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In this paper we answer this question positively for toric ideals 
defining edge subrings of bipartite graphs.
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Introduction

Let K be a field and S be a standard graded K-algebra. A central question in liaison 
theory asks whether every Cohen–Macaulay, graded ideal of S belongs to the same G-
liaison class of a complete intersection. The question has been answered in the affirmative 
in several cases of interest, including for ideals of height two [5], Gorenstein ideals [21], 
[1], special families of monomial ideals [15], [13], [17], generically Gorenstein ideals con-
taining a linear form [16], and several families of ideals with a determinantal or pfaffian 
structure [12], [6], [7], [8], [4], [9]. The argument is often inductive, meaning that an ideal 
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of the family is linked to another one with smaller invariants, and the ideals with the 
smallest invariants are complete intersections. For example, let m ≤ n and consider an 
ideal of height n −m +1 generated by the maximal minors of an m ×n matrix. Any such 
ideal is G-linked in two steps to an ideal of the same height, generated by the maximal 
minors of an (m − 1) × (n − 1) matrix, and the ideals of height n − m + 1 generated 
by the entries of a 1 × (n −m + 1) matrix are complete intersections. In this paper, we 
apply a similar approach to a family of ideals associated to graphs.

There are several ways of associating a binomial ideal to a graph [20,18]. Here we 
consider the ideal P (G) defining the edge subring K[G] of G, that is the K-algebra whose 
generators correspond to the edges of the graph, and whose relations correspond to the 
even closed walks. For a survey on the importance of these rings we refer to [20, Chapters 
10 and 11]. These binomial ideals are prime and Cohen–Macaulay, for all bipartite graphs. 
We prove that they belong to the G-biliaison class of a complete intersection. This 
implies in particular that they can be G-linked to a complete intersection in an even 
number of steps. An interesting feature of the liaison steps that we produce is that the 
same steps link the corresponding initial ideals, with respect to an appropriate order. In 
particular, the initial ideals are Cohen–Macaulay. Understanding the G-liaison pattern 
of the initial ideals allows us also to show that the associated simplicial complexes are 
vertex decomposable. For the determinantal and pfaffian ideals discussed above, the 
same behavior in terms of linkage of initial ideals and vertex decomposability was shown 
in [10].

1. Notation and preliminaries

For a positive integer n, we denote by [n] the set {1, . . . , n}. Let G be a graph with 
vertex set V (G) = [n] and edge set E(G) ⊆ 2[n]. We denote by qG (or just q, if no 
confusion arises) the number of edges of G. The local degree ρ(v) of v is the number of 
edges incident to v. A leaf is a vertex of local degree 1. A graph is bipartite if its vertex 
set V (G) = V1 � V2 is a disjoint union of two sets, such that every edge joins a vertex 
from V1 with a vertex from V2. It is well known that a graph is bipartite if and only if 
it does not contain odd cycles.

Definition 1.1. A walk of length m in G is an alternating sequence of vertices and edges

w = {v0, e1, v1, . . . , vm−1, em, vm},

where ek = {vk−1, vk} for all k = 1, . . . , m. A walk may also be written as a sequence 
of vertices with the edges omitted, or vice-versa. If v0 = vm, then w is a closed walk. 
A walk is called even (respectively odd) if its length is even (respectively odd). A walk is 
called a path if its vertices are distinct. A cycle in G is a closed walk {v0, e1, v1, . . . , vm}
in which the vertices v1, . . . , vm are distinct. Denote by C(G) the set of even cycles of G.
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Let K be a field and R = K[x1, . . . , xn] be the polynomial ring over K with the 
standard grading given by deg(xi) = 1 for all i ∈ [n]. The edge subring of the graph G
is the K-subalgebra of R

K[G] = K[xixj : {i, j} ∈ E(G)].

The algebra K[G] is standard graded, with the normalized induced grading from R. If 
we label the edges of G by e1, . . . , eq, we have the graded epimorphism

φ : S = K[e1, . . . , eq] −→ K[G], et = {i, j} �−→ xixj ,

where S is a standard graded polynomial ring. We denote by P (G) the kernel of φ. This 
is a graded, binomial ideal of S, which we call the toric ideal of G. We identify the edges 
of G with the variables of S. For any even walk w = {ej1 , . . . , ej2m} in G, define the 
binomial

Tw = ej1ej3 · · · ej2m−1 − ej2ej4 · · · ej2m .

