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This paper shows that every finite non-degenerate involutive 
set theoretic solution (X, r) of the Yang–Baxter equation 
whose permutation group G(X, r) has cardinality which is 
a cube-free number is a multipermutation solution. Some 
properties of finite braces are also investigated. It is also shown 
that if A is a left brace whose cardinality is an odd number and 
(−a) · b = −(a · b) for all a, b ∈ A, then A is a two-sided brace 
and hence a Jacobson radical ring. It is also observed that the 
semidirect product and the wreath product of braces of a finite 
multipermutation level is a brace of a finite multipermutation 
level.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Circa 2005, Wolfgang Rump introduced the notion of braces, a generalization of Ja-
cobson radical rings, as a tool for investigating solutions of the Yang–Baxter equation. 
We follow his paper [1], p. 128 for the definition of a left brace: Let A be an abelian 
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group together with a left distributive multiplication, that is a · (b + c) = a · b + a · c for 
all a, b, c ∈ A. We call (A, +, ·) a left brace if the circle operation a ◦ b = a · b + a + b

makes A into a group. As mentioned in [1], p. 129, for a left brace A the associativity of 
A◦ is easily seen to be equivalent to the equation (a · b + a + b) · c = a · (b · c) + a · c + b · c. 
The group A◦ will be called the adjoint group of a left brace A. In 2012, Cedó, Jespers 
and Okniński [2] expressed the definition of a left brace in terms of operation ◦. In their 
paper, the adjoint group A◦ is called the multiplicative group of the left brace A; their 
definition is equivalent to the above definition by Rump. We recall the definition from [2]: 
a left brace is an abelian group (A, +) with a multiplication ◦ such that (A, ◦) is a group 
and

a ◦ (b + c) + a = a ◦ b + a ◦ c

holds for all a, b, c ∈ A. Another interesting structure related to the Yang–Baxter 
equation, the braided group, was introduced in 2000, by Lu, Yan, Zhu [3]. In [4], Gateva-
Ivanova showed that left braces are in one-to-one correspondence with braided groups 
with an involutive braiding operator.

Recall that a set-theoretic solution of the Yang–Baxter equation is a pair (X, r) where 
X is a set and r(x, y) = (σx(y), τy(x)), for x, y ∈ X, is a bijective map such that

(r × idX)(idX × r)(r × idX) = (idX × r)(r × idX)(idX × r).

A solution (X, r) is non-degenerate if the maps σx and τx are bijective for each x ∈ X, 
and (X, r) is involutive if r2 = idX×X .

Convention. By a solution of the Yang–Baxter equation we will mean a non-
degenerate, involutive set-theoretic solution of the Yang–Baxter equation.

For some related results see [5–16].
Let R be a left brace; then the solution (R, r) of the Yang–Baxter equation associated 

to brace R is defined in the following way: for x, y ∈ R define r(x, y) = (u, v), where 
u = x · y+ y, v = z ·x +x and where z is the inverse of u = x · y+ y in the adjoint group 
R◦ of R, for x, y ∈ R. This solution is called the solution associated with the left brace 
R and will be denoted as (R, r).

The notions of retract of a solution and multipermutation solution were introduced by 
Etingof, Schedler and Soloviev in [17]. A multipermutation solution is a generalization 
of Lybashenko’s permutation solution. A solution (X, r) is called a multipermutation 
solution of level m if m is the smallest nonnegative integer that, after applying the 
operation of retraction m times, the obtained solution has cardinality 1. If such m exists, 
the solution is also called a multipermutation solution, that is a solution which has a 
finite multipermutation level (for a detailed definition, see [4,2]). Some interesting related 
results can be found in [18,17,19,2,20,7]; for example, it is known that a finite solution 
(X, r) is a multipermutation solution, provided that the permutation group G(X, r) is 
abelian (Theorem 4.3 [2], for the case when (X, r) is infinite see Theorem 7.1 [20]).
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Let A be either a left brace or a right brace. We define A(n) = A(n−1) · A and An =
A ·An, where A(1) = 1, and say that a left brace A has a finite multipermutation level if 
A(n) = 0 for some n or equivalently the solution of the Yang–Baxter equation associated 
to A is a multipermutation solution (for some related results see [21–23]).

Remark. In [22], Rump introduced radical chains An and A(n) for a right brace A. Rump 
showed that, if A is a right brace, then An is a two-sided ideal of A, and A(n) doesn’t 
need to be a two-sided ideal of A. Notice that if A is a left brace then A(n) is a two-sided 
ideal of A, and An doesn’t need to be a two-sided ideal of A.

