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1. Introduction

Braces were introduced by W. Rump [1], as a generalisation of radical rings, in order 
to study the non-degenerate involutive set-theoretic solutions of the quantum Yang–
Baxter equation. He also obtained a correspondence between these solutions and braces. 
Later, through the efforts of D. Bachiller, F. Cedó, E. Jespers, and J. Okniński [2,3] the 
classification of involutive set-theoretic solutions of the quantum Yang–Baxter equation 
was reduced to that of braces, and they provided many new classes of such solutions. 
Recently, skew braces were introduced by L. Guarnieri and L. Vendramin [4] in order to 
study the non-degenerate (not necessarily involutive) set-theoretic solutions.

On the other hand, S. Chase and M. Sweedler [5] introduced the concept of Hopf–
Galois extensions in order to generalise the classical Galois theory. Later, Hopf–Galois 
theory for separable extensions of fields was studied by C. Greither and B. Pareigis [6]. 
They showed how to recast the problem of classifying all Hopf–Galois structures on a 
finite separable extension of fields as a problem in group theory. Many advances relating 
to the classification of Hopf–Galois structures were made by N. Byott [7–9], S. Carnahan, 
L. Childs [10], and T. Kohl [11]. Recent work by A. Alabadi and N. Byott [12] studied 
the cyclic extensions of fields of squarefree degree, also T. Crespo and M. Salguero ob-
tained results on the properties of Hopf–Galois structures on a separable field extension 
of degree pn [13].

A fruitful discovery, which was initially noticed by D. Bachiller [14], revealed a con-
nection between Hopf–Galois theory and skew braces, which linked the classification of 
Hopf–Galois structures to that of skew braces; thus making skew braces objects of inter-
est in number theory as well as group theory, ring theory, and mathematical physics. The 
connection of skew braces to ring theory and Hopf–Galois structures was further stud-
ied by N. Byott, A. Smoktunowicz, and L. Vendramin [15]. L. Childs [16] investigated 
certain correspondence between Hopf–Galois structures and skew braces.

Despite many efforts both the classification of skew braces and Hopf–Galois structures 
remain widely open. For example, in [17] cyclic braces were classified, and in [18] braces 
of order p3 were classified. Recently, in [19] a method for describing skew braces with 
non-trivial annihilator was given, and braces of order p2q have been studied in [20]. The 
classification and understanding the structure of skew braces has become more important 
as they find connections to other areas, for example to concepts in ring theory, see [21,22], 
and quantum information [23], as well as number theory. Recently, a list of open problems 
on skew braces has been posed by L. Vendramin [24], a few of which were looked at by 
T. Nasybullov [25].

To this end, in the author’s PhD thesis [26], an explicit and complete classification of 
skew braces and Hopf–Galois structures of order p3 for a prime number p was provided. 
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In particular, the work includes an independent proof of the results by D. Bachiller [18]
on braces of order p3. In this paper, as our main results, we provide a classification for 
skew braces and Hopf–Galois structures of Heisenberg type for a prime p, which we have 
chosen to be greater than 3 for simplicity. However, our methods can be adapted for 
p = 2, 3 as well (p = 2, 3 has been treated in the author’s PhD thesis). We classify these 
skew braces and Hopf–Galois structures using methods of N. Byott [8] and by conducting 
a deep study into the holomorph of the Heisenberg group.

Furthermore, we determine the automorphism group of each skew brace that we clas-
sify, and as a result we are able to determine all the Hopf–Galois structures of Heisenberg 
type on a Galois field extensions of degree p3. In our subsequent two papers we aim to 
provide our findings relating to the classification of skew braces and Hopf–Galois struc-
tures of Extraspecial type (of the type Cp2 � Cp) in one paper, and skew braces and 
Hopf–Galois structures of type C3

p in the second paper. These results are currently avail-
able in the author’s PhD thesis [26] Sections 4.2, 4.3, and 4.5.

We shall begin by providing relevant background information and stating a summary 
of our main results in the next subsection. The subsequent sections are devoted to the 
calculations relating to proofs. In particular, Lemmas 4.2, 4.4, and 4.6 are devoted to 
the classification of skew braces. In Subsection 4.1 there is a list of all skew braces 
classified in this paper. The automorphism groups of these skew braces and the number 
of corresponding Hopf–Galois structures are determined in Lemmas 4.3, 4.5, and 4.6. For 
readers interested to have the list of regular subgroups of the holomorphs of groups of 
order p3, we refer them to the author’s PhD thesis [26]. Finally, we determine the socle
and annihilator of these skew braces. We show that there are non-trivial skew braces 
of Heisenberg type with trivial socle and annihilator, so these cannot be described by 
methods of [19].

1.1. Background

A skew (left) brace [cf. 15] is a triple (B,⊕,�) which consists of a set B together 
with two operations ⊕ and � such that (B, ⊕) and (B, �) are groups (they need not be 
abelian), and the two operations are related by the skew brace property:

a� (b⊕ c) = (a� b) � a⊕ (a� c) for every a, b, c ∈ B,

where �a is the inverse of a with respect to the operation ⊕. The group (B,⊕) is known 
as the additive group of the skew brace (B,⊕,�) and (B,�) as the multiplicative group. 
A morphism, or a map, between two skew braces

ϕ : (B1,⊕1,�1) −→ (B2,⊕2,�2)

is a map of sets ϕ : B1 −→ B2 such that the maps
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ϕ : (B1,⊕1) −→ (B2,⊕2) and ϕ : (B1,�1) −→ (B2,�2)

are group homomorphisms; the map ϕ is an isomorphism if it is a bijection.
We call a skew brace (B,⊕,�) such that (B,⊕) ∼= N and (B,�) ∼= G a G-skew 

brace of type N ; we refer to the isomorphism type of (B,�) as the structure of the skew 
brace (B,⊕,�). If ⊕ is abelian, nonabelian respectively, we call (B,⊕,�) a skew brace of 
abelian, nonabelian type respectively. We note that a skew brace of abelian type coincides 
with the one that was initially defined by W. Rump called a brace (aka a classical 
brace). Skew braces provide non-degenerate (not necessarily involutive) set-theoretic 
solutions of the quantum Yang–Baxter equation. The paper of A. Smoktunowicz, and 
L. Vendramin (also N. Byott) [15] provides an excellent introduction to skew braces and 
their connection to noncommutative algebra, mathematical physics, and other areas.

We recall some definitions and facts relating to Hopf–Galois structures and their con-
nection to skew braces. For L/K a finite Galois extension of fields with Galois group G, 
a Hopf–Galois structure on L/K consists of a finite dimensional cocommutative K-Hopf 
algebra H, with an action on L, which makes L into an H-Galois extension, i.e., H acts 
on L in such way that the K-module homomorphism

j : L⊗K H −→ EndK(L) given by j(x⊗ y)(z) = xy(z) for x, z ∈ L, y ∈ H

is an isomorphism. For example, the group algebra K[G] endows L/K with the classical
Hopf–Galois structure. However, in general there can be more than one Hopf–Galois 
structure on L/K. Hopf–Galois structures have many applications in Galois module 
theory, for example, when studying the freeness of rings of integers of extensions of 
global or local fields as modules (e.g., see [27]). Through the work of C. Greither and B. 
Pareigis [6] the classification of Hopf–Galois structures was reduced to a group theoretic 
problem via the following theorem.

Theorem 1.1 (C. Greither and B. Pareigis). Hopf–Galois structures on L/K correspond 
bijectively to regular subgroups N ⊆ Perm(G) which are normalised by the image of G, 
as left translations, inside Perm(G).

In particular, every K-Hopf algebra H which endows L/K with a Hopf–Galois struc-
ture is of the form L[N ]G for some N ⊆ Perm(G) a regular subgroup normalised by the 
image of G, as left translations, inside Perm(G). Here G acts on the group algebra L[N ]
through its action on L as field automorphism and on N by conjugation inside Perm(G). 
Subsequently, the isomorphism type of N became known as the type of the Hopf–Galois 
structure, and we shall refer to the cardinality of N , which is the same as the degree of 
the extension L/K, as the order of the Hopf–Galois structure.

The connection between Hopf–Galois structures and braces was initially noticed by 
D. Bachiller [14], later this connection was made more explicit by N. Byott and L. 
Vendramin in [15]. For example, one can prove (see Section 2) that given a G-skew brace 
(B,⊕,�), the map
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d : (B,⊕) 
−→ Perm (B,�)

a 
−→ (da : b 
−→ a⊕ b) for all a, b ∈ B

is a regular embedding, i.e., d is an injective map whose image Im d is a regular sub-
group. In particular, Im d is normalised by the image of (B,�) in Perm (B,�). This 
together with Theorem 1.1 enables us to obtain a Hopf–Galois structure on L/K. Con-
versely, one always obtains a skew brace from a Hopf–Galois structure. However, there 
are more Hopf–Galois structures than skew braces, in particular skew braces parametrise 
Hopf–Galois structures.

Finally, we remark that since working with Perm(G) can often be difficult, as it 
becomes rapidly large as size of G increases, in order to overcome this, N. Byott [7]
proves the following statement – here L. Childs reformulation [cf. 28, p. 57, (7.3) Theorem 
(Byott)] is given.

Theorem 1.2 (N. Byott). Let N be a group. Then there is a bijection between the sets

N def= {α : N ↪→ Perm(G) | α(N) is regular on G} and

G def= {β : G ↪→ Perm(N) | β(G) is regular on N} .

Under this bijection, if α, α′ ∈ N correspond to β, β′ ∈ G, then α(N) = α′(N) if and 
only if β(G) and β′(G) are conjugate by an element of Aut(N). Furthermore, α(N) is 
normalised by the left translation if and only if β(G) is contained in Hol(N).

Using Theorem 1.2, N. Byott shows that if e′(G, N) is the number of regular subgroups 
of Hol(N) isomorphic to G, then the number of Hopf–Galois structures on L/K of type 
N is given by

e(G,N) = |Aut(G)|
|Aut(N)|e

′(G,N). (1)

In the author’s thesis [26] we used formula (1) to find the number of Hopf–Galois struc-
tures, but in the current paper we parametrise Hopf–Galois structures along skew braces 
and count them using the orbit stabiliser theorem. We obtain the same results, but in 
the process we additionally find the automorphism groups of our skew braces too.

1.2. Summary of the main results

We give a summary of our main results in this subsection. First, for the rest of this 
paper we shall assume p > 3 is a prime number. We shall denote by Cpr the cyclic group 
of order pr for any natural number r. Unless otherwise stated we shall always assume G
and N are finite groups.
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Recall there are two nonabelian groups of order p3: the exponent p nonabelian group 
of order p3, or otherwise known as the Heisenberg group,

M1
def= 〈ρ, σ, τ | ρp = σp = τp = 1, σρ = ρσ, τρ = ρτ, τσ = ρστ〉 ∼= C2

p � Cp,

and the exponent p2 nonabelian group of order p3, or otherwise known as the Extraspecial 
group of order p3,

M2
def=
〈
σ, τ | σp2

= τp = 1, τσ = σp+1τ
〉
∼= Cp2 � Cp.

