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1. Introduction

Circa 2005, Wolfgang Rump introduced the notion of braces, a generalization of Ja-
cobson radical rings, as a tool for investigating solutions of the Yang—Baxter equation.
We follow his paper [1], p. 128 for the definition of a left brace: Let A be an abelian
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group together with a left distributive multiplication, that is a-(b+¢) =a-b+a-c for
all a,b,c € A. We call (A, +,) a left brace if the circle operation aob =a-b+a+b
makes A into a group. As mentioned in [1], p. 129, for a left brace A the associativity of
A° is easily seen to be equivalent to the equation (a-b+a+b)-c=a-(b-¢c)+a-c+b-c.
The group A° will be called the adjoint group of a left brace A. In 2012, Cedd, Jespers
and Okniniski [2] expressed the definition of a left brace in terms of operation o. In their
paper, the adjoint group A° is called the multiplicative group of the left brace A; their
definition is equivalent to the above definition by Rump. We recall the definition from [2]:
a left brace is an abelian group (A, +) with a multiplication o such that (A4, o) is a group
and

ao(b+c)+a=aocb+aoc

holds for all a,b,c € A. Another interesting structure related to the Yang-Baxter
equation, the braided group, was introduced in 2000, by Lu, Yan, Zhu [3]. In [4], Gateva-
Ivanova showed that left braces are in one-to-one correspondence with braided groups
with an involutive braiding operator.

Recall that a set-theoretic solution of the Yang—Baxter equation is a pair (X, r) where
X is a set and r(x,y) = (05(y), 7y(x)), for z,y € X, is a bijective map such that

(7” X de)(ZdX X T)(T X de) = (ZdX X 7‘)(7’ X de)(ZdX X 7‘).

A solution (X, r) is non-degenerate if the maps o, and 7, are bijective for each = € X
and (X, r) is involutive if 7% = idx x.

Convention. By a solution of the Yang-Baxter equation we will mean a non-
degenerate, involutive set-theoretic solution of the Yang—Baxter equation.

For some related results see [5-16].

Let R be a left brace; then the solution (R, r) of the Yang—Baxter equation associated
to brace R is defined in the following way: for z,y € R define r(x,y) = (u,v), where
u=2x-y+y, v =2z x+x and where z is the inverse of u = x -y + y in the adjoint group
R° of R, for x,y € R. This solution is called the solution associated with the left brace
R and will be denoted as (R, r).

The notions of retract of a solution and multipermutation solution were introduced by
Etingof, Schedler and Soloviev in [17]. A multipermutation solution is a generalization
of Lybashenko’s permutation solution. A solution (X,r) is called a multipermutation
solution of level m if m is the smallest nonnegative integer that, after applying the
operation of retraction m times, the obtained solution has cardinality 1. If such m exists,
the solution is also called a multipermutation solution, that is a solution which has a
finite multipermutation level (for a detailed definition, see [4,2]). Some interesting related
results can be found in [18,17,19,2,20,7]; for example, it is known that a finite solution
(X,r) is a multipermutation solution, provided that the permutation group G(X,r) is
abelian (Theorem 4.3 [2], for the case when (X, r) is infinite see Theorem 7.1 [20]).
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Let A be either a left brace or a right brace. We define A = A(®=1) . A and A" =
A- A", where A =1, and say that a left brace A has a finite multipermutation level if
A =0 for some n or equivalently the solution of the Yang Baxter equation associated
to A is a multipermutation solution (for some related results see [21-23]).

Remark. In [22], Rump introduced radical chains A™ and A™ for a right brace A. Rump
showed that, if A is a right brace, then A™ is a two-sided ideal of A, and A™ doesn’t
need to be a two-sided ideal of A. Notice that if A is a left brace then A is a two-sided
ideal of A, and A™ doesn’t need to be a two-sided ideal of A.

A semidirect product of braces and wreath product of braces is an interesting con-
struction. The semidirect product of braces was introduced by Rump in [11]. The wreath
product of braces was investigated in 2008 in Corollaries 3.5 and 3.6 [24] (the arXiv ver-
sion of this paper appeared in 2008) and in Corollary 6.1 [2]. The wreath product of
solutions was studied in 2009 in the arXiv version of [20] (see Theorem 8.7). We have
the following observation.

