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1. Introduction

This article contributes to the study of the automorphism groups of countable struc-
tures. Such groups are natural examples of separable and completely metrisable topolog-
ical groups. The richness of their topological properties have recently brought to light a 
crucial interplay between Fraïssé amalgamation theory and other areas of mathematics 
like topological dynamics, Ramsey theory, and ergodic theory. (See [1] and [5].)

The program of understanding the normal subgroup structure of these groups dates 
back at least to the ’50s, when Higman [4] proved that Aut(Q, <), the group of order-
preserving permutations of the rational numbers, has very few normal subgroups.1

In recent years, Macpherson and Tent [8] proved simplicity for a large collection of 
groups that arise in a similar fashion as automorphism groups of homogeneous structures. 
Their methods encompass a number of examples that had been considered before by 
various authors: the random graph [14], the random Kn-free graphs and the random 
tournament [10], and many others. However, as the authors of [8] pointed out, their 
framework does not apply to ordered or even partially ordered structures, in particular 
it does not apply to the random poset whose automorphism group was proved to be 
simple in [3].

A few years later, Tent and Ziegler [12] introduced the notion of a stationary inde-
pendence relation and investigated automorphism groups of structures allowing for such 
a relation. Their approach is very general: apart from recovering the cases from [8] it 
applies to the random poset and many homogeneous metric structures like the Urysohn 
space and its variations. However, ordered homogeneous structures like the ordered ran-
dom graph and the random tournament do not carry such a stationary independence 
relation.

In this article we weaken the notion of a stationary independence relation from [12] to 
study the automorphism groups of many order and tournament expansions of structures 
arising naturally in Fraïssé amalgamation theory. We believe that such weakly stationary 
independence relations will also be useful in other expansions of homogeneous structures.

Before stating our main theorem, we introduce some terminology.

Definition 1.1. Let Li, i = 1, 2, be disjoint relational languages and let Mi, i = 1, 2, 
countable homogeneous Li structures on the same universe M . We call an L∗ = L1 ∪L2

structure M∗ on M the free fusion of M1 and M2 if M∗ � Li = Mi, i = 1, 2, and

(∗) for every non-algebraic Li-type pi over a finite set Ai ⊂ M for i = 1, 2, their union 
p1 ∪ p2 is realized in M∗.

1 In fact, the only nontrivial normal subgroups of Aut(Q, <) are the obvious ones: the one consisting of 
those automorphisms that fix point-wise some interval (a, ∞), the one consisting of those automorphisms 
that fix point-wise some interval (−∞, b), and their intersection.
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For any L∗-type p and L ⊂ L∗, we write pL for its restriction to L.

All types considered in this article are types over finite sets.
Similar constructions were considered by Bodirsky [2] and Sokić in [11].
We are particularly interested in the following special cases:

I. Order expansion Let L1 be a relational language and M = M1 be a countable 
homogeneous L1-structure on a set M . Let L2 = {<} and M2 ∼= Q be a dense linear 
ordering on M . In this case we denote the free fusion of M1 and M2 by M< and call it 
an order expansion of M. Thus, an L∗-structure M< is an order expansion of M if < is 
a total order on M without endpoints, M< � L1 = M, and M< satisfies the following 
property:

(∗) For every non-algebraic 1-type pL1 over a finite set A, and every interval (a, b) ⊆ M , 
there is a realization of p in (a, b).

II. Tournament expansion Let L1 be a relational language and M = M1 be a homoge-
neous L1-structure on a set M . Let L2 = {→} and M2 be a random tournament on M . 
In this case we denote the free fusion of M1 and M2 by M→ and call it a tournament 
expansion of M. Thus, an L∗-structure M→ is a tournament expansion of M if → is a 
tournament on M , M→ � L1 = M, and M→ satisfies the following property:

(∗) For every non-algebraic 1-type pL1 over a finite set X, and two disjoint finite subsets 
A, B ⊆ M , there is a realization x of p such that x → a for all a ∈ A and b → x for 
all b ∈ B.

Remark 1.2. Note that if Mi, i = 1, 2, is the Fraïssé limit of some Li-class Ci, i = 1, 2
having disjoint amalgamation, then a structure M∗ is the free fusion of M1 and M2 if 
and only if M∗ is the Fraïssé limit of the L∗-class C∗ where an L∗-structure A∗ is in C∗

if and only if A∗ � Li ∈ Ci, i = 1, 2.
Thus, a structure M∗ is an order expansion of a Fraïssé limit M with disjoint amal-

gamation if and only if M∗ is the Fraïssé limit of the class C< where an L∗-structure A<

is in C< if and only if A< � L1 ∈ C. Equivalently, C< consists of all A ∈ C expanded by 
all possible orderings. Similarly for the tournament expansion of a Fraïssé limit.

Our main theorem can now be stated as follows:

Theorem 1.3. Assume that M is one of the following:

(1) the Fraïssé limit of a free, transitive and nontrivial amalgamation class2;

2 We call an amalgamation class nontrivial, if its limit is not an indiscernible set and transitive if the 
automorphism group of its Fraïssé limit is transitive.
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(2) the bounded rational Urysohn space; or
(3) the random poset.

If M∗ is an order expansion of M, then G := Aut(M∗) is simple. The same holds if
M∗ is a tournament expansion of (1) or (2).

Apart from the ordered bounded rational Urysohn space see (e.g. [13]), Theorem 1.3
implies simplicity of the automorphism groups of various countable structures includ-
ing the ordered random poset, the ordered random graph, the ordered random n-
hypergraphs, the ordered random Kn-free graphs and their hypergraph analogues.

Remark 1.4. In the same way as in [12] we can also conclude that for the ordered rational 
Urysohn space U<, the quotient of Aut(U<) modulo the normal subgroup of automor-
phisms of bounded displacement is a simple group.

Note also that with minor modifications the same proof applies to expansions by 
several independent tournaments or indeed for any binary homogeneous structure with 
the property that the union of 1-types over disjoint finite sets is always consistent. 
Furthermore, it is worth pointing out that the proof also adapts to several independent 
orderings. These generalisations were shown by Silke Meißner in her master’s thesis [9].