In this paper we are concerned with M1. We fix as our type the group M1 and find all 
skew braces and Hopf–Galois structures of type M1. The main results of this paper can 
be summarised as follows.

Theorem 1.3. The skew braces of M1 type are precisely

2p2 − p + 3

M1-braces and

2p + 1

C3
p -braces.

Proof. Follows from adding the numbers found in Lemmas 4.2, 4.4, 4.6 of Section 4, see 
Proposition 4.1. �
Theorem 1.4. Let L/K be an M1 extension of fields. Then there are

(2p3 − 3p + 1)p2

Hopf–Galois structures of M1 type. Let L/K be a C3
p extension of fields. Then there are

(p3 − 1)(p2 + p− 1)p2

Hopf–Galois structures of M1 type.

Proof. Follows from adding the numbers found in Lemmas 4.3, 4.5, 4.6 of Section 4 see 
Proposition 4.1. �
2. Preliminaries

In this section we provide the necessary preliminaries and describe our strategy for 
classifying skew braces and Hopf–Galois structures.
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2.1. Skew braces and Hopf–Galois structures

The following proposition provides an explicit connection between Hopf–Galois struc-
tures and skew braces (where ideas of the proof are similar to [15, Proposition A.3]).

Proposition 2.1 (Skew braces and Hopf–Galois structures correspondence). There exists 
a bijective correspondence between isomorphism classes of G-skew braces and classes of 
Hopf–Galois structures on an extension L/K with Galois group G, where we identify two 
Hopf algebras L[N1]G and L[N2]G giving Hopf–Galois structures (as in Theorem 1.1) on 
L/K if N2 = αN1α

−1 for some α ∈ Aut(G).

Proof. Let (B,⊕,�) be a G-skew brace i.e., (B,�) ∼= G, we can assume (B,�) = G. 
Then the map

d : (B,⊕) −→ Perm (B,�)

a 
−→ (da : b 
−→ a⊕ b) for all a, b ∈ B

is a regular embedding. Now, for any a ∈ (B,⊕) and b, c ∈ (B,�), using the skew brace 
property, we have

b�
(
da
(
b−1 � c

))
= b�

(
a⊕

(
b−1 � c

))
= ((b� a) � b) ⊕ c = d(b�a)�b(c),

where b−1 is the inverse of b with respect to �. This shows that the image of (B,⊕) is 
normalised by the image of (B,�) inside Perm (B,�) as left translations. We also find 
an action of (B,�) on (B,⊕) by b · a = (b� a) � b for b ∈ (B,�) and a ∈ (B,⊕). Now 
for

α : (B,⊕1,�) −→ (B,⊕2,�)

an isomorphism of skew braces, we have a commutative diagram

(B,⊕1) Perm (B,�)

(B,⊕2) Perm (B,�) ,

d1

α� Cα�

d2

where Cα is conjugation by α ∈ Aut (B,�) inside Perm (B,�). Furthermore, if we fix 
a Galois extension of fields L/K with Galois group (B,�), then L[(B,⊕)](B,�) endows 
L/K with a Hopf–Galois structure corresponding to the skew brace (B,⊕,�) and when 
two skew braces with the same multiplication group are isomorphic then the correspond-
ing Hopf–Galois structures can be identified.
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Conversely, suppose we have a Hopf–Galois structure on L/K which can always be 
given by L[N ]G for some regular subgroup N ⊆ Perm(G) which is normalised by the 
image of G as left translations inside Perm(G). The fact that N is a regular subgroup 
implies that the map

ε : Perm(G) −→ G

η 
−→ η · 1G,

induces a bijection φ = ε|N : N −→ G, ε restricted to N , as subgroups of Perm(G). 
Now we can define a skew brace B by setting (B, �) def= G, considered as a subgroup of 
Perm(G) via the left translations, and defining

g1 ⊕ g2
def= φ

(
φ−1(g1)φ−1(g2)

)
for g1, g2 ∈ G.

The fact that N ⊆ Perm(G) is normalised by G implies that for all g ∈ G and n ∈ N we 
have gn = fg,ng for some fg,n ∈ N . Therefore, for g1 = φ(n1), g2 = φ(n2), g3 = φ(n3) ∈
G, we aim to show

g1 � (g2 ⊕ g3) = (g1 � g2) � g1 ⊕ (g1 � g3).

Note by definition we have

g1 � (g2 ⊕ g3) = φ(n1) � (φ(n2) ⊕ φ(n3)) = φ(n1)φ(n2n3).

Now consider the element φ(n1)n2n3 ∈ Perm(G). Using the relation gn = fg,ng we have

φ(n1)n2n3 = fφ(n1),n2n3φ(n1)

for some fφ(n1),n2n3 ∈ N . Now applying ε to both side we get the relation

φ(n1)φ(n2n3) = fφ(n1),n2n3(φ(n1))

in G. Note, in general for elements η and ρ of Perm(G) we have

ε(ηρ) = (ηρ) · 1G = η(ρ · 1G) = η(ε(ρ)),

so fφ(n1),n2n3(φ(n1)) = φ 
(
fφ(n1),n2n3n1

)
in G. Note also that fg,n is a homomorphism 

on n:

fg,n1n2g = gn1n2 = fg,n1gn2 = fg,n1fg,n2g

Therefore, we find
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g1 � (g2 ⊕ g3) = φ
(
fφ(n1),n2n3n1

)
= φ

(
fφ(n1),n2fφ(n1),n3n1

)
= φ

(
φ−1φ

(
fφ(n1),n2n1

)
n−1

1 φ−1φ
(
fφ(n1),n3n1

))
= φ

(
φ−1 (φ(n1)φ(n2))n−1

1 φ−1 (φ(n1)φ(n3))
)

= φ
(
φ−1 (g1g2)

(
φ−1(g1)

)−1
φ−1 (g1g3)

)
= (g1 � g2) � g1 ⊕ (g1 � g3),

thus we have a skew brace (B, ⊕, �) which is a G-skew brace of type N . In particular, if 
N1 ⊆ Perm(G) is a regular subgroup whose image is normalised by G and α ∈ Aut(G), 
then N2

def= αN1α
−1 is a regular subgroup whose image is normalised by G, and the two 

skew braces corresponding to N1 and N2 are isomorphic by α. �
Remark 2.2. Note in fact Proposition 2.1 above is implied by Theorem 1.2 and [15, Propo-
sition A.3]. We shall state [15, Proposition A.3] later (see Proposition 2.5). However, we 
decided to include the calculations for a direct proof of Proposition 2.1 for completeness, 
which leads to an explicit relationship between the Hopf–Galois structures and skew 
braces. The question relating to the explicit relationship between the Hopf–Galois struc-
tures and skew braces was first asked from the author by Prof Agata Smoktunowicz. 
The answer can be reached by unravelling Theorem 1.2 and [15, Proposition A.3] which 
is what has been done in Proposition 2.1.

The above proposition also helps us to understand the automorphism groups of skew 
braces.

Corollary 2.3 (Automorphism groups of skew braces). Let (B,⊕,�) be a skew brace. Then 
there exists a natural identification

AutBr (B,⊕,�) ∼=
{
α ∈ Aut (B,�) | α (Im d)α−1 ⊆ Im d

}
.

Proof. Note that if (B,⊕,�) is a skew brace and

α : (B,⊕,�) −→ (B,⊕,�)

an automorphism, we obtain a commutative diagram

(B,⊕) Perm (B,�)

(B,⊕) Perm (B,�) ,

d

α� Cα�

d
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implying that α (Im d)α−1 ⊆ Im d. On the other hand, if α (Im d)α−1 ⊆ Im d for some 
α ∈ Aut (B,�), then α gives rise to an automorphism of (B,⊕,�). From this observation 
one can see that

AutBr (B,⊕,�) ∼=
{
α ∈ Aut (B,�) | α (Im d)α−1 ⊆ Im d

}
. �

Next corollary shows how to obtain the number of Hopf–Galois structures using skew 
braces. Let e(G, N) be the number of Hopf–Galois structures of type N on the field 
extension L/K whose Galois group is G. Denote by GN the isomorphism class of a G-skew 
brace of type N . For later use we also set ẽ(G, N) to be the number of isomorphism classes 
of G-skew braces of type N .

Corollary 2.4 (Number of Hopf–Galois structures parametrised by skew braces). We have

e(G,N) =
∑
GN

|Aut(G)|
|AutBr(GN )| . (2)

Proof. Fix G and let

S(G,N) = {M ⊆ Perm(G) | M ∼= N and M is regular normalised by G} .

Firstly, note that Aut(G) acts on S(G, N), induced by conjugation in Perm(G), and a 
set of orbit representatives, say {N1, ..., Ns}, give a list of non-isomorphic skew braces 
according to Proposition 2.1. Secondly, by Theorem 1.1 we find e(G, N) = |S(G,N)|, 
and so we have

e(G,N) =
s∑

i=1
|Orb(Ni)| =

s∑
i=1

|Aut(G)|
|Stab(Ni)|

=
∑
GN

|Aut(G)|
|AutBr(GN )| . �

Therefore, to find skew braces and Hopf–Galois structures of order n, it suffices to 
find the regular subgroups N ⊆ Perm(G) for every group G of size n. However, in many 
cases Perm(G) can be too large to handle. Fortunately, by somehow reversing the role of 
G and N , instead of studying the regular subgroups of Perm(G), one can study regular 
subgroups of a smaller group, the holomorph of N :

Hol(N) def= N � Aut(N) = {ηα | η ∈ N, α ∈ Aut(N)} ,

also we can organise these objects in an easily manageable manner as we shall explain 
shortly. These ideas in Hopf–Galois theory were initially developed by N. Byott [7,8].

Let us start with skew braces. Suppose (B,⊕,�) is a skew brace. Then the group 
(B,�) acts on (B,⊕) by (a, b) 
−→ a � b, and we obtain a map

m : (B,�) −→ Hol (B,⊕)

a 
−→ (ma : b 
−→ a� b)
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which is a regular embedding. To see this one needs to check that the map

λa : (B,⊕) −→ (B,⊕)

b 
−→ �a⊕ (a� b)

is an automorphism, and that the map

λ : (B,�) 
−→ Aut (B,⊕)

a 
−→ λa

is a group homomorphism. Then one has ma = aλa ∈ Hol (B,⊕) for all a ∈ B. Addi-
tionally, for α : (B,⊕,�1) −→ (B,⊕,�2) an isomorphism of skew braces, we have

(B,�1) Hol (B,⊕)

(B,�2) Hol (B,⊕) ,

m1

α� Cα�

m2

where Cα is conjugation by α ∈ Aut (B,⊕) considered naturally as an element of 
Hol (B,⊕). This with similar procedure as used to prove Proposition 2.1 gives the fol-
lowing proposition of [15].

