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1. Introduction

Throughout k is an algebraically closed field of characteristic zero. All algebras may 
be regarded as k-algebras unless otherwise specified.

The main aim of this paper is to study invariant theory questions related to generalized 
Weyl algebras. Generalized Weyl algebras were named by Bavula [6] but include many 
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classes of algebras that have been studied in other contexts. This includes the classical 
Weyl algebras, primitive quotients of U(sl2), and ambiskew polynomial rings.

Definition 1.1. Let D be a ring, σ ∈ Aut(D), and a ∈ Z(D), a �= 0. The 
generalized Weyl algebra (of degree one) D[x, y; σ, a] is the ring obtained by adjoining 
to D the variables x and y subject to the relations

xy = σ(a), yx = a, xd = σ(d)x, yd = σ−1(d)y,

for all d ∈ D. In the case that D = k[z] and σ(z) = z − α for some α ∈ k
× we call 

D[x, y; σ, a] a classical GWA.

Let R = k[z][x, y; σ, a] be a classical GWA. If degz(a) = 0, then R ∼= k[x, x−1] and 
if degz(a) = 1, then R ∼= A1(k), the first Weyl algebra over k. The study of classical 
GWAs goes back at least as far as Joseph [14] and were also studied by Hodges under 
the name noncommutative deformations of Type-A Kleinian singularities [10]. Every 
classical GWA is isomorphic to one where σ(z) = z−1 and, by [7, Theorem 4.2], where a
is monic and 0 is a root of a. We assume these facts throughout without further comment.

The impetus for this study is a result of Smith stating that A1(k)G �∼= A1(k) for 
any nontrivial finite subgroup G ⊂ Aut(A1(k)) [18]. This relies on an earlier result of 
Stafford: if P is a projective right ideal of A1(k), then End(P ) ∼= A1(k) if and only if P
is cyclic [19, Theorem 3.1]. Alev, Hodges, and Velez proved that, for two finite subgroups 
G, H ⊂ Aut(A1(k)), A1(k)G ∼= A1(k)H if and only if G ∼= H [1]. Additionally, Alev and 
Polo extended Smith’s theorem to the nth Weyl algebra and proved a similar result for 
the universal enveloping algebra of a semisimple Lie algebra [2].

A common technique to these papers is reduction modulo primes p, making use of 
the fact that, over a field of finite characteristic, the center of the nth Weyl algebra is a 
polynomial ring. Unfortunately, this is not the case for classical GWAs with degz(a) > 1. 
Thus, while we cannot generalize these results entirely, we can give further insight into 
the study of the fixed rings of a classical GWA.

Let R = D[x, y; σ, a] and let β be a primitive �th root of unity. Define the automor-
phism Θβ of R by Θβ(x) = βx, Θβ(y) = β−1y, and Θβ(d) = d for all d ∈ D. In [12], 
Jordan and Wells prove R〈Θβ〉 = D[x�, y�; σ�, h�] where

h� =
�−1∏
i=0

σ−i(a).

When D = k[z], it is worth observing that the fixed ring is a classical GWA generated 
by X = x�, Y = y�, and Z = 1

� z. In [15], Kirkman and Kuzmanovich considered fixed 
rings of GWAs D[x, y; σ, α] under automorphisms satisfying φ(x), φ(y) ∈ span

k
{x, y} and 

φ|D ∈ Aut(D), as well as their corresponding fixed rings. In several examples, they show 
that the fixed ring is again a GWA.
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Let R = k[z][x, y; σ, a] be a classical GWA with a = a0 + · · · + an, with ai ∈ k[z]i
and an �= 0. Setting deg x = deg y = n and deg z = 2 defines a filtration, called the
standard filtration, on R. Unless otherwise noted, we assume throughout that this is the 
filtration on R. Under the standard filtration, grR ∼= k[x, y, z]/(yx − an), a complete 
intersection domain. Our interest is in filtered automorphisms, i.e., maps φ ∈ Aut(R)
such that deg(φ(r)) = φ(deg(r)) for all r ∈ R. As R is assumed to be a classical GWA, 
φ is a filtered automorphism if and only if this holds for r = x, y, and z. We denote the 
group of filtered automorphisms of R by Autfl(R). In Section 2, we determine Autfl(R).

In Theorem 2.10, we show that when degz(a) = 2 and g ∈ Autfl(R) is of finite order, 
then R〈g〉 is a classical GWA. We view this as a step toward a Shephard-Todd-Chevalley 
theorem for classical GWAs, but do not yet know a good analog for a reflection group in 
this setting. Also, one obtains a version of Smith’s theorem (Corollary 2.11). It is then 
reasonable to conjecture that an analog of Smith’s theorem is true for finite groups of 
filtered automorphisms acting on a classical GWA with degz(a) = 2. When degz(a) > 2, 
the group Autfl(R) is much more restricted (Theorems 2.4 and 3.1). In this case we are 
able to compute the fixed ring of R under the action of any filtered automorphism g of 
finite order (Theorem 3.2). However, there are certain cases in which we cannot detect 
whether or not R〈g〉 is a GWA.

We are also interested in the homological determinant and its connection to the above 
results. The homological determinant of a linear automorphism of a noncommutative 
algebra generalizes the notion of the determinant of a linear map— in fact, when applied 
to a commutative polynomial ring, the homological determinant restricts to the usual 
determinant.

We refer the reader to [13] for a full definition of the homological determinant, but 
we note an essential result that will be important for our analysis. Let A be a filtered, 
noetherian, AS-Gorenstein ring such that grA is commutative and let g ∈ Autfl(A). By 
[11, Lemma 2.1 and Proposition 2.4], one may define the homological determinant of g
to be

hdetA(g) = hdetgr A(g) = detgr A(g).

Using this result, we prove that all filtered automorphisms of classical GWAs act with 
homological determinant 1 (Theorems 2.4 and 2.6). We denote by SL(A) the subgroup 
of Aut(A) consisting of automorphisms of homological determinant 1.

A noetherian ring A of finite injective dimension is called Auslander-Gorenstein if 
for any (left or right) module M and submodule N of ExtsA(M, A), s ∈ Z+, we have 
ExtiA(N, A) = 0 for i < s. By [10, Theorem 2.2], every classical GWA R = k[z][x, y; σ, a]
with degz(a) ≥ 2 is Auslander-Gorenstein. If R is a classical GWA and G is a finite 
subgroup of Autfl(R), then G ⊂ SL(R) and so RG is filtered Auslander-Gorenstein by 
[11, Theorem 3.5], that is, gr(RG) is Auslander-Gorenstein. This will be useful in the 
case of degz(a) ≥ 3 when we are not able to determine whether or not R〈g〉 is a GWA 
for all g ∈ Autfl(R). We also recover this result as a consequence of Theorem 2.10 in 
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the case of a classical GWA with degz(a) = 2 and G ⊂ Autfl(R) a finite cyclic group. 
Though this implies that RG has finite left and right injective dimension, we will see 
that this is not enough to guarantee finite global dimension (Corollary 2.12).