A semidirect product of braces and wreath product of braces is an interesting con-
struction. The semidirect product of braces was introduced by Rump in [11]. The wreath 
product of braces was investigated in 2008 in Corollaries 3.5 and 3.6 [24] (the arXiv ver-
sion of this paper appeared in 2008) and in Corollary 6.1 [2]. The wreath product of 
solutions was studied in 2009 in the arXiv version of [20] (see Theorem 8.7). We have 
the following observation.

Proposition 1. Let A and B be left braces of a finite multipermutation level. Then the 
semidirect product A �B and the wreath product A �B of braces A and B is a brace of 
a finite multipermutation level.

Braided groups and braces have interesting connections with group theory. In [24], it 
was shown that every finite nilpotent group can be embedded into an adjoint group of 
a finite brace whose adjoint group is nilpotent. In Corollary 6.1 [2], it was shown that 
every finite solvable group is a subgroup of an adjoint group of a finite brace. We notice 
that, by using the same proof as in Corollary 6.1 in [2] and Proposition 1, it is possible 
to show a slightly stronger result, namely:

Remark. (Related to Corollary 6.1, [2].) Let G be a finite solvable group. There is a finite 
left brace A of a finite multipermutation level, such that G is a subgroup of the adjoint 
group A◦ of A.

We don’t know the answer to the following questions.

Question 2. Let G be a finite group which is the adjoint group of some left brace A. Does 
it follow that G is the adjoint group of some left brace of a finite multipermutation level?

It was shown by Rump that two-sided braces are exactly Jacobson radical rings, see [1],
p. 129. By Corollary of [25], for every prime p, a group of order p4 is the adjoint group 
of a two-sided brace if and only if it is abelian or has class 2. By Theorem 2.1 of [26], 
there exists a group of order p4 of class 3 which is the adjoint group of a left brace, but 
is not the adjoint group of a two-sided brace, for example
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〈x, y|x3 = y3 = [x, y]3 = [x, [x, y]]3 = [y, [x, y]] = 1, and [x, [x, y]] is central 〉

has order 34 and it has class 3 and it is the adjoint group of a left brace.

Question 3. (Amberg, Kazarin, Sysak [27,28].) If R is a nil ring whose adjoint group R◦

is finitely generated, is R nilpotent?

Question 4. Let F be a field of characteristic not two. An associative F -algebra R gives 
rise to the commutator Lie algebra R− = (R, [a, b] = ab − ba). If R is a nil algebra such 
that R− is finitely generated Lie algebra, is R nilpotent?

In [29] Alahmedi, Alsulami, Jain and Zelmanov give sufficient conditions for the Lie 
algebra R− to be finitely generated. In [30] Angiono, Galindo and Vendramin provided 
Lie-theoretical analogs of braces. Some interesting results on Lie rings can be found in 
[31–35].

We will use the following notation.

a◦(n) = a ◦ a ◦ · · · ◦ a

where a appears n times, so a◦(n) is the n-th power of a in the adjoint group A◦ of A. 
The main result of this paper is the following.

Theorem 5. Let (A, +, ·) be a left brace and let Ap, Aq be the Sylow’s subgroups of the 
additive group of A of cardinalities respectively pn and qm for some prime numbers q
and p and some natural numbers m, n. Then the following holds:

1. If p doesn’t divide qt − 1 for any 1 ≤ t ≤ m, then

Ap ·Aq = 0.

2. Let Let a ∈ Ap, b ∈ Aq and k be the maximal number such that pk divides qt − 1 for 
some 1 ≤ t ≤ m. Then a◦(p

k) · b = 0.

Notice that Theorem 5 implies that if q < p and p doesn’t divide qt − 1 for any 
0 < t ≤ m, then every left brace of order pnqm is not a simple left brace, as Ap is an 
ideal in A. Moreover, if Ap has a nonzero socle, then A has a nonzero socle. Note that 
in [36] Bachiller gave the first examples of non-trivial finite simple left braces. Our next 
result follows from Theorem 5.

Corollary 6. Let A be a left brace of cardinality pα(1)
1 . . . p

α(n)
n for some n, some prime 

numbers p1 < p2 < . . . < pn and some positive integers α(1), . . . , α(n). Let Ai denote the 
Sylow’s subgroup of the additive group of A of cardinality pα(i)

i . Suppose that for some 
m ≤ n the brace Am has a nonzero socle and pm doesn’t divide
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pij − 1

for all j ≤ n and each i ≤ α(j). Then the socle of A is non-zero.

Recall that the socle of a left brace is defined as Soc(A) = {a ∈ A : a · b = 0 for all 
b ∈ A} (see [22], and for left braces [2]). We have the following corollary of Corollary 6.