It is easy to check that Tw ∈ P (G) for all even closed walks w in G.

Proposition 1.2 ([19]). If G is a bipartite graph with corresponding toric ideal P (G), 
then:

1. P (G) = (Tw | w is an even closed walk in G) = (Tc | c ∈ C(G)).
2. htP (G) = q − n + 1.
3. P (G) is prime and Cohen Macaulay.

We refer the interested reader to the book [20] for more details on toric ideals of 
graphs, and to [14] for a treatment of liaison theory. We now recall some definitions from 
liaison theory that we use throughout the paper.

Definition 1.3. Let I, J ⊂ S be homogeneous, unmixed ideals of height c. We say that I
and J are directly G-linked if there exists a homogeneous, Gorenstein ideal H ⊂ I ∩ J

of height c such that H : I = J . G-liaison is the equivalence relation generated by the 
relation of being directly G-linked.

It is easy to show that the relation of being directly G-linked is symmetric. More 
precisely, if H : I = J then H : J = H : (H : I) = I, since all ideals are unmixed of 
height c.

Definition 1.4. Let J ⊂ S be a homogeneous, saturated ideal. We say that J is Gorenstein 
in codimension ≤ c if the localization (S/J)P is a Gorenstein ring for any prime ideal P
of S/J with htP ≤ c. We often say that J is Gc. We call generically Gorenstein, or G0, 
an ideal J which is Gorenstein in codimension 0.
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Definition 1.5. Let I1, I2 ⊂ S be homogeneous, unmixed ideals of height c. We say that I1
is obtained from I2 by a Basic Double Link of degree h if there exists a Cohen–Macaulay 
ideal J in S of height c − 1 and a homogeneous f of degree h such that J ⊂ I2, f � 0
modulo J , and I1 = fI2 + J . If in addition J is generically Gorenstein, we talk about 
Basic Double G-Link.

Definition 1.6 ([11], Sect. 3). Let I1, I2 ⊂ S be homogeneous, unmixed ideals of height c. 
We say that I1 is obtained from I2 by an elementary G-biliaison of degree h if there 
exists a Cohen–Macaulay, generically Gorenstein ideal J in S of height c − 1 such that 
J ⊂ I1 ∩ I2 and I1/J ∼= [I2/J ](−h) as S/J-modules. If h > 0 we speak about ascending 
elementary G-biliaison. G-biliaison is the equivalence relation generated by elementary 
G-biliaison.

Notice that a Basic Double G-Link is a special case of elementary G-biliaison. It is 
easy to show that Basic Double G-Links and elementary G-biliaisons generate the same 
equivalence classes, see e.g. [10, Remarks 1.13]. The following theorem gives a connection 
between G-biliaison and G-liaison.

Theorem 1.7 (Kleppe, Migliore, Mirò-Roig, Nagel, Peterson [12]; Hartshorne [11]). Let 
I1 be obtained from I2 by an elementary G-biliaison. Then I2 is G-linked to I1 in two 
steps.

Finally, we recall some basic notions on simplicial complexes. A simplicial complex
on [n] is a collection of subsets Δ ⊆ 2[n] such that G ∈ Δ for all G ⊆ F ∈ Δ. The 
simplicial complex 2[n] is called a simplex. The dimension of a simplicial complex Δ
is dim Δ = max{|F | − 1 | F ∈ Δ}. A simplicial complex Δ is pure if all its maximal 
elements with respect to inclusion have the same cardinality. For any vertex v ∈ [n] we 
define the link of v in Δ, respectively the deletion of v from Δ as

linkΔ(v) = {F ∈ Δ | v /∈ F, F ∪ {v} ∈ Δ} respectively Δ \ v = {F ∈ Δ | v /∈ F}.

The Stanley–Reisner ideal of Δ is IΔ = (
∏

i∈F xi | F /∈ Δ) ⊂ K[x1, . . . , xn].

Definition 1.8. A simplicial complex Δ is vertex decomposable if it is either empty, or a 
simplex, or there exists a vertex v of Δ such that linkΔ(v) and Δ \v are pure and vertex 
decomposable, with dim Δ = dim(Δ \ v) = dim linkΔ(v) + 1.