We end in Section 4 with a note regarding Auslander’s theorem for GWAs. Given an 
algebra A and a group G acting as automorphisms on A, the skew group algebra A#G

is defined to be the k-vector space A ⊗ kG with multiplication,

(a#g)(b#h) = ag(b)#gh for all a, b ∈ A, g, h ∈ G.

For a filtered algebra A and a finite group G acting as filtered automorphisms on A, the
Auslander map is given by

γA,G : A#G −→ EndAG(A)

a#g 	→
(
A −→ A
b 	→ ag(b)

)
.

If G is a finite group that contains no reflections acting linearly on A = k[x1, . . . , xt], 
then a theorem of Auslander asserts that γA,G is an isomorphism [3]. In this setting, 
Auslander’s theorem is a sort of dual result to Shephard-Todd-Chevalley. However, this 
is not the case for filtered actions on classical GWAs. That is, there are classical GWAs 
R and finite groups G ⊂ Autfl(R) such that RG is again a classical GWA and for which 
γR,G is an isomorphism. For example, if G is a finite group acting linearly on the first 
Weyl algebra A1(k), then the action of G is outer and so γA1(k),G is an isomorphism 
[17, Theorems 2.4] and if G is cyclic, then A1(k)G is a classical GWA (Proposition 2.1). 
Similarly, since the units of a classical GWA R all live in the degree zero component 
(under the Z-grading), k[z], the units of R are just k×. Thus, every finite group action 
on R is outer and so if R is simple, then we may apply the same theorem. We present 
another method that will include classical GWAs that are not simple.

Let A be an affine algebra generated in degree 1 and G a finite subgroup of GLn(k)
acting on A1. The pertinency of the G-action on A is defined to be

p(A,G) = GKdimA− GKdim(A#G)/(fG)

where (fG) is the two sided ideal of A#G generated by fG =
∑

g∈G 1#g and GKdim is 
the Gelfand-Kirillov (GK) dimension. The notion of pertinency was developed by Bao, 
He, and Zhang as a way to study the Auslander map for noncommutative algebras [4,5]. 
It is possible to define pertinency in terms of any dimension function on right A-modules, 
but GK dimension is sufficient for our purpose. Under suitable conditions, the Auslander 
map is an isomorphism for (A, G) if and only if p(A, G) ≥ 2. We show that this holds 
for (R, G) where R is a classical GWA R and G ⊂ Autfl(R) is a finite cyclic group 
(Theorem 4.4).
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2. Group actions preserving the standard filtration

Throughout this section, assume R = k[z][x, y; σ, a] is a classical GWA. Our primary 
goal will be to compute Autfl(R) and prove that R〈g〉 is a classical GWA for every g ∈
Autfl(R) with |g| < ∞. Although our interest is primarily in fixed rings of higher-degree 
classical GWAs, as a warm-up we compute the fixed rings for cyclic subgroups of filtered 
automorphisms acting on the first Weyl algebra, A1(k).

Proposition 2.1. Let g ∈ Autfl(A1(k)) have finite order, then the fixed ring A1(k)〈g〉 is a 
classical GWA.

Proof. A filtered map g : A1(k) −→ A1(k) given by

g(x) = a1x + a2y + a3, g(y) = b1x + b2y + b3,

for some ai, bj ∈ k, is an automorphism if and only if a1b2 − a2b1 = 1. Assume first that 
b2 − a1 ±

√
w2 − 4 �= 0. We diagonalize the action by setting w = a1 + b2 and

X = r

((
2b1a2(w − 2 +

√
w2 − 4)

b2 − a1 +
√
w2 − 4

)
x + (w − 2 +

√
w2 − 4)y

+ ((a1 − b2)a3 + 2b3a2 + a3
√
w2 − 4)

)
,

Y = s

((
2b1a2(w − 2 −

√
w2 − 4)

b2 − a1 −
√
w2 − 4

)
x + (w − 2 −

√
w2 − 4)y

+ ((a1 − b2)a3 + 2b3a2 − a3
√
w2 − 4)

)
,

for any r, s ∈ k
×. Then X and Y generate A1(k) and we may choose r, s such that 

XY − Y X + 1 = 0. Moreover, if we let β = 1
2 (w +

√
w2 − 4), then one can check that 

g(X) = βX and g(Y ) = βY , so |β| = � < ∞. Set Z = Y X. By [12, Theorem 2.6], 
A1(k)〈g〉 = k[Z][X�, Y �; ς�, A(Z)] where ς : k[Z] → k[Z] is given by ς(Z) = Z − 1 and 
A(Z) =

∏�−1
i=0 ς

−i(Z).
In the case that b2 − a1 ±

√
w2 − 4 = 0 we have b2 = a−1

1 , hence b1a2 = 0. In this 
case the analysis simplifies significantly. Assuming b1 = 0 (the case a2 = 0 is similar), 
we may take

X = r
(
(a1 − 1)3(a1 + 1)x + (a1 − 1)a1a2y + (a2

1a3 + a1a2b3 − a3)
)
,

Y = s ((a1 − 1)y − a1b3) ,

for any r, s ∈ k
×. Again, X and Y generate A1(k) and we may choose r, s such that 

XY − Y X + 1 = 0. Here we set β = a1. �
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Let n = degz(a), λ ∈ k, β ∈ k
×, m ∈ N, and let Δm be the linear map k[z] → k[z]

given by σm − 1. Bavula and Jordan [7] define the following maps:

Θβ : x 	→ βx, y 	→ β−1y, z 	→ z,

Ψm,λ : x 	→ x, y 	→ y +
n∑

i=1

λi

i! Δi
m(a)xim−1, z 	→ z −mλxm,

Φm,λ : x 	→ x +
n∑

i=1

(−λ)i

i! yim−1Δi
m(a), y 	→ y, z 	→ z + mλym.