Corollary 7. Let A be a left brace of cardinality pα1
1 · · · pαn

n for some pairwise distinct 
prime numbers p1, p2, . . . , pn and some positive integers α1 . . . αn. Assume that for every 
i ≤ n, and every k < i, pi doesn’t divide

ptk − 1

for any t ≤ αk. If all the Sylow’s subgroups of the additive group of Am are braces of a 
finite multipermutation level then A is a brace of a finite multipermutation level.

Recall that if A is a finite left brace then all the Sylow’s subgroups of the additive 
group of A are also left braces (see Lemma 17 [23]).

As an application of Theorem 5, we obtain the following corollary.

Corollary 8. If A is a brace whose cardinality is a cube-free number, then the socle of A
is nonzero. Moreover, A is a brace of a finite multipermutation level.

We can formulate Corollary 8 in the language of braided groups as follows.

Corollary 9. If (G, σ) is a symmetric group (in the sense of Takeuchi) whose cardinality 
is a cube-free number, then (G, σ) has a finite multipermutation level.

Our next result is the following.

Theorem 10. Every finite solution (X, r) of the Yang–Baxter equation whose permutation 
group G(X, r) has cardinality which is a cube-free number is a multipermutation solution.

Our last application of Theorem 5 is the following.

Corollary 11. Let A be a finite left brace and let A1, . . . , An be the Sylow’s subgroups of 
the additive group of A. If for every i, Ai ·Ai = 0 and the additive group of Ai is cyclic, 
then A is a left brace of a finite multipermutation level.

Let A be a left brace and a ∈ A, then we denote a1 = a and for i > 1 we denote 
ai+1 = a · ai. Our next result is related to Theorem 1 from [23].

Theorem 12. Let A be a finite left brace; then the adjoint group A◦ is nilpotent if and 
only if there is a number m such that am = 0 for every a ∈ A. Moreover, if a, b ∈ A are 
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elements of distinct Sylow’s subgroups of the additive group of A, then (a + b)n = 0 for 
some n implies a · b = b · a = 0.

In [37] Guarnieri and Vendramin posed several interesting conjectures. Conjecture 6.4
states that if p < q are prime numbers and p doesn’t divide q − 1, then the number of 
not isomorphic left braces of order p2q is 4; notice that then q doesn’t divide p2 − 1 =
(p − 1)(p + 1); so if Ap, Aq are the Sylow’s subgroup of the additive group of a brace A
of such cardinality p2q then Ap ·Aq = 0 and Aq ·Ap = 0 by Theorem 5. Therefore, A is a 
direct sum of braces of order p2 and q, and the truth of Conjecture 6.4 follows from [38], 
where it was shown that there are exactly 4 nonisomorphic braces of order p2. We notice 
that since groups of some cardinalities are nilpotent it is also possible to use Theorem 1
from [23], which asserts that a brace whose adjoint group is nilpotent is a direct sum of 
the braces which are Sylow’s subgroups of its additive group.

Let k be a field. In analogy with k-algebras, Catino and Rizzo [39] introduced braces 
whose additive groups are k-vector spaces such that (αa) · b = α(a · b), for α ∈ K. Rump 
called such braces k-linear or k-braces; Catino and Rizzo called them circle algebras. In 
our next result we consider a similar property for left braces.

Theorem 13. Let A be a left brace whose additive group has no elements of order 2. If 
(−a) · b = −(a · b) for every a, b ∈ A, then A is a two-sided brace, and hence a Jacobson 
radical ring. Furthermore, if A is finite, then A is a nilpotent ring.

2. Notation

Let (A, +, ·) be a left brace defined as at the beginning of this paper, and let ◦ be the 
operation such that a ◦ b = a · b + a + b. We will use the following notation.

a◦(n) = a ◦ a ◦ · · · ◦ a

where a appears n times, and

an = a · (a · (· · · (a))),

where a appears n times. Let a, b ∈ A, we inductively define elements en = en(a, b) as 
e0 = b, e1 = a · b and

ei+1 = a · ei.

If n is a natural number and a ∈ A then n · a denotes the sum of n copies of a, and 
(−n) · a denotes the sum of n copies of elements −a.

Given a prime number q, let Fq denote the field of q elements, and let Fq[x] denote 
the polynomial ring over Fq in one variable x.
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3. Multipermutation solutions

Let A be a left brace, and let a, b ∈ A. Recall that we inductively define elements 
en = en(a, b) as e0 = b, e1 = a · b and ei+1 = a · ei. We will start with the following 
supporting lemma:

Lemma 14. Let A be a left brace and let a, b ∈ A and n be a positive integer. Let notation 
be as above. Then

(a◦(n)) · b =
n∑

i=1

(
n

i

)
· ei.