Theorem 1.3 is proved in two main steps: we first define a notion of moving maximally 
adapted to free fusion structures and a notion of compatibility and prove:

Theorem 1.5. Let M∗ be the free fusion of a homogeneous L1-structure M1 carrying a 
stationary independence relation with an L2-structure M2. If g ∈ G moves maximally 
and is compatible, then any element of G is the product of at most eight conjugates of g
and g−1.

In Section 4 we prove simplicity of G for the ordered random posets and complete the 
proof of Theorem 1.3 by proving:

Proposition 1.6. If M∗ is an order or tournament expansion of a structure M as in 
Theorem 1.3 (1) or (2) and id 	= h ∈ G = Aut(M∗), then there is some g ∈ 〈h〉G that 
moves maximally and is compatible.

Clearly, Proposition 1.6 and Theorem 1.5 imply Theorem 1.3 for the cases (1) and 
(2).

2. Background and definitions

First we recall the definition of a stationary independence relation due to Tent and 
Ziegler. We also follow their convention by saying that a tuple a′ from a countable 
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structure M realizes a type tp(a/A) over a finite set A ⊂ M if there is an automorphism 
of M that maps a to a′ and fixes A pointwise.

Definition 2.1. [12, Definition 2.1] Let M be a countable structure with universe M and 
let |� be a ternary relation between finite subset of M . We say that |� is a stationary 
independence relation on M if for all finite sets A, B, C, D ⊆ M the following hold:

(i) (Invariance) The independence of A and B over C depends only on the type of 
ABC. In other words, if tp(ABC) = tp(A′B′C ′), then

A |�
C

B if and only if A′ |�
C′

B′.

(ii) (Monotonicity) A |�B CD implies that A |�B C and A |�BC D.
(iii) (Transitivity)3

A |�
B

C and A |�
BC

D implies A |�
B

CD.

(iv) (Symmetry) A |�B C if and only if C |�B A.
(v) (Existence) If p is a non-algebraic type over B and C is a finite set, there is some 

a realizing p such that a |�B C.
(vi) (Stationarity) If the tuples x and y have the same type over B and are both 

independent from C over B, then x and y have the same type over BC.

Moreover, we will write A |� C for A |�∅ C.

Remark 2.2. As in [12, 2.4] we let A |�C;D B denote the conjunction of AC |�D B and 
A |�C BD. Then Transitivity and Monotonicity imply

x1x2 |�
A;B

y1y2 if and only if
[
x1 |�

A;B
y1 and x2 |�

Ax1;By1

y2

]
.

Remark 2.3. Recall from [12] that if M is the limit of a Fraïssé class of structures with 
free amalgamation, then M admits a stationary independence relation: define A |�B C

if and only if ABC is isomorphic to the free amalgam of A and C over B, i.e. if and 
only if A ∩ C = B and for every n-ary relation R in L, if d1, . . . , dn is an n-tuple in 
A ∪ B ∪ C with some di ∈ A \ B and dj ∈ C \ B, then R(d1, . . . , dn) does not hold. 
(See [12, Example 2.2].)

For the stationary independence relation on the (bounded) Urysohn space and other 
metric spaces, we put A |�C B if and only if for all a ∈ A, b ∈ B there is some c ∈ C

3 As noted by several people Transitivity follows from the other axioms. We include it here for convenience.
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such that d(a, b) = d(a, c) + d(c, b), and A |� B if and only if for all a ∈ A, b ∈ B the 
distance d(a, b) is maximal, see [12].

In the same vein, the random poset carries a natural stationary independence relation, 
namely A |�C B if and only if A ∩B ⊂ C and for all a ∈ A \C, b ∈ B\C such that a <po b

or b <po a there is some c ∈ C such that a <po c <po b or b <po c <po a, respectively, where 
we write <po for the partial order of the random poset (see [6, 4.2.1]). Note that we have 
A |� B if and only if no element of a is comparable in the partial order to any element 
of B, i.e. if for all a ∈ A, b ∈ B we have a ≮po b and b ≮po a.

Definition 2.4. Let M∗ be the free fusion of countable Li-structures Mi, i = 1, 2, with 
universe M and let |� be a ternary relation between finite subset of M . We say that |� is a 
weakly stationary independence relation on M∗ if it satisfies (Invariance), (Monotonicity), 
(Symmetry), (Existence) and

(v′) (Weak Stationarity) If x and y have the same L∗-type over B and are both inde-
pendent from C over B, then x and y have the same L1-type over BC. Thus, if 
furthermore tpL2

(x/BC) = tpL2
(y/BC), then x and y have the same L∗-type over 

BC.

We first note the following:

Proposition 2.5. Let M∗ be the free fusion of a homogeneous L1-structure M1 carrying a 
stationary independence relation |� with an L2-structure M2. Then on M∗ the relation 
|� is a weakly stationary independence relation.

Proof. All properties except (Existence) follow immediately. To see that (Existence) 
holds for L∗-types, let p be an L∗-type over a finite set B and let C be a finite set. By 
(Existence) for L1-types there is a realization a of pL1 with a |�B C. By (∗), there is a 
realization b of tpL1

(a/BC) realizing pL2 . Then b realizes p and b |�B C. �
Remark 2.6. The proof shows in fact that for any finite sets A, B and C, any L1-type 
pL1 over a finite set A and any L2-type qL2 over a finite set B there is a realization of 
pL1 ∪ qL2 which is independent from C over A.

We first note the following adaptation from [12]:

Lemma 2.7. If M∗ is the free fusion of a homogeneous L1-structure M1 carrying a 
stationary independence relation |� with some L2-structure M2. If Aut(M2) has a dense 
conjugacy class, then G = Aut(M∗) has a dense conjugacy class as well.