Note that Ψ0,λ and Φ0,λ are both the identity map. If there exists some ρ ∈ k such that 
a(ρ − z) = (−1)na(z), then a is said to be reflective. By [7, Theorem 3.29], Aut(R) is 
generated by Θβ, Ψm,λ, and Φm,λ, β ∈ k

×, λ ∈ k, and m ∈ N, when a is not reflective. 
On the other hand, when a is reflective, then Aut(R) has an additional generator Ω given 
by

Ω(x) = y, Ω(y) = (−1)nx, Ω(z) = 1 + ρ− z.

Below, we consider some relations between the generators of Aut(R).

Proposition 2.2. Let R be a classical GWA. The following relations hold in Aut(R). For 
all m ∈ N and all λ, μ ∈ k, β, γ ∈ k

×,

1. Φm,μ ◦ Φm,λ = Φm,μ+λ and Ψm,μ ◦ Ψm,λ = Ψm,μ+λ,
2. Θβ ◦ Φm,λ = Φm,λβ−m ◦ Θβ and Θβ ◦ Ψm,λ = Ψm,λβm ◦ Θβ, and
3. Θβ ◦ Θγ = Θβγ .

When a is reflective we have the following additional relations. For all m ∈ N and all 
λ ∈ k, β ∈ k

×,

1. Ω ◦ Θβ = Θβ−1 ◦ Ω and
2. Φm,λ ◦ Ω = Ω ◦ Ψm,λ.

Proof. By [7], the maps adxm and ad ym are locally nilpotent derivations of R and hence 
Φm,λ = eλ ad xm is an automorphism of R. It then follows easily that

Φm,μ ◦ Φm,λ = eμ ad ym ◦ eλ ad ym

= e(μ+λ) ad ym

= Φm,μ+λ.

The claim for the maps Ψm,λ is similar. Thus, (1) holds.
We will check the first claim of (2) by verifying that the relation holds on the gener-

ators. Observe that
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Θβ(Φm,λ(x)) = Θβ

(
x +

n∑
i=1

(−λ)i

i! yim−1Δi
m(a)

)

= βx +
n∑

i=1

(−λ)i

i! β1−imyim−1Δi
m(a)

= βx +
n∑

i=1

(−λβ−m)i

i! βyim−1Δi
m(a)

= Φm,λβ−m(βx) = Φm,λβ−m(Θβ(x))

Θβ(Φm,λ(y)) = Θβ(y) = β−1y = Φm,λβ−m(Θβ(y))

Θβ(Φm,λ(z)) = Θβ(z + mλym) = z + mλ(β−1y)m = z + m(λβ−m)ym

= Φm,λβ−m(z) = Φm,λβ−m(Θβ(z)).

Thus, Θβ ◦Φm,λ = Φm,λβ−m ◦Θβ as claimed. The second relation in (2) holds similarly.
We leave the claims in (3) and (4) to the reader and finish by checking (5). Assume 

that a is reflective. By [7, Equations (7) and (9)] we have

(adxm)i(y) = Δi
m(a)xim−1 and (ad ym)i(x) = (−1)iyim−1Δi

m(a).

Thus,

Ω((adxm)i(y)) = (−1)n(ad ym)i(x).

Using this, we check that the relation holds on the generators of R:

Φm,λ(Ω(x)) = Φm,λ(y) = y = Ω(x) = Ω(Ψm,λ(x))

Φm,λ(Ω(y)) = Φm,λ((−1)nx) = (−1)n
(
x +

n∑
i=1

(−λ)i

i! yim−1Δi
m(a)

)

= (−1)n
(
x +

n∑
i=1

λi

i! (ad ym)i(x)
)

= Ω
(
y +

n∑
i=1

λi

i! (adxm)i(y)
)

= Ω
(
y +

n∑
i=1

λi

i! Δi
m(a)xim−1

)
= Ω(Ψm,λ(y))

Φm,λ(Ω(z)) = Φm,λ(1 + ρ− z) = 1 + ρ− (z + mλym)

= (1 + ρ− z) −mλym = Ω(z −mλxm) = Ω(Ψm,λ(z)).

Hence, Φm,λ ◦ Ω = Ω ◦ Ψm,λ as claimed. �
We next give criteria for identifying filtered automorphisms based on the action on 

z. This will allow us to completely determine Autfl(R) when R is a classical GWA with 
degz(a) > 2. It will also be a useful step in the case of degz(a) = 2.
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Lemma 2.3. Let φ be a filtered automorphism of a classical GWA R = k[z][x, y; σ, a].

1. If φ(z) = kz + c for some c ∈ k and k ∈ k
×, then either

• φ = Θβ for some β ∈ k
×; or

• a is reflective and φ = Ω or φ = Ω ◦ Θ−1.
2. If φ(z) �= kz + c for some c ∈ k and k ∈ k

×, then degz(a) ≤ 2.

Proof. (1) Suppose φ(z) = kz + c for some c ∈ k and k ∈ k
×. As φ is a filtered map, we 

may write

φ(x) = k11x + k12y + p1(z),

φ(y) = k21x + k22y + p2(z),

where kij ∈ k and pi(z) are polynomials in z of degree at most n/2. Then

0 = φ([x, z] + x)

= [k11x + k12y + p1(z), kz + c] + (k11x + k12y + p1(z))

= k11(k[x, z] + x) + k12(k[y, z] + y) − p1(z)

= k11(1 − k)x + k12(1 + k)y − p1(z).

A similar computation shows that

0 = φ([y, z] − y) = −k21(1 + k)x− k22(1 − k)y − p2(z).

If k11 = k12 = 0, then φ(x) ∈ k[z], violating the surjectivity of φ. Similarly, we may not 
have k21 = k22 = 0. If k12 = 0, then k11 �= 0 and k = 1, so k21 = 0. Otherwise, k11 = 0
so k = −1 and k22 = 0. In either case, p1(z) = p2(z) = 0.

In the first case,

0 = φ(yx− a(z)) = k11k22a(z) − a(z + c).

We may assume without loss of generality that a(z) = z(z − t1) · · · (z − tn−1) for some 
ti ∈ k. Thus, k22 = k−1

11 and c = 0, so φ = Θk11 .
In the second case,

0 = φ(yx− a(z)) = k12k21a(z − 1) − a(−z + c).

As a(z−1) is monic and the leading coefficient of a(−z+c) is (−1)n, then k12k21 = (−1)n. 
It follows that a is reflective and φ = Ω or φ = Ω ◦ Θ−1.