Proposition 1. Let A and B be left braces of a finite multipermutation level. Then the
semidirect product A x B and the wreath product Al B of braces A and B is a brace of
a finite multipermutation level.

Braided groups and braces have interesting connections with group theory. In [24], it
was shown that every finite nilpotent group can be embedded into an adjoint group of
a finite brace whose adjoint group is nilpotent. In Corollary 6.1 [2], it was shown that
every finite solvable group is a subgroup of an adjoint group of a finite brace. We notice
that, by using the same proof as in Corollary 6.1 in [2] and Proposition 1, it is possible
to show a slightly stronger result, namely:

Remark. (Related to Corollary 6.1, [2].) Let G be a finite solvable group. There is a finite
left brace A of a finite multipermutation level, such that G is a subgroup of the adjoint
group A° of A.

We don’t know the answer to the following questions.

Question 2. Let G be a finite group which is the adjoint group of some left brace A. Does
it follow that G is the adjoint group of some left brace of a finite multipermutation level?

It was shown by Rump that two-sided braces are exactly Jacobson radical rings, see [1],
p. 129. By Corollary of [25], for every prime p, a group of order p* is the adjoint group
of a two-sided brace if and only if it is abelian or has class 2. By Theorem 2.1 of [26],
there exists a group of order p* of class 3 which is the adjoint group of a left brace, but
is not the adjoint group of a two-sided brace, for example
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3

(z,yle® =y = [2,9]> = [z, [2,y]]> = [y, [z,4]] = 1,and [z, [z, y]] is central )

has order 3* and it has class 3 and it is the adjoint group of a left brace.

Question 3. (Amberg, Kazarin, Sysak [27,28].) If R is a nil ring whose adjoint group R°
is finitely generated, is R nilpotent?

Question 4. Let F' be a field of characteristic not two. An associative F-algebra R gives
rise to the commutator Lie algebra R~ = (R, [a,b] = ab — ba). If R is a nil algebra such
that R~ is finitely generated Lie algebra, is R nilpotent?

In [29] Alahmedi, Alsulami, Jain and Zelmanov give sufficient conditions for the Lie
algebra R~ to be finitely generated. In [30] Angiono, Galindo and Vendramin provided
Lie-theoretical analogs of braces. Some interesting results on Lie rings can be found in
[31-35].

We will use the following notation.

ao(n):aoao...oa

where a appears n times, so a®™ is the n-th power of a in the adjoint group A° of A.
The main result of this paper is the following.

Theorem 5. Let (A, +,-) be a left brace and let A,, A, be the Sylow’s subgroups of the
additive group of A of cardinalities respectively p™ and ¢™ for some prime numbers q
and p and some natural numbers m, n. Then the following holds:

1. If p doesn’t divide ¢t — 1 for any 1 <t < m, then
Ap- A, =0.

2. Let Let a € Ap, b e Ay and k be the mazimal number such that p* divides ¢t — 1 for
some 1 <t <m. Then a°®) . p = 0.

Notice that Theorem 5 implies that if ¢ < p and p doesn’t divide ¢ — 1 for any
0 <t < m, then every left brace of order p"”¢™ is not a simple left brace, as A4, is an
ideal in A. Moreover, if A, has a nonzero socle, then A has a nonzero socle. Note that
in [36] Bachiller gave the first examples of non-trivial finite simple left braces. Our next
result follows from Theorem 5.

Corollary 6. Let A be a left brace of cardinality p‘ll(l) .. .pff(") for some n, some prime
numbers p1 < p2 < ... < pn and some positive integers (1), ...,a(n). Let A; denote the
Sylow’s subgroup of the additive group of A of cardinality p?(i). Suppose that for some
m < n the brace A,, has a nonzero socle and p,, doesn’t divide
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pi—1
for all j <n and each i < a(j). Then the socle of A is non-zero.