Proposition 2.5. There exists a bijective correspondence between isomorphism classes of 
skew braces of type N and classes of regular subgroups of Hol(N) under conjugation by 
elements of Aut(N).

Proof. [15, Proposition A.3]. �
In particular, we find another way of computing the automorphism groups of skew 

braces:

AutBr (B,⊕,�) ∼=
{
α ∈ Aut (B,⊕) | α (Imm)α−1 ⊆ Imm

}
. (3)

Therefore, in this way to find the set of non-isomorphic G-skew braces of type N , it 
suffices to find the set containing regular subgroups of Hol(N) which are isomorphic to 
G, and then extract a maximal subset whose elements are not conjugate by any element 
of Aut(N). In particular, [cf. 8] one can organise these regular subgroups, and hence 
the corresponding skew braces and Hopf–Galois structures, according to the size of their 
image under the natural projection

Θ : Hol(N) −→ Aut(N)

ηα 
−→ α. (4)
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In other words, if S̃(G, N, r) is the set of regular subgroups of Hol(N) isomorphic to G
whose image under the natural projection Θ has size r, then the set of regular subgroups 
of Hol(N) isomorphic to G is a finite disjoint union

S̃(G,N) =
∐
r

S̃(G,N, r).

Furthermore, Aut(N) acts on each S̃(G, N, r) via conjugation inside Hol(N), and a set 
of orbit representatives provides a set of isomorphism classes of G-skew brace of type 
N , whose size upon embedding in Hol(N) and projecting to Aut(N) is r, which we 
shall denote by GN (r). In order to find the number of Hopf–Galois structures of type 
N it suffices to find the automorphism group of each G-skew braces of type N using (3)
and use the formula given in (2). We shall set e′(G, N, r) = |S̃(G, N, r)| and denote by 
ẽ(G, N, r) the number of isomorphism classes of skew braces GN (r).

2.2. Regular subgroups of holomorphs

In this subsection we outline our strategy for finding regular subgroups contained in 
Hol(N). Let us denote by

Θ : Hol(N) −→ Aut(N),

the natural projection with kernel N . Then the first step is to organise the regular 
subgroups of Hol(N) according to the size of their image under the map Θ.

Now suppose we want to parametrise subgroups H ⊆ Hol(N) with |Θ(H)| = m, where 
m divides |N |. In order to do this, we first take a subgroup of order m of Aut(N), which 
may be generated by some elements α1, ..., αs ∈ Aut(N), say

H2
def= 〈α1, ..., αs〉 ⊆ Aut(N).

Next, we take a subgroup of order |N |
m of N , which may be generated by η1, ..., ηr ∈ N , 

say

H1
def= 〈η1, ..., ηr〉 ⊆ N.

We also take ‘general elements’ v1, ..., vs ∈ N , and we consider a subgroup of Hol(N) of 
the form

H = 〈η1, ..., ηr, v1α1, ..., vsαs〉 .

Now we need to classify the constraints on v1, ..., vs such that H is regular, i.e., H has 
the same size as N and acts freely on N . It is easy to see that there are many restrictions 
on v1, ..., vs and in many cases no choice of v1, ..., vs will result in a regular subgroup.
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Notice that |H| ≥ |N | since we have the following commutative diagram

H1 H H2

N Hol(N) Aut(N),

Θ

Θ

where the hook arrows are natural inclusion, and the second row is exact, but the first 
row is not necessarily exact. One of our goals is to select v1, ..., vs such that the first row 
is exact, which would imply that |H| = |N |. In particular, we need H ∩N = H1. That 
is for example, if there is a relation say αa1 = 1 in H2, then we need to ensure that 
(v1a1)a1 = v1v

α1
1 · · · vα

a1−1
1

1 ∈ H1. Furthermore, we need to ensure that H acts freely on 
N , and so for example, if vi ∈ H1 for some i, then H will not be acting freely.

More generally we require the following. For H to have the same size as N , we require 
for every relation R (α1, ..., αs) = 1 on H2 to have

R (u1 (v1α1)w1, ..., us (vsαs)ws) ∈ H1,

for every u1, w1, ..., us, ws ∈ H1. For H to act freely on N , it is necessary that for every 
word W (α1, ..., αs) �= 1 on H2 we require

W (u1 (v1α1)w1, ..., us(vsαs)ws)W (α1, ..., αs)−1
/∈ H1,

for every u1, w1, ..., us, ws ∈ H1; so in fact we must have

〈η1, ..., ηr, v1, ..., vs〉 = N.

However, in general there may be other conditions on vi that need to be taken into 
account – for example, some elements of H need to satisfy relations between generators 
of a group of order |N |. Therefore, as already mentioned, it can happen that desirable vi
cannot be found. To find all regular subgroups we repeat this process for every m, every 
subgroup of order m of Aut(N), and every subgroup of order |N |

m of N .
Finally, in order to find non-isomorphic skew braces, we need to check which of these 

regular subgroups are conjugate to one another by elements of Aut(N). Note, if H and 
H̃ are regular subgroups of Hol(N) with |Θ(H)| = |Θ(H̃)| = m, then H and H̃ are 
conjugate by an element of β ∈ Aut(N) if

β(H1) ⊆ H̃1 and βH2β
−1 ⊆ H̃2,

i.e., when H = 〈η1, ..., ηr, v1α1, ..., vsαs〉, we need〈
ηβ1 , ..., η

β
r , v

β
1 βα1β

−1, ..., vβs βαsβ
−1
〉
⊆ H̃.
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Our starting point is studying the Heisenberg group of order p3 and its automorphism 
group.

3. The Heisenberg group M1

For p > 2 the exponent p nonabelian group of order p3, or otherwise known as the 
Heisenberg group, which we denote by M1, has a presentation

M1
def= 〈ρ, σ, τ | ρp = σp = τp = 1, σρ = ρσ, τρ = ρτ, τσ = ρστ〉 ∼= C2

p � Cp.

Note, the above relations imply that for positive integers a1, a2, a3, a4, we have

σa1τa2σa3τa4 = ρa2a3σa1+a3τa2+a4

from which we also obtain the relation

(σa1τa2)n = ρ
1
2a1a2n(n−1)σna1τna2 . (5)

We note that the group M1 contains p3 − 1 elements of order p, thus p2 + p + 1
subgroups of order p, which are of the form

〈ρ〉 , 〈ρaσ〉 ,
〈
ρbσcτ

〉
for a, b, c = 0, ..., p− 1.

Also M1 contains p + 1 subgroups of order p2, which are all isomorphic to C2
p , of the 

form

〈ρ, τ〉 ,
〈
ρ, στd

〉
for d = 0, ..., p− 1.

The next proposition determines the automorphism group of M1. For the analogous 
result over Z see [29].

Proposition 3.1. We have |Aut(M1)| = (p2 − 1)(p − 1)p3 and

Aut(M1) ∼= C2
p � GL2(Fp),

where C2
p in the semi-direct product above is generated by the automorphisms β, γ ∈

Aut(M1) defined by

σβ = σ, τβ = ρτ and

σγ = ρσ, τγ = τ.
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The (left) action of GL2(Fp) on C2
p = 〈β, γ〉, in the semi-direct product, is given by(

a1 a2
a3 a4

)
· β = βa1γ−a3 and

(
a1 a2
a3 a4

)
· γ = β−a2γa4 ,

where 
(
a1 a2
a3 a4

)
∈ GL2(Fp).

Proof. Let α ∈ Aut(M1). Then we have

σα = ρb1σa1τa3

τα = ρb2σa2τa4

for some a1, a2, a3, a4, b1, b2 ∈ Z/pZ. Note, ρα is determined by this:

ρα = τασα (σατα)−1 = ρa1a4−a2a3 ,

so α is bijective if and only if a1a4 − a2a3 �≡ 0 mod p. We shall write[
a1a4 − a2a3 b1 b2

0 a1 a2
0 a3 a4

]
or
[
det(A) b1 b2

0 A

]

to represent α. This is only a representation, and not a matrix, so composition of auto-
morphisms does not in general correspond to matrix multiplication. In fact composition 
of automorphisms yields the following.[

det(A) b1 b2
0 A

]
◦
[
det(A′) b′1 b′2

0 A′

]
=
[(

det(A) b1 b2
0 A

)(
det(A′) b′1 b′2

0 A′

)
+
(

0 C1 C2
0 0

)]
for

C1 = 1
2a1a3a

′
1(a′1 − 1) + 1

2a2a4a
′
3(a′3 − 1) + a3a

′
1a2a

′
3

C2 = 1
2a1a3a

′
2(a′2 − 1) + 1

2a2a4a
′
4(a′4 − 1) + a3a

′
2a2a

′
4.

The group M1 has centre Z = 〈ρ〉 of order p and

M1/Z = 〈σ, τ〉 ∼= C2
p ,

where σ, τ ∈ M1/Z are the images of σ, τ ∈ M1. Thus we obtain a natural homomorphism

Ψ : Aut(M1) −→ Aut(M1/Z) ∼= GL2(Fp).
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Since M1/Z ∼= C2
p is abelian, we see that the set of inner automorphisms of M1 is 

contained in the kernel of Ψ i.e., Inn(M1) ⊆ KerΨ . Note Inn(M1) ∼= M1/Z. Now if 
α ∈ KerΨ , then we must have τατ−1 ∈ Z and σασ−1 ∈ Z i.e.,

σα = ρr1σ

τα = ρr2τ

for some integers r1, r2 = 0, ..., p −1, which implies that ρα = ρ. There can be at most p2

choices for such α, which implies that Inn(M1) = KerΨ . We further find KerΨ = 〈β, γ〉
where

β
def=
[1 0 1

0 1 0
0 0 1

]
, γ

def=
[1 1 0

0 1 0
0 0 1

]
.

To show that the map Ψ is surjective, for any element

A
def=
(
a b
c d

)
∈ GL2(Fp)

define a map

αA : M1 −→ M1 given by αA
def=

⎡⎣ad− bc ac
2

bd
2

0 a b
0 c d

⎤⎦ .

It is easy to check that A 
−→ αA is a group homomorphism. Therefore, we find a split 
exact sequence

1 C2
p Aut(M1) GL2(Fp) 1.

One can check that the left action of GL2(Fp) on C2
p is given by(

a1 a2
a3 a4

)
· β = βa1γ−a3 and

(
a1 a2
a3 a4

)
· γ = β−a2γa4 .

