aop

0 , sw) for a central simple F -algebra 
A0 and the equivalences follow by Proposition 5.3 along with Proposition 2.3. �

The following proposition shows that the notion of neat subalgebra is preserved under 
scalar extension.
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5.5. Proposition. Let L be a commutative F -subalgebra of (A, σ) and let F ′/F be a field 
extension. Then L ⊗F F ′ is neat in (AF ′ , σF ′) if and only if L is neat in (A, σ).

Proof. Let L′ = L ⊗F F ′, σ′ = σF ′ and A′ = AF ′ . Clearly the F ′-algebra L′ is étale 
resp. contained in Sym(σ′) if and only if the F -algebra L is étale resp. contained in 
Sym(σ). Note that CA′(L′) = CA(L) ⊗F F ′. Hence, if charF �= 2 or if σ is symplectic or 
unitary, then the statement follows immediately by Proposition 5.4.

We may therefore assume that charF = 2 and that σ is orthogonal. It follows by 
Proposition 2.3 that A′ is free as a left L′-module if and only if A is free as a left L-module. 
Hence, it suffices to check the condition on the idempotents. As Symd(σ) ⊆ Symd(σ′)
and L ⊆ L′, if Symd(σ′) does not contain any nonzero idempotents of L′, then Symd(σ)
does not contain any nonzero idempotents of L. Hence, if L′ is neat in (A′, σ′), then L
is neat in (A, σ).

To show the converse implication, we will first reduce the problem to the case where 
F ′/F is a Galois extension. Observe that if F ′/F is either a purely transcendental ex-
tension or a purely inseparable algebraic extension, then under scalar extension from F
to F ′ every separable field extension of F remains a field, whereby L ⊗F F ′ does not 
acquire new idempotents. This observation allows us to reduce to the case where F ′/F

is a separable algebraic extension. Assuming now that L′ is not neat in (A′, σ′), we may 
replace F ′ by its Galois closure over F ; by the implication that is already shown, the 
fact that L′ is not neat in (A′, σ′) will be conserved.

With the assumption that F ′/F is a Galois extension, the Galois group acts naturally 
on A′ and on L′ by fixing A and L, respectively. In view of Proposition 5.2 we may choose 
a primitive idempotent e′ of L′ with e′ ∈ Symd(σ′). Let e1 = e′, e2, . . . , er be the different 
primitive idempotents obtained from e′ via the Galois action. Let e = e1 + · · ·+ er. Note 
that e is fixed under the Galois action. Since L is the fixed field of the Galois action 
on L′, we conclude that e is a nonzero idempotent of L. As e′ ∈ Symd(σ′) we have 
that e1, . . . , er ∈ Symd(σ′) and thus e ∈ Symd(σ′) ∩ A = Symd(σ). This shows that L
contains a nonzero idempotent in Symd(σ). Hence L is not neat in (A, σ). �

We next show that any étale subalgebra contained in Symd(σ) and of maximal degree 
under this condition is neat.

5.6. Proposition. Let L be an étale F -subalgebra of A with L ⊆ Sym(σ) and such that 
[L : F ] = cap(A, σ). Then L is neat in (A, σ).

Proof. By Proposition 5.5, in order to show that L is neat we may extend scalars, 
hence we may assume that L is split. In the case where (A, σ) is unitary of inner type, 
the statement readily follows from Proposition 5.3 and Proposition 2.3. We may thus 
assume that A is simple.

Let r = [L : F ] and let e1, . . . , er be the primitive idempotents of L. Then L =
Fe1 ⊕ · · · ⊕ Fer. For i = 1, . . . , r, set Ai = eiAei, di = degAi and σi = σ|Ai

, whereby 
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(Ai, σi) is an F -algebra with involution with Z(Ai) = eiZ(A)ei and ei ∈ Sym∗(σi), 
according to Theorem 4.1. By the hypothesis, we have that

r = cap(A, σ) = 1
d

r∑
i=1

di

where d = 2 if σ is symplectic and d = 1 otherwise. In the case where σ is symplectic, 
we obtain for i = 1, . . . , r that σi is symplectic and ei ∈ Symd(σi), so that σi restricts 
to a symplectic involution on Ai, whereby di is even. In any case we conclude from the 
above equality that d1 = · · · = dr = d. Hence A is free as a left L-module.

If charF �= 2 or if σ is symplectic or unitary, then it follows by Proposition 5.4
that L is neat in (A, σ). Suppose that charF = 2 and that σ is orthogonal. Then 
d1 = · · · = dr = d = 1. It follows for i = 1, . . . , r that σi is orthogonal and therefore 
ei /∈ Symd(σi). Hence e1, . . . , er /∈ Symd(σ) and we conclude by Proposition 5.2 that L
is neat in (A, σ). �

If charF = 2 and σ is orthogonal then there may exist étale F -subalgebras L of A that 
are maximal in Sym∗(σ) and with [L : F ] < cap(A, σ), as the following example illus-
trates. In any other case one can actually show that étale F -subalgebras of A contained 
in Sym∗(σ) and maximal for these properties are of degree equal to cap(A, σ).