(2) If φ ∈ Autfl R, then φ(z) = kz + p(x, y) for some polynomial p in x and y. In the 
filtration, deg(x) = deg(y) = deg(a) = n, but deg(z) = 2. By the hypothesis and part 
(1), we must have deg(p(x, y)) ≥ 1, whence n = 2. �
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Theorem 2.4. Suppose R = k[z][x, y; σ, a] is a classical GWA with degz(a) > 2. If a is 
not reflective, then Autfl(R) is generated by the maps Θλ. If a is reflective, then Autfl(R)
is generated by Ω and the maps Θλ. Moreover, we have hdet g = 1 for all g ∈ Autfl(R).

Proof. This follows almost entirely from Lemma 2.3. Let g ∈ Autfl(R) and recall that 
we have grR = k[x, y, z]/(xy − an). By the discussion in the introduction and a routine 
check, hdetR(g) = hdetgr R(g) = detk[x,y,z](g) = 1. �

In Theorem 3.1 we completely determine the finite subgroups of Autfl(R) in the case 
when n > 3.

Assume n = 2. Without loss of generality, a = z(z − t) for some t ∈ k. Then Δ(a) =
−2z + t + 1 and Δ2(a) = 2. The generators of Aut(R) above that are also filtered maps 
can be stated explicitly.

Θλ : x 	→ λx, y 	→ λ−1y, z 	→ z,

Ψ1,λ : x 	→ x, y 	→ y − 2λz + λ2x + λ(t + 1), z 	→ z − λx,

Φ1,λ : x 	→ x + 2λz + λ2y − λ(t + 1), y 	→ y, z 	→ z + λy,

Ω : x 	→ y, y 	→ x, z 	→ 1 + t− z.

Let G be the group generated by these automorphisms. We will show below that 
Autfl(R) = G in this case.

Before proving our main result regarding Autfl(R), we need one more technical lemma.

Lemma 2.5. Let R = k[z][x, y; σ, a] be a classical GWA with degz(a) = 2. Suppose Γ ∈
Autfl(R) and Γ(z) = k1x + k2y + k4 for some ki ∈ k. Then k1k2 �= 0.

Proof. It is clear that we may not have k1 = k2 = 0. Suppose k2 = 0. The case k1 = 0
follows similarly. Write

Γ(x) = �1x + �2y + �3z + �4,

Γ(y) = m1x + m2y + m3z + m4,

for �i, mi ∈ k. Then

Γ(x) = [Γ(z),Γ(x)] = [k1x + k4, �1x + �2y + �3z + �4] = [k1x, �2y + �3z]

Γ(y) = [Γ(y),Γ(z)] = [m1x + m2y + m3z + m4, k1x + k4] = [m2y + m3z, k1x].

In both cases, the image of the commutator is in the subalgebra generated by x and z, 
implying �2 = m2 = 0. This contradicts the surjectivity of Γ. �
Theorem 2.6. Let R = k[z][x, y; σ, a] be a classical GWA with degz(a) = 2. Then 
Autfl(R) = G. Moreover, if g ∈ Autfl(R), then hdet(g) = 1.
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Proof. The statement on homological determinant follows analogously to Theorem 2.4
once we have shown that Autfl(R) = G. Clearly, G ⊂ Autfl(R). Let Γ ∈ Autfl(R). We 
may write Γ(z) = k1x + k2y + k3z + k4 for some ki ∈ k.

If k1 = k2 = 0, then Γ ∈ G by Lemma 2.3. Suppose that k1 = 0 but k2 �= 0. By 
Lemma 2.5, k3 �= 0. Then

Φ1,−k2/k3(Γ(z)) = k2y + k3 (z − (k2/k3)y) + k4 = k3z + k4.

Thus, Φ1,−k2/k3 ◦ Γ ∈ G again by Lemma 2.3, so Γ ∈ G. Similarly, if k2 = 0 but k1 �= 0, 
then

Ψ1,k1/k3(Γ(z)) = k1x + k3 (z − (k1/k3)x) + k4 = k3z + k4.

Finally, suppose k1, k2 �= 0. Note that we may have k3 = 0 in this case. Set λ to be a 
root of k1λ

2 + k3λ + k2 = 0. Then

Φ1,λ(Γ(z)) = k1(x + 2λz + λ2y − λ(t + 1)) + k2y + k3(z + λy) + k4

= k1x + (k1λ
2 + k3λ + k2)y + (2k1λ + k3)z + (k4 − k1λ(t + 1))

= k1x + (2k1λ + k3)z + (k4 − k1λ(t + 1)).

Note that 2k1λ + k3 �= 0 by Lemma 2.5. We now defer to the above computation. �
Using the techniques of Theorem 2.6, or straightforward computation, we achieve our 

last relation between the generators of G. Given λ, μ ∈ k, set η = 1 − λμ. Then

Φ1,μ ◦ Ψ1,λ = Ψ1,λη−1 ◦ Φ1,μη ◦ Θη−2 . (2.7)

For λ, μ ∈ k and β ∈ k
×, set τλ,μ,β = Ψ1,λ ◦ Φ1,μ ◦ Θβ . These maps satisfy

τλ,μ,β : x 	→ β((λμ− 1)2x + μ2y + 2μ(1 − λμ)z + μ(λμ− 1)(t + 1))

y 	→ β−1(y + λ2x− 2λz + λ(t + 1))

z 	→ (1 − 2λμ)z + λ(λμ− 1)x + μy + λμ(t + 1).

Note that τλ,μ,β = id if and only if λ = μ = 0 and β = 1.

Corollary 2.8. Let R = k[z][x, y; σ, a] be classical GWA with degz(a) = 2. If g ∈ Autfl(R), 
then either g = τλ,μ,β or τλ,μ,β ◦ Ω for an appropriate choice of λ, μ, β.

Proof. This follows from (2.7), Proposition 2.2, and Theorem 2.6. �
Now that we understand Autfl(R) when degz(a) = 2, we are ready to consider fixed 

rings of R by its cyclic subgroups. We first give two examples that illustrate our methods 
before stating our main theorem.
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Example 2.9. Let R = k[z][x, y; σ, a] be a classical GWA with a = z(z − t). Let α ∈ k

and β ∈ k
×.

(1) This example is similar to [15, Example 2.7], in which the authors compute 
A1(k)〈Ω〉. Define

X = i

2(x− y) −
(
z − 1 + t

2

)
, Y = i

2(x− y) +
(
z − 1 + t

2

)
, and Z = i

2(x + y).

Set k = 1
4 (1 − t2), K± = 1

2 (−1 ±
√

1 − 4k), and a′(Z) = (Z − K+)(Z − K−). Let ς :
k[Z] −→ k[Z] be the automorphism mapping Z to Z − 1. Then R = k[Z][X, Y ; σ, a′(Z)]
and we have Ω(X) = −X, Ω(Y ) = −Y , Ω(Z) = Z. Thus, by [12, Theorem 2.6], R〈Ω〉 =
k[Z][X2, Y 2; ς2, a′(Z)ς−1(a′(Z))].