Proof. Clearly, G contains a dense conjugacy class if and only if for any finite tu-
ples x̄, ȳ, ̄a, ̄b with tp(x̄) = tp(ȳ) and tp(ā) = tp(b̄) there are tuples x̄′, ȳ′ such that 
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tp(x̄′ȳ′) = tp(x̄ȳ) and tp(x̄′ā) = tp(ȳ′b̄). Since M∗ carries a weakly stationary in-
dependence relation, we can choose x̄′ȳ′ realising tp(x̄ȳ) with x̄′ȳ′ |� āb̄. By condi-
tion (∗) and since Aut(M2) has a dense conjugacy class, we can choose x̄′ȳ′ so that 
tpL2

(x̄′ā) = tpL2
(ȳ′b̄). By Weak Stationarity we then have tp(x̄′ā) = tp(ȳ′b̄). �

Notation. For a, g ∈ G, we write ga = a−1ga and [a, g] = a−1g−1ag.

Definition 2.8. Suppose that G acts transitively on M . We say that g ∈ G is L2-
homogeneous if for any element x ∈ M and a ∈ G we have tpL2

(g(x)/x) = tpL2
(ga(x)/x), 

or, equivalently, if for all x, y ∈ M we have tpL2
(xg(x)) = tpL2

(yg(y)).

Example 2.9. Let M∗ be the free fusion of a homogeneous L1-structure M1 carrying a 
stationary independence relation with an L2-structure M2 and let G = Aut(M∗).

1. If M2 is the trivial structure, any fixed point free g ∈ G is L2-homogeneous.

2. If M< is an order expansion of M1, then g ∈ G is <-homogeneous if and only if g is 
the identity isomorphism, or g is strictly increasing or g is strictly decreasing.

3. If M→ is a tournament expansion of M1, then g ∈ G is →-homogeneous if and only 
if g is the identity isomorphism, or a → g(a) for all a ∈ M , or g(a) → a for all a ∈ M .

4. If M2 is the random graph, then g ∈ G is E-homogeneous if and only if g is the 
identity isomorphism, E(a, g(a)) for all a ∈ M or ¬E(a, g(a)) for all a ∈ M .

Remark 2.10. Using property (∗) and back-and-forth it is easy to construct examples of 
L2-homogeneous automorphisms in each of the cases above.

The free fusion of two structures both having a stationary independence relation has 
again a stationary independence relation. Therefore, while our methods will transfer, we 
do not consider e.g. expansions by graphs in this article.

Definition 2.11. Let M∗ be the free fusion of a homogeneous L1-structure M1 carrying 
a stationary independence relation with an L2-structure M2 and let G = Aut(M∗). We 
say that g ∈ G moves maximally if

(i) g is L2-homogeneous; and
(ii) every non-algebraic type over a finite set X has a realization x such that

x |�
X;g(X)

g(x).

When x is a realization as in (ii), we say that x is moved maximally by g over X.

Clearly if g moves maximally, then so do g−1 and all conjugates of g.
We will frequently use the following refinement of the maximal moving condition:
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Proposition 2.12. If g ∈ G is moving maximally, then for every non-algebraic n-type p
over a finite set X and non-algebraic L2-type qL2 over A such that qL2 ∪pL2 is consistent 
there is some y realizing p ∪ qL2 which is moved maximally by g over X.

Proof. Suppose that g moves maximally and consider a non-algebraic type p over a 
finite set X and an L2-type qL2 over A ⊂ M such that qL2 ∪ pL2 is consistent. Let 
y be a realization of pL1 such that y |�X A. By (∗) we can choose a realisation z
of tpL1

(y/XA) ∪ qL2 . Thus z |�X A. Since g moves maximally, there is a realization 
c of tp(z/XA) such that c |�XA;g(XA) g(c). Furthermore, since c |�XA g(XA)g(c)
and c |�X A, we get c |�X g(X)g(c) by Transitivity. Similarly, g(c) |�g(X) g(A) and 
cXA |�g(XA) g(c) imply cX |�g(X) g(c) and hence we see that c |�X;g(X) g(c).

Thus c realizes p ∪ qL2 and is moved maximally by g over X. �
Notation. For a tuple x we denote the components by xi.

Definition 2.13. Let M∗ be the free fusion of a homogeneous L1-structure M1 carrying 
a stationary independence relation with an L2-structure M2 and let g ∈ G = Aut(M∗)
move maximally. We say that g is compatible if the following holds:

Any finite set X0 has a finite extension X depending only on X0 and g such that the 
following holds:

(1) for all tuples x, y such that g(tp(x/X)) = tp(y/Y ) with Y = g(X), tpL2
(yi/xi) =

tpL2
(g(xi)/xi) and x |�X;Y y there is some a ∈ Fix(XY ) such that ga(x) = y. In this 

case we call X full for g.

(2) Suppose that b ∈ G, Z is a finite set such that gb(Z) = Y , x, z are tuples such that 
gb(tp(z/Z)) = g(tp(x/X)), z |�Z Y X, x |�X Y Z. Then there is some b′ ∈ Fix(Y Z), 
and some finite extension Z+ of Z which is full for gb and such that with Y + = gb(Z+)
we have tp(gbb′(z)/Y ) = tp(gb(z)/Y ),

gbb
′
(z) |�

Y
(b′)−1(Y +) and b′(z) |�

Z+
Y +

and the L2-type

p = tpL2
(gbb

′
(z)/b′ −1(Y +)) ∪

⋃
i

tpL2
(g(xi)/xi) ∪

⋃
i

tpL2
(gbb

′
(zi)/zi)

is consistent.

Note that our notion L2-homogeneity only refers to 2-types consisting of a single 
element and its image. This is suitable only for binary languages. While a similar notion 
can be defined for higher arities, we leave the details for future investigation.
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Proposition 2.14. Let M∗ be the free fusion of a homogeneous L1-structure M1 carrying 
a stationary independence relation with an L2-structure M2 and let g ∈ G = Aut(M∗)
move maximally. If g is compatible and X is full for g, Y = g(X), then the following 
holds:

For any finite set Z such that g(X) = Y = gb(Z) for some b ∈ G and all tuples 
x, z such tp(g(x)/Y ) = tp(gb(z)/Y ) and x |�X Y Z and XY |�Z z there are a1 ∈
Fix(XY ), a2 ∈ Fix(Y Z) such that g−ba2ga1(x) = z.