Note the above corresponds to

αAβ = βa1γ−a3αA and αAγ = β−a2γa4αA. �
4. Skew braces of M1 type

In this section we classify the skew braces and Hopf–Galois structures of M1 type. The 
main result of this section is the following (which is a proof of Theorems 1.3 and 1.4). 
Recall, ẽ(G, N) is the number of G-skew braces of type N and e(G, N) is the number of 
Hopf–Galois structures on a Galois extension with Galois group G of type N .
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Proposition 4.1. We have

ẽ(M1,M1) = 2p2 − p + 3,

ẽ(C3
p ,M1) = 2p + 1,

and ẽ(G, M1) = 0 for G � M1 or C3
p .

Furthermore, we have

e(M1,M1) = (2p3 − 3p + 1)p2,

e(C3
p ,M1) = (p3 − 1)(p2 + p− 1)p2,

and e(G, M1) = 0 for G � M1 or C3
p .

Proof. This follows from the calculation in the rest of this section, particularly the first 
part follows by adding the relevant numbers from Lemmas 4.2, 4.4, and 4.6

ẽ(M1,M1) = 1 + 2(p− 1) + (2p− 3)p + 4 = 2p2 − p + 3,

ẽ(C3
p ,M1) = 2 + 2p− 1 = 2p + 1,

and the second part follows by adding relevant numbers from Lemmas 4.3, 4.5, and 4.6

e(M1,M1) = 1 + (p3 − p2 − 1)(p + 1) + (p4 − p3 − 2p2 + 2p + 1)p + (p2 − 1)p3

= (2p3 − 3p + 1)p2,

e(C3
p ,M1) = (p3 − 1)(p + 1)p2 + (p3 − 1)(p2 − 2)p2 = (p3 − 1)(p2 + p− 1)p2. �

We note that at the end of Lemmas 4.2, 4.4, and 4.6 there are lists of non-isomorphic 
skew braces together with a description of their automorphism groups.

Before we begin to prove Lemmas 4.2, 4.3, 4.4, 4.5, and 4.6, we need to set up some 
notations. Let us denote by

α1
def=
[1 1 0

0 1 0
0 0 1

]
, α2

def=
[1 0 0

0 1 0
0 1 1

]
, α3

def=
[1 0 1

0 1 0
0 0 1

]
.

Note in Proposition 3.1, we had α1 = γ and α3 = β. Furthermore, we showed that 
Aut(M1) can be written as

Aut(M1) ∼= C2
p � GL2(Fp),

where the factor C2
p is generated by automorphisms α1, α3 ∈ Aut(M1). The (left) action 

of GL2(Fp) on C2
p is given by
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(
a1 a2
a3 a4

)
· α1 = αa4

1 α−a2
3 ,

(
a1 a2
a3 a4

)
· α3 = α−a3

1 αa1
3 . (6)

Therefore, the holomorph of M1 can be identified with

Hol(M1) ∼= M1 � (C2
p � GL2(Fp)).

Now the image in GL2(Fp) of a subgroup G ⊆ Hol(M1) of order p3 under the composition 
of projections

Θ : Hol(M1) −→ Aut(M1) and Ψ : Aut(M1) −→ GL2(Fp)

must lie in one of the p + 1 Sylow p-subgroup of GL2(Fp), which are conjugate to the 

subgroup generated by β1
def=
( 1 0

1 1

)
; thus we have

Θ(G) ⊆ Aβ(M1)
def= C2

p �
〈
ββ1β

−1〉 ∼= M1 for some β ∈ GL2(Fp),

and so any subgroup of Hol(M1) of order p3 lies in a subgroup of the form

M1 � Aβ(M1) for some β ∈ GL2(Fp).

Note, the elements α1, α2, α3 ∈ Aut(M1) have order p, and they satisfy

α2α1 = α1α2, α3α1 = α1α3, α3α2 = α1α2α3. (7)

Thus, we have that 〈α1, α2, α3〉 ∼= M1 is one of the p +1 Sylow p-subgroups of Aut(M1), 
which is the one we can, and shall, without loss of generality, work with. First, note that 
for |Θ(G)| = 1, we have

e(M1,M1, 1) = ẽ(M1,M1, 1) = 1 and

e(G,M1, 1) = ẽ(G,M1, 1) = 0 if G �= M1.

We shall deal with the cases |Θ(G)| = p, p2, p3 in the following lemmas.
It will be useful for our calculations to derive the explicit formula for (vαa1

1 αa2
2 αa3

3 )r

for natural numbers r, ai for i = 1, 2, 3 and an element v = ρv1σv2τv3 ∈ M1. For this we 
first note that we have

αa1
1 αa2

2 αa3
3 · v =

[1 a1 a3
0 1 0
0 a2 1

]
· v

= ρa1v2+ 1
2a2v2(v2−1)+a3v3vτa2v2 . (8)

Now by using (7) and (8) we find
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(vαa1
1 αa2

2 αa3
3 )r =

⎛⎝r−1∏
j=0

ρkjvτa2v2j

⎞⎠ (αa1
1 αa2

2 αa3
3 )r

= ρl1vrτ l2a2v2 (αa1
1 αa2

2 αa3
3 )r , (9)

(note order of the product matters and is in increasing j) with

kj
def=
(
a1v2j + 1

2a2a3v2j (j − 1) + 1
2a2v2 (v2 − 1) j + a3v3j

)
,

for j = 0, ..., r − 1,

l1 = l1(r)
def=

r−1∑
j=1

kj + a2v
2
2

2

r−2∑
j=1

j (j + 1) , and

l2 = l2(r)
def=

r−1∑
j=1

j.

The second summation in l1 arises by moving the τa2v2j terms to gather them in one 
place using the relation τσ = ρστ . Note, here l1 and l2 are divisible by r for r > 3 a 
prime number, so we find

(vαa1
1 αa2

2 αa3
3 )p = 1 (10)

for every v ∈ M1 since p > 3. Note further that in (9), when a2 = 0, we have

(vαa1
1 αa3

3 )r ∈ vrαra1
1 αra3

3 〈ρ〉 , (11)

where 〈ρ〉 is a normal subgroup of Hol(M1) since it is a characteristic subgroup of M1.
It will further be useful, when finding the non-isomorphic skew braces, to derive 

the explicit formula for a term of the form α (vαa1
1 αa2

2 αa3
3 )α−1 for an automorphism 

α ∈ Aut(M1). Now if

α = γβ ∈ Aut(M1) ∼= C2
p � GL2(Fp) where

γ
def= αr1

1 αr3
3 ∈ C2

p , β
def=
(
b1 b2
b3 b4

)
∈ GL2(Fp),

then, using (6), we have

α (vαa1
1 αa2

2 αa3
3 )α−1

= (α · v)αr1
1 αr3

3 α
(a1−a2a3)b4−a3b3
1 α

−(a1−a2a3)b2+a3b1
3 βαa2

2 β−1α−r1
1 α−r3

3 ,

where using the section of the exact sequence in Proposition 3.1, we have
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β · v = ρdet(β)v1+ 1
2 (b1b3v2+b2b4v3)

(
σb1τ b3

)v2 (
σb2τ b4

)v3
,

which gives

α·v = ρṽ1σb1v2+b2v3τ b3v2+b4v3 , where (12)

ṽ1
def= det(β)v1 + 1

2
(
b3b1v

2
2 + b4b2v

2
3
)

+ b2b3v2v3 + r1 (b1v2 + b2v3) + r3 (b3v2 + b4v3)

The above implies that, when a2 = 0, we have

α (vαa1
1 αa3

3 )α−1 = (α · v)αa1b4−a3b3
1 αa3b1−a1b2

3 , (13)

with α · v as given in (12), and when a2 �= 0, we can set b2 = 0, since we want to remain 
within 〈α1, α2, α3〉, and in this case since we have

βαa2
2 β−1 = α

1
2a2b4

(
b−1
1 −1

)
1 α

a2b
−1
1 b4

2 ,

so (when b2 = 0) we get

α (vαa1
1 αa2

2 αa3
3 )α−1 = (α · v)α

a1b4−a3b3+r3a2b
−1
1 b4+ 1

2a2b4

(
b−1
1 −1

)
1 α

a2b
−1
1 b4

2 αa3b1
3 , (14)

where α · v can be calculated using (12). Now we can start our main calculations.

Lemma 4.2. For |Θ(G)| = p there are exactly 2(p − 1) M1-skew braces of M1 type and 
two C3

p -skew braces of M1 type.

Proof. If G ⊆ Hol(M1) with |Θ(G)| = p is a regular subgroup, then we can assume, 
without loss of generality, that Θ(G) ⊆ 〈α1, α2, α3〉 is a subgroup of order p. We also 
have that G ∩M1 is a subgroup of order p2. Therefore, Θ(G) is one of

〈αa1
1 αa2

2 αa3
3 〉 for a1, a2, a3 = 0, ..., p− 1 with (a1, a2, a3) �= (0, 0, 0),

(each occurring p − 1 times) and G ∩M1 is one of

〈ρ, τ〉 ,
〈
ρ, στd

〉
for d = 0, ..., p− 1.

Suppose we consider subgroups of the form

G =
〈
ρ, στd, h

〉
where h

def= ταa1
1 αa2

2 αa3
3 .

Note, using (8), we must have

h
(
στd

)
h−1 = τ

(
αa1

1 αa2
2 αa3

3 ·
(
στd

))
τ−1 = ρa3d+a1+1στa2+d ∈

〈
ρ, στd

〉
,
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and since for a natural number r we have(
στd

)r = ρ
1
2dr(r−1)σrτ rd,

the pairing is possible only when a2 = 0. Therefore, we consider subgroups of the form

G =
〈
ρ, στd, h

〉
where h

def= ταa1
1 αa3

3 .

But now since the automorphism of M1 corresponding to 
( d −1

1−d 1
)
∈ GL2(Fp) maps the 

subgroup 
〈
ρ, στd

〉
to 〈ρ, τ〉, we can assume every one of these skew braces is isomorphic 

to one containing the subgroup 〈ρ, τ〉.
Hence, up to conjugation, we must have

G = 〈ρ, τ, g〉 where g
def= σαa1

1 αa2
2 αa3

3 .

Note, using (8), we have

gτg−1 = σ (αa1
1 αa2

2 αa3
3 · τ)σ−1 = ρ(a3−1)τ ∈ 〈ρ, τ〉 and

gρg−1 = σ (αa1
1 αa2

2 αa3
3 · ρ)σ−1 = ρ ∈ 〈ρ, τ〉 ,

so the pairing is possible. Further, it follows from (10) that gp = 1. Now, for r �= 0, using 
(8), we have

gτ r = (σαa1
1 αa2

2 αa3
3 ) τ r = ρra3στ rαa1

1 αa2
2 αa3

3 = ρr(a3−1)τ rg, (15)

so G is abelian if and only if a3 = 1. Furthermore, all these subgroups are regular since 
they have order p3 and 〈ρ, τ〉 ∪ {σ} ⊆ Orb(1), i.e., since |Orb(1)| > p2, their action on 
M1 is transitive.