Moreover,

a◦(n) =
n∑

i=1

(
n

i

)
· ai.

Proof. Observe that it can be shown by induction on n that a◦(n) = a ◦(a ◦(. . .◦(a ◦a))) =∑n
i=1

(
n
i

)
·ai, as a◦(n+1) = a ◦a◦(n) = a +a◦(n)+a ·a◦(n) = a +(

∑n
i=1

(
n
i

)
·ai) +(

∑n
i=1

(
n
i

)
·

ai+1) =
∑n+1

i=1
(
n+1
i

)
· ai.

It remains now to show that 
∑n

i=1
(
n
i

)
·ei = (a◦(n)) ·b. We know that ◦ is an associative 

operation, so a◦(n) ◦ b = a ◦ (a ◦ (· · · ◦ (a ◦ b))). Observe that (a◦(n)) · b = (a◦(n)) ◦ b −
(a◦(n)) − b, so it suffices to show that

n∑
i=1

(
n

i

)
· ei + a◦(n) + b = a◦(n) ◦ b.

We use the induction on n, for n = 1 we have e1 + a + b = a ◦ b so the result holds. 
Suppose that the result holds for some n. We multiply by a from the left to get

a ◦ (
n∑

i=1

(
n

i

)
· ei + a◦(n) + b) = a◦(n+1) ◦ b.

Observe that the left hand side equals a · (
∑n

i=1
(
n
i

)
· ei + a◦n + b) + a + (

∑n
i=1

(
n
i

)
· ei +

a◦n+b) =
∑n

i=1
(
n
i

)
·(ei+ei+1) +a ·a◦n+a ·b +a +a◦n+b =

∑n+1
i=1

((n+1)
i

)
·ei+a◦(n+1)+b, 

which finishes the inductive argument. �
Lemma 15. Let A be a finite left brace, and a, b ∈ A, a, b �= 0, and let p, j be natural 
numbers. Then a◦(p

j) · b = 0 if and only if 
∑pj

i=1
(
pj

i

)
· ei = 0.

Proof. It follows because a◦(p
j) · b =

∑pj

i=1
(
pj

i

)
· ei by Lemma 14. �
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Lemma 16. Let A be a left brace and let a, b ∈ A. Suppose that a◦(pj) = 0 and qm · b = 0
for some distinct prime numbers p, q and some positive integers m, j. If a · (a · b) = 0
then a · b = 0.

Proof. By Lemma 14 we have 0 = a◦(n) · b =
∑n

i=1
(
n
i

)
· ei where n = pj and ei are 

defined as in Lemma 14. Observe that ei = 0 for all i > 1 as e2 = a · (a ·b) = 0. Therefore 
n · e1 = pj · e1 = 0, and since pj and q are co-prime then e1 = 0, so a · b = e1 = 0. �

For a prime number q, let Fq denote the field of q elements and Fq[x] be the polynomial 
ring in one variable over Fq. Let Z be the ring of integers and Z[x] be the polynomial 
ring in one variable over Z.

Lemma 17. Let A be a left brace and a, b ∈ A, a, b �= 0 and let ei = ei(a, b) for every i. 
Let f(x), g(x), h(x) ∈ Z[x] be such that h(x) = g(x)f(x) where f(x) =

∑k
i=0 jix

i, h(x) =∑l
i=0 lix

i for some natural numbers k, l. Denote f =
∑k

i=0 ji ·ei, h =
∑l

i=0 liei. If f = 0
then h = 0.

Proof. Observe that since f = 0 then 0 = a ·f =
∑k

i=0 ji·ei+1; notice that the element a ·f
corresponds to the polynomial x ·f(x). Similarly the element 0 = a ·(a ·f) =

∑k
i=0 ji ·ei+2

corresponds to the polynomial x2f(x). Continuing in this way we get that h = 0, since 
it corresponds to the polynomial g(x)f(x). �
Lemma 18. Let A be a left brace and a, b ∈ A, a, b �= 0. Suppose that q · b = 0 for 
some natural number q. Let f(x), g(x), p(x), q(x), h(x) ∈ Z[x] and let r(x) = p(x)f(x) +
q(x)g(x) + q · h(x) where f(x) =

∑k
i=0 jix

i, g(x) =
∑l

i=0 lix
i and h(x) =

∑l′

i=0 hix
i, 

r(x) =
∑m

i=0 rix
i, for some natural numbers k, l, l′, m. Denote f =

∑k
i=0 ji · ei, g =∑l

i=0 liei and r =
∑m

i=0 riei. If f = 0 and g = 0 then r = 0.