(2) Let β be a primitive �th root of unity for some � ≥ 2. Set πα,β = Φ1,α ◦ Θβ and 
note that |πα,β | = � by Proposition 2.2. Define

X = x + α2β2

(β − 1)2 y + 2αβ
β − 1z −

αβ(r + 1)
β − 1 , Y = y, and Z = z + αβ

β − 1y.

Let ς : k[Z] −→ k[Z] be the automorphism mapping Z to Z − 1. Then R =
k[Z][X, Y ; ς, a(Z)] and we have πα,β(X) = βX, πα,β(Y ) = β−1Y and πα,β(Z) = Z. 
Thus, R〈πα,β〉 = k[Z][X�, Y �; ς�, A(Z)] where A(Z) =

∏�−1
i=0 ς

−i(a(Z)).

We now show that, given an appropriate generating set, one can diagonalize the 
action of τλ,μ,β and τλ,μ,β ◦ Ω when the maps have finite order. Computations for the 
next theorem were done using Maple and the NCAlgebra package for Macaulay2.

Theorem 2.10. Let R = k[z][x, y; σ, a] be a classical GWA with a = z(z − t). If g ∈
Autfl(R) with |g| = �, 2 ≤ � < ∞, then the action of g is diagonalizable and hence R〈g〉

is again a GWA.

Proof. First suppose that g = τλ,μ,β . Set w = βλμ − β − 1 and

C1 = (2
√

λμβ(w2 − 4β))−1, C2 = (−1
√
w2 − 4β)−1,

K± = (t + 1)(w + 2)
2
√
w2 − 4β

± t− 1
2 .

Let

X = C1

(
λ
(
w + 2 +

√
w2 − 4β

)
x + βμ

(
w + 2 −

√
w2 − 4β

)
y

− 4λμβz + 2λμβ(t + 1)
)

Y = C1

(
λ
(
w + 2 −

√
w2 − 4β

)
x + βμ

(
w + 2 +

√
w2 − 4β

)
y
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− 4λμβz + 2λμβ(t + 1)
)

Z = C2 (λx + βμy − (w + 2)z) .

Next, suppose g = τλ,μ,β ◦ Ω. In the generic case, λμ �= 1, set w = λ + μβ and

C1 =
√
β(1 − λμ)

2w
√
w2 − 4β

, C2 = − 1
w2 − 4β , K± = (t + 1)(λ− βμ)

2
√

w2 − 4β
± t− 1

2 .

Let

X = C1

((
λ2 − (μβ)2 + w

√
w2 − 4β

)
x +

(
(μβ)2 − λ2 + w

√
w2 − 4β

β(λμ− 1)

)
y

− 4wz + 2w(t + 1)
)

Y = C1

((
λ2 − (μβ)2 − w

√
w2 − 4β

)
x +

(
(μβ)2 − λ2 − w

√
w2 − 4β

β(λμ− 1)

)
y

− 4wz + 2w(t + 1)
)

Z = C2 (−β(λμ− 1)x + y + (βμ− λ)z) .

We consider the special case when λμ = 1 at the end.
Let X, Y, Z ∈ R be defined as above depending on the case. In either case, let ς :

k[Z] −→ k[Z] be the automorphism mapping Z to Z−1 and set a′(Z) := (Z−K+)(Z−
K−). Direct computations show that XZ = (Z−1)X, Y Z = (Z+1)Y , Y X = a′(Z), and 
XY = ς(a′(Z)). Since X, Y , and Z generate R as an algebra, then R has a presentation 
as the classical GWA k[Z][X, Y ; ς, a′(Z)].

Let

γ = 1
2β

(
w2 − 2β + w

√
w2 − 4β

)

and note that if w2 − 4β = 0, then γ = 1. A check shows that τλ,μ,β(X) = γX, 
τλ,μ,β(Y ) = γ−1Y and τλ,μ,β(Z) = Z. Thus, the action of g is diagonal with respect 
to this presentation and so by [12, Theorem 2.6], R〈g〉 = k[Z][X�, Y �; ς�, A(Z)] where 
A(Z) =

∏n−1
i=0 ς−i(a′(Z)).

Finally, suppose we are in the case g = τλ,μ,β ◦ Ω but λμ = 1. Here, we set K+ = t, 
K− = 0, and let

X =
(
β − λ2)x +

(
λ2

2

)
y + 2λz − (t + 1)λ,
β − λ
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Y =
(

1
β − λ2

)
y, Z =

(
λ

β − λ2

)
y + z.

The same argument as before works with γ = λ2/β. �
The next theorem is analogous to the main result in [18], as well as [2, Theorem 2]. 

That is, these GWAs are rigid with respect to cyclic group actions.

Corollary 2.11. Let R be a classical GWA with degz(a) = 2 and let G, H ⊂ Autfl(R) be 
finite cyclic groups. If RG ∼= RH , then G ∼= H. In particular, if RH ∼= R, then H is 
trivial.

Proof. An isomorphism of classical GWAs must preserve the degree of the defining poly-
nomial [7, Theorem 3.28]. By Theorem 2.10, the degree of the defining polynomial of RG

(resp. RH) is 2|G| (resp. 2|H|). Thus, if RG ∼= RH , then |G| = |H|. �
Let R = k[z][x, y; σ, a] be a GWA, not necessarily classical. Two roots α, β of a are said 

to be congruent if there exists an i ∈ Z such that, as ideals of k[z], 
(
σi(z − α)

)
= (z − β). 

By [8, Theorem 1.6] and [10, Theorem 4.4], the global dimension of R satisfies

gldimR =

⎧⎪⎪⎨
⎪⎪⎩
∞ if a has a multiple root
2 if a has a congruent root and no multiple roots
1 if a has no congruent roots and no multiple roots.

Corollary 2.12. Let R = k[z][x, y; σ, a] be a classical GWA with a = z(z − t) and let 
H ⊂ Autfl(R) be a finite cyclic group with |H| > 2.

1. If gldim(R) = ∞, then gldim(RH) = ∞.
2. If gldim(R) = 1, then gldim(RH) = 1.
3. If gldim(R) = 2, then t ∈ Z and

gldim(RH) =
{

2 if |t| ≥ |H|
∞ otherwise.