Recall that the socle of a left brace is defined as Soc(A) = {a € A:a-b =0 for all
b e A} (see [22], and for left braces [2]). We have the following corollary of Corollary 6.

Corollary 7. Let A be a left brace of cardinality p{* ---pd~ for some pairwise distinct
prime numbers p1,pa, ..., Pn and some positive integers s . .. ay,. Assume that for every
i < n, and every k < i, p; doesn’t divide

P —1

for any t < ay. If all the Sylow’s subgroups of the additive group of A,, are braces of a
finite multipermutation level then A is a brace of a finite multipermutation level.

Recall that if A is a finite left brace then all the Sylow’s subgroups of the additive
group of A are also left braces (see Lemma 17 [23]).
As an application of Theorem 5, we obtain the following corollary.

Corollary 8. If A is a brace whose cardinality is a cube-free number, then the socle of A
is monzero. Moreover, A is a brace of a finite multipermutation level.

We can formulate Corollary 8 in the language of braided groups as follows.

Corollary 9. If (G, o) is a symmetric group (in the sense of Takeuchi) whose cardinality
is a cube-free number, then (G, o) has a finite multipermutation level.

Our next result is the following.

Theorem 10. Fvery finite solution (X,r) of the Yang—Baxzter equation whose permutation
group G(X,r) has cardinality which is a cube-free number is a multipermutation solution.

Our last application of Theorem 5 is the following.
Corollary 11. Let A be a finite left brace and let Ay, ..., A, be the Sylow’s subgroups of
the additive group of A. If for every i, A;- A; = 0 and the additive group of A; is cyclic,

then A is a left brace of a finite multipermutation level.

Let A be a left brace and a € A, then we denote a' = @ and for ¢ > 1 we denote
a1 = a-a’. Our next result is related to Theorem 1 from [23].

Theorem 12. Let A be a finite left brace; then the adjoint group A° is nilpotent if and
only if there is a number m such that a™ = 0 for every a € A. Moreover, if a,b € A are
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elements of distinct Sylow’s subgroups of the additive group of A, then (a +b)™ =0 for
some n implies a-b=1>b-a =0.

In [37] Guarnieri and Vendramin posed several interesting conjectures. Conjecture 6.4
states that if p < ¢ are prime numbers and p doesn’t divide ¢ — 1, then the number of
not isomorphic left braces of order p2q is 4; notice that then ¢ doesn’t divide p? — 1 =
(p—1)(p+1);s0if Ay, A, are the Sylow’s subgroup of the additive group of a brace A
of such cardinality p?q then A, A, = 0 and A, A, = 0 by Theorem 5. Therefore, 4 is a
direct sum of braces of order p? and ¢, and the truth of Conjecture 6.4 follows from [38],
where it was shown that there are exactly 4 nonisomorphic braces of order p?. We notice
that since groups of some cardinalities are nilpotent it is also possible to use Theorem 1
from [23], which asserts that a brace whose adjoint group is nilpotent is a direct sum of
the braces which are Sylow’s subgroups of its additive group.

Let k be a field. In analogy with k-algebras, Catino and Rizzo [39] introduced braces
whose additive groups are k-vector spaces such that (aa)-b = a(a-b), for « € K. Rump
called such braces k-linear or k-braces; Catino and Rizzo called them circle algebras. In
our next result we consider a similar property for left braces.

Theorem 13. Let A be a left brace whose additive group has no elements of order 2. If

(—a)-b=—(a-b) for every a,b € A, then A is a two-sided brace, and hence a Jacobson
radical Ting. Furthermore, if A is finite, then A is a nilpotent ring.

2. Notation

Let (A, 4+, ) be a left brace defined as at the beginning of this paper, and let o be the
operation such that aob =a-b+ a + b. We will use the following notation.

a®™ =goqgo---0a

where a appears n times, and

where a appears n times. Let a,b € A, we inductively define elements e,, = e,(a,b) as
eo=b,e1 =a-band

€i+1 = a- €;.

If n is a natural number and @ € A then n - a denotes the sum of n copies of a, and
(—n) - a denotes the sum of n copies of elements —a.