Proof. Observe first that q·b = 0 implies q·ei = 0 for all i. Therefore, t = q·
∑l′

i=1 hiei = 0, 
observe that t corresponds to the polynomial q · h(x). Let p =

∑
i piei and q =

∑
i qiei

be elements corresponding to the polynomials p(x)f(x) and q(x)g(x); by Lemma 17 we 
get p = q = 0. Observe that r = p + q + t, and so r = 0. �
Theorem 19. Let A be a finite left brace and a, b ∈ A, a · b �= 0. Suppose that a◦(pj) = 0
and q · b = 0 for some distinct prime numbers p, q and some natural number j. Let Aq be 
the Sylow’s subgroup of the additive group of A, then Aq has cardinality qm for some m, 
and b ∈ Aq. Let k be the maximal number such that pk divides qi − 1 for some i ≤ m. 
Then

a◦(p
k) · b = 0.

In particular a · b = 0 if p doesn’t divide qi − 1 for any i ≤ m.
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Proof. By a slight abuse of notation we can consider natural numbers smaller than q as 
elements of the field Fq. Denote e0 = b, e1 = a · b and inductively ei+1 = a · ei. Denote 

f(x) = (x + 1)pj − 1, then f(x) =
∑pj

i=1
(
pj

i

)
xi. Consider elements 

∑m
i=0 ni · ei ∈ Aq, 

where 0 ≤ n0, n1, . . . , nm < q then there are qm+1 elements in this set, therefore some 
two of them are equal. Notice that q · b = 0 implies q · ei = 0 for every i. Therefore, ∑m

i=0 n
′
i · ei = 0, for some 0 ≤ n′

0, n
′
1, . . . , n

′
m < q (not all equal to zero). Denote 

g(x) =
∑m

i=0 n
′
i · xi. It is known that an irreducible polynomial of degree α from Fq[x]

divides the polynomial xqα −x. Therefore, a polynomial of degree not exceeding m from 
Fq[x] divides the polynomial xm(

∏m
i=1(xqi−1 − 1))m in Fq[x]. Consequently h(x + 1) =

g(x) divides the polynomial (x + 1)m(
∏m

i=1((x + 1)qi−1 − 1))m in Fq[x]. Denote l(x) =
(x + 1)m(

∏m
i=1((x + 1)qi−1 − 1))m and let l(x) =

∑
i αix

i for some 0 ≤ αi < q, then ∑
i αiei = 0 by Lemma 18.
Let t(x) =

∑t
i=0 ji ·xi be the greatest common divisor of f(x) and l(x) in Fq[x]; then 

there exist polynomials h(x), p(x), q(x) ∈ Z[x] such that

t(x) = p(x) · f(x) + q(x) · l(x) + q · h(x).

By Lemma 18 we get that 
∑l

i=0 jiei = 0, provided that f = 0, where in our case 

f =
∑pj

i=1
(
pj

i

)
· ei. Recall that a◦(pj) = 0, by Lemma 15 we get

0 =
pj∑
i=1

(
pj

i

)
· ei = f,

hence 
∑l

i=1 jiei = 0, as required.
We will show now that t(x) = (x + 1)pk − 1. The greatest common divisor of f(x) =

(x + 1)pj − 1 and (x + 1)qi − (x + 1) = ((x + 1)qi−1 − 1)(x + 1) equals (x + 1)ps − 1 for 
some s, since (x + 1) doesn’t divide f(x). Observe that f(x) doesn’t have multiple roots 
in any field extension of Fq because f(x) and f ′(x) = pk(x + 1)pk−1 have no common 
roots. Since f(x) has no multiple roots then t(x) doesn’t have multiple roots. Notice also 

that (x +1)pi − 1 divides polynomial (x +1)pi+1 − 1. It follows that t(x) = (x +1)pk − 1. 
By Lemma 15 we get that a◦(pk) · b = 0.

If p doesn’t divide qi−1 for any i ≤ k then t(x) = (x +1) −1 = x hence e1 = a · b = 0, 
as required. �
Proof of Theorem 5. Observe that part [1] follows from part [2] applied for k = 0. 
Therefore, we will prove [2]. Let a′ = a◦(p

k), and if k = 0 then a′ = a. Suppose on 
the contrary that a′ · b′ �= 0 for some b′ ∈ Aq. Let α be such that a′ · (qα · b′) = 0
and a′ · (qα−1 · b′) �= 0. Denote b = a′ · (qα−1 · b′) �= 0. Observe that q · b = 0 and 
a′ · b = a′ · (a′ · (qα−1 · b′)) �= 0 by Lemma 16. Therefore 0 �= a′ · b = a◦(p