Therefore, for a3 = 1 we find regular subgroups isomorphic to C3
p of the form

〈ρ, τ, σαa
1α3〉 ,

〈
ρ, τ, σαa

1α
b
2α3
〉 ∼= C3

p

for a = 0, ..., p− 1, b = 1, ..., p− 1, (16)

and for a3 �= 1, setting r = (1 − a3)−1 in (15), we find regular subgroups isomorphic to 
M1 of the form〈

ρ, τ, σαb
1
〉
,
〈
ρ, τ, σαa

1α
b
2
〉
, 〈ρ, τ, σαa

1α
c
3〉 ,
〈
ρ, τ, σαa

1α
b
2α

c
3
〉 ∼= M1

for a = 0, ..., p− 1, b, c = 1, ..., p− 1 with c �= 1. (17)

To find the non-isomorphic skew braces corresponding to the above regular subgroups, 
we let

α = γβ ∈ Aut(M1) ∼= C2
p � GL2(Fp) where
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γ
def= αr1

1 αr3
3 ∈ C2

p , β
def=
(
b1 b2
b3 b4

)
∈ GL2(Fp),

and we work with automorphisms which fix the subgroup 〈ρ, τ〉, i.e., when b2 = 0. In 
such case, using (14), we have

α (σαa1
1 αa2

2 αa3
3 )α−1 = (α · σ)α

a1b4−a3b3+r3a2b
−1
1 b4+ 1

2a2b4

(
b−1
1 −1

)
1 α

a2b
−1
1 b4

2 αa3b1
3 ,

where using (12)

α · σ = ρ
1
2 b1b3−r1b1+r3b3σb1τ b3 .

Now since

α (σαa
1α

c
3)α−1 = (α · σ)αab4−cb3

1 αcb1
3 ∈ σb1αab4−cb3

1 αcb1
3 〈ρ, τ〉 ,

we have

α (σαa
1α

c
3)

b−1
1 α−1 ∈ σα

ab−1
1 b4−cb−1

1 b3
1 αc

3 〈ρ, τ〉 .

Thus if we conjugate the subgroup 〈ρ, τ, σαc
3〉 with the automorphism corresponding to ( 1 0

−ac−1 1
)

we get 〈ρ, τ, σαa
1α

c
3〉, and now the subgroups 〈ρ, τ, σαc

3〉 for different values of 
c cannot be conjugate to each other.

Next, working similar to above, we have

α
(
σαa

1α
b
2α

c
3
)b−1

1 α−1 ∈ σα
ab−1

1 b4−cb−1
1 b3+r3bb

−2
1 b4+ 1

2 bb
−1
1 b4

(
b−1
1 −1

)
(c+1)

1 α
bb−2

1 b4
2 αc

3 〈ρ, τ〉 .

Thus, if we conjugate the subgroup 〈ρ, τ, σα2α
c
3〉 with the automorphism corresponding 

to 
( 1 0
−ac−1 b

)
, we get 

〈
ρ, τ, σαa

1α
b
2α

c
3
〉
, and now again the subgroups 〈ρ, τ, σα2α

c
3〉 for 

different values of c cannot be conjugate. Finally, we note that

α
(
σαa

1α
b
2
)b−1

1 α−1 ∈ σα
ab−1

1 b4+r3bb
−2
1 b4+ 1

2 bb
−1
1 b4

(
b−1
1 −1

)
1 α

bb−2
1 b4

2 〈ρ, τ〉 ,

so

α (σαa
1)b

−1
1 α−1 ∈ σα

ab−1
1 b4

1 〈ρ, τ〉 ,

which implies that conjugating the subgroup 〈ρ, τ, σα1〉 with the automorphism corre-
sponding to 

( 1 0
0 b

)
, we get 

〈
ρ, τ, σαb

1
〉
, and conjugating the subgroup 〈ρ, τ, σα2〉 with the 

automorphism corresponding to αab−1

3
( 1 0 ), we get 

〈
ρ, τ, σαa

1α
b
2
〉
.
0 b
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Therefore, we have non-isomorphic skew braces

〈ρ, τ, σα3〉 , 〈ρ, τ, σα2α3〉 ∼= C3
p ; (18)

〈ρ, τ, σα1〉 , 〈ρ, τ, σα2〉 , 〈ρ, τ, σαc
3〉 , 〈ρ, τ, σα2α

c
3〉 ∼= M1 for c = 2, ..., p− 1,

and counting them we find that there are 2(p − 1) M1-skew braces of M1 type and two 
C3

p -skew braces of M1 type. �
Lemma 4.3. There are

(p3 − p2 − 1)(p + 1)

Hopf–Galois structures of M1 type on Galois extensions of fields with Galois group G ∼=
M1 and |Θ(G)| = p, and exactly

(p3 − 1)(p + 1)p2

Hopf–Galois structures of M1 type on Galois extensions of fields with Galois group G ∼=
C3

p and |Θ(G)| = p.

Proof. To find the number of Hopf–Galois structures corresponding to the skew braces 
in (18) of Lemma 4.2,

〈ρ, τ, σα3〉 , 〈ρ, τ, σα2α3〉 ∼= C3
p ;

〈ρ, τ, σα1〉 , 〈ρ, τ, σα2〉 , 〈ρ, τ, σαc
3〉 , 〈ρ, τ, σα2α

c
3〉 ∼= M1 for c = 2, ..., p− 1,

we need to find the automorphism groups of these skew braces.
We let

α = γβ ∈ Aut(M1) where γ
def= αr1

1 αr3
3 , β

def=
(
b1 b2
b3 b4

)
,

and since we need α (〈ρ, τ〉) = 〈ρ, τ〉, we must set b2 = 0. Now, if α ∈ AutBr(〈ρ, τ, σαc
3〉), 

since we have

α (σαc
3)

b−1
1 α−1 ∈ σα

−cb−1
1 b3

1 αc
3 〈ρ, τ〉 ,

we must have b3 = 0, thus we find

AutBr(〈ρ, τ, σαc
3〉) =

{
α ∈ Aut(M1) | α = αr1

1 αr3
3
( b1 0

0 b4

)}
.

If α ∈ AutBr(〈ρ, τ, σα2α
c
3〉), since we have
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α (σα2α
c
3)

b−1
1 α−1 ∈ σα

−cb−1
1 b3+r3b

−2
1 b4+ 1

2 b
−1
1 b4

(
b−1
1 −1

)
(c+1)

1 α
b−2
1 b4

2 αc
3 〈ρ, τ〉 ,

we must have b4 = b21 and

− cb−1
1 b3 + r3b

−2
1 b4 + 1

2b
−1
1 b4

(
b−1
1 − 1

)
(c + 1)

= −cb−1
1 b3 + r3 + 1

2b1
(
b−1
1 − 1

)
(c + 1) = 0,

so we find

AutBr(〈ρ, τ, σα2α
c
3〉) =

{
α ∈ Aut(M1) | α = αr1

1 α
cb−1

1 b3+ 1
2 (b1−1)(c+1)

3
( b1 0
b3 b21

)}
.

If α ∈ AutBr(〈ρ, τ, σα1〉), since we have

α (σα1)b
−1
1 α−1 ∈ σα

b−1
1 b4

1 〈ρ, τ〉 ,

we must have b1 = b4, and we find

AutBr(〈ρ, τ, σα1〉) =
{
α ∈ Aut(M1) | α = αr1

1 αr3
3
( b1 0
b3 b1

)}
.

Finally, if α ∈ AutBr(〈ρ, τ, σα2〉), since we have

α (σα2)b
−1
1 α−1 ∈ σα

r3b
−2
1 b4+ 1

2 b
−1
1 b4

(
b−1
1 −1

)
1 α

b−2
1 b4

2 〈ρ, τ〉 ,

we must have b4 = b21 and r3 = 1
2 (b1 − 1), we find

AutBr(〈ρ, τ, σα2〉) =
{
α ∈ Aut(M1) | α = αr1

1 α
1
2 (b1−1)
3

( b1 0
b3 b21

)}
.

Therefore, we have

e(M1,M1, p) =
∑

(M1)M1 (p)

|Aut(M1)|
|AutBr((M1)M1)|

=

|Aut(M1)|
|AutBr(〈ρ, τ, σα1〉)|

+ |Aut(M1)|
|AutBr(〈ρ, τ, σα2〉)|

+
p−1∑
c=2

|Aut(M1)|
|AutBr(〈ρ, τ, σαc

3〉)|

+ |Aut(M1)|
|AutBr(〈ρ, τ, σα2αc

3〉)|

= (p2 − 1)(p− 1)p3

(
1

(p− 1)p3 + 1
(p− 1)p2 +

p−1∑
c=2

1
(p− 1)2p2 + 1

(p− 1)p2

)
= (p3 − p2 − 1)(p + 1),
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and similarly

e(C3
p ,M1, p) =

∑
(C3

p)M1 (p)

∣∣Aut(C3
p)
∣∣∣∣AutBr((C3

p)M1)
∣∣ =

∣∣Aut(C3
p)
∣∣

|AutBr(〈ρ, τ, σα3〉)|
+

∣∣Aut(C3
p)
∣∣

|AutBr(〈ρ, τ, σα2α3〉)|

= (p3 − 1)(p3 − p)(p3 − p2)
(

1
(p− 1)2p2 + 1

(p− 1)p2

)
= (p3 − 1)(p + 1)p2. �

Lemma 4.4. For |Θ(G)| = p2 there are exactly (2p − 3)p M1-skew braces of M1 type and 
2p − 1 C3

p -skew braces of M1 type.

Proof. If G ⊆ Hol(M1) with |Θ(G)| = p2 is a regular subgroup, then we can assume, 
without loss of generality, that we have Θ(G) ⊆ 〈α1, α2, α3〉 a subgroup of order p2. We 
also have G ∩M1 a subgroup of order p. Therefore, Θ(G) is one of

〈α1, α3〉 , 〈α1, α2α
a
3〉 for a = 0, ..., p− 1,

and G ∩M1 is of the form

〈
ρbσcτd

〉
for b, c, d = 0, ..., p− 1 with (b, c, d) �= (0, 0, 0) ,

each occurring p − 1 times. We shall consider all subgroups of order p in M1 and always 
of pairing them with a subgroup of order p2 of 〈α1, α2, α3〉.

Let us consider a subgroup of the form

G = 〈u, vα1, wα
a2
2 αa3

3 〉 for (a2, a3) �= (0, 0) , u, v, w �= 1.

Suppose u = ρu1σu2τu3 , v = ρv1σv2τv3 , and w = ρw1σw2τw3 . Then, we need the follow-
ing.