Given a prime number g, let F, denote the field of ¢ elements, and let F,[z] denote
the polynomial ring over Fj, in one variable z.
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3. Multipermutation solutions

Let A be a left brace, and let a,b € A. Recall that we inductively define elements
en = en(a,b) as eg = b, e1 = a-b and e;41 = a - e;. We will start with the following
supporting lemma:

Lemma 14. Let A be a left brace and let a,b € A and n be a positive integer. Let notation

()

i=1

be as above. Then

Moreover,

a®™ = i (ZL) -at.

=1

Proof. Observe that it can be shown by induction on n that a®°™ = ao(ao(...o(aoa))) =
isy (7)-ayas a®" Y = a0a®™ = ata®™ ta-a™ = a+ (T, (7)-a") +(XiL, (7)-
e
It remains now to show that >, (2’) -e; = (a°™)-b. We know that o is an associative
operation, so a®™ ob = ao (ao (---o(aob))). Observe that (a°™)-b = (a°™)ob —
(a®™) — b, so it suffices to show that

Z <n> cei+a°™ 4+ b=0a™ob,
i
i=1

We use the induction on n, for n = 1 we have e; + a + b = a o b so the result holds.
Suppose that the result holds for some n. We multiply by a from the left to get

ao (Z (7;) cei 4 a°™ 4+ b) = a0,
i=1

Observe that the left hand side equals a- (3, (7) -ei +a +b) +a+ (i, (7)€ +
a®+b) = 3" (M) (eitei1)+a-a®" +a-b+a+a+b = Z?:Jrll ((n-;—l)) e +ao(n+1)+b
which finishes the inductive argument. O

Lemma 15. Let A be a finite left brace, and a,b € A, a,b # 0, and let p, j be natural
numbers. Then a®®) b =0 if and only if Zfil (pi]) -e; = 0.

Proof. It follows because a°®) - b = pb =1 ( ) e; by Lemma 14. O
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Lemma 16. Let A be a left brace and let a,b € A. Suppose that a®®) =0 and q"-b=0
for some distinct prime numbers p, q and some positive integers m, j. If a - (a-b) =0
then a-b=0.

Proof. By Lemma 14 we have 0 = a°™ - b = Y1 | (") - &; where n = p’ and e; are

defined as in Lemma 14. Observe that e; = 0 for all i > 1 as ez = a-(a-b) = 0. Therefore
n-e; =p’ -e; =0, and since p? and ¢ are co-prime then e; =0,s0a-b=¢; =0. O

For a prime number g, let Fj, denote the field of ¢ elements and F,[z] be the polynomial
ring in one variable over Fy,. Let Z be the ring of integers and Z[z] be the polynomial
ring in one variable over Z.

Lemma 17. Let A be a left brace and a,b € A, a,b # 0 and let e; = e;(a,b) for every i.
Let f(x),g(x), h(x) € Z]x] be such that h(z) = g(x) f(x) where f(x) = Zf:o jiz®, h(z) =
Zé:o I;2° for some natural numbers k, . Denote f = Zf:o jivei, h= Zé:o Lie;. If f =0
then h = 0.

Proof. Observe that since f =0then0=a-f = Zf:o Ji-e;+1; notice that the element a- f
corresponds to the polynomial z- f(x). Similarly the element 0 = a-(a- f) = Zf:o Ji-€iro
corresponds to the polynomial 22 f(x). Continuing in this way we get that h = 0, since
it corresponds to the polynomial g(z)f(z). O

Lemma 18. Let A be a left brace and a,b € A, a,b # 0. Suppose that ¢ -b = 0 for
some natural number q. Let f(x), g(z),p(x),q(x), h(x) € Z]z] and let r(z) = p(x) f(z) +
(@)9(@) + q - hiz) where f(@) = Tk diat, g(@) = Y_yhat and h(@) = Yy hiat,
r(z) = Y0z, for some natural numbers k, 1, I', m. Denote f = Zf:o i€, g=
Zi:o lie; andr =Y "" rie;. If f =0 and g =0 then r = 0.