5.7. Example. Let charF = 2. We enhance Example 3.2, where in the F -algebra A =
M4(F ) we considered two matrices m and e and the orthogonal involution σ = Int(m) ◦ t
whose restriction to eAe is symplectic. Set

e1 =

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ , e2 =

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ ∈ A.

The F -subalgebra L = Fe1 ⊕ Fe2 ⊕ Fe of A is split étale and maximal with respect to 
inclusion among the étale subalgebras of Sym(σ) = Sym∗(σ), and yet we have [L : F ] =
3 < 4 = cap(A, σ). The F -subalgebra L is not neat in (A, σ) because the restriction of σ
to eAe is symplectic, but also because the conditions of Proposition 2.3 do not hold, since 
[L : F ] does not divide [M4(F ) : F ]. Moreover, the F -algebra L′ = Fe1 ⊕ F (e2 + e) is 
split étale and contained in Sym∗(σ), but even though the restrictions of σ to e1Ae1 and 
(e2 + e)A(e2 + e) are orthogonal, L′ is not neat in (A, σ) because the simple components 
of its centraliser do not have the same dimension.

Turning back to the situation where (A, σ) is an arbitrary F -algebra with involu-
tion, our next goal is to characterize neat subalgebras as subalgebras of symmetric étale 
algebras of dimension cap(A, σ).
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5.8. Lemma. Let L be a neat F -subalgebra of (A, σ) and let K be an F -subalgebra of L. 
If L is free as a K-module, then K is neat in (A, σ).

Proof. If L is free as a K-module, then using that A is free as a left L-module we obtain 
that A is free as a left K-module and conclude that K is neat in (A, σ) since all the 
idempotents in K are in L. �
5.9. Theorem. Let K be a commutative F -subalgebra of (A, σ). Then K is neat in (A, σ) if 
and only if K ⊆ L ⊆ Sym(σ) for some étale F -subalgebra L of A with [L : F ] = cap(A, σ)
and such that L is free as a K-module. Moreover, if K and (A, σ) are split, then one can 
choose L to be split.

Proof. Any étale F -subalgebra L of A with L ⊆ Sym(σ) and [L : F ] = cap(A, σ) is neat 
in (A, σ), by Proposition 5.6, and if K is contained in such an F -algebra L which further 
is free as a K-module, then it follows by Lemma 5.8 that K is neat in (A, σ).

Assume now that K is neat in (A, σ). Let e1, . . . , er be the primitive idempotents 
of K. For i = 1, . . . , r, set Ki = eiK, Ai = eiAei and σi = σ|Ai

. Since K is neat in 
(A, σ), we have that (Ai, σi) is an F -algebra with involution of the same type as (A, σ)
and with Z(Ai) = eiZ(A)ei. Moreover, since A is free as a left K-module, all simple 
components CAi

(Ki) of CA(K) have the same degree, by Proposition 5.4 if charF �= 2
or σ is symplectic or unitary and otherwise by Proposition 2.3. For all i = 1, . . . , r
the Ki-algebras with involution (CAi

(Ki), σ|CAi
(Ki)) have the same capacity, which we 

denote by c. Fix i ∈ {1, . . . , r}. By Theorem 4.1 there exists an étale Ki-subalgebra Li

of CAi
(Ki) such that Li ⊆ Sym(σ|CAi

(Ki)) and [Li : Ki] = c; moreover, if K and (A, σ)
are split, then CAi

(Ki) is split and Ki � F , and we can choose Li to be a split étale 
F -algebra, by Proposition 3.4. By Proposition 3.3 we have cap(Ai, σi) = c · [Ki : F ] =
[Li : F ]. Having this for i = 1, . . . , r, we obtain that L = L1 ⊕ · · · ⊕ Lr is an étale 
F -subalgebra of (A, σ) contained in Sym(σ) and such that [L : F ] =

∑r
i=1[Li : F ] =∑r

i=1 cap(Ai, σi) = cap(A, σ). As a K-module L is free because the dimensions [Li : Ki]
are the same for all i. �
5.10. Corollary. Let K be a neat F -subalgebra of (A, σ). Then [K : F ] divides cap(A, σ).

Proof. This is obvious from Theorem 5.9. �
The following proposition shows how to construct split étale subalgebras in an 

F -algebra with involution represented as the endomorphism algebra of a hermitian or 
skew-hermitian space. We refer to [9, §4] for the terminology and basic facts on hermitian 
forms.

5.11. Proposition. Let D be a finite-dimensional division F -algebra, V a finite-
dimensional right D-vector space and A = EndD V . Let τ be an F -involution on D
for which (D, τ) is an F -algebra with involution. Let h : V × V → D be a hermitian 
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or skew-hermitian form with respect to τ and let σ be the F -involution on A = EndD V

adjoint to h. Let V1, . . . , Vr be D-subspaces of V such that

V = V1 ⊕ · · · ⊕ Vr .

Let e1, . . . , er ∈ A denote the projections corresponding to this decomposition and L =
Fe1 ⊕ · · · ⊕ Fer. Then the following hold:

(i) L is a split F -étale subalgebra of A with [L : F ] = r.
(ii) (A, σ) is an F -algebra with involution of the same kind as (D, τ).