Proof. Since g is compatible, there is a finite extension Z+ of Z which is full for gb and 
there is b′ ∈ Fix(Y Z) such that with Y + = gb(Z+), Y ∗ = b′−1(Y +) and Z∗ = b′−1(Z+)
we have tp(gbb′(z)/Y ) = tp(gb(z)/Y ),

gbb
′
(z) |�

Y

Y ∗ and Y ∗ |�
Z∗

z

and the L2-type

pL2 = tpL2
(gbb

′
(z)/Y ∗) ∪

⋃
i

tpL2
(g(xi)/xi) ∪

⋃
i

tpL2
(gbb

′
(zi)/zi)

is consistent. Note that Y ∗ is full for gbb′ .
Let y be a realization of pL2 ∪ tpL1

(gbb′(z)/Y ) independent from xXzY ∗Z∗ over 
Y . Since y |�Y Y ∗ and tpL1

(y/Y ) = tpL1
(gbb′(z)/Y ) and gbb

′(z) |�Y Y ∗. Stationarity 
implies tpL1

(y/Y ∗) = tpL1
(gbb′(z)/Y ∗). Since tpL1

(gb(z)/Y ) = tpL1
(gbb′(z)/Y ), we 

have tpL1
(y/Y )) = tpL1

(g(x)/Y )), and by the assumption tpL2
(yi/xi) = tpL2

(g(xi)/xi)
and tpL2

(yi/zi) = tpL2
(gbb′(zi)/zi). Moreover,

x |�
X;Y

y and y |�
Y ∗;Z∗

z.

Since X is full for g and Y ∗ is full for gbb′ , we can find the required a1, a2. �
3. Proof of the main result

In this section we prove Theorem 1.5 using the general strategy of [7] and [12]. Let 
M∗ be as in the hypothesis of Theorem 1.5 and G = Aut(M∗). For A ⊆ M , let Fix(A)
denote the pointwise stabiliser of A. For A, B ⊆ M , we write AB for their union A ∪B.

Lemma 3.1. Let g ∈ G move maximally, let X, Y, C be finite sets such that g(X) = Y

and X |�Y C and let x be a tuple. Then there is some a ∈ Fix(XY ) such that

ga(x) |�
Y

C.

Proof. This follows as in [12, 3.5]. �
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Proposition 3.2. Consider g1, . . . , g4 ∈ G that move maximally and finite sets X0, . . . , X4
such that gi(Xi−1) = Xi. Assume that g2 is compatible. Then for i = 1, . . . , 4 there are 
extensions Yi ⊃ Xi and ai ∈ Fix(Xi−1Xi) (with a2 = a3 = id) such that

(1) Y1 is full for g2;
(2) gai

i (Yi−1) = Yi,
(3) Y0 |�Y1

Y2Y3 and Y1Y2 |�Y3
Y4.

Proof. Put Y ′
2 = g2(X0X1) ∪g−1

3 (X3X4) and Y ′
1 = g−1

2 (Y ′
2). Note that Y ′

1 contains X0X1. 
Now let Y1 be an extension of Y ′

1 which is full for g2 and put Y2 = g2(Y1), Y3 = g3(Y2). 
Note that Y3 contains X3X4. Put Y ′

0 = g−1
1 (Y1) and let Y0 realize tp(Y ′

0/Y1) independent 
from Y2Y3. Let a1 ∈ Fix(Y1) such that a1(Y0) = Y ′

0 . Then ga1
1 (Y0) = Y1. Now put 

Y ′
4 = g4(Y3). Let Y4 realize tp(Y ′

4/Y3) independent from Y1Y2 and let a4 ∈ Fix(Y3) such 
that a4(Y4) = Y ′

4 . Then ga4
4 (Y3) = Y4. �

Proposition 3.3. Let g1, . . . , g4 ∈ G be moving maximally and assume that g2 is com-
patible and conjugate to g−1

3 . Let Y0, . . . , Y4 be finite sets such that gi(Yi−1) = Yi for 
i = 1, . . . , 4. Assume also that

Y0 |�
Y1

Y2Y3 and Y1Y2 |�
Y3

Y4

and that Y1 is full for g2. Let x0 and x4 be two tuples such that g4g3g2g1 maps tp(x0/Y0)
to tp(x4/Y4). Then for i = 1, . . . , 4, there are ai ∈ Fix(Yi−1Yi) such that ga4

4 . . . ga1
1 (x0) =

x4.

Proof of Proposition 3.3. Since g1 and g4 move maximally, using Lemma 3.1 we find 
a1 ∈ Fix(Y0Y1) and a4 ∈ Fix(Y3Y4) such that for x1 = ga1

1 (x0) and x3 = (g−1
4 )a4(x4) we 

have

x1 |�
Y1

Y2Y3 and Y1Y2 |�
Y3

x3.

Since g2 is compatible and Y1 is full for g2, by Proposition 2.14 we find the required 
a2 ∈ Fix(Y1Y2), a3 ∈ Fix(Y2Y3) such that ga3

3 ga2
2 (x1) = x3. Thus,

ga4
4 ga3

3 ga2
2 ga1

1 (x0) = x4. �
Proposition 3.4. Let g1, . . . , g4 ∈ G be compatible (hence moves maximally), and assume 
that g2 is conjugate to g−1

3 . Then, for any non-empty open set U ⊆ G4, there is some 
non-empty open set W ⊆ G such that the image φ(U) under the map

φ : G4 → G : (h1, . . . , h4) �→ gh4
4 gh3

3 gh2
2 gh1

1 ,

is dense in W .