(vα1)u (vα1)−1 = v (α1 · u) v−1u−1 = ρu2+u2v3−u3v2 ∈ 〈u〉 , (19)

(wαa2
2 αa3

3 )u (wαa2
2 αa3

3 )−1 = w (αa2
2 αa3

3 · u)w−1u−1 =

ρ
1
2a2u2(u2−1)+a3u3+u2w3−u3w2−a2u2w2−a2u

2
2τa2u2 ∈ 〈u〉 , (20)

(vα1) (wαa2
2 αa3

3 ) ((wαa2
2 αa3

3 ) (vα1))−1 =

(ρw2vwα1α
a2
2 αa3

3 )
(
ρ

1
2a2v2(v2−1)+a3v1−a2v

2
2+v2w1−v1w2τa2v2vwα1α

a2
2 αa3

3

)−1

= ρw2− 1
2a2v2(v2−1)−a3v1+a2v

2
2−v2w1+v1w2τ−a2v2 ∈ 〈u〉 . (21)
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First assume u3 = 1. Then, multiplying vα1 and wαa2
2 αa3

3 by suitable powers of u if 
necessary, we can further assume v3 = w3 = 0. Now (19) implies that u2 = v2 and (20)
implies that we need

ρ
1
2a2u2(u2−1)+a3−w2−a2u2w2−a2u

2
2τa2u2 ∈ 〈ρu1σu2τ〉 ,

so u2 = v2 = 0 and a3 = w2. In such case (21) implies that we need

ρw2 ∈ 〈ρu1σu2τ〉 ,

so w2 = 0, which implies that G cannot be regular. Thus, we cannot have any pairing with 
subgroups of the form 

〈
ρbσcτ

〉
. Similarly, if u2 = 1, then we can assume v2 = w2 = 0. 

Now (19) gives v3 = −1, also (20) gives a2 = 0, and (21) gives a3 = 0 which is not 
possible. Thus, the only possibility for u is u = ρ and then (21) implies that we also need 
a2v2 = 0.

Therefore, we may only consider subgroups of the form

G = 〈ρ, vα1, wα
a2
2 αa3

3 〉 with a2v2 = v1 = w1 = 0.

There are two main cases to consider.
Case I: Let us consider

G = 〈ρ, uα1, vα3〉 .

Then (uα1) ρ = ρ (uα1) and (vα3) ρ = ρ (vα3), also we have

(uα1) (vα3) = ρv2uvα1α3 and

(vα3) (uα1) = ρu3vuα1α3 = ρu3+u2v3−u3v2uvα1α3, (22)

so G has order p3 and is abelian if and only if v2 ≡ u3 +u2v3−u3v2 mod p; furthermore, 
for G to be regular we need u2v3 − u3v2 �≡ 0 mod p.

Therefore, for u2v3 − u3v2 �≡ 0 mod p we have regular subgroups isomorphic to C3
p of 

the form

〈ρ, uα1, vα3〉 ∼= C3
p (23)

for A =
(
u2 v2
u3 v3

)
∈ GL2(Fp) with v2 = u3 + det(A).

For v2 −u3 −u2v3 +u3v2 �≡ 0 mod p, we find regular subgroups isomorphic to M1 of the 
form

〈ρ, uα1, vα3〉 ∼= M1 (24)

for A =
(
u2 v2
u3 v3

)
∈ GL2(Fp) with v2 − u3 − det(A) �≡ 0 mod p.
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To find the non-isomorphic skew braces corresponding to the above regular subgroups, 
we let β0

def=
( u2 v2
u3 v3

)
and note that considering (12) and (14), it suffices to work with 

an automorphism corresponding to β
def=
( b1 b2
b3 b4

)
∈ GL2(Fp) with b 

def= det(β)−1, and we 
find

β (uα1)b1b (vα3)b2b β−1 = ρκ1
(
bββ0β

T
)
· σα1,

β (uα1)b3b (vα3)b4b β−1 = ρκ2
(
bββ0β

T
)
· τα3

for some κ1, κ2, where superscript T denotes the transpose of a matrix.
Now if u2 �= 0, then

u−1
2

(
1 0

−u3 u2

)(
u2 v2
u3 v3

)(
1 0

−u3 u2

)T

=
(

1 v2 − u3
0 det(β0)

)
;

if v3 �= 0, then

v−1
3

(
0 1

−v3 v2

)(
u2 v2
u3 v3

)(
0 1

−v3 v2

)T

=
(

1 v2 − u3
0 det(β0)

)
;

if u2 = v3 = 0 and u3 �= −v2, then

(u3 + v2)−1
(

1 1
−u3 v2

)(
0 v2
u3 0

)(
1 1

−u3 v2

)T

=
(

1 v2 − u3
0 det(β0)

)
,

and finally if u2 = v3 = 0 and u3 = −v2, then

bIβ0I
T = β0.

Thus every one of our regular subgroups above is conjugate to one of the form

〈
ρ, σα1, σ

t2τ t3α3
〉
,
〈
ρ, τ−t4α1, σ

t4α3
〉

for some t2, t3, t4,

and these for different values of t2, t3, and t4 are not conjugate to each other.
Therefore, we find non-isomorphic skew braces

〈ρ, σα1, σ
u2τu2α3〉 ,

〈
ρ, τ−2α1, σ

2α3
〉 ∼= C3

p , (25)

〈ρ, σα1, σ
u3τu4α3〉 ,

〈
ρ, τ−u5α1, σ

u5α3
〉 ∼= M1

for u4 = 0, ..., p− 1, u2, u3, u5 = 1, ..., p− 1 with u5 �= 2, u3 − u4 �≡ 0 mod p.

Case II: Next, we consider subgroups of the form

G = 〈ρ, xα1, yα2α
a
3〉 with x2 = 0.
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Note, we have

(xα1) (yα2α
a
3) = ρy2xyα1α2α

a
3 and

(yα2α
a
3) (xα1) = ρax3−x3y2xyα1α2α

a
3 , (26)

so G is abelian if and only if y2 ≡ ax3 − x3y2 mod p; furthermore, we need x3, y2 �= 0
for G to be regular.

Therefore, for y2 ≡ ax3 − x3y2 mod p we find regular subgroups isomorphic to C3
p of 

the form 〈
ρ, τx3α1, σ

y2τy3α2α
(1+x3)y2x

−1
3

3

〉
∼= C3

p (27)

for y3 = 0, ..., p− 1, y2, x3 = 1, ..., p− 1,

and for ax3 �≡ y2 + x3y2 mod p, we find regular subgroups isomorphic to M1 of the form

〈ρ, τx3α1, yα2α
a
3〉 ∼= M1 (28)

for a, y3 = 0, ..., p− 1, x3, y2 = 1, ..., p− 1 with ax3 − y2 − x3y2 �≡ 0 mod p.

Note, in the abelian case we have y2 ≡ ax3 − x3y2 mod p, and since x3 �= 0, we can 
rearrange to get a = (1 + x3)y2x

−1
3 .

To find the non-isomorphic skew braces corresponding to the above regular subgroups, 
it suffices to work with automorphisms corresponding to elements of the form β

def=( b1 0
b3 b4

)
∈ GL2(Fp). Then, using (12) and (14), we have

(αr3
3 β) (τx3α1)b

−1
4 (αr3

3 β)−1 = ρκ1τx3α1 and

(αr3
3 β) (τx3α1)

ab1b3b
−2
4 −r3b

−1
4 − 1

2 b
−1
4 (1−b1)− 1

2ab1b
−1
4

(
b1b

−1
4 −1

)
(yα2α

a
3)b1b

−1
4 (αr3

3 β)−1

= ρκ2σy2b
2
1b

−1
4 τ

(
ab1b3b

−2
4 −r3b

−1
4 − 1

2 b
−1
4 (1−b1)− 1

2ab1b
−1
4

(
b1b

−1
4 −1

))
x3+b1y3+ 1

2 b1

(
b1b

−1
4 −1

)
y2α2α

ab21b
−1
4

3
,

for some κ1, κ2, and r3. Now conjugating the subgroup 〈ρ, τx3α1, yα2α
a
3〉 with the auto-

morphism corresponding to α
1
2 (y−1

2 −1)−y2x
−1
3

3
( y−1

2 0
0 y−1

2

)
we get 

〈
ρ, τx3α1, σα2α

ay−1
2

3

〉
, and 

these subgroups for different values of a and x3 and y2 are not conjugate to each other.
Therefore, we find non-isomorphic skew braces〈

ρ, τ x̃3α1, σα2α
(1+x̃3)x̃−1

3
3

〉
∼= C3

p , 〈ρ, τx3α1, σα2α
a
3〉 ∼= M1 (29)

for a = 0, ..., p− 1, x̃3, x3 = 1, ..., p− 1 with a− (1 + x3)x−1
3 �≡ 0 mod p.

Thus, the corresponding non-isomorphic skew braces, combining (25) and (29), are

〈ρ, σα1, σ
u3τu4α3〉 ,

〈
ρ, τ−u5α1, σ

u5α3
〉
, 〈ρ, τx3α1, σα2α

a
3〉 ∼= M1,
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〈ρ, σα1, σ
u2τu2α3〉 ,

〈
ρ, τ−2α1, σ

2α3
〉
,
〈
ρ, τ x̃3α1, σα2α

(1+x̃3)x̃−1
3

3

〉
∼= C3

p for

a, u3 = 0, ..., p− 1, u2, u4, u5, x̃3, x3,= 1, ..., p− 1

with u5 �= 2, u3 − u4 �≡ 0 mod p, ax3 − (1 + x3) �≡ 0 mod p.

Therefore, there are

(p− 1)p− (p− 1) + (p− 2) + (p− 1)p− (p− 1) = (2p− 3)p

M1-skew braces of M1 type and

(p− 1) + 1 + (p− 1) = 2p− 1

C3
p -skew braces of M1 type. �

Lemma 4.5. There are

(p4 − p3 − 2p2 + 2p + 1)p

Hopf–Galois structures of M1 type on Galois extensions of fields with Galois group G ∼=
M1 and |Θ(G)| = p2, and exactly

(p3 − 1)(p2 − 2)p2

Hopf–Galois structures of M1 type on Galois extensions of fields with Galois group G ∼=
C3

p and |Θ(G)| = p2.

Proof. To find the number of Hopf–Galois structures corresponding to the skew braces 
of Lemma 4.4, we need to find the automorphism groups of the skew braces

〈ρ, σα1, σ
u3τu4α3〉 ,

〈
ρ, τ−u5α1, σ

u5α3
〉
, 〈ρ, τx3α1, σα2α

a
3〉 ∼= M1,

〈ρ, σα1, σ
u2τu2α3〉 ,

〈
ρ, τ−2α1, σ

2α3
〉
,
〈
ρ, τ x̃3α1, σα2α

(1+x̃3)x̃−1
3

3

〉
∼= C3

p for

a, u3 = 0, ..., p− 1, u2, u4, u5, x3, x̃3 = 1, ..., p− 1

with u5 �= 2, u3 − u4 �≡ 0 mod p, ax3 − (1 + x3) �≡ 0 mod p.