2. G-biliaison of toric ideals of graphs

Let G be a bipartite graph. In this section we prove that both the toric ideal of G
and its initial ideal with respect to an appropriate term order belong to the G-biliaison 
class of a complete intersection. We start by establishing a technical lemma.
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Lemma 2.1. Let H, J ⊂ S be homogeneous ideals, J ⊆ H. Assume that H is saturated 
and J is Cohen–Macaulay of height c − 1. Let f ∈ S be homogeneous polynomial, f �

0 modulo J . Assume that I = fH + J is Cohen–Macaulay of height c. Then H is 
Cohen–Macaulay of height c. In particular I is a Basic Double Link of H on J . If in 
addition J is generically Gorenstein, then I is obtained from H via a Basic Double 
G-Link.

Proof. Notice that, if H is unmixed and ht(H) = c, the result follows from [14], Proposi-
tion 5.4.5. For an arbitrary saturated H, denote by X, Y, Z the schemes corresponding to 
the ideals I, H, J respectively. Denote by Z|f the codimension c scheme whose saturated 
ideal is J + (f). We claim that

X = Y ∪ Z|f . (1)

Since I = fH + J ⊆ H ∩ [(f) + J ], it is clear that X ⊇ Y ∪ Z|f . Let P /∈ Y ∪ Z|f be a 
closed point. If P /∈ Z, then P /∈ X. If P ∈ Z, then f(P ) 
= 0. Moreover, since P /∈ Y , 
there exists g ∈ H such that g(P ) 
= 0. Then fg ∈ I and (fg)(P ) 
= 0, so P /∈ X.

Since X is equidimensional of codimension c, it follows from (1) that Y has codimen-
sion at least c. Moreover, any component of Y of codimension c + 1 or more must be 
contained (scheme-theoretically) in a component of Z|f . Hence, the codimension of Y
must be c, else we would get X = Z|f , a contradiction. This proves that ht(H) = c.

To prove that H is Cohen–Macaulay, let d = deg f and consider the short exact 
sequence

0 −→ J(−d) −→ J ⊕H(−d) −→ I −→ 0. (2)

Denote by J , H, I the sheafification of J, H, I respectively. It is well-known (see 
e.g. [14], Lemma 1.2.3) that H is Cohen–Macaulay if and only if

Hi
∗(H) =

⊕
m∈Z

Hi
∗(H(m)) = 0 for 1 ≤ i ≤ dimS − c− 1.

Sheafifying and taking cohomology of (2), we get the long exact sequence

. . . −→ Hi
∗(J )(−d) −→ Hi

∗(J ) ⊕Hi
∗(H)(−d) −→ Hi

∗(I) −→ . . .

Since Hi
∗(J ) = 0 for 1 ≤ i ≤ dimS − c and Hi

∗(I) = 0 for 1 ≤ i ≤ dimS − c − 1, it must 
be Hi

∗(H) = 0 for 1 ≤ i ≤ dimS − c − 1, hence H is Cohen–Macaulay.
Since I = fH + J , ht(J) + 1 = ht(H), f � 0 modulo J , and J is Cohen–Macaulay, it 

follows that I is a Basic Double Link of H on J . �
We now introduce the concept of (maximal) path ordered matching, which is a special 

case of the ordered matchings introduced in [2]. Its relevance for our arguments is clarified 
by Theorem 2.11 and Lemma 2.12.
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Fig. 1. Path ordered matching of length 5.

Definition 2.2. A set of edges e = {e1, . . . , er} ⊂ E(G) is a path ordered matching of 
length r, if the vertices can be relabeled such that ei = {i, i + r} and the following 
conditions are satisfied:

(a) fi = {i, i + 1 + r} ∈ E(G) for every i = 1, . . . , r − 1,
(b) if {i, j + r} ∈ E(G), then j ≥ i.

We call such a matching maximal if it is not a proper subset of any other path ordered 
matching.