F. Calderoni et al. / Journal of Algebra 580 (2021) 43–62 53
Proof. Using Proposition 3.2 and compatibility of the gi, the proposition follows exactly 
as in [12, 2.13]. �
Theorem 3.5. If g ∈ G is compatible, then any element of G is the product of at most 
eight conjugates of g and g−1.

Proof. We can use Proposition 3.4 and follow the proof in [12, 2.7]. �
4. Obtaining compatible automorphisms

In this section we prove Proposition 1.6 assuming that M is either the random poset, 
the Fraïssé limit of a nontrivial free amalgamation class or the rational bounded Urysohn 
space and that M< is an order expansion of M. We obtain the same results for the 
tournament expansion M→ of the Fraïssé limit of a nontrivial free amalgamation class 
and the rational bounded Urysohn space.

We first prove that for tournament expansions any automorphism that moves maxi-
mally is automatically compatible.

Proposition 4.1. If M→ is a tournament expansion of a homogeneous L1-structure M1
carrying a stationary independence relation, any g ∈ G = Aut(M→) that moves maxi-
mally is compatible.

We first prove the following lemma which uses the fact that in the random tournament 
the union of any two 1-types over disjoint finite sets is consistent.

Lemma 4.2. Let M→ be a tournament expansion of a homogeneous L1-structure M1
carrying a stationary independence relation and let g be an automorphism moving max-
imally. Then any finite set X0 has a finite extension X which is full for g.

Proof. Let g move maximally and let X0 be a finite set. We will show that any extension 
X of X0 such that g−1(X) ∩ g(X) ⊂ X is full for g. Put

X = X0 ∪ {x ∈ M : x = g(a) and g(x) = b for some a, b ∈ X0}.

Then X is finite and g−1(X) ∩ g(X) ⊂ X. Now assume that x, y are as in (1) and put 
Y = g(X). If x0 ⊂ x is contained in X, then for the corresponding coordinates y0 of y we 
have ga(x0) = y0 for all a ∈ Fix(XY ). Since x |�X;Y y, we may assume that x ∩XY = ∅. 
Let x′ be a realization of tp(x/XY ) such that g(x′), g−1(x′), g2(x′) and g−2(x′) do not 
intersect X and let a ∈ Fix(XY ) such that a(x) = x′. Thus replacing g by ga if necessary, 
we may assume that g2(x) and g−2(x) do not intersect X. Note that this implies that 
for any coordinate x0 of x the set X ∪{x0} again satisfies g−1(Xx0) ∩g(Xx0) ⊂ X. This 
will be used below in the induction.
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Now we do induction on the length of x, y. First suppose that x and y are single 
elements.

Since g−1(X) ∩ g(X) ⊂ X, the L2-type tpL2
(x/XY ) ∪ tpL2

(g−1(y)/g−1(XY )) is con-
sistent. This uses the fact that in the random tournament the union of any two types 
over disjoint finite sets is consistent. By Proposition 2.12 we can choose a realisation 
x′ of tp(x/X) ∪ tpL2

(x/XY ) ∪ tpL2
(g−1(y)/g−1(XY )) which is moved maximally by g

over X. Since x′ |�X Y , we have tp(x′/XY ) = tp(x/XY ) by weak stationary indepen-
dence. Choose a1 ∈ Fix(XY ) with a1(x) = x′. Then ga1 moves x maximally over X. 
We have tpL1

(ga1(x)/xXY ) = tpL1
(y/xXY ) by Stationarity. From the L2-homogeneity 

of g, we have tpL2
(ga1(x)/x) = tpL2

(y/x) and therefore, since tournaments have a bi-
nary language, we obtain tpL2

(ga1(x)/xXY ) = tpL2
(y/xXY ). Using weak stationary 

independence we conclude that tp(ga1(x)/xXY ) = tp(y/xXY ). Choose a2 ∈ Fix(xXY )
with a2(y) = ga1(x). Then ga1a2(x) = y.

For the induction step assume that the claim is proved for tuples of length n − 1 and 
let x, y be tuples of length n. Write x, y as x0x

′ and y0y
′, respectively, where x′, y′ are 

tuples of length n − 1. By the first step of the induction we may assume that g(x0) = y0

so that tp(g(x′)/y0Y ) = tp(y′/y0Y ) and x′ |�x0X;y0Y
y′. Since Xx0 is again full, we can 

apply the induction hypothesis and find b ∈ Fix(x0Xy0Y ) such that gb(x′) = y′. �
We can now prove Proposition 4.1:

Proof of Proposition 4.1. Let x, z, Z, b be such that tp(g(x)/Y ) = tp(gb(z)/Y ), x |�X

Y Z and XY |�Z z, g(X) = Y , gb(Z) = Y , and X is full for g. Clearly we may assume 
that x does not intersect X (and so z does not intersect Z) and since x |�X Y Z we see 
that x is in fact disjoint from XY Z. Let Z+ be the finite extension of Z full for gb as 
above, i.e.

Z+ = Z ∪ {x ∈ M : x = gb(c) and gb(x) = d for some c, d ∈ Z}

and put Y + = gb(Z+). Then Z+ ⊂ Y Z and Y + ⊂ Y Z. Hence Y + |�Z+ z and gb(z) |�Y

Y + by Monotonicity and Invariance and since x, z are disjoint from Y +. Since g is 
→-homogeneous, the type

tp→(gb(z)/Y +) ∪
⋃
i

tp→(g(xi)/xi) ∪
⋃
i

tp→(gb(zi)/zi)

is consistent as required. (Note that in this case we can choose b′ = id.) �
We now turn to the case of order expansions. We call an element g ∈ Aut(M<)

unboundedly increasing (resp. decreasing) if it is increasing (resp. decreasing) and for 
every a < b in M< there is m ∈ N such that gm(a) > b (resp. gm(b) < a).

The following observation will be helpful later on:
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Lemma 4.3. If M< is an order expansion of a homogeneous structure and g ∈ G is 
unboundedly increasing, then we can identify M< with the rationals Q in such a way 
that g(x) = x + 1 for all x ∈ M<.