We let

α = γβ ∈ Aut(M1) where γ
def= αr1

1 αr3
3 , β

def=
(
b1 b2
b3 b4

)
,

and set b def= det(β)−1.
For skew braces of Case I of Lemma 4.4: If α ∈ AutBr(〈ρ, σα1, σ

u2τu3α3〉), since we 
have
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α (σα1)b1b (σu2τu3α3)b2b α−1 = ρκ1
(
bβ
( 1 u2

0 u2

)
βT
)
· σα1,

α (σα1)b3b (σu2τu3α3)b4b α−1 = ρκ2
(
bβ
( 1 u2

0 u2

)
βT
)
· τα3,

we must have

bβ

(
1 u2
0 u3

)
βT = b

(
b21 + b2(b1u2 + b2u3) b1(b3 + b4u2) + b2b4u3
b1b3 + b2(b3u2 + b4u3) b23 + b4(b3u2 + b4u3)

)
=
(

1 u2
0 u3

)
.

Thus we need

b21 + b2(b1u2 + b2u3) = b1b4 − b2b3

b1b3 + b2(b3u2 + b4u3) = 0

b23 + b4(b3u2 + b4u3) = (b1b4 − b2b3)u3.

The second and third equations give

b1b3b4 + b2b4(b3u2 + b4u3) = 0

b2b
2
3 + b2b4(b3u2 + b4u3) = b2(b1b4 − b2b3)u3,

so we must have

−b1b3b4 + b2b
2
3 = b2(b1b4 − b2b3)u3,

which implies that we must set b3 = −b2u3 and b4 = b1 + b2u2 which satisfies all three 
equations. Thus we must have

AutBr(〈ρ, σα1, σ
u2τu3α3〉) =

{
α ∈ Aut(M1) | α = αr1

1 αr3
3
( b1 b2
−b2u3 b1+b2u2

)}
,

where we need b21 + b1b2u2 + b22u3 �= 0, i.e.,

(b1u2 + 2b2u3)2 �= b21
(
u2

2 − 4u3
)
.

We now need to consider three cases for u2
2 − 4u3 = 0 and when u2

2 − 4u3 is a square 
modulo p or not. We find∣∣∣AutBr

(〈
ρ, σα1, σ

u2τu
2
2/4α3

〉)∣∣∣ = (p− 1)p3 for u2 �= 0,

|AutBr (〈ρ, σα1, σ
u2τu3α3〉)| = (p− 1)2p2 if u3 �= 0 and u2

2 − 4u3 �= 0 is a square,

|AutBr (〈ρ, σα1, σ
u2τu3α3〉)| = (p2 − 1)p2 if u3 �= 0 and u2

2 − 4u3 �= 0 is not a square.

We also have
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AutBr(
〈
ρ, τ−v2α1, σ

v2α3
〉
) =

{
α ∈ Aut(M1) | α = αr1

1 αr3
3
( b1 b2
b3 b4

)}
.

For skew braces of Case II of Lemma 4.4: If α ∈ AutBr(〈ρ, τx3α1, σα2α
a
3〉), we need 

to set b2 = 0, now since we have

α (τx3α1)b
−1
4 α−1 = ρκ1τx3α1 and

α (τx3α1)
ab1b3b

−2
4 −r3b

−1
4 − 1

2 b
−1
4 (1−b1)− 1

2ab1b
−1
4

(
b1b

−1
4 −1

)
(yα2α

a
3)b1b

−1
4 α−1

= ρκ2σb21b
−1
4 τ

(
ab1b3b

−2
4 −r3b

−1
4 − 1

2 b
−1
4 (1−b1)− 1

2ab1b
−1
4

(
b1b

−1
4 −1

))
x3+ 1

2 b1

(
b1b

−1
4 −1

)
α2α

ab21b
−1
4

3 ,

we must have b4 = b21 and

r3 = ab−1
1 b3 + 1

2 (b1 − 1) (1 + a) + 1
2b

2
1x

−1
3 (b1 + 1) ;

thus we must have

AutBr(〈ρ, τx3α1, σα2α
a
3〉)

=
{
α ∈ Aut(M1) | α = αr1

1 α
ab−1

1 b3+ 1
2 (b1−1)(1+a)+ 1

2 b
2
1x

−1
3 (b1+1)

3
( b1 0
b3 b21

)}
.

Therefore, we have

e(M1,M1, p
2) =

∑
(M1)M1 (p2)

|Aut(M1)|
|AutBr((M1)M1)|

=

∑
u2 �=0,4

|Aut(M1)|∣∣∣∣AutBr(
〈
ρ, σα1, σu2τ

u2
2
4 α3

〉
)
∣∣∣∣ +

∑
u2−u3,u3,u

2
2−4u3 �=0

u2
2−4u3 is a square

|Aut(M1)|
|AutBr(〈ρ, σα1, σu2τu3α3〉)|

+

∑
u2−u3,u3,u

2
2−4u3 �=0

u2
2−4u3 is not a square

|Aut(M1)|
|AutBr(〈ρ, σα1, σu2τu2α3〉)|

+
∑

v2 �=0,2

|Aut(M1)|
|AutBr(〈ρ, τ−v2α1, σv2α3〉)|

+

∑
x3 �=0, a

(1+x3)x−1
3 �=a

|Aut(M1)|
|AutBr(〈ρ, τx3α1, σα2αa

3〉)|

= (p2 − 1)(p2 − p)p2×(
p− 2

(p− 1)p3 +
p−1
2 +

(
p−1
2 − 1

)
(p− 2)

(p− 1)2p2 +
p−1
2 +

(
p−1
2
)
(p− 2)

(p2 − 1)p2 + p− 2
(p2 − 1)(p2 − p)p2

+ (p− 1)2

(p− 1)p2

)
= (p4 − p3 − 2p2 + 2p + 1)p,
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and similarly

e(C3
p ,M1, p

2) =
∑

(C3
p)M1 (p2)

∣∣Aut(C3
p)
∣∣∣∣AutBr((C3

p)M1)
∣∣ =

∣∣Aut(C3
p)
∣∣

|AutBr(〈ρ, σα1, σ4τ4α3〉)|
+

∑
u2

2−4u2 �=0
is a square

∣∣Aut(C3
p)
∣∣

|AutBr(〈ρ, σα1, σu2τu2α3〉)|
+

∑
u2

2−4u2 �=0
is not a square

∣∣Aut(C3
p)
∣∣

|AutBr(〈ρ, σα1, σu2τu2α3〉)|
+

∣∣Aut(C3
p)
∣∣

|AutBr(〈ρ, τ−2α1, σ2α3〉|
+

∑
x3 �=0

∣∣Aut(C3
p)
∣∣∣∣∣AutBr(

〈
ρ, τx3α1, σα2α

(1+x3)x−1
3

3

〉
)
∣∣∣

= (p3 − 1)(p3 − p)(p3 − p2)×(
1

(p− 1)p3 +
p−1
2 − 1

(p− 1)2p2 +
p−1
2

(p2 − 1)p2 + 1
(p2 − 1)(p2 − p)p2 + p− 1

(p− 1)p2

)
= (p3 − 1)(p2 − 2)p2. �

Lemma 4.6. For |Θ(G)| = p3 there are exactly four M1-skew braces of M1 type and no 
other. Furthermore, there are only

(p2 − 1)p3

Hopf–Galois structures of M1 type on Galois extensions of fields with Galois group G ∼=
M1 and |Θ(G)| = p3.

Proof. If G ⊆ Hol(M1) with |Θ(G)| = p3, then we can assume, without loss of generality, 
that Θ(G) = 〈α1, α2, α3〉, and so

G = 〈uα1, vα2, wα3〉

where u = ρu1σu2τu3 , v = ρv1σv2τv3 , w = ρw1σw2τw3 , and G is isomorphic to Θ(G) ∼=
M1. Now

(uα1) (vα2) = ρv2uvα1α2 and

(vα2) (uα1) = ρ
1
2u2(u2−1)+v3u2−u3v2−u2

2−u2v2τu2uvα1α2,

so we need u2 = 0 and v2 ≡ −u3v2 mod p. We have
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(uα1) (wα3) = ρw2uwα1α3 and

(wα3) (uα1) = ρu3+w3u2−u3w2uwα1α3,

so, since u2 = 0, we need w2 ≡ u3 − u3w2 mod p. Finally, we have

(uα1) (vα2) (wα3) = (ρv2uvα1α2) (wα3)

= ρu1−v2(w2−1)− 1
2w2(w2−1)τu3+w2vwα1α2α3 and

(wα3) (vα2) = ρv3+w3v2−v3w2vwα3α2,

so we need u3 + w2 ≡ 0 mod p and

u1 − v2(w2 − 1) − 1
2w2(w2 − 1) ≡ v3 + w3v2 − v3w2 mod p.

Combining the above information, for G to be a group of order p3, we need, modulo p,

u2 = 0, v2 = −u3v2, w2 = u3 − u3w2, u3 = −w2,

u1 − v2(w2 − 1) − 1
2w2(w2 − 1) = v3 + w3v2 − v3w2. (30)

Now the equations w2 = u3 − u3w2 and u3 = −w2 imply that

u3 = −w2 = 0,−2.

Given this, the equation v2 = −u3v2 implies that v2 = 0. Now the final equation in (30)
reduces to

u1 −
1
2w2(w2 − 1) = v3 − v3w2.

Thus, we can consider two cases for w2 = 0 and w2 = 2. If w2 = 0, then u, v and w
are of the form

u = ρu1 , v = ρv1τu1 , w = ρw1τw3 ,

and in this case G cannot be regular. Therefore, we must set w2 = 2, hence u, v, and w
are of the form

u = ρu1τ−2, v = ρv1τ1−u1 , w = ρw1σ2τw3 .

Now for G to be regular we need

(uα1)
1
2 (1−u1) (wα3) = ρv1+ 1

2u1(1−u1)α
1
2 (1−u1)
1 α3 /∈ Aut(M1),
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so we need v1 + 1
2u1(1 − u1) �≡ 0 mod p. Therefore, G is conjugate to〈

ρu1τ−2α1, ρ
v1τ1−u1α2, ρ

w1σ2τw3α3
〉 ∼= M1

for u1, v1, w1, w3 = 0, ..., p− 1 with v1 + 1
2u1(1 − u1) �≡ 0 mod p,

and there are (taking into account the p + 1 conjugates)

(p + 1)(p− 1)p3

of these.
To find the non-isomorphic skew braces corresponding to the above regular subgroups, 

it suffices to conjugate by automorphisms of the form α
def= βγ ∈ Aut(M1), where 

β
def=
( b1 0
b3 b4

)
∈ GL2(Fp) and γ

def= αr1
1 αr3

3 ∈ C2
p . Now using (12) and (14) we have

α (uα1)b
−1
4 α−1 =

(
α · ub−1

4

)
α1,

α (vα2)b1b
−1
4 α−1 =

(
α · vb1b

−1
4

)
α
r3+ 1

2 (1−b1)
1 α2,

α (wα3)b
−1
1 α−1 =

(
α ·
(
ρ

1
2w3b

−1
1

(
b−1
1 −1

)
wb−1

1

))
α
−b−1

1 b3
1 α3,

so we have

α (uα1)b
−1
4 α−1 =

(
α · ub−1

4

)
α1,

α (uα1)−r3b
−1
4 − 1

2 b
−1
4 (1−b1) (vα2)b1b

−1
4 α−1 =

(
α ·
(
u−r3b

−1
4 − 1

2 b
−1
4 (1−b1)vb1b

−1
4

))
α2,

α (uα1)b
−1
1 b3b

−1
4 (wα3)b

−1
1 α−1 =

((
α · ub−1

1 b3b
−1
4

)
αα

b−1
1 b3b

−1
4

1 ·
(
ρ

1
2w3b

−1
1

(
b−1
1 −1

)
wb−1

1

))
α3.