Example 2.3. Fig. 1 represents a path ordered matching of cardinality 5. The verti-
cal black edges are the edges e1, . . . , e5 of the matching, and the black skew edges are 
f1, . . . , f4. The thin gray edges (green in the web version) are all the edges which satisfy 
point (b) in Definition 2.2, while the dotted edges (red in the web version) are all the 
edges which do not satisfy point (b).

To every path ordered matching in G we may associate a set of monomials as follows.

Definition 2.4. Let e = {e1, . . . , er} be a path order matching in G. Define

MG
e = {m ∈ S | m monomial, m

∏
i∈I

ei − n = Tw where ∅ 
= I ⊆ [r],w ∈ C(G),

and n monomial}.

Remark 2.5. The monomials coming from even cycles or even closed walks generate the 
same ideal. More precisely

(
MG

e
)

=
(
m ∈ S : m is a monomial with m

∏
i∈I ei − n = Tw

for some ∅ 
= I ⊆ [r] and some w even closed walk in G

)
.

Proof. Let w be an even closed walk in G with Tw = m 
∏

i∈I ei − n. We regard w as 
subgraph of G. By Euler’s classical result, all local degrees in w have to be even. If all 
local degrees are two, then w is a cycle. Otherwise, we choose a vertex v of degree greater 
than or equal to 4 and split w in two shorter closed walks, each starting at v. Since both 
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are subwalks of w, one of them gives rise to a monomial which divides m. We conclude 
by induction on 

∑
v∈w ρ(v). �

Given a graph G and a path order matching e = {e1, . . . , er} in G, we consider the 
ideal

IGe = P (G \ e) + (MG
e ). (3)

We now establish some properties of IGe . We start by showing that its natural set of 
generators is a lexicographic Gröbner basis.

Lemma 2.6. Let G be a bipartite graph and e = {e1, . . . , er} a path order matching in G. 
Assume that e′ = {e1, . . . , ês, . . . , er} is a path order matching and let τ be a lexicographic 
term order on S with es > ei for i 
= s, ei > f for all i and all f ∈ E(G) \ {e1, . . . , er}. 
The set

{Tw : w ∈ C(G \ e)} ∪MG
e

is a Gröbner basis of IGe with respect to τ .

Proof. Each of the two sets in the above union is a τ -Gröbner basis of the ideal that 
it generates by [20], Prop. 10.1.11. So it suffices to show that the S-polynomials for 
mixed pairs rewrite to zero. Let w ∈ C(G \ e) with Tw = m − n, and w′ ∈ C(G) with 
Tw′ = m′ 

∏
i∈I ei − n′, I 
= ∅. Assume that inτ (Tw) = m, and that m and m′ are not 

coprime, that is

m = q1 . . . qtm1, m′ = q1 . . . qtm
′
1, (m1,m

′
1) = 1,

where each monomial qi 
= 1 comes from a maximal path αi in the intersection of w and 
w′. The S-polynomial of Tw and m′ is S(Tw, m′) = m′

1Tw − m1m
′ = m′

1n. We claim 
that S(Tw, m′) ∈ (MG

e ). Fix i0 ∈ I, and the walking direction on w′ which goes on 
ei0 from i0 + r to i0. Assume that, when walking on w′ starting at i0, we encounter 
first α1, then α2 and so on. Consider the following closed even walk. We start walking 
on w′ at i0. As soon as we reach the first vertex of α1, start going on w. Keep going 
on w until we reach the vertex of αt which is last in the walking in direction on w′. 
From here, keep walking back on w′ until we reach i0 again. Call this closed walk z, 
and let Tz = ei0m

′′ ∏
i∈J ei − n′′ be the corresponding binomial. The part walked on 

w′ contributes to m′′ with variables dividing m′
1. Moreover, because of our choice of 

following w at the intersection with α1, the walk on w contributes with indeterminates 
dividing n (and not m). Thus m′′ | m′

1n, and we conclude by Remark 2.5. �
Remark 2.7. Each element in the above Gröbner basis corresponds to a cycle in G. If we 
only consider the generators corresponding to cycles w for which at least one of the two 
monomials in Tw = m − n is not divisible by any ei, we still obtain a Gröbner basis.
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Fig. 2. w is the cycle which goes through ei, the red arch, ej and the green arch. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Proof. If there exist i and j such that ei | m and ej | n, then w produces two monomials 
in MG

e . Using w and the path of the matching, it is easy to construct two shorter cycles 
w′ and w′′, such that the corresponding monomials divide m and n, respectively. (See 
Fig. 2.) �

Our first liaison result concerns the G-biliaison class of the initial ideals of the ideals 
IGe .