(iii) L ⊆ Sym(σ) if and only if the decomposition V = V1 ⊕ · · · ⊕ Vr is orthogonal with 
respect to h.

(iv) If L ⊆ Sym(σ), then L is neat in (A, σ) if and only if for i = 1, . . . , r we have 
dimD Vi = 1

r dimD V and h restricts to a non-alternating form on Vi in the case 
where h is non-alternating.

Proof. Part (i) is clear and Part (ii) is [9, (4.2)]. By the definition of L we have L ⊆
Sym(σ) if and only if

h
(
x, ei(y)

)
= h

(
ei(x), ei(y)

)
= h(ei(x), y)

holds for all i = 1, . . . , r and x, y ∈ V , which is if and only if the decomposition of V is 
orthogonal with respect to h. This shows (iii).

We have

CA(L) = e1Ae1 ⊕ · · · ⊕ erAer = (EndD V1) ⊕ · · · ⊕ (EndD Vr)

and dimD Vi = deg EndD Vi for i = 1, . . . , r. Hence, all simple components of CA(L)
have the same degree if and only if dimD Vi = 1

r dimD V for i = 1, . . . , r. Assuming that 
L ⊆ Sym(σ), it is clear that for i = 1, . . . , r the involution σ restricts to an involution of 
the same type on eiAei except possibly if σ is orthogonal and charF = 2, and in that 
case the condition holds if and only if the restriction of h on Vi is non-alternating. This 
shows (iv). �
5.12. Corollary. Let r be a positive integer. There exists a split neat F -subalgebra of (A, σ)
of degree r if and only if r divides coindA and cap(A, σ).

Proof. If (A, σ) is split symplectic, then coindA = 2 cap(A, σ), and in this case we set 
d = cap(A, σ). In any other case coindA divides cap(A, σ), and we set d = coindA. In 
view of Corollary 5.10 the degree of any neat F -subalgebra of (A, σ) divides cap(A, σ). 
On the other hand, the degree of a split neat F -subalgebra of (A, σ) clearly divides d.

We claim that (A, σ) contains a split neat F -subalgebra L of degree d. Once this 
is shown, assuming that r divides d, we may choose an F -subalgebra K of L with 
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[K : F ] = r and such that L is free as a K-module, and obtain that K is split and neat 
in (A, σ), by Lemma 5.8.

A central simple algebra A0 contains an F -subalgebra L0 isomorphic to F r and such 
that A0 is free as a left L0-module if and only if r divides coindA0. This together with 
Proposition 5.3 shows the statement in the case where (A, σ) is unitary of inner type. 
Hence we may for the rest of the proof assume that A is simple.

Assume that (A, σ) is split. Then d = cap(A, σ) and it follows from Proposition 3.4
together with Proposition 5.6 that (A, σ) contains a split neat F -subalgebra L with 
[L : F ] = cap(A, σ).

For the rest of the proof we may in particular assume that (A, σ) is not split symplectic, 
whereby d = coindA. We identify A with EndD V where D is a non-commutative division 
F -algebra and V is a finite-dimensional right D-vector space. Then d = dimD V .

Since (A, σ) is not split symplectic we may fix an F -involution τ on D of the same 
type as σ. Then σ is adjoint to a hermitian form h : V × V → D with respect to τ . 
Since (D, τ) is in particular not split symplectic, we may diagonalise h. In other words, 
we find a D-basis (v1, . . . , vd) of V which is orthogonal for h. Letting ai = h(vi, vi) for 
i = 1, . . . , d, we obtain that a1, . . . , ad ∈ Sym(D, τ) and

h � 〈a1, . . . , ad〉 .

Note that h is alternating if and only if charF = 2 and σ is symplectic, and in this 
case a1, . . . , ad ∈ Symd(D, τ). If charF = 2 and σ is orthogonal, then at least one of 
a1, . . . , ad is not contained in Symd(D, τ). However, if charF = 2 then for any x ∈
Sym(D, τ) \ Symd(D, τ) and a ∈ Symd(D) \ {0} we have

〈x, a〉 � 〈x + a, x−1 + a−1〉

and x +a, x−1+a−1 ∈ Sym(D, τ) \Symd(D, τ). Hence, if charF = 2 and σ is orthogonal, 
then one can change the diagonalisation appropriately and assume that a1, . . . , ad ∈
Sym(D, τ) \ Symd(D, τ). Then the orthogonal basis (v1, . . . , vd) yields an orthogonal 
decomposition of (V, h) in r subspaces of equal dimension, and the restriction of h to any 
of these subspaces is only alternating in the case where charF = 2 and σ is symplectic. 
By Proposition 5.11 the projections corresponding to this decomposition generate a split 
neat F -subalgebra of (A, σ) of degree d. �
6. Neat quadratic subalgebras

Throughout this section let (A, σ) be an F -algebra with involution and let K be 
a neat quadratic F -subalgebra of (A, σ). We shall prove that there exists a maximal 
neat subalgebra of (A, σ) of the form KL for a neat F -subalgebra L of (A, σ) which is 
F -linearly disjoint from K. This result will be crucial for our main results in the final 
section.
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Set C = CA(K) and

C ′ = C ′
A(K) = {x ∈ A | xk = γ(k)x for all k ∈ K}

where γ denotes the nontrivial F -automorphism of K.