Note that we have

α =
[
b1b4

1
2 b1b3+r1b1+r3b3 r3b4

0 b1 0
0 b3 b4

]
.

We let b5
def= 1

2b1b3 + r1b1 + r3b3. Now

α · ub−1
4 = ρu1b1−2r3τ−2,

α·
(
u−r3b

−1
4 − 1

2 b
−1
4 (1−b1)vb1b

−1
4

)
= ρr3(2r3+1)+v1b

2
1+ 1

2u1b1(b1−1)−2r3u1b1τ1+2r3−u1b1 ,(
α · ub−1

1 b3b
−1
4

)(
αα

b−1
1 b3b

−1
4

1 ·
(
ρ

1
2w3b

−1
1

(
b−1
1 −1

)
wb−1

1

))
= ρb3u1−2r3b−1

1 b3τ−2b−1
1 b3

ρ
3
2w3b4

(
b−1
1 −1

)
+b4w1+2b−1

1 b3+2b−1
1 b5+b3(2b−1

1 −1)
σ2τ2b−1

1 b3+w3b
−1
1 b4
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= ρ
2r1+ 3

2w3b4

(
b−1
1 −1

)
+b4w1+u1b3σ2τw3b

−1
1 b4 .

We let

r1 = −3
4w3b4

(
b−1
1 − 1

)
− 1

2b4w1 −
1
2u1b3,

r3 = 1
2u1b1,

which gives us

α · ub−1
4 = τ−2,

α·
(
u−r3b

−1
4 − 1

2 b
−1
4 (1−b1)vb1b

−1
4

)
= ρ

(
v1+ 1

2u1(1−u1)
)
b21τ,(

α · ub−1
1 b3b

−1
4

)(
αα

b−1
1 b3b

−1
4

1 ·
(
ρ

1
2w3b

−1
1

(
b−1
1 −1

)
wb−1

1

))
= σ2τw3b

−1
1 b4 .

Next, for a fixed δ ∈ F×
p which is not a square, we can write

(
v1 + 1

2u1 (1 − u1)
)

= s2
1s

where s1 ∈ F×
p and s = 1, δ. Letting b1 = ±s−1

1 we get

α · ub−1
4 = τ−2,

α ·
(
u−r3b

−1
4 − 1

2 b
−1
4 (1−b1)vb1b

−1
4

)
= ρsτ,(

α · ub−1
1 b3b

−1
4

)(
αα

b−1
1 b3b

−1
4

1 ·
(
ρ

1
2w3b

−1
1

(
b−1
1 −1

)
wb−1

1

))
= σ2τ±s1w3b4 .

Therefore, every such regular subgroup is conjugate to〈
τ−2α1, ρ

sτα2, σ
2τ t3α3

〉 ∼= M1 for t3 = 0, 1, s = 1, δ, (31)

and these subgroups are not further conjugate to each other, so they give us four non-
isomorphic skew braces.

To find the number of corresponding Hopf–Galois structures we determine the auto-
morphism groups of above skew braces. We let

α = γβ ∈ Aut(M1) where γ
def= αr1

1 αr3
3 , β

def=
(
b1 b2
b3 b4

)
and set b2 = 0. If α ∈ AutBr(

〈
τ−2α1, ρ

sτα2, σ
2τ t3α3

〉
), since by our notation above we 

have
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α · ub−1
4 = ρ−2r3τ−2,

α·
(
u−r3b

−1
4 − 1

2 b
−1
4 (1−b1)vb1b

−1
4

)
= ρr3(2r3+1)+sb21τ1+2r3 ,(

α · ub−1
1 b3b

−1
4

)(
αα

b−1
1 b3b

−1
4

1 ·
(
ρ

1
2 t3b

−1
1

(
b−1
1 −1

)
wb−1

1

))
= ρ

2r1+ 3
2 t3b4

(
b−1
1 −1

)
σ2τ t3b

−1
1 b4 ,

we must have r3 = 0, b21 = 1, r1 = 3
4 t3b4

(
1 − b−1

1
)
, further b1 = b4 if t3 = 1. Therefore, 

we have

AutBr(
〈
τ−2α1, ρ

sτα2, σ
2α3
〉
) =

{
α ∈ Aut(M1) | α =

(±1 0
b3 b4

)}
,

AutBr(
〈
τ−2α1, ρ

sτα2, τσ
2α3
〉
) =

{
α ∈ Aut(M1) | α = α

3
4 (±1−1)
1

(±1 0
b3 ±1

)}
.

Now again we find

e(M1,M1, p
3) =

∑
(M1)M1 (p3)

|Aut(M1)|
|AutBr((M1)M1(p3)| =

2 |Aut(M1)|
|AutBr(〈τ−2α1, ρτα2, σ2α3〉)|

+ 2 |Aut(M1)|
|AutBr(〈τ−2α1, ρτα2, τσ2α3〉)|

= 2(p2 − 1)(p− 1)p3

2(p− 1)p + 2(p2 − 1)(p− 1)p3

2p = (p2 − 1)p3. �
4.1. Socle and annihilator of skew braces of M1 type

Finally, we note that from our classification of skew braces we are also able to de-
termine their socle and annihilator. Let B = (B,⊕,�) be a skew brace. As before we 
let

m : (B,�) −→ Hol (B,⊕)

a 
−→ (ma : b 
−→ a� b)

and set

Θ : Hol (B,⊕) −→ Aut (B,⊕)

ηα 
−→ α.

We shall denote by λ = Θm. Then Kerλ = Imm ∩ (B,⊕) inside Hol (B,⊕).
First we note that [cf. 15, p. 23] an ideal of a skew brace B = (B,⊕,�) is defined to 

be a subset I ⊆ B, such that I is a normal subgroup with respect to both operations ⊕
and �, and λa(I) ⊆ I for all a ∈ B. The socle of B is defined to be

Soc(B) def= {a ∈ B | a⊕ b = a� b, b⊕ (b� a) = (b� a) ⊕ b for all b ∈ B},
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which is an ideal of B, and one has Soc(B) = Kerλ ∩ Z (B,⊕). Finally, [cf. 19, Defini-
tion 7], the annihilator of B is defined to be

Ann(B) def= Soc(B) ∩ Z (B,�) = Kerλ ∩ Z (B,⊕) ∩ Z (B,�) ,

which is also an ideal of B.
Now we aim to explain what each of these terms, ideal, socle, and annihilator, corre-

spond to if we are given a regular subgroup H ⊆ Hol (N) and we consider it as a skew 
brace. Recall first from Subsection 2.2, given a regular subgroup H ⊆ Hol (N), it can be 
represented as

H = 〈η1, ..., ηr, v1α1, ..., vsαs〉 ,

for H1
def= 〈η1, ..., ηr〉 ⊆ N and H2

def= 〈α1, ..., αs〉 ⊆ Aut (N) and some v1, ..., vs ∈ N . 
Note also that we have a bijection

ψ : H −→ N

g 
−→ g1
def= g(1N ).

To get a skew brace we can set (H,�) = H and define ⊕ on H by

g ⊕ h = ψ−1 (g1h1) ,

which makes (H,⊕,�) into a skew brace with (H,⊕)
ψ∼= N . Note the map ψ now induces 

an isomorphism

Hol (H,⊕) −→ Hol (N)

gβ 
−→ g1ψβψ
−1,

which maps Kerλ to H1, and Imλ to H2.
Now for a subset I ⊆ H to be an ideal of H considered as a skew brace, we need 

I ⊆ (H,�) to be a normal subgroup, ψ (I) ⊆ N to be a normal subgroup (so I ⊆
ψ−1 (N) = (H,⊕) is a normal subgroup) and H2 (ψ (I)) ⊆ ψ (I). Furthermore, one has

Soc(H) = Kerλ ∩ Z (H,⊕) = H1 ∩ ψ−1 (Z (N)) ,

and

Ann(H) = H1 ∩ ψ−1 (Z (N)) ∩ Z (H) .

Recall the skew braces of M1 type, apart from the trivial skew brace 〈ρ, σ, τ〉, as found 
in Lemmas 4.2, 4.4, 4.6 are as follows.
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• For |Kerλ| = p2 from Lemma 4.2, (18) we have non-isomorphic skew braces

〈ρ, τ, σα3〉 , 〈ρ, τ, σα2α3〉 ∼= C3
p , 〈ρ, τ, σα1〉 , 〈ρ, τ, σα2〉 ,

〈ρ, τ, σαc
3〉 , 〈ρ, τ, σα2α

c
3〉 ∼= M1 for c = 2, ..., p− 1,

so in all these cases we have

Soc(H) = Ann(H) = 〈ρ〉 .

• For |Kerλ| = p from Lemma 4.4, (25) and (29), we have non-isomorphic skew braces

〈ρ, σα1, σ
u3τu4α3〉 ,

〈
ρ, τ−u5α1, σ

u5α3
〉
, 〈ρ, τx3α1, σα2α

a
3〉 ∼= M1,

〈ρ, σα1, σ
u2τu2α3〉 ,

〈
ρ, τ−2α1, σ

2α3
〉
,
〈
ρ, τ x̃3α1, σα2α

(1+x̃3)x̃−1
3

3

〉
∼= C3

p for

a, u3 = 0, ..., p− 1, u2, u4, u5, x3, x̃3 = 1, ..., p− 1

with u5 �= 2, u3 − u4 �≡ 0 mod p, ax3 − (1 + x3) �≡ 0 mod p,

so in all these cases we also have

Soc(H) = Ann(H) = 〈ρ〉 .

• For |Kerλ| = 1 from Lemma 4.6, (31) we have non-isomorphic skew braces〈
τ−2α1, ρ

sτα2, σ
2τ t3α3

〉 ∼= M1 for t3 = 0, 1, s = 1, δ,

so in all these cases have

Soc(H) = Ann(H) = 1.
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