Theorem 2.8. Let G be a bipartite graph and let e = {e1, . . . , er} be a path order matching. 
Let τ be a lexicographic term order on S with er > er−1 > · · · > e1 > f for all f ∈ E(G) \
e. The initial ideal inτ (IGe ) of IGe with respect to τ is Cohen–Macaulay and squarefree, 
and it can be obtained from inτ (P (G)) via a sequence of r descending G-biliaisons.

Proof. By Lemma 2.6

inτ (IG{e1,...,es}) = (inτ (Tw) : w ∈ C(G \ {e1, . . . , es})}) + (MG
{e1,...,es})

for every 0 ≤ s ≤ r. In particular, inτ (IG{e1,...,es}) is a squarefree monomial ideal.
We proceed by induction on r ≥ 0. Since IG0 = P (G), the thesis is true for r = 0. 

Cohen–Macaulayness of inτ (P (G)) follows from [3, Theorem 9.5.10] (see also [20, Corol-
lary 9.6.2]). Assume now that the thesis holds for any bipartite graph and for path order 
matchings of up to r − 1 edges. Let e′ = {e1, . . . , er−1}. We claim that

inτ (IGe′ ) = erinτ (IGe ) + inτ (IG\er
e′ ). (4)

In fact, let w ∈ C(G). If w ∈ C(G \ e), then inτ (Tw) ∈ inτ (IG\er
e′ ). If w ∈ C(G \ er)

passes through some of e1, . . . , er−1, then Tw =
∏

i∈I eim − n and m ∈ inτ (IG\er
e′ ). If 

w ∈ C(G \ e′) is a cycle through er, then Tw = erm − n and inτ (Tw) = erm ∈ inτ (IGe′ ). 
Moreover m ∈ (MG

e ) ⊆ inτ (IGe ), hence erm ∈ erinτ (IGe ). Finally, if w ∈ C(G) is a 
cycle through er and some of e1, . . . , er−1, then Tw =

∏
i∈I eim − n where I ⊇ {r}. By 

Remark 2.7 we may assume that n is not divisible by any of the e′js. Then I 
= {r}, so 
erm ∈ (MG

e′ ) ⊆ inτ (IGe′ ) and m ∈ inτ (IGe ). This concludes the proof of (4).
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By induction hypothesis inτ (IG\er
e′ ) and inτ (IGe′) are Cohen–Macaulay and squarefree 

of height c − 1 and c respectively, if c = htP (G). The ideal inτ (IG\er
e′ ) is squarefree, 

hence generically Gorenstein. Combining Lemma 2.1 and (4), one sees that inτ (IGe ) is 
Cohen–Macaulay of height c and inτ (IGe′ ) is obtained from inτ (IGe ) via a Basic Double 
G-Link of degree 1. Hence inτ (IGe ) is obtained from inτ (IGe′ ) via an elementary G-biliaison 
of degree −1. �
Remark 2.9. Let e = {e1, . . . , er} and e′ = {e1, . . . , ês, . . . , er} be path order matchings 
in G. Let τ be a lexicographic term order on S with es > ei for i 
= s, ei > f for all i
and all f ∈ E(G) \ {e1, . . . , er}. The same proof as in Theorem 2.8 shows that

inτ (IGe′ ) = esinτ (IGe ) + inτ (IG\es
e′ )

and that inτ (IGe′) is obtained from inτ (IGe ) via a Basic Double G-Link of degree 1 on 
inτ (IG\es

e′ ).

Corollary 2.10. Let G be a bipartite graph and e = {e1, . . . , er} be a path order matching. 
The ideal IGe is radical and Cohen–Macaulay, of the same height as P (G).

In the next theorem, we show that the ideals IGe belong to the same G-biliaison class.

Theorem 2.11. Let G be a bipartite graph, and let e = {e1, . . . , er} be a path order 
matching. Let e′ = {e1, . . . , er−1}. Then IGe′ can be obtained from IGe via a G-biliaison 
of degree 1 on IG\er

e′ .