6.1. Proposition. We have A = C⊕C ′ and the F -vector spaces C and C ′ are stable under 
σ and satisfy

C ∩ Symd(σ) = Symd(σ|C) and C ′ ∩ Sym(σ) = C ′ ∩ Symd(σ) .

Moreover, dimF C ′ = dimF C = 1
2 dimF A and dimF

(
C ′ ∩ Sym(σ)

)
= 1

4 dimF A.

Proof. We fix u ∈ K \F with u2 −u ∈ F and set c = u2 −u. Hence γ(u) = 1 −u and we 
have 4c + 1 �= 0 because the roots of the polynomial X2 −X − c are simple. We obtain 
that C ′ = {x ∈ A | xu + ux = x}. Since σ(u) = u we have σ(C ′) = C ′.

Consider the F -linear map

ϕ : A → A, x �→ 1
4c+1

(
(2c + 1)x− ux− xu + 2uxu

)
.

Computation shows that ϕ(x) ∈ C and x − ϕ(x) ∈ C ′ for any x ∈ A, and moreover 
ϕ(x) = x for x ∈ C and ϕ(x) = 0 for x ∈ C ′. Therefore

A = C ⊕ C ′ .

As K is neat in (A, σ) and [K : F ] = 2, it follows from Proposition 2.3 in the case where 
A is simple and otherwise from Proposition 5.3 that dimF C = 1

2 dimF A, whereby 
dimF C ′ = 1

2 dimF A.
Now, consider the F -linear map f : C ′ → C ′, x �→ x + σ(x) and set W = ker(f)

and U = f(C ′). Hence W = C ′ ∩ Skew(σ) and dimF C ′ = dimF W + dimF U . For 
x ∈ C ′ ∩ Sym(σ) we have x = xu + ux = xu + σ(xu) ∈ U ⊆ C ′ ∩ Symd(σ), whereby

U = C ′ ∩ Sym(σ) = C ′ ∩ Symd(σ) .

As (1 −2u)2 = 1 +4c ∈ F×, multiplication from the left by 1 −2u yields F -isomorphisms 
between U and W . Hence dimF U = dimF W = 1

2 dimF C ′.
Clearly we have Symd(σ|C) ⊆ C ∩ Symd(σ). To show the converse inclusion, we may 

obviously assume that charF = 2, whereby u2 + u = c ∈ F . Consider z ∈ C ∩ Symd(σ). 
Let x ∈ A be such that z = σ(x) + x. As u ∈ K ⊆ C we have zu = uz and obtain that 
σ(xu + ux) = (z + x)u + u(z + x) = ux + xu and thus

z = σ(xu + ux + x) + xu + ux + x .

Since u(ux + xu + x) = (u2 + u)x + uxu = x(u2 + u) + uxu = (ux + xu + x)u we further 
have ux + xu + x ∈ CA(u) = C and conclude that z ∈ Symd(σ|C). �
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6.2. Remark. The definition of ϕ in the proof comes from the observation that 1
4c+1 (2c +

1 − u ⊗ 1 − 1 ⊗ u + 2u ⊗ u) is the separability idempotent of K.

Let us consider in more detail the case where K is a field. We then consider C as a 
K-algebra and denote by σC the K-involution on C obtained by restricting σ.

6.3. Proposition. Assume that K is a field. For a ∈ C ′ ∩ Sym(σ) we have

a2 ∈ Sym∗(σC) and χA,a(X) = χC,a2(X2) ∈ F [X2] .

Proof. As a ∈ C ′ ∩ Sym(σ) we have that a2 ∈ C ∩ Sym(σ). If σ is symplectic then σC

is symplectic by Proposition 3.3 and for � ∈ C satisfying � + σ(�) = 1 we obtain that 
a2 = a�a + σ(a�a). This shows that a2 ∈ Sym∗(σC).

From Corollary 2.5 we obtain the equality

PrdA,a(X) = PrdC,a2(X2) .

We conclude that χC,a2(X2) = χA,a(X) ∈ F [X2]. �
Back in the more general situation where K is a neat quadratic F -algebra, but not 

necessarily a field, we conclude the following.

6.4. Corollary. For a ∈ C ′ ∩ Sym(σ) we have χa(X) ∈ F [X2].

Proof. If K � F × F then the statement follows from Proposition 2.4. Otherwise K is 
a field, so that the statement follows from Proposition 6.3. �
6.5. Proposition. Assume that cap(A, σ) = 2. Then

Sym∗(σ) = K ⊕ (C ′ ∩ Sym(σ))

and this decomposition is orthogonal for the quadratic form c2 : Sym∗(σ) → F . Further-
more c2|K : K → F is the norm form of K and c2(x) = −x2 ∈ F for all x ∈ C ′∩Sym(σ).

Proof. Set V = Sym∗(σ) and W = C ′ ∩ Sym(σ). It follows from Proposition 6.1 and by 
comparing dimensions that V = K ⊕ W . Writing x = c1(x) − x for x ∈ V defines an 
F -linear map V → V, x �→ x. By Proposition 4.6 we have c2(x) = xx for any x ∈ V .