Proof. Observe first that ¢-b = 0 implies g-e; = 0 for all 4. Therefore, t = q-Zé/:l hie; =0,
observe that ¢ corresponds to the polynomial ¢ - h(z). Let p = Y. pie; and ¢ = >, g;e;
be elements corresponding to the polynomials p(z)f(z) and ¢(z)g(z); by Lemma 17 we
get p=¢q = 0. Observe that r=p+4+qg+t,andsor=0. O

Theorem 19. Let A be a finite left brace and a,b € A, a -b # 0. Suppose that a*®) =0
and q-b =0 for some distinct prime numbers p, ¢ and some natural number j. Let A, be
the Sylow’s subgroup of the additive group of A, then A, has cardinality g™ for some m,
and b € A,. Let k be the mazimal number such that p* divides ¢ — 1 for some i < m.
Then

a®®) . p = 0.

In particular a -b =0 if p doesn’t divide ¢' — 1 for any i < m.
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Proof. By a slight abuse of notation we can consider natural numbers smaller than g as
elements of the field F;. Denote ey = b, e; = a - b and inductively e;1; = a - ;. Denote

f(z) = (x+1)? =1, then f(z) = fil (p.j)xi. Consider elements > (n; - ¢; € Ag,

(3
where 0 < ng,n1,...,%m < ¢ then there are ¢™*1!

elements in this set, therefore some
two of them are equal. Notice that ¢ - b = 0 implies ¢ - ¢; = 0 for every i. Therefore,
Sroni e = 0, for some 0 < nf,n},...,n, < g (not all equal to zero). Denote
g(z) = 3" o nl - 2. It is known that an irreducible polynomial of degree a from F[z]
divides the polynomial 29" — x. Therefore, a polynomial of degree not exceeding m from
F,[z] divides the polynomial =™ (H;ll(xqifl —1))™ in Fy[z]. Consequently h(z + 1) =
g(x) divides the polynomial (z + 1) ([T~ ((= + 1)4'=1 — 1))™ in F,[z]. Denote I(z) =
(z+ )™ ((z + 1=t — 1))™ and let I(z) = >, izt for some 0 < o < g, then
> ase; =0 by Lemma 18.

Let t(z) = Z:ZO ji - @* be the greatest common divisor of f(z) and I(z) in F,[z]; then
there exist polynomials h(z),p(z),¢(x) € Z[z] such that

t(x) = p(x) - f(z) + q(x) - U(z) + q - h(z).

By Lemma 18 we get that Zé:o jie; = 0, provided that f = 0, where in our case
=y (7 - €;. Recall that a®®) = 0, by Lemma 15 we get
=1\

S

P

- (7)

i=1

hence 25:1 jie; = 0, as required.

We will show now that t(z) = (z + l)pk — 1. The greatest common divisor of f(z) =
(x+1)” —1and (z+1)7 — (z+1) = ((z +1)9 "1 —1)(z + 1) equals (z + 1)?" — 1 for
some s, since (z + 1) doesn’t divide f(z). Observe that f(z) doesn’t have multiple roots
in any field extension of F, because f(z) and f'(z) = p*(z + 1)”“1 have no common
roots. Since f(x) has no multiple roots then ¢(z) doesn’t have multiple roots. Notice also
that (2 +1)P' — 1 divides polynomial (z+1)?""" — 1. It follows that t(z) = (z + 1)pk -1
By Lemma 15 we get that a®®") . p = 0.

If p doesn’t divide ¢* — 1 for any i < k then t(x) = (x+1)—1 =z hence e = a-b =0,
as required. O

Proof of Theorem 5. Observe that part [1] follows from part [2] applied for & = 0.
Therefore, we will prove [2]. Let o’ = ao(pk), and if £k = 0 then ¢/ = a. Suppose on
the contrary that a’ - b # 0 for some b’ € A,. Let a be such that o’ - (¢* - ') = 0
and a’ - (¢ 1) # 0. Denote b = a’ - (¢®*-1V') # 0. Observe that ¢-b = 0 and
a-b=a(a (¢ V)) # 0 by Lemma 16. Therefore 0 # a’ - b = a°®") - b. This is
impossible by Theorem 19. O
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Proof of Corollary 6. By Theorem 5 we get A,, - A; = 0 for all j < n, since p,, doesn’t
divide pé —1 for each i < (). Let a be in the socle of the brace A, then a- A; =0 for
all 4, it follows that a is in the socle of A. O