Proof. By Corollary 2.10, IGe′ , IGe , IG\er
e′ ⊂ S are Cohen–Macaulay and IG\er

e′ is gener-
ically Gorenstein. Moreover, htIGe′ = htIGe = htP (G) and htIG\er

e′ = htP (G \ er) =
htP (G) − 1. Hence it suffices to show that

IGe′/I
G\er
e′

∼= IGe /I
G\er
e′ (−1) (5)

as S/IG\er
e′ -modules. Denote by M

G

e , M
G

e′ the monomials in MG
e , MG

e′ coming from cycles 
passing through er. A generating set of IGe′/I

G\er
e′ is given by

{Tw : w ∈ C(G \ e′}) through er} ∪M
G

e′ ,

and a generating set of IGe /I
G\er
e′ is given by M

G

e .
Let c ∈ C(G \ e′) passing through er, and let Tc = mcer − nc be the associated 

binomial. Then mc ∈ M
G

e . We claim that

mcI
G
e′ + I

G\er
e′ = TcI

G
e + I

G\er
e′ . (6)

In fact, let z be a cycle through er and let Tz = ermz − nz be the associated binomial. 
Let w be the closed walk that one obtains by gluing w and z along er and removing er. If 
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z ∈ C(G \e′), then mcTz−mzTc = mznc−mcnz = Tw ∈ I
G\er
e′ . Else, mcmzer−mzTc =

mznc ∈ I
G\er
e′ , since it is divisible by the monomial in M

G\er
e′ coming from w.

Let c ∈ C(G) be a cycle passing through er and some of e1, . . . , er−1. By Remark 2.7
we may assume that Tc =

∏
i∈I eimc − nc where r ∈ I and e1, . . . , er−1 � nc. Therefore, 

c gives rise to monomials mc ∈ M
G

e and ermc ∈ M
G

e′ . We claim that

mcI
G
e′ + I

G\er
e′ = ermcI

G
e + I

G\er
e′ . (7)

In fact, let z be a cycle through er and let Tz be the associated binomial, Tz = ermz−nz. 
Let w be the closed walk that one obtains by gluing γ̃ and z along er and removing er. 
If z ∈ C(G \ e′), then mcTz − mzermc = −mcnz ∈ I

G\er
e′ , since it is divisible by the 

monomial in M
G\er
e′ coming from w. Else, mcmzer −mzermc = 0 ∈ I

G\er
e′ .

Let g ∈ IGe′ be a homogeneous nonzerodivisor modulo IG\er
e′ ; g exists by Corollary 2.10. 

Write

g =
∑
w∈W

gwTw + er
∑
z∈Z

gzmz,

for some set W of cycles of G \ e′ through er, some set Z of cycles of G through er, and 
some gw, gz ∈ S. Write Tw = mwer − nw and let

g′ =
∑
w∈W

gwmw +
∑
z∈Z

gzmz ∈ IGe .

By (6) and (7) we obtain

g′IGe′ + I
G\er
e′ = gIGe + I

G\er
e′ . (8)

Then gIGe + I
G\er
e′ is a Basic Double G-Link of IGe on IG\er

e′ , in particular it is Cohen–
Macaulay of the same height as P (G). Therefore, the same holds for g′IGe′ + I

G\er
e′ ⊆

[IG\er
e′ + (g′)] ∩ IGe′ . Hence ht[IG\er

e′ + (g′)] ≥ htIG\er
e′ + 1, so g′ � 0 modulo IG\er

e′ . By 
equality (8) and since g, g′ � 0 modulo IG\er

e′ , multiplication by g′/g yields isomorphism 
(5). �

The next two technical lemmas play an important role in the proof of our main 
theorem.

Lemma 2.12. Assume that G has no leaves. If e = {e1, . . . , er} is a maximal path order 
matching, then MG

e contains an indeterminate x, and e is a path order matching in 
G \ x.

Proof. As r is not a leaf, there exists an edge {r, s}. Since e is a path order matching, 
then s > 2r. As s is also not a leaf, there exists another edge {s, j} with j 
= r. If 
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j > 2r, then there exists t ∈ {1, . . . , r} such that {j, t + r} ∈ E(G), since otherwise 
e1, . . . , er, {j, s} is a path ordered matching, contradicting maximality of e. Therefore G
contains the even closed cycle

{et, ft, et+1, ft+1 . . . , er, {r, s}, {s, j}, {j, t + r}}.