k) · b. This is 
impossible by Theorem 19. �
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Proof of Corollary 6. By Theorem 5 we get Am · Aj = 0 for all j ≤ n, since pm doesn’t 
divide pij − 1 for each i ≤ α(j). Let a be in the socle of the brace An, then a ·Ai = 0 for 
all i, it follows that a is in the socle of A. �
Proof of Corollary 7. Observe that if a brace A satisfies the assumptions of Corollary 6
then the retraction of A also satisfies the assumptions of Corollary 6. Recall that in [22]
Rump has shown that the retraction of a brace A is isomorphic to A/Soc(A). The result 
now follows from Corollary 6 applied several times. �
Remark. The author is grateful to Leandro Vendramin for providing a list of braces with
small cardinalities. In particular it follows from this list that all braces with cardinalities 
6, 8, 12, 36 have a finite multipermutation level.

Theorem 20. Let A be a finite left brace whose cardinality is a cube-free number; then A
has a nonzero socle.

Proof. Let A =
∑n

i=1 Ai where Ai are Sylow’s subgroups of the additive group of A. Let 
Ai have cardinality pα(i)

i for i = 1, 2, . . . , n where p1 < p2 < . . . < pn are prime numbers. 
It is known that every Ai is a brace (see for example Lemma 17 in [23]). It is known that 
all groups of order p and p2 are abelian (see [38] for some related results). Therefore, 
An is a two-sided brace, it follows that the socle of An is nonzero. Therefore there is an 
element a ∈ An such that a · b = 0 for all b ∈ An. Assume first that pn > 3. We will 
show that a · b = 0 for every b ∈ A. By Theorem 5 we get An ·Ai = 0 for all i < n, since 
pn doesn’t divide pi − 1 nor p2

i − 1 = (pi − 1)(pi + 1). Therefore a · A = 0, as required. 
Assume now that An has cardinality equal to either 3 or 9, and An−1 has cardinality 2
or 4. It follows that A is a brace of one of the following cardinalities: 6, 18, 12, 36. By 
the remark above it follows that A has a nonzero socle. �
Proof of Corollary 8. It follows from Theorem 20 applied several times. �
Proof of Corollary 9. In [4] Gateva-Ivanova showed that left braces and braided groups 
with involutive braiding operators are in one-to-one correspondence. Using this corre-
spondence we see that Corollary 9 follows from Corollary 8. �
Proof of Theorem 10. In [4] Gateva-Ivanova showed that a solution (X, r) is a multiper-
mutation solution if and only if the symmetric group G(X, r) has a finite multipermu-
tation level. It is known that G(X, r) has a structure of a left brace, and Theorem 10
follows from Corollary 8. �
Proof of Corollary 11. Let the cardinality of Ai be pα(i)

i where pi is prime. Let Aj have 
the largest cardinality among braces A1, . . . , An. It follows that pα(j)

j doesn’t divide 
pit − 1 for any t and any i ≤ α(t). Let a be a generator of the additive group of Aj, 
then a◦(pj

α(j)−1) �= 0 and a◦(pj
α(j)) = 0, this follows because Aj · Aj = 0. By Theorem 5
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[2] there is k ≤ α(j) − 1 such that a◦(pj
k) · b = 0 for every b ∈ Ai for i �= j. Observe 

that a◦(pj
k) · b = 0 for b ∈ Aj because Aj · Aj = 0. Therefore a◦(pj

k) is in the socle 
of A. Observe that brace A/Soc(A) satisfies the assumptions of this theorem, so it has a 
nonzero socle. Continuing in this way we get that A has a finite multipermutation level 
(because the retraction of a brace A equals A/Soc(A) by a result of Rump [22]). �
Proof of Theorem 12. Observe that (a + b)n = en−1(a + b, a) + en−1(a + b, b), where 
elements en−1(a +b, a) and en−1(a +b, b) are defined as in Section 2. Therefore (a +b)n = 0
implies en−1(a +b, a) = en−1(a +b, b) = 0, since en−1(a +b, a) and en−1(a +b, b) are from 
different Sylow’s subgroups of the additive group of A. We can assume that pm · a = 0, 
qm

′ · b = 0 for some distinct prime numbers p, q and some natural numbers m, m′. We 
can assume that m > n, if necessary taking bigger m. By Lemma 14

((a + b)◦(j)) · b =
j∑

i=1

(
j

i

)
· ei(a + b, b).