Proof of Corollary 7. Observe that if a brace A satisfies the assumptions of Corollary 6
then the retraction of A also satisfies the assumptions of Corollary 6. Recall that in [22]
Rump has shown that the retraction of a brace A is isomorphic to A/Soc(A). The result
now follows from Corollary 6 applied several times. O

Remark. The author is grateful to Leandro Vendramin for providing a list of braces with
small cardinalities. In particular it follows from this list that all braces with cardinalities
6, 8, 12, 36 have a finite multipermutation level.

Theorem 20. Let A be a finite left brace whose cardinality is a cube-free number; then A
has a nonzero socle.

Proof. Let A =>"" | A, where A; are Sylow’s subgroups of the additive group of A. Let
A; have cardinality p?(i) fori=1,2,...,n where p; < ps < ... < p, are prime numbers.
It is known that every A; is a brace (see for example Lemma 17 in [23]). It is known that
all groups of order p and p? are abelian (see [38] for some related results). Therefore,
A, is a two-sided brace, it follows that the socle of A,, is nonzero. Therefore there is an
element a € A, such that a-b = 0 for all b € A,. Assume first that p, > 3. We will
show that a-b =0 for every b € A. By Theorem 5 we get A, - A; = 0 for all i < n, since
pn doesn’t divide p; — 1 nor p? — 1 = (p; — 1)(p; + 1). Therefore a - A = 0, as required.
Assume now that A,, has cardinality equal to either 3 or 9, and A,,_; has cardinality 2
or 4. It follows that A is a brace of one of the following cardinalities: 6, 18, 12, 36. By
the remark above it follows that A has a nonzero socle. O

Proof of Corollary 8. It follows from Theorem 20 applied several times. O

Proof of Corollary 9. In [4] Gateva-Ivanova showed that left braces and braided groups
with involutive braiding operators are in one-to-one correspondence. Using this corre-
spondence we see that Corollary 9 follows from Corollary 8. O

Proof of Theorem 10. In [4] Gateva-Ivanova showed that a solution (X, r) is a multiper-
mutation solution if and only if the symmetric group G(X,r) has a finite multipermu-
tation level. It is known that G(X,r) has a structure of a left brace, and Theorem 10
follows from Corollary 8. O

Proof of Corollary 11. Let the cardinality of A; be p?(i) where p; is prime. Let A; have
the largest cardinality among braces Aj,...,A,. It follows that p?(j ) doesn’t divide
p: — 1 for any ¢ and any i < a(t). Let a be a generator of the additive group of A;,
then q°®i™ ™" # 0 and a°®i*?) = 0, this follows because A; - A; = 0. By Theorem 5
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[2] there is k < «(j) — 1 such that a° °(;") . b = 0 for every b € A; for i # j. Observe
that a®®") . b = 0 for b € A; because A; - A; = 0. Therefore a®®i") is in the socle
of A. Observe that brace A/Soc(A) satisfies the assumptions of this theorem, so it has a
nonzero socle. Continuing in this way we get that A has a finite multipermutation level
(because the retraction of a brace A equals A/Soc(A) by a result of Rump [22]). O

Proof of Theorem 12. Observe that (a + b)" = e,_1(a + b,a) + ep—1(a + b,b), where
elements e,,_1 (a+b, a) and e,,_1 (a+b, b) are defined as in Section 2. Therefore (a+b)" = 0
implies e,—1(a+b,a) = e,_1(a+b,b) =0, since e,,_1(a+b,a) and e,,_1(a+b,b) are from
different Sylow’s subgroups of the additive group of A. We can assume that p™ -a = 0,
qm/ -b = 0 for some distinct prime numbers p, ¢ and some natural numbers m, m’. We
can assume that m > n, if necessary taking bigger m. By Lemma 14

(a+b)°0)) . b= Zj: @ ei(a+b,b).