If instead j ≤ 2r, then j < r, since G is bipartite. In this case, G contains the even 
closed cycle

{fj , ej+1, fj+1, . . . , er, {r, s}, {s, j}}.

In both cases, x = {s, j} ∈ MG
e . �

Lemma 2.13. Let G be a simple, bipartite graph with no leaves, and assume that e =
{e1, . . . , er} is a maximal path ordered matching. Let x ∈ MG

e be an indeterminate as in 
Lemma 2.12. Then

IGe = IG\x
e + (x).

Proof. By Lemma 2.12 we have IGe ⊇ I
G\x
e +(x). In order to show that IGe ⊆ I

G\x
e +(x), 

it suffices to consider the cycles passing through x. By Lemma 2.12, there exist a ∅ 
=
J ⊆ [r] and an even cycle wx in G such that Twx

= x 
∏

i∈J ei − a. Let w ∈ C(G) be 
a cycle through x with Tw = m 

∏
i∈I ei − xn. Gluing w and wx along x and removing 

x, we obtain an even closed walk z in G \ x. As Tz = m 
∏

i∈I ei
∏

j∈J ej − an, then 

m ∈ I
G\x
e by Remark 2.5. �

We are finally ready to prove the main theorem.

Theorem 2.14. If G is a bipartite graph, then P (G) belongs to the G-biliaison class of 
a complete intersection. In particular, it belongs to the G-liaison class of a complete 
intersection.

Proof. If G′ is obtained from G by removing the leaves, then P (G′) = P (G). Therefore, 
we may assume without loss of generality that G has no leaves. Let e = {e1, . . . , er} be 
a maximal path order matching in G, then e(s) = {e1, . . . , es} is a path order matching 
for every 1 ≤ s ≤ r. By Theorem 2.11 we have a G-biliaison of degree 1 between 
IGe(s−1) and IGe(s), for 1 ≤ s ≤ r. Therefore, P (G) is obtained from IGe via a sequence 
of ascending G-biliaisons. By Lemma 2.12 and Lemma 2.13 there exists x ∈ E(G) such 
that IGe = I

G\x
e + (x). The ideals P (G \ x) and IG\x

e belong to the same G-biliaison 
class by Theorem 2.11, hence so do P (G \ x) + (x) and IG\x

e + (x). Therefore P (G) and 
P (G \ x) + (x) belong to the same G-biliaison class. We conclude by induction on the 
number of edges of G. �
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Denote by ΔG
e the simplicial complex on E(G), whose Stanley–Reisner ideal is inτ (IGe ). 

The sequence of G-biliaisons of Theorem 2.14 allow us to show that ΔG
e is vertex de-

composable.

Corollary 2.15. Let e = {e1, . . . , er} be a path order matching in a simple bipartite graph 
G, let τ be the term order of Lemma 2.6. Then ΔG

e is vertex decomposable. In particular, 
the simplicial complex associated to inτP (G) is vertex decomposable.

Proof. We proceed by double induction on |E(G)| and s − r, where e′ = e′1, . . . , e
′
s is 

a maximal path ordered matching containing e. We assume that e1, . . . , er appear in 
the same order in e′, but not that they appear consecutively. If |E(G)| ≤ 3, then G
contains no cycles, so ΔG

e is a simplex. If e is maximal, then by Lemma 2.13 inτ (IGe ) =
inτ (IG\x

e ) +(x). This means that ΔG\x
e is the restriction of ΔG

e to the vertex set |E(G) \x|, 
and {x} /∈ ΔG

e . By induction on the number of edges, ΔG\x
e is vertex decomposable. If 

e1, . . . , er is not maximal, let er+1 such that e′ = {e1, . . . , ei, er+1, ei+1, . . . , er} is a path 
ordered matching. By Lemma 2.6 and Remark 2.9

ΔG
e \ er+1 = ΔG\er+1

e and linkΔG
e

er+1 = ΔG
e′ ,

and both are vertex decomposable by induction. �
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