Let α = qt where t > m′ be such that pm+1 divides qt − 1 (we know that p divides 
qp−1 − 1 so pm+1 divides q(p−1)pm − 1). It follows that 

(
α
i

)
is divisible by pm · qm′ for all 

1 < i < pm+1, and so 
(
α
i

)
· (a + b) = 0 which imply 

(
α
i

)
· (a + b)i = 0. By Lemma 14,

(a + b)◦(α) =
α∑

i=1

(
α

i

)
(a + b)i = α · a

because (a + b)i = 0 for all i ≥ pm (since pm > n). Therefore, and by Lemma 14,

a · b = (α · a) · b = (a + b)◦(α) · b =
α∑

i=1

(
α

i

)
· ei(a + b, b) = eα(a + b, b) = 0

because 
(
α
i

)
is divisible by qm

′ , for 1 ≤ i < α, and eα(a + b, b) = 0 since α > n.
Observe that A =

∑n
i=1 Ai where Ai are Sylow’s subgroups of the additive group 

of A. Recall that every Ai is a brace (see for example Lemma 17 in [23]). Let a ∈ Ai and 
b ∈ Aj for some i �= j. Since (a +b)m = 0 we get a ·b = b ·a = 0, so Ai ·Aj = Aj ·Ai = 0. It 
follows that A◦ is the direct product of groups A◦

i for i = 1, . . . , n. Notice that every A◦
i

is a p-group; it follows that A◦ is a nilpotent group. On the other hand, if A is nilpotent 
then Am = 0 for some m by Theorem 1 in [23]. �
4. Nilpotent braces

In this section we will investigate the structure of left braces satisfying special condi-
tions. For the following result we use a short proof which was provided by Ferran Cedó, 
which is much better than the original proof from the previous version of this manuscript, 
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and which in addition allows the removal of the assumption that A is a brace of a finite 
multipermutation level.

In this section we will show that if A is a left brace whose additive group has no 
elements of order two, and moreover (−a) · b = −(a · b) for every a, b ∈ A, then A is a 
two-sided brace.

Proof of Theorem 13. (Provided by Ferran Cedó: [Ferran Cedó, Private communication, 
8 January 2016].) Let a, b, c ∈ A. We have that c ◦ (−a) ◦ b = (2c − c ◦ a) ◦ b and

c ◦ (−a) ◦ b = c ◦ ((−a) · b− a + b)

= c ◦ (−(a · b) − a + b)

= c ◦ (−a ◦ b + a + b− a + b)

= c ◦ (−a ◦ b + 2b)

= c ◦ (2b) − c ◦ a ◦ b + c

= 2(c ◦ b) − c ◦ a ◦ b.

Hence (2c − c ◦ a) ◦ b = 2(c ◦ b) − c ◦ a ◦ b. In particular, for a = c−1 we have that

(2c) ◦ b = 2(c ◦ b) − b.

Hence for every a, b, c ∈ A, we have that

(2c− c ◦ a) ◦ b = (2c) ◦ b + b− c ◦ a ◦ b.

Let x, y, z ∈ A. Now we have

(2x− 2y) ◦ z = (2x− x ◦ x−1 ◦ (2y)) ◦ z
= (2x) ◦ z + z − x ◦ x−1 ◦ (2y) ◦ z
= (2x) ◦ z + z − (2y) ◦ z.

Hence

2((x− y) ◦ z) − z = 2(x ◦ z) − z + z − 2(y ◦ z) + z = 2(x ◦ z − y ◦ z) + z.

Thus

2((x− y) ◦ z) = 2(x ◦ z − y ◦ z + z).

Since the additive group of A has no elements of order two, we have that

(x− y) ◦ z = x ◦ z − y ◦ z + z.
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Note that if t = x − y, then (t + y) ◦ z + z = t ◦ z + y ◦ z. Therefore, A is a two-sided 
brace. The result follows. �
5. Semidirect product and wreath product

In this section we will investigate semidirect product and wreath product of left braces. 
We will use the notation from Section 6 in [2].

Definition 1. Let G and H be two left braces. A map f : G → H is a homomorphism of 
left braces if

f(a + b) = f(a) + f(b), f(a ◦ b) = f(a) ◦ f(b).

Definition 2. Let N , H be left braces, let σ : H → Aut(N) be a homomorphism of groups 
from the adjoint group H◦ of H to the group of automorphisms of the left brace N (see 
Definition 1). Define the left brace N �H as follows:

(g1, h1) + (g2, h2) = (g1 + g2, h1 + h2).

(g1, h1) ◦ (g2, h2) = (g1 ◦ σ(h1)(g2), h1 ◦ h2).

Lemma 21. Let H, N be left braces and let N � H be the semidirect product of braces 
H and N constructed via σ. The brace N �H has a finite multipermutation level if and 
only if braces H and N have a finite multipermutation level.