i=1

Let a = ¢' where t > m’ be such that p™*! divides ¢* — 1 (we know that p divides
q"~!' — 1 s0 p™*t! divides ¢(P~VP™ —1). It follows that (%) is divisible by p™ - q™ for all
1<i<pm™, andso (%) (a+b) =0 which imply ($) - (a+b)" =0. By Lemma 14,

K2

(a+ b)°® :i(‘;)(ﬁbyza-a

i=1

because (a + b)* = 0 for all i > p™ (since p™ > n). Therefore, and by Lemma 14,

a-b=(a-a)-b=(a+Db)°.p i() i(a+b,0) =eq(a+bb) =0

i=1

because (j‘) is divisible by ¢™', for 1 < i < a, and e, (a+b,b) =0 since a > n.

Observe that A = Y1 | A; where A; are Sylow’s subgroups of the additive group
of A. Recall that every A; is a brace (see for example Lemma 17 in [23]). Let a € A; and
b € A;j for some i # j. Since (a+b)" =0weget a-b=b-a=0,s0 4;-A; =A;-A, =0.It
follows that A° is the direct product of groups Ay for i = 1,...,n. Notice that every AS
is a p-group; it follows that A° is a nilpotent group. On the other hand, if A is nilpotent
then A™ = 0 for some m by Theorem 1 in [23]. O

4. Nilpotent braces
In this section we will investigate the structure of left braces satisfying special condi-

tions. For the following result we use a short proof which was provided by Ferran Cedé,
which is much better than the original proof from the previous version of this manuscript,
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and which in addition allows the removal of the assumption that A is a brace of a finite
multipermutation level.

In this section we will show that if A is a left brace whose additive group has no
elements of order two, and moreover (—a) -b = —(a - b) for every a,b € A, then A is a
two-sided brace.

Proof of Theorem 13. (Provided by Ferran Cedé: [Ferran Cedd, Private communication,
8 January 2016].) Let a,b,c € A. We have that co (—a) ob = (2¢c — coa)ob and

co(—a)ob=co((-a)-b—a+b)
=co(—(a-b)—a+b)
=co(—aob+a+b—a+b)
=co(—aob+ 2b)

=co(2b)—coaob+c
=2(cob) —coaob.

Hence (2c —coa)ob=2(cob) —coaob. In particular, for a = ¢! we have that
(2¢)ob=2(cob)—b.
Hence for every a,b,c € A, we have that
(2c—coa)ob=(2¢)ob+b—coaohb.
Let z,y,2z € A. Now we have

(20 —2y)oz=(2z —zox ' o(2y)) oz
=(2r)oz+z—xox to(2y)oz
=(2z)oz+2z—(2y)oz.

Hence
2 —y)oz)—z=2(oz)—2z+2z—2(yoz)+z=2(xo0z—yoz)+ =
Thus
2 —y)oz)=2(xoz—yoz+2).
Since the additive group of A has no elements of order two, we have that

(r—y)oz=x0z—yoz+z
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Note that if t = 2 — y, then (t +y) oz + 2z =t o z + y o z. Therefore, A is a two-sided
brace. The result follows. O

5. Semidirect product and wreath product

In this section we will investigate semidirect product and wreath product of left braces.
We will use the notation from Section 6 in [2].

Definition 1. Let G and H be two left braces. A map f: G — H is a homomorphism of
left braces if

fla+b) = f(a) + f(b), flacb) = f(a) o f(b).

Definition 2. Let N, H be left braces, let o : H — Aut(NN) be a homomorphism of groups
from the adjoint group H® of H to the group of automorphisms of the left brace N (see
Definition 1). Define the left brace N x H as follows:

(g1, h1) + (92, h2) = (g1 + g2, h1 + ha).
(91, h1) © (g2, h2) = (g1 0 d(h1)(g2), b1 0 ha).

Lemma 21. Let H, N be left braces and let N x H be the semidirect product of braces
H and N constructed via o. The brace N X H has a finite multipermutation level if and
only if braces H and N have a finite multipermutation level.