Proof. Pick some x0 ∈ M<, identify the interval [x0, g(x0)] ⊂ M< in an order preserving 
way with [0, 1] ⊂ Q and extend. �

Clearly, in the same way we can identify an unboundedly decreasing function on M<

with g(x) = x − 1 for all x ∈ M<.

Proposition 4.4. If M< is an order expansion of a homogeneous L1-structure M1 carrying 
a stationary independence relation, any unboundedly increasing g ∈ G = Aut(M<) that 
moves maximally is compatible.

As a first step towards obtaining full extensions for finite sets we prove the following 
weaker version (which nevertheless turns out to be sufficient) because the automorphism 
b ∈ Fix(Xg(X)) obtained in the proof below is only an <-automorphism of M , so does 
not necessarily respect the L1-structure on M :

Lemma 4.5. Let M< be an order expansion of a homogeneous L-structure and let g be 
unboundedly increasing. Then for any finite set X0 ⊂ M there is a finite set X such 
that for all n-tuples x, y ∈ M with tp(g(x)/g(X)) = tp(y/g(X)) and tp<(g(xi)/xi) =
tp<(yi/xi), 1 ≤ i ≤ n, there is some <-automorphism b ∈ Fix(Xg(X)) of M such that 
gb(x) = y.

In fact, the proof of Proposition 4.4 will show that the extension X obtained here is 
in fact full for g.

Proof. If X0 = ∅, the conclusion holds. So let X0 be a nonempty finite set, X ′
0 =

X0 ∪ {g(x)} for some x ∈ X0, let xmin = minX ′
0, xmax = maxX ′

0. Let

X = {gm(x) : x ∈ X0,m ∈ Z and xmin ≤ gm(x) ≤ xmax}

and put Y = g(X).
We claim that the conclusion holds for X and g. We may identify M with the rationals 

in such a way that X = {0, . . . , m}, Y = g(X) = {k, . . . , k + m} and g(x) = x + k is 
a shift by k (see Lemma 4.3). Let x, y be increasing n-tuples such that tp(g(x)/Y ) =
tp(y/Y ) and tp<(xi + k/xi) = tp<(yi/xi). We now define b ∈ Fix(XY ) such that 
gb(x) = y.

Let b be an arbitrary isomorphism defined over [0, k] fixing XY . Then, in turn, we 
extend b to [k, k+1], . . . , [k+m −1, k+m] in such a way that for all yi ∈ [k+j, k+j+1], 
j = 0, . . . , m −1, we have gb(xi) = yi. We now extend the definition of b from [0, k+m] to 
[0, ∞) by extending it stepwise to adjacent intervals using the shift function g(x) = x +k.
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Let i be maximal such that xi ∈ [0, m + k]. We extend b to [m + k, yi]. Assume that 
xi+1, . . . xq ∈ [m + k, yi]. Then for j = i + 1, . . . q we have an ordered tuple yj > yi and 
corresponding g(b(xj)) > g(b(xi)). So setting b(yj) = g(b(xj)) = b(xj) + k > b(xi) + k

for j = i = 1, . . . q preserves the order. Now extend b to all of [m + k, yq]. In the next 
step, b is already defined on any xk ∈ [yi, yq] and we continue by defining b(yk) exactly 
as before until b is defined on [0, yn]. Then we extend b to [0, ∞).

It is left to argue that we can extend b to (−∞, 0]. The argument is essentially sym-
metric to the one in the previous paragraph (replacing g by g−1 and switching the roles 
of xj and yj). �
Proof of Proposition 4.4. Identify M with the rationals in such a way that the orders 
agree. Put Y = g(X). By Lemma 4.5 there is some <-automorphism d ∈ Fix(XY )
such that y = gd(x). Clearly tp<(gd(x)/xXY ) = tp<(y/xXY ). It follows that 
tp<(ga(x)/xXY ) = tp<(y/xXY ) for any a ∈ Fix(XY ) such that |a(xy) − d(xy)| =
max{|a(z) − d(z)| : z ∈ xy} is sufficiently small. Choose a realisation x′ of tp(x/X) ∪
tp<(x/XY ) with |x′ − d(x)| sufficiently small which is moved maximally by g over X. 
Then as in the corresponding proof for tournaments we have tp(x′/XY ) = tp(x/XY ). 
Let a1 ∈ Fix(XY ) with a1(x) = x′ and |a1(xy) − d(xy)| sufficiently small (which 
is possible by property (∗)). Thus we have tp<(ga1(x)/xXY ) = tp<(y/xXY ) and 
tpL1(ga1(x)/xXY ) = tpL1(y/xXY ) by Stationarity. Choose a2 ∈ Fix(xXY ) with 
a2(y) = ga1(x). Then ga1a2(x) = y.

Now let X be as given by Lemma 4.5, Y = g(X), x, z, Z, and b be such that gb(Z) = Y , 
x |�X Y Z and XY |�Z z, tp(g(x)/Y ) = tp(gb(z)/Y ). In particular, X is full for g. Let 
Z+ be a finite extension for Z which is full for gb defined as above, i.e.

Z+ = {(gb)m(x) : x ∈ Z,m ∈ Z and zmin ≤ (gb)m(x) ≤ zmax}

where zmin, zmax are the minimal and the maximal element of Z, respectively, and put 
Y + = gb(Z+). First note that

p< = tp<(gb(z)/Y +) ∪
⋃
i

tp<(g(xi)/xi) ∪
⋃
i

tp<(gb(zi)/zi)

is consistent. Indeed, observe first that ymin ≤ Y + \ Y ≤ ymax, where ymin and ymax
are the minimal and maximal element of Y . Let also xmin and xmax be the minimal and 
maximal element of X. If xi < xmin, then zi < zmin and g(xi), gb(zi) < ymin. So we can 
find a corresponding coordinate yi such that xi, zi < yi < ymin. Similarly, if xi > xmax, 
then zi > zmax and g(xi), gb(zi) > ymax and we can find a corresponding coordinate yi

such that ymax < xi, zi < yi. Finally, since X is full for g, if xmin < xi < xmax, we have 
xi < w for every w which realizes tp<(gb(zi)/Y +). Therefore yi = gb(zi), which clearly 
satisfies tp<(gb(zi)/Y +) and so zi < yi, works.