Proof. By Theorem 2.10, it suffices to consider the fixed ring by a diagonal action on R. 
Note that in Theorem 2.10, we have |K+ −K−| = t and so the change of generating set 
does not affect the difference between the roots. We freely use the notation from that 
theorem in this proof.

Recall that A(Z) =
∏n

i=0 ς
−i(a′(Z)). If a has a multiple root then so does A, proving 

(1). Suppose that t > 0. The case t < 0 is similar. Then the roots of A(Z) are 0, 1, . . . , n −
1, t, t +1, . . . , t +(n −1). In this case, gldim(RH) = ∞ if and only if 0 < t ≤ n −1. Because 
the automorphism associated to RH is ςn, where ς(Z) = Z − 1, then it follows that RH
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has congruent roots if and only if R has congruent roots, proving (2). Furthermore, if 
gldim(R) = 2, so t ∈ Z and t �= 0, then gldim(RH) ≥ 2 and A(Z) has multiple roots if 
and only if t ≥ |H|. �

It is clear that Corollary 2.12 also applies to higher degree classical GWAs under 
the action of Θβ . As another application of Theorem 2.10, we consider the Calabi-Yau 
property for fixed rings of classical GWAs with degz(a) = 2.

For an algebra A, we denote the enveloping algebra of A by Ae = A ⊗Aop, where Aop

is the opposite algebra of A. The algebra A is homologically smooth if it has a finitely 
generated projective resolution of finite length in Ae. If, further, there exists d ∈ N such 
that ExtiAe(A, Ae) ∼= δi,dA, where δ is the Kronecker-delta function, then A is said to be
Calabi-Yau of dimension d.

By a result of Liu, a classical GWA R = k[z][x, y; σ, a] is Calabi-Yau if and only if R
has finite global dimension [16, Theorem 1.1]. The Ext condition holds for all classical 
GWAs, but Liu proves that the finite global dimension hypothesis implies homological 
smoothness. It is noted in the discussion that for a homologically smooth algebra A, 
the Calabi-Yau dimension is bounded below by the global dimension. Consequently, if 
gldim(R) = ∞, then R is not homologically smooth. The next result now follows from 
the Corollary 2.12.

Corollary 2.13. Let R = k[z][x, y; σ, a] be a classical GWA with a = z(z − t) and let 
H ⊂ Autfl(R) be a finite cyclic group with |H| > 2. Then RH is Calabi-Yau if and only 
if R is Calabi-Yau and either gldim(R) = 1 or gldim(R) = 2 and |t| ≥ |H|.

In most cases, we are unable to say whether the fixed ring of a classical GWA by a 
non-cyclic group of filtered automorphisms is a GWA. However, we can in one special 
case.

Corollary 2.14. Let R = A1(k) and H = 〈Θ−1,Ω〉 ⊂ Autfl(R). Then RH is a classical 
GWA.

Proof. By Proposition 2.1, R〈Θ−1〉 is a classical GWA of degree 2. Since Ω is a filtered 

automorphism on R〈Θ−1〉, then RH =
(
R〈Θ−1〉

)〈Ω〉. The result now follows from Theo-
rem 2.10. �
3. The case n ≥ 3

Let R = k[z][x, y; σ, a] with n = deg(a) ≥ 3. By Theorem 2.4, if a is not reflective then 
Autfl(R) is generated by the maps Θβ and if a is reflective than Autfl(R) is generated 
by Ω and the maps Θβ. In the former case, any finite subgroup H of Autfl(R) will be 
cyclic, generated by some Θβ where β is a root of unity. In this case, by [12, Theorem 
2.6], RH is again a generalized Weyl algebra.

We now study the finite subgroups of Autfl(R) when a is reflective.
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Theorem 3.1. Let R = k[z][x, y; σ, a] be a classical GWA with a ∈ k[z] a reflective poly-
nomial of degree n ≥ 3. Let H be a nontrivial finite subgroup of Autfl(R). If n is even, 
then one of the following holds:

1. H = 〈Θβ ◦ Ω〉 for some β ∈ k
× and H ∼= C2,

2. H = 〈Θλ〉 for some λ ∈ k
× an mth root of unity and H ∼= Cm, or

3. H = 〈Θβ ◦ Ω,Θλ〉 for some β, λ ∈ k
× with λ an mth root of unity and H ∼= D2m, 

the dihedral group of order 2m.

If n is odd, then one of the following holds:

1. H = 〈Θβ ◦ Ω〉 for some β ∈ k
× and H ∼= C4,

2. H = 〈Θλ〉 for some λ ∈ k
× an mth root of unity and H ∼= Cm, or

3. H = 〈Θβ ◦ Ω,Θλ〉 for some β, λ ∈ k
× with λ an 2mth root of unity and H ∼= Dicm, 

the binary dihedral group of order 4m.

Proof. Using Proposition 2.2, each element of Autfl(R) can be written as either Θβ or 
Θβ ◦Ω for some β ∈ k

×. The automorphisms Θβ ◦Ω have order 2 if n is even and order 
4 if n is odd. The automorphisms Θβ have finite order if and only if β is a root of unity.

We consider the case that n is even. The case of n odd is similar. Let H be a finite 
subgroup of Autfl(R). Suppose first that H does not contain Θβ for any β �= 1. Because 
Θβ ◦ Ω ◦ Θγ ◦ Ω = Θβγ−1 for all γ ∈ k

×, this means that H is generated by a single 
Θβ ◦ Ω and we are in Case 1.

Now if H contains Θβ, then β must be a root of unity. Consider the subgroup of C
of H consisting of elements of the form Θβ. Since Θβ ◦ Θγ = Θβγ for any γ ∈ k

×, then 
C is generated by a single Θλ where λ is an mth root of unity. If H = C, then we are in 
Case 2.

So now suppose that H �= C, so H contains some Θβ ◦ Ω. If Θγ ◦ Ω ∈ H for some 
γ ∈ k

×, then since Θβ ◦ Ω ◦ Θγ ◦ Ω = Θβγ−1 , we must have that βγ−1 = λj for some 
0 ≤ j < m, so γ = βλ−j and hence Θγ ◦ Ω = Θβ ◦ Ω ◦ Θλj , and we are in Case 3. 
Therefore, H is generated by Θβ ◦ Ω and Θλ. Finally,

Θβ ◦ Ω ◦ Θλ = Θ−1
λ ◦ Θβ ◦ Ω

so H ∼= D2m, as claimed. �
The classical GWA R = k[z][x, y; σ, a] is naturally Z-graded by letting degx = 1, 

deg y = −1 and deg f = 0 for all f ∈ k[z]. Under this grading, the maps Θβ are graded 
automorphisms and the map Ω reverses the grading on R. In what follows, we exploit 
this Z-grading on R.