Proof. Let A be a left brace. It can be observed that A is a brace of a finite multiper-
mutation level if and only if A = 0 for some n (it follows from results from [22] in
the section about the socle of a brace, see also [2] for translation to the left braces). Let
gi € N, h; € H and (g;,h;) € N x H then

(- (((g1,h1) - (g2, h2)) - (g3:h3)) - - ) - (g, Bn) = (d, (- ((ha - h2) - h3) -+ +))
for some d € N, where (g;, h;) - (g5, 1) = (95, hi) © (95, hj) — (9i, hs) — (g5, hj)-

Therefore, if brace A = N x H has a finite multipermutation level then A(™ = 0 for
some n, and hence H(™ = 0. Notice that if hy = 1 = 0 then

(91, 1) © (g2, h2) = (91 0 0(1)(g2), h2) = (91 © g2, h2)
(since o is a homomorphism of groups so o(1) = 1). It follows that
(91:1) - (92, h2) = (91, 1) 0 (g2, h2) — (91, 1) — (g2, h2) = (g1 - g2, 1).
Recall that A = N x H. Therefore, if A =0 then

(- (((g1,1) - (g2, h2)) - (g3, h3)) =) - (gn, ) = ((--- ((91 - 92) - 93) -+ ) - Gn, 1)
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therefore N(") = 0 and so N has a finite multipermutation level. We have shown that if
N x H has a finite multipermutation level then N and H are braces of a finite multi-
permutation level.

Assume now that H has a finite multipermutation level, so H(™ = 0 for some m.
Then

(- (((g1,h1) - (92, h2)) - (g3, h3)) -+ ) - (G, hm) = (d, 1)

for some d € N. Assume that N has a finite multipermutation level, so N (m) = 0 for
some m’. Then

(- (((d, 1) - (gmt1, hmt1)) = (942 Bmg2)) =) - (Gmamss Bngmr) = (1,1) = (0,0).

Therefore,

(' o (((917 hl) : (927 hZ)) . (937 h3)) o ) . (gm+m’7 hm+m’) = (]-7 ]-) = (07 0)7
and hence A(m*™) =0 and so N x H is a brace of finite multipermutation level. 0O
We follow definition from [2] for the wreath product of left braces.

Definition 3. Let G, H be two left braces. Then the wreath product G! H of G by H is
the semidirect product W x H, where

W={fH—->G:|{he H: f(h) #1}| < oo}

and the action of H of W is given by the homomorphism o : H — Aut(W) defined by
o(h)(f)(x) = f(hx), for all x € H and f € W.

Recall that the multiplication on W is defined as (f1 o f2)(z) = fi(z) o fa(z) and the
sum is defined (f1 + f2)(z) = f1(z) + fa(z) for f1,fo € W and z € H.

Lemma 22. Let G, H be left braces. Then the wreath product GV H of G by H is a left
brace of a finite multipermutation level if and only if G and H are braces of a finite
multipermutation level.

Proof. By Lemma 21, it suffices to show that the left brace W defined as in Definition 3
is of a finite multipermutation level if and only if G is of a finite multipermutation level.
Notice that if f1,fo € W and « € H, then (f1 - f2)(z) = (fio fa — f1 — fo)(x) =
(frof2)(z) — f1(x) — fa(x) = f(x)- f2(x). Suppose that G is of a finite multipermutation
level. That means that G = 0 for some m. For fi, fa,..., fm € W and = € H we get

0= (- (((fr(x) - fo@)) - f3()) =) (@) = (C-- ((Fr - f2) - f3)--2) - fm) ()
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Hence (---((f1 - f2) - f3)--*)fm = 0, and thus W™ = 0. Therefore W is of a finite
multipermutation level.

Conversely, assume that W is of a finite multipermutation level. That means that
W) = 0 for some m. Let g1,...,9m € G. Let fq. be the element of W defined by
fo:(x) =g, if x =1 and f,,(z) = 1 otherwise. Then

(- (gr-92)-93) ) - gm = (C- ((for - foa) - fos)-+*) - fg)(1) = 0.

Hence G(™) = 0 and the result follows. 0O
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