Note that for any L∗-automorphism b′ sufficiently close to the identity (in the sense 
of <) the type
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pb′ = tp<(gbb
′
(z)/b′−1(Y +)) ∪

⋃
i

tp<(g(xi)/xi) ∪
⋃
i

tp<(gbb
′
(zi)/zi)

is also consistent.
Now by Existence and (∗), let c be a realization of tpL1

(z/Y Z), sufficiently close to z
and such that c |�Y Z Y +Z+ and let b′ ∈ Fix(Y Z) with b′(z) = c be sufficiently close to 
the identity such that pb′ is consistent. Since gb(Z) = Y and tpL1

(z/Z) = tpL1
(b′(z)/Z), 

we have tpL1
(gb(z)/Y ) = tpL1

(gb(b′(z))/Y ), and therefore tp(gbb′(z)/Y ) = tp(gb(z)/Y ). 
We claim that gbb′(z) |�Y b′−1(Y +), i.e. c |�Z Z+, and c |�Z+ Y +. Indeed, we have 
c |�Y Z Z+ and z |�Z Y , and therefore c |�Z Y . By Transitivity we obtain c |�Z Z+. 
Since c |�Y Z Y +Z+ and c |�Z Y , by Transitivity we obtain c |�Z Y +Z+. Hence by 
Monotonicity we get c |�Z+ Y +, as we wanted. �

To prove Proposition 1.6 for M<, we construct an unboundedly increasing automor-
phism g ∈ 〈h〉G moving maximally starting from an arbitrary h ∈ G. This is done in 
four steps.

(1) construct a fixed point free h1 = [h, f1] ∈ 〈h〉G;
(2) construct a strictly increasing h2 = [h1, f2] ∈ 〈h1〉G;
(3) construct an unboundedly increasing h3 ∈ 〈h2〉G;
(4) construct an unboundedly increasing h3 = [h2, f3] ∈ 〈h1〉G moving maximally.

We take care of each of these steps in the Lemmas 4.8, 4.9, 4.10 and 4.11.

Lemma 4.6. (cf. [8, 3.4(ii)]) No element of G \ {id} fixes any interval pointwise.

Proof. Suppose otherwise. Choose h ∈ G \ {1} and a, c, d ∈ M such that h fixes [c, d]
pointwise and a 	= h(a). We first claim that there exists a finite set Y ⊂ M such that 
tpL(a/Y ) 	= tpL(h(a)/Y ) or, equivalently, tpL(Y a) 	= tp(Y h(a)). Suppose not. Then by 
homogeneity of M we can construct an L-automorphism of M that fixes M \ {a, h(a)}
pointwise and swaps a and h(a), contradicting [8, 2.10].

By property (∗), tp(Y/ah(a)) is realized by some finite set B ⊆ (c, d). Since h fixes B
pointwise, we see that tp(h(a)/B) = tp(a/B), a contradiction.

If M< is the ordered rational bounded Urysohn space, then the L1-type pL1(x) ex-
pressing d(x, a) = 1 ∧d(x, h(a)) = 1/2 is consistent. Using (∗) we can pick a realization b
of pL1(x) in the interval (c, d), contradicting the assumption that h is an isometry fixing 
b and taking a to h(a).

If M< is the ordered random poset, assume a ≮po h(a). Using (∗) we can pick some 
x ∈ (c, d) with x <po a and x ≮po h(a). Then tp(h(a)/x) 	= tp(a/x), contradicting the 
assumption that h fixes x. �
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The previous lemma can easily be adapted to many other fusion structures. However, 
it seems difficult to give a uniform proof extending the result from [8] to arbitrary fusion 
structures.

Corollary 4.7. A nontrivial element of G does not fix the set of realizations D = p(M<)
of any non-algebraic L∗-type p over a finite set A.

Proof. We can assume that p = q ∪ {a < x < b} for some a, b ∈ M ∪ {−∞, ∞} where 
q is a complete L-type over A. Let D′ = q(M), so D = D′ ∩ (a, b). By condition (∗)
D′ ∩ (a, b) is dense in (a, b), so if h fixes D pointwise, then h is the identity on (a, b) and 
hence h = id by Lemma 4.6. �
Lemma 4.8. For any h ∈ G there is some g = [h, f ] ∈ 〈h〉G which is fixed point free.

Proof. This follows from Corollary 4.7 as in [8, 2.11]. Note that we can use condition (∗) 
to ensure that f preserves the ordering. �
Lemma 4.9. If h ∈ G has no fixed point, then there is some g = [h, f ] ∈ 〈h〉G which is 
strictly increasing.

Proof. Write M< as an ordered union of intervals Ji, i ∈ I, on which h is either strictly 
increasing or strictly decreasing. By further subdividing we may assume that on each 
interval Ji the automorphism h is either unboundedly increasing or unboundedly de-
creasing.

If h is unboundedly increasing on Ji, then as in Lemma 4.3 we identify Ji with (a 
copy of) Q in such a way that we have h(x) = x + 1 for x ∈ Ji. Similarly, if h is 
unboundedly decreasing on Jj, we identify Jj with (a copy of) Q in such a way that we 
have h(x) = x − 1 for x ∈ Jj .

Fix a positive ε < 1
2 . We construct an element f ∈ G by back and forth leaving each 

Ji invariant and such that if h is increasing on Ji, then we choose f(x) ∈ [x2 , 
x
2 + ε) for 

x ∈ Ji, or, equivalently, f−1(x) ∈ (2x − 2ε, 2x]. Similarly, if h is decreasing on Ji we 
choose f(x) ∈ [2x, 2x + ε) for x ∈ Ji, or, equivalently, f−1(x) ∈ (x2 − ε

2 , 
x
2 ]. Clearly, such 

an f ∈ G can easily be constructed by back-and-forth thanks to condition (∗). We then 
have h(f(x)) > f(h(x)), and so [h, f ](x) > x for any x ∈ M<. �
Lemma 4.10. If h ∈ G is strictly increasing, there is an unboundedly increasing g ∈ 〈h〉G.