Theorem 3.2. Let R = k[z][x, y; σ, a] be a classical GWA with n = degz(a). Suppose that 
a is a reflective polynomial so there exists ρ ∈ k with a(ρ − z) = (−1)na(z). If n is even, 
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then R〈Θβ◦Ω〉 is generated over k[z(1 + ρ − z)] by x + βy and zx + β(1 + ρ − z)y. If n is 
odd, then R〈Θβ◦Ω〉 is generated over k[z(1 +ρ −z)] by x2+β2y2 and zx2+β2(1 +ρ −z)y2.

Proof. By using the relations in R, each element r of R can be written

r =
m∑
i=0

fi(z)xi +
m∑
i=1

gi(z)yi

for some fi(z), gi(z) ∈ k[z]. Since Θβ ◦ Ω reverses the Z-grading on R, if r is fixed by 
Θβ ◦ Ω, then we must have, for each 1 ≤ i ≤ m,

Θβ ◦ Ω(fi(z)xi) = gi(z)yi and Θβ ◦ Ω(gi(z)yi) = fi(z)xi

and hence

β−ifi(1 + ρ− z) = gi(z) and (−1)niβ−ifi(1 + ρ− z) = gi(z).

Hence, the only nonzero summands of r occur when ni is even.
In particular, when i = 0, we must have that f0(1 + ρ − z) = f0(z). By an induction 

argument, each g(z) ∈ k[z] can be written as h1 + zh2 for some h1, h2 ∈ k[z(1 + ρ − z)]. 
Hence, if g(1 + ρ − z) = g(z), then h2 = 0 so f0 ∈ k[z(1 + ρ − z)].

If n is even, then each invariant is a sum of terms of the form f(z)xm+βmf(1 +ρ −z)ym
where m ≥ 0 and f(z) ∈ k[z]. We claim that each of these elements is generated over 
k[z(1 + ρ − z)] by x + βy and zx + β(1 + ρ − z)y. Since each f(z) ∈ k[z] can be written 
as h1 + zh2 for some h1, h2 ∈ k[z(1 + ρ − z)], therefore we can write any

f(z)xj + βjf(1 + ρ− z)yj

as a k[z(1 + ρ − z)]-linear combination of xj + βjyj and zxj + βj(1 + ρ − z)yj .
It therefore suffices to show that for any j ≥ 0, we can generate any xj + βjyj and 

zxj + βj(1 + ρ − z)yj . Now observe that

(
xj−1 + βj−1yj−1) (x + βy) = xj + βxj−1y + βj−1yj−1x + βjyj

and since a(z) = a(ρ − z),

βxj−1y + βj−1yj−1x = βxj−2a(z − 1) + βj−1yj−2a(z)

= βa(z − j + 1)xj−2 + βj−1a(z + j − 2)yj−2

= βa(z − j + 1)xj−2 + βj−1a(ρ− (z + j − 2))yj−2

= β
[
a(z − j + 1)xj−2 + βj−2a((1 + ρ− z) − j + 1))yj−2]
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so by induction we can generate any xj + βjyj . By a similar argument, we can generate 
any zxj + βj(1 + ρ − z)yj . Therefore, the invariant ring has the claimed generators. The 
proof when n is odd is similar. �
Corollary 3.3. Let R = k[z][x, y; σ, a] be a classical GWA with n = degz(a) and a reflec-
tive. Let

A =
{
x + βy n even
x2 + β2y2 n odd,

B =
{
zx + β(1 + ρ− z)y n even
zx2 + β2(1 + ρ− z)y2 n odd,

and C = z(1 +ρ −z) so that A, B, and C generate R〈Ω〉. If n is even, then the generators 
satisfy the following relations

[A,C] = 2B − (2 + ρ)A, [B,A] = A2 + βf(C),

[B,C] = ρB − 2CA, B2 = ρBA− CA2 + βg(C).

If n is odd, then the generators satisfy the following relations

[A,C] = 4B − 2(3 + ρ)A, [B,A] = 2A2 + βf(C),

[B,C] = 2(ρ− 1)B − 4CA, B2 = (ρ− 1)BA− CA2 + βg(C).

In both cases, f(C) and g(C) represent polynomials in C with

degC(f) =
{
n n even
2n n odd,

and degC(g) =
{

1 + n
2 n even

2n + 1 n odd.

Proof. Assume n is even. The case of n odd is similar. This is largely direct computation 
and we omit those for [A, C] and [B, C]. Next we have,

[B,A] = [zx + β(1 + ρ− z)y, x + βy]

= [z, x]x + β[1 + ρ− z, y]y + β[zx, y] + β2[(1 + ρ− z)y, x]

= (x2 + β2y2) + β(ρ− 2z)yx + β(2z − 2 + ρ)xy

= A2 + β ((ρ− 1 − 2z)a + (2z − 3 − ρ)σ(a)) .

Observe that (ρ − 1 − 2z)a + (2z − 3 − ρ)σ(a) ∈ k[z] and

Ω((ρ− 1 − 2z)a + (2z − 3 − ρ)σ(a)) = (2z − 3 − ρ)σ(a) + (ρ− 1 − 2z)a.

Hence, it must be possible to express this as a polynomial in C. Finally we have

B2 = ρBA− CA2 + β((3 + ρ)z − 2z2)σ(a) + β((1 − ρ2) + (3ρ + 1)z − 2z2)a.

As in the computation for [B, A], the remaining polynomial in z is fixed by Ω. �
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It is not clear to us whether R〈Ω〉 is a GWA for degz(a) ≥ 3. One piece of evidence 
against is the following. A classical GWA R = k[z][x, y; σ, a] with degz(a) = 2 can be 
presented with two generators by solving the relation yx − xy = a − σ(a) for z and 
substituting into the other relations. When degz(a) > 2, one cannot generate R using 
only x and y, but whether one can use a different pair of generators for R is unclear. We 
would expect that, were R〈Ω〉 to be a classical GWA for degz(a) ≥ 3, then the degree of 
the corresponding defining polynomial would be higher and thus not able to be presented 
with two generators. However, one observes from Corollary 3.3 that it is possible to take

B =
{

1
2 (AC − CA + (2 + ρ)A) n even
1
4 (AC − CA + 2(3 + ρ)A) n odd.