For x ∈ F we have χx = (X −x)2, whereby c1(x) = 2x and c2(x) = x2. For x ∈ V \F
we have that χx is the minimal polynomial of x over F . From this we conclude that 
x = γ(x) for x ∈ K and that c2|K is the norm form of K.

For w ∈ W we have w2 ∈ C ∩ Sym∗(σ) ∩ CA(w) = F , whence χw = X2 − w2 and 
w+w = c1(w) = 0. For v ∈ K and w ∈ W , using that vw = wγ(v) = wv and w+w = 0
we obtain that
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c2(v + w) − c2(v) − c2(w) = vw + wv = v(w + w) = 0 .

This shows that K is orthogonal to W with respect to c2 and that x = −x and c2(x) =
−x2 for x ∈ W . �
6.6. Corollary. If cap(A, σ) = 2, then K is contained in a σ-stable quaternion 
F -subalgebra of A.

Proof. Let W = C ′ ∩ Sym(σ). It follows from Proposition 4.6 and Proposition 6.5 that 
the quadratic form c2|W : W → F, x �→ −x2 is nondegenerate. As W �= {0} it follows 
that there exists x ∈ W with x2 ∈ F×. Since Kx ⊆ C ′ we conclude that K ⊕Kx is a 
σ-stable quaternion F -subalgebra. �

For a ∈ C ′ ∩ Sym(σ), by Corollary 6.4 there is a unique polynomial f ∈ F [X] with 
χa(X) = f(X2), and we call the element a square separable if f is separable.

6.7. Proposition. Assume that F is algebraically closed. In A the set

{a ∈ C ′ ∩ Sym(σ) | a is square separable} ∩A×

is open in C ′ ∩ Sym(σ) with respect to the Zariski topology.

Proof. A polynomial in F [X] is inseparable if and only if its discriminant vanishes. 
Hence, for a ∈ C ′∩Sym(σ) being square separable is characterised by the nonvanishing of 
a polynomial in the coefficients of χa(X), which in turn are polynomials in the coefficients 
of a with respect to any fixed F -basis of C ′ ∩ Sym(σ). Therefore in C ′ ∩ Sym(σ) the 
square separable elements form an open subset with respect to the Zariski topology. 
On the other hand, in A the invertible elements are characterised by the nonvanishing 
of the reduced norm, whereby A× is open in A. The statement follows from these two 
observations by basic topology. �
6.8. Proposition. If |F | > cap(A, σ) then C ′ ∩ Sym(σ) ∩A× contains a square separable 
element.

Proof. Suppose first that F is finite or algebraically closed. Then (A, σ) is split. Set 
r = 1

2 cap(A, σ). By the hypothesis we have that |F×2| � r. If K is a field then (C, σC)
is a split K-algebra with involution of the same type as (A, σ) and with cap(C, σC) = r, 
so that by Corollary 5.12 there exists a split neat K-subalgebra L of (C, σC) with 
[L : K] = r. If K � F × F then by Theorem 5.9, K is contained in a split neat 
F -subalgebra L of (A, σ) with [L : F ] = 2r. In either of these two cases we have that 
L � Kr as F -algebras. Let e1, . . . , er ∈ L be the corresponding idempotents in L satis-
fying K � Kei for i = 1, . . . , r. If K � F ×F , then we fix a primitive idempotent f ∈ K

and obtain that e1f, . . . , erf, e1(1 − f), . . . , er(1 − f) are the primitive idempotents in L. 
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For i = 1, . . . , r, we set Ai = eiAei and σi = σ|Ai
and obtain by identifying F with 

Fei ⊆ Ai that (Ai, σi) is a split F -algebra with involution of the same type as (A, σ)
and with cap(Ai, σi) = 1

r cap(A, σ) = 2.
Consider i ∈ {1, . . . , r}. By Corollary 6.6 the neat quadratic F -subalgebra Kei of Ai

is contained in a σi-stable quaternion F -subalgebra Qi of Ai. By the assumption on F , 
Qi is split, and since Kei ⊆ Sym(σi) we obtain by Theorem 4.1 that σi|Qi

is orthogonal. 
It follows that there exists gi ∈ Qi ∩ Sym(σi) with g2

i ∈ Fei and such that IntQi
(gi)

restricts to the nontrivial F -automorphism on Kei. Note that gi is determined by this 
property up to a multiple in F×. Moreover, since |F×2| � r, we may choose g1, . . . , gr
in such way that g2

i = ciei for i ∈ {1, . . . , r} where c1, . . . , cr ∈ F× are pairwise distinct. 
For g = g1 + · · · + gr ∈ C ′ ∩ Sym(σ) it follows that PrdA,g =

∏r
i=1(X2 − ci), whereby g

is invertible and square separable.
We turn to the general case, where we may assume that F is an infinite field. We 

choose an algebraic closure F of F and consider the F -algebra with involution (A, σ)
naturally obtained from (A, σ) by letting A = A ⊗F F and σ = σ ⊗ idF . For any 
F -subspace W of A we write W = W ⊗F F and note that W is dense in W for the 
Zariski topology. By the above and by Proposition 6.7 the elements of C ′ ∩ Sym(σ)
that are square separable and invertible in A form a nonempty Zariski-open subset of 
C ′ ∩ Sym(σ). As C ′ ∩ Sym(σ) = C ′ ∩ Sym(σ), we obtain that there exists a square 
separable invertible element in C ′ ∩ Sym(σ). �
6.9. Proposition. Let a ∈ C ′ ∩ Sym(σ) ∩ A× be square separable. Then F [a2] and K[a2]
are neat F -subalgebras of (A, σ) such that F [a2] is F -linearly disjoint from K and

[K[a2] : F ] = [F [a] : F ] = cap(A, σ).