Proof. Let A be a left brace. It can be observed that A is a brace of a finite multiper-
mutation level if and only if A(n) = 0 for some n (it follows from results from [22] in 
the section about the socle of a brace, see also [2] for translation to the left braces). Let 
gi ∈ N , hi ∈ H and (gi, hi) ∈ N �H then

(· · · (((g1, h1) · (g2, h2)) · (g3, h3)) · . . .) · (gn, hn) = (d, (· · · ((h1 · h2) · h3) · · ·))

for some d ∈ N , where (gi, hi) · (gj , hj) = (gi, hi) ◦ (gj , hj) − (gi, hi) − (gj , hj).
Therefore, if brace A = N �H has a finite multipermutation level then A(n) = 0 for 

some n, and hence H(n) = 0. Notice that if h1 = 1 = 0 then

(g1, 1) ◦ (g2, h2) = (g1 ◦ σ(1)(g2), h2) = (g1 ◦ g2, h2)

(since σ is a homomorphism of groups so σ(1) = 1). It follows that

(g1, 1) · (g2, h2) = (g1, 1) ◦ (g2, h2) − (g1, 1) − (g2, h2) = (g1 · g2, 1).

Recall that A = N �H. Therefore, if A(n) = 0 then

(· · · (((g1, 1) · (g2, h2)) · (g3, h3)) · · ·) · (gn, hn) = ((· · · ((g1 · g2) · g3) · · ·) · gn, 1)
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therefore N (n) = 0 and so N has a finite multipermutation level. We have shown that if 
N � H has a finite multipermutation level then N and H are braces of a finite multi-
permutation level.

Assume now that H has a finite multipermutation level, so H(m) = 0 for some m. 
Then

(· · · (((g1, h1) · (g2, h2)) · (g3, h3)) · · ·) · (gm, hm) = (d, 1)

for some d ∈ N . Assume that N has a finite multipermutation level, so N (m′) = 0 for 
some m′. Then

(· · · (((d, 1) · (gm+1, hm+1)) · (g+2, hm+2)) · · ·) · (gm+m′ , hm+m′) = (1, 1) = (0, 0).

Therefore,

(· · · (((g1, h1) · (g2, h2)) · (g3, h3)) · · ·) · (gm+m′ , hm+m′) = (1, 1) = (0, 0),

and hence A(m+m′) = 0 and so N �H is a brace of finite multipermutation level. �
We follow definition from [2] for the wreath product of left braces.

Definition 3. Let G, H be two left braces. Then the wreath product G �H of G by H is 
the semidirect product W �H, where

W = {f : H → G : |{h ∈ H : f(h) �= 1}| < ∞}

and the action of H of W is given by the homomorphism σ : H → Aut(W ) defined by 
σ(h)(f)(x) = f(hx), for all x ∈ H and f ∈ W .

Recall that the multiplication on W is defined as (f1 ◦ f2)(x) = f1(x) ◦ f2(x) and the 
sum is defined (f1 + f2)(x) = f1(x) + f2(x) for f1, f2 ∈ W and x ∈ H.

Lemma 22. Let G, H be left braces. Then the wreath product G �H of G by H is a left 
brace of a finite multipermutation level if and only if G and H are braces of a finite 
multipermutation level.

Proof. By Lemma 21, it suffices to show that the left brace W defined as in Definition 3
is of a finite multipermutation level if and only if G is of a finite multipermutation level. 
Notice that if f1, f2 ∈ W and x ∈ H, then (f1 · f2)(x) = (f1 ◦ f2 − f1 − f2)(x) =
(f1 ◦f2)(x) −f1(x) −f2(x) = f(x) ·f2(x). Suppose that G is of a finite multipermutation 
level. That means that G(m) = 0 for some m. For f1, f2, . . . , fm ∈ W and x ∈ H we get

0 = (· · · (((f1(x) · f2(x)) · f3(x)) · · ·)fm(x) = ((· · · ((f1 · f2) · f3) · · ·) · fm)(x).
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Hence (· · · ((f1 · f2) · f3) · · ·)fm = 0, and thus W (m) = 0. Therefore W is of a finite 
multipermutation level.

Conversely, assume that W is of a finite multipermutation level. That means that 
W (m) = 0 for some m. Let g1, . . . , gm ∈ G. Let fgi be the element of W defined by 
fgi(x) = gi if x = 1 and fgi(x) = 1 otherwise. Then

(· · · ((g1 · g2) · g3) · · ·) · gm − ((· · · ((fg1 · fg2) · fg3) · · ·) · fgm)(1) = 0.

Hence G(m) = 0 and the result follows. �
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