4. Auslander’s Theorem

In this final section we consider Auslander’s theorem. As stated in the introduction, 
it is sufficient in many cases to show that p(A, G) ≥ 2 for an algebra A and a group G
acting on A. In particular, by various results in [4,5], this applies when

1. A is noetherian, connected graded AS regular, and Cohen-Macaulay of GK dimension 
at least two, and G is a group acting linearly on A;

2. A is a noetherian PI and Kdim-CM algebra of Krull dimension at least 2;
3. A is congenial and G preserves the filtration on A.

Our focus will be on the last condition. We refer to [4] for a full definition.

Lemma 4.1. Suppose F is a field of characteristic p > 0 and R = F [z][x, y; σ, a] a classical 
GWA. Then F [xp, yp] ⊂ Z(R).

Proof. It is clear that σp = id and, moreover, σk = id if and only if p | k. Thus, 
[xp, z] = [yp, z] = 0. Since xy − yx = a − σ−1(a), then it follows by induction that

xky − yxk = (σk−1(a) − σ−1(a))xk−1,

xyk − ykx = (a− σ−k(a))yk−1.

Setting k = p gives [xp, y] = [x, yp] = 0 and the claim holds. �
Let R = k[z][x, y; σ, a] be a classical GWA and write

a = zn + cn−1z
n−1 + · · · + c1z + c0, ci ∈ k.

Set D = Z[c0, . . . , cn−1], then it is not difficult to see that RD = D[z][x, y; σ, a] is again 
a GWA. Moreover, RD is free over D with a basis consisting of the standard monomials 
and



J. Gaddis, R. Won / Journal of Algebra 536 (2019) 149–169 167
RD = D[z][x, y;σ, a] ⊗D k = (D ⊗D k)[z][x, y;σ, a] = k[z][x, y;σ, a] = R.

That is, RD is an order of R. Next, we check the conditions of congeniality.

1. Under the standard filtration, R is a noetherian locally finite filtered algebra with 
the standard filtration.

2. The algebra RD is also noetherian locally finite filtered (over D) and the standard 
filtration on R induces a filtration on RD.

3. It is clear that grRD is an order of grR.
4. It is well-known that grRD = D[x, y, z]/(xy−zn) is strongly noetherian and a locally 

finite graded algebra over D.
5. Let F be a factor ring of D that is a finite field of characteristic p. Then

RD ⊗D F ∼= (D ⊗D F )[z][x, y;σ, a]

and hence RD ⊗D F is noetherian. Moreover, by Lemma 4.1, it is module finite over 
the commutative subalgebra F [xp, yp].

We now adapt the methods of [9] to show that the pertinency condition is satisfied 
for a classical GWA and a cyclic subgroup of filtered automorphisms.

Lemma 4.2. Let R = k[z][x, y; σ, a] be a classical GWA. Set G = 〈Θβ〉 with β a primitive 
�th root of unity, � ≥ 2. Then the Auslander map is an isomorphism for the pair (R, G).

Proof. Set S = gr(R) under the standard filtration. Then G acts as graded automor-
phisms on S. We claim first that the theorem holds for the pair (S, G). Define

f =
�−1∑
i=0

1#(Θβ)i ∈ S#G.

Now observe that

xf − f(βx) =
�−2∑
i=0

(1 − βi+1)x#(Θβ)i ∈ (f).

Repeating this process we find that x�−1#e ∈ (f). Similarly, y�−1#e ∈ (f) and so

y�−1x�−1 = (a2)�−1 ∈ (f).

Through the natural embedding S ↪→ S#G given by s 	→ s#e, we have

GKdimS#G/(f) = GKdimS/((f) ∩ S).
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It follows from the above computation that S/((f) ∩ S) is finite-dimensional and so 
p(S, G) = 2. Thus, the Auslander map is an isomorphism for (S, G) [4, Theorem 0.2].

The action of Θβ respects the standard filtration on R, both R and S are noetherian, 
and as S is a commutative complete intersection ring, it is CM and thus R is CM by [20, 
Lemma 4.4]. Hence, p(R, G) ≥ p(S, G) = 2 by [4, Proposition 3.6] and so the theorem 
holds for (R, G) by [4, Theorem 3.3]. �
Lemma 4.3. Let R = k[z][x, y; σ, a] be a classical GWA with a ∈ k[z] reflective, degz(a) ≥
3, and β ∈ k

×. The Auslander map is an isomorphism for the pair (R, 〈Θβ ◦ Ω〉).

Proof. This follows similarly to Theorem 4.4. Set φ = Θβ ◦Ω and H = 〈φ〉. Throughout, 
let S = gr(R) and f = 1#e + 1#φ ∈ S#H.

First we consider the case of n odd. We have xf + fβ−1y = (x + β−1y)#e ∈ (f). On 
the other hand, yf − f(βx) = (y − βx)#e ∈ (f). It follows that x#e, y#e ∈ (f).

Next we suppose n is even. Then xf − f(β−1y) = (x − β−1y)#e ∈ (f). Similarly, 
(x2 −β−2y2)#e ∈ (f) and zf + fz = 2z#e ∈ (f). It now follows that x2#e, y2#e ∈ (f).

Hence, in either case, we have S/((f) ∩ S) is finite-dimensional and so p(R, H) ≥
p(S, H) = 2. �
Theorem 4.4. Let R = k[z][x, y; σ, a] be a classical GWA and let G be a finite nontrivial 
cyclic subgroup of Autfl(R). Then the Auslander map is an isomorphism for the pair 
(R, G).

Proof. The case degz(a) = 1 is a consequence of [17, Theorem 2.4]. If degz(a) = 2, then 
we apply Theorem 2.10 and the result follows from Theorem 4.2. Finally, if degz(a) >
2, then by Theorem 2.4, G = 〈Θβ〉 or G = 〈Θβ ◦ Ω〉 and so the result follows from 
Lemma 4.2 and Lemma 4.3. �

We end with a brief remark on the structure of the skew group ring appearing in the 
above results. Let R = k[z][x, y; σ, a] be a classical GWA and let G = 〈Θβ〉, 2 ≤ |β| < ∞. 
Then R#G ∼= RG[x, y; ̂σ, ̂a] where RG is the group algebra of G with coefficients in R
and σ̂, ̂a are naturally extended to RG from R. That is, â = a#e, and σ̂(p#Θk

β) =
β−k(σ(p)#Θk

β). When degz(a) = 2, one can apply Theorem 2.10 and achieve the same 
result for any finite cyclic group acting linearly on R. Theorem 4.4 now implies, by way 
of the Auslander map, that the corresponding endomorphism ring has the structure of 
a GWA.
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