Proof. By the hypothesis χa(X) = f(X2) for a separable polynomial f ∈ F [X]. In 
particular deg f = 1

2 degχa = 1
2 cap(A, σ). As f is separable and f(a2) = 0, the F -algebra 

F [a2] is étale and [F [a2] : F ] = deg f = 1
2 cap(A, σ). Since a ∈ C ′ we have that a2 ∈ C, 

whereby F [a2] ⊆ C and aF [a2] ⊆ C ′, which shows that F [a] = F [a2] ⊕ aF [a2]. Since 
a ∈ A× it follows that

[F [a] : F ] = 2 · [F [a2] : F ] = cap(A, σ) .

As a2 ∈ C the F -algebra K[a2] is commutative. Conjugation by a restricts to a nontrivial 
F -automorphism of order two on K[a2] which fixes F [a2]. It follows that K is F -linearly 
disjoint from F [a2] and that [K[a2] : F [a2]] = 2. Hence, [K[a2] : F ] = cap(A, σ) and 
K[a2] is neat in (A, σ), by Proposition 5.6. Since K[a2] is free as an F [a2]-module, it 
follows by Lemma 5.8 that F [a2] is neat in (A, σ). �
6.10. Theorem. There exists a neat subalgebra L of (A, σ) contained in CA(K), F -linearly 
disjoint from K and such that KL is a neat subalgebra of (A, σ) with [KL : F ] =
cap(A, σ).
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Proof. Assume that (A, σ) is split. If K � F×F , then the statement follows immediately 
from Theorem 5.9. Suppose now that K is a field. Set C = CA(K) and σC = σ|C . By 
Proposition 3.3 we obtain that (C, σC) is a split K-algebra with involution such that 
cap(C, σC) = 1

2 cap(A, σ). It follows by Proposition 3.4 that Sym∗(σC) contains a split 
étale K-algebra M of A with [M : K] = cap(C, σC). By Proposition 5.6 we have that M
is neat in (A, σ). Let L be the F -subalgebra of M generated by the idempotent elements 
in M . Then L is F -linearly disjoint from K and KL = M , thus

[KL : F ] = [M : K] · [K : F ] = cap(A, σ).

Furthermore, M is free as an L-module, whence L is neat in (A, σ) by Lemma 5.8.
Hence the statement holds when A is split. In particular it holds when F is finite. 

Assume now that F is infinite. By Proposition 6.8 there exists an element a ∈ C ′ ∩
Sym(σ) ∩A× which is square separable. Then Proposition 6.9 shows that L = F [a2] has 
the desired property. �
6.11. Remark. If charF �= 2 then instead of the set in Proposition 6.7 one may consider 
the set {a ∈ C ′ ∩ Sym(σ) ∩ A× | χa separable}. To see that this set is Zariski-open in 
C ′∩Sym(σ) when F is algebraically closed is easier, as it does not involve Proposition 2.4, 
Corollary 2.5 and Proposition 6.3. Note however that this set is empty if charF = 2.

7. Capacity four

In this section we consider in more detail algebras with involution of capacity four and 
show the existence of biquadratic neat subalgebras (Theorem 7.4). We shall in particular 
be interested in the case of symplectic involutions on algebras of degree eight. In this 
case we will conclude the existence of a triquadratic étale extension of the centre which 
is stable under the involution (Theorem 7.6). In particular, we obtain a new proof to 
Rowen’s Theorem stating that every degree eight algebra of exponent two contains a 
triquadratic étale subalgebra (Corollary 7.7).

We need the following two preparatory results, which are well-known.

7.1. Proposition. Assume that A is a central simple F -algebra. There exist r ∈ N and 
a sequence of separable quadratic field extensions (Fi/Fi−1)ri=1 with F0 = F such that 
indAFr

is odd.

Proof. Primary decomposition (cf. [8, Proposition 4.5.16]) yields that A � B ⊗ C for 
two central simple F -algebras B and C such that indB is odd and indC = 2m for some 
m � 1. Then C represents an element of order dividing 2m in the Brauer group of F . 
By [2, Theorem] there exist r ∈ N and a sequence of separable quadratic field extensions 
(Fi/Fi−1)ri=1 with F0 = F and such that CFr

is split. (Alternatively, this can be derived 
from Merkurjev’s Theorem [8, Theorem 1.5.8].) It follows that indAFr

divides indB. �
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7.2. Proposition (Springer). Any cubic form over F which has a nontrivial zero over a 
quadratic field extension of F also has a nontrivial zero over F .

Proof. Consider a cubic form f in n variables over F . We suppose that f has a nontrivial 
zero in F [X]/(p) for some irreducible quadratic polynomial p ∈ F [X]. Hence there exist 
b1, c1, . . . , bn, cn ∈ F , not all zero, and h ∈ F [X] such that

f(b1 + c1X, . . . , bn + cnX) = p(X) · h(X) .

Suppose first that h ∈ F . Comparing coefficients in degree 3 we obtain that 
f(c1, . . . , cn) = 0. Moreover, if c1 = · · · = cn = 0 then we obtain further that 
f(b1, . . . , bn) = 0. As b1, c1, . . . , bn, cn ∈ F are not all zero, it follows that f has a 
nontrivial zero in F .

Suppose now that h /∈ F . As deg(f(b1 + c1X, . . . , bn + cnX)) � deg(f) = 3 and 
deg(p) = [K : F ] = 2, we conclude that deg(h) = 1. Hence there exists a ∈ F such that 
h(a) = 0. Then f(b1 + c1a, . . . , bn + cna) = 0. Moreover, if bi + cia = 0 for i = 1, . . . , n, 
then 0 = f(c1(X−a), . . . , cn(X−a)) = (X−a)3f(c1, . . . , cn) and thus f(c1, . . . , cn) = 0. 
Hence f has a nontrivial zero in F . �

Now let (A, σ) be an F -algebra with involution. Recall that for d = cap(A, σ) and 
a ∈ Sym∗(σ) we have

χa = Xd − c1(a)Xd−1 + c2(a)Xd−2 + · · · + (−1)dcd(a) ∈ F [X] .

7.3. Lemma. Assume that cap(A, σ) is a multiple of 4. There exists an element a ∈
Sym∗(σ) \ F such that c1(a) = c3(a) = 0.

Proof. Let d = cap(A, σ). We first consider the situation where coind(A) is even. Then 
by Corollary 5.12 there exists a split neat F -subalgebra L of (A, σ) with [L : F ] = 2. 
If charF �= 2 we choose an element a ∈ L \ F with a2 = 1 and obtain that χa(X) =
(X2 − 1)d/2. If charF = 2 then we choose a ∈ L \ F with a2 = a and obtain that 
χa(X) = Xd + Xd/2. In either case we have that a ∈ Sym∗(σ) \ F and χa(X) ∈ F [X2]. 
Hence a has the desired properties.

In the general case, by Proposition 7.1 there exists r ∈ N and a sequence of quadratic 
field extensions (Fi/Fi−1)ri=1 with F0 = F such that indAFr

is odd. In particular, 
coindAFr

is even.
Let W = ker(c1) ⊆ Sym∗(σ). If charF �= 2, then F ∩ W = 0, and we consider the 

cubic form f = c3 on W . If charF = 2, then we have c3(x + a) = c3(x) for every x ∈ W

and every a ∈ F , for χx+a(X) = χx(X − a). In this case we consider the cubic form 
f : W/F → F, x + F �→ c3(x). In each case the validity of the statement is equivalent 
to the existence of a nontrivial zero of the cubic form f . By the special case considered 
above, f has a nontrivial zero in Fr. Since f is a cubic form and Fi/Fi−1 is a quadratic 
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extension for i = 1, . . . , r, we conclude by Proposition 7.2 that f has a nontrivial zero 
over F . �

An étale F -algebra K is called biquadratic (resp. triquadratic) if it is isomorphic to 
the tensor product of two (resp. three) quadratic étale F -algebras.

The following result extends [7, Corollary 6.2 and Theorem 9.1 (1)].

7.4. Theorem. Let (A, σ) be an F -algebra with involution with cap(A, σ) = 4. Then (A, σ)
contains a neat biquadratic F -subalgebra.

Proof. By Theorem 6.10 it suffices to show that (A, σ) contains a neat quadratic 
F -subalgebra K. If A has zero-divisors, then we may conclude this by applying Corol-
lary 5.12 with r = 2. Hence we assume that A is a division F -algebra.

By Lemma 7.3 there exists an element a ∈ Sym∗(σ) \ F with c1(a) = c3(a) = 0, 
whereby χa(X) = X4 + c2(a)X2 + c4(a) ∈ F [X2]. In particular [F (a2) : F ] � 2. We set 
E = F [a] if a2 ∈ F and E = F [a2] otherwise. Then E is a quadratic field extension of F
contained in Sym(σ).

If E is separable over F , then E is a neat subalgebra of (A, σ) and we may take K = E. 
Suppose now that the quadratic extension E is inseparable. In particular charF = 2. 
We consider C = CA(E) and write σC for the restriction of σ to C. If we can find 
y ∈ Sym(σC) \ E such that y2 + y ∈ E, we obtain for u = y2 that u ∈ Sym(σC) \ E ⊆
Sym(σ) \F and u2 +u = (y2 + y)2 ∈ F , whereby F [u] is a separable quadratic extension 
of F contained in Sym(σ), so that we may take K = F [u]. It therefore suffices to show 
the existence of such an element y.

Note that (C, σC) is an E-algebra with involution and deg(C) = 1
2 deg(A). If 

cap(C, σC) = 2, then the existence of y ∈ Sym(σC) \ E with y2 + y ∈ E follows by 
Theorem 4.1. The only possibility to have cap(C, σC) �= 2 is that (A, σ) is symplectic of 
degree 8 and (C, σC) is orthogonal of degree 4.

In particular, the statement holds in the case where σ is orthogonal. Applying this 
to (C, σC) when σC is orthogonal and deg(C) = 4, we obtain a separable quadratic 
extension of E inside Sym(σC) and thus an element y ∈ Sym(σC) \ E with y2 + y ∈ E, 
as desired. �

The proof of our next result uses a corestriction argument on central simple algebras. 
Consider a separable quadratic field extension K/F and a central simple K-algebra B. 
We refer to [9, §3.B] for the definition and the basic properties of the central simple 
F -algebra CorK/F (B), the corestriction (or norm) of B from K to F (which is denoted 
NK/F (B) in [9]).

7.5. Lemma. Assume that B is a K-quaternion algebra. Then B contains a quadratic étale 
F -algebra linearly disjoint from K if and only if CorK/F (B) is not a division algebra.
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Proof. If charF �= 2, a proof is given in [9, (16.28)]. We refer to [3] for a proof in arbitrary 
characteristic. �

The following result extends [7, Lemma 6.1].

7.6. Theorem. Assume that (A, σ) is symplectic of degree 8. Then A contains a σ-stable 
triquadratic étale F -subalgebra. Moreover, any neat biquadratic F -subalgebra of (A, σ) is 
contained in a σ-stable triquadratic étale F -subalgebra of A.

Proof. In view of Theorem 7.4 it suffices to prove the second part of the statement. Thus 
let L be a neat biquadratic F -subalgebra of (A, σ).

Assume first that L is split. Let e1, . . . , e4 be the primitive idempotents of L. For 
i = 1, . . . , 4 by identifying F with Fei we obtain that eiAei is a quaternion F -algebra 
Brauer equivalent to A and σ|eiAei is its canonical involution. As degA = 8 and A
contains a split biquadratic étale F -subalgebra, we have indA � 2. If indA = 2 then we 
fix a ∈ F with 4a �= −1 such that F [X]/(X2 −X − a) is a splitting field of A, otherwise 
we set a = 0. In either case, we obtain for i = 1, . . . , 4 an element fi ∈ eiAei \ Fei with 
f2
i = fi + aei. Then f = f1 + f2 + f3 + f4 is such that f + σ(f) = 1 and f2 = f + a. 

Hence L[f ] is a σ-stable triquadratic F -subalgebra of A.
Assume now that L is not split. Then L contains a quadratic field extension K of 

F . With the notation of Section 6 we obtain an F -algebra with involution (C, σC). By 
Proposition 3.3 the involution σC is symplectic and cap(C, σC) = 2. Since [L : K] = 2 =
cap(C, σC), by Proposition 5.6 the étale K-algebra L is neat in (C, σC). By Corollary 6.6
it follows that L is contained in a σC-stable quaternion K-subalgebra Q of C. We set 
Q′ = CC(Q) and observe that Q′ is a σC-stable quaternion K-subalgebra of C. We 
set σQ = σ|Q and σQ′ = σ|Q′ and obtain that (Q, σQ) and (Q′, σQ′) are quaternion 
K-algebras with involution such that

(C, σC) � (Q, σQ) ⊗ (Q′, σQ′) .

Since L ⊆ Sym(σQ) it follows from Theorem 4.1 that σQ is orthogonal. As σC is symplec-
tic, it follows by [9, (2.23)] that σQ′ is symplectic. Hence σQ′ is the canonical involution 
of Q′.

The central simple K-algebra C is Brauer equivalent to AK . Since A carries an F -linear 
involution, A ⊗F A is split. This implies that CorK/F (C) is split, hence CorK/F (Q) �
CorK/F (Q′). Since L is biquadratic, we have L � K ⊗F M for some quadratic étale 
F -algebra M . As M ⊆ Q, Lemma 7.5 shows that CorK/F (Q) is not a division algebra. 
Therefore CorK/F (Q′) is not a division algebra. Hence, by Lemma 7.5 there exists a 
quadratic étale F -algebra K ′ ⊆ Q′ linearly disjoint from K. Note that K ′ is σ-stable, 
for σ|Q′ is the canonical involution of Q′. Note further that K ′ ⊆ Q′ = CC(Q) ⊆ CA(L). 
Hence LK ′ is a σ-stable triquadratic étale F -subalgebra of A. �
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It is known that every central division algebra of exponent two and degree at most 
eight has a maximal subfield that is a separable multiquadratic extension of the centre. 
This was shown by Albert [1, Chapter XI, Theorem 9] for degree four and by Rowen [13, 
Theorem 1] for degree eight. We obtain a new proof of this statement.

7.7. Corollary (Albert, Rowen). Let A be a central simple F -algebra such that deg(A)
divides 8 and A ⊗F A is split. Then A contains a maximal commutative subalgebra that 
is an étale multiquadratic F -algebra.

Proof. Let n ∈ N be such that deg(A) = 2n. If n � 1 then the statement is obvious. If 
n = 2 then we choose an orthogonal involution σ on A and conclude by Theorem 7.4. If 
n = 3 then we choose a symplectic involution σ on A and apply Theorem 7.6. �
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