Proof. Since h is strictly increasing, we may identify M< with a union of copies of Q
such that on each copy we have h(x) = x + 1.

First assume that the union of copies of Q is infinite in both directions. Divide each 
copy of Q into an ordered union of two copies Q1 ∪Q2 (each Qi being again isomorphic 
to Q). Using assumption (∗), we define f ∈ G by back-and forth such that each half-copy 
of Q is moved to the next one above: so f(Q1) = Q2 and f(Q2) = Q1 in the next copy 
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of Q. If there is a first copy Q1 ∪Q2 we define f in such a way that f(Q1) = Q1 ∪Q2. 
And if there is a last copy Q = Q1∪Q2 we define f in such a way that f(Q1∪Q2) = Q2. 
Then g = h · hf is unboundedly increasing. �
Lemma 4.11. If M< is as in Theorem 1.3 (1) or (2) and h ∈ G is unboundedly increasing, 
there is some unboundedly increasing g ∈ 〈h〉G that moves maximally.

Proof. Since h is unboundedly increasing, we may identify M< with Q in such a way 
that we have h(x) = x + 1 for all x ∈ M<. Fix a positive ε < 1

2 .

Case I: If M< is the ordered Fraïssé limit of a free amalgamation class, we define f by 
a back and forth construction like in [12, 5.1], with the additional requirement that we 
have

f(x) ∈
(x

2 − ε,
x

2

]
for each x ∈ M<.

Since this implies that f−1(x) ∈ [2x, 2x + 2ε), it follows that

[h, f ](x) > x + δ

with δ = 2(1
2−ε) > 0. Hence the commutator [h, f ] will again be unboundedly increasing.

So suppose that f ′ is already defined on a finite set A and let p be a type over a 
finite set X. It suffices to show that f ′ has an extension f such that [h, f ] moves p
maximally.

By possibly extending f ′ we can assume that [h, f ′] is defined on X and that 
f ′ −1hf ′(X) ⊆ A. Now pick a realisation a of p independent from X ′ = A ∪ h(X) ∪
[h, f ′](X) over X and such that h(a) 	= a which is possible by Corollary 4.7. Let 
B = f ′(A) and pick a realisation b of f ′(tp(a/A)) in such a way that b |�B h−1(B)
and b ∈ (a2 − ε, a2 ]. Extend f ′ to Aa by setting f ′(a) = b. Next pick a realisa-
tion c of f ′ −1(tp(h(b)/Bb)) such that c is independent from h(a)h(X) over Aa, and 
c ∈ [2h(b), 2h(b) +2ε). Extend f ′ by setting f ′(c) = h(b). Since weak stationary indepen-
dence agrees with stationary independence on subsets of M< the proof of Lemma 5.1 in 
[12] shows that a |�X;h(X) [h, f ′](a).

Case II: Now suppose that M< is the ordered bounded Urysohn space. If there is no 
a ∈ M< with d(a, h(a)) = 1, then as in [13, 1.3] and using condition (∗) we construct 
some unboundedly increasing h1 ∈ 〈h〉G as a product of conjugates of h such that there 
is some b ∈ M< with d(b, h1(b)) = 1: let 0 < ε < 1 and a ∈ M< such that d(a, h(a)) = ε. 
Assume h(a) > a (the other case being similar). Pick some b ∈ (a, ∞) with d(a, b) = 1. 
Let k > 1 be such that kε ≥ 1. Put a0 = a, ak = b and, using (∗), pick ai ∈ (ai−1, b)
such that d(ai−1, ai) = ε, i = 1, . . . k. Let fi ∈ G with fi(ai−1, ai) = (ai, ai+1) and put 
h1 = hf1 · . . . · hfk .
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In the same way we can adapt [13, 2.4] to construct iterated commutators [h, f ] using 
(∗) to make sure that f preserves the order and additionally satisfies

f(x) ∈
(x

2 − ε,
x

2

]

for each x ∈ M . Thus, after each step, the commutator will again be unboundedly 
increasing and we end up as in [13, 2.5] with an automorphism g′ ∈ 〈h〉G which is un-
boundedly increasing and moves almost maximally, i. e. every nonalgebraic type p over 
a finite set X has a realization a such that a |�X g′(a). An application of the previous 
argument as in [12, 5.3] then yields the required g ∈ 〈h〉G which is unboundedly increas-
ing and moves maximally. This concludes the proof in the case of the ordered bounded 
Urysohn space and thus of Proposition 1.6. �

To complete the proof of Theorem 1.3 in the case of order expansions, it is left to 
prove the following two propositions:

Proposition 4.12. If M∗ is the ordered random poset, then G = Aut(M∗) is simple.

Proof. Let h ∈ G. By Lemmas 4.8, 4.9 and 4.10 we may assume that h is unboundedly 
increasing in the sense of <. Now we can follow the steps of [3, Sec. 3] to construct 
some g ∈ 〈h〉G which is unboundedly increasing in the sense of the partial order <po. 
Using property (∗) we can make sure that at each step the result is again unboundedly 
increasing in the sense of the order <. It is easy to see using (∗) that any two elements 
of G that are unboundedly increasing both in the sense of <po and in the sense of < are 
conjugate. Adapting the proof of [3, 3.4] using (∗), any element f of G can be written 
as a product f = g−1

1 g2 with g1, g2 unboundedly increasing in the sense of <po and <. 
Thus G is simple also in this case. �
Proposition 4.13. Assume that M is the Fraïssé limit of a nontrivial free amalgamation 
class such that G acts transitively on M or the bounded rational Urysohn space and 
M→ is a tournament expansion of M. For any h ∈ G, there is some g ∈ 〈h〉G moving 
maximally.

Proof. As in Lemma 4.6, Corollary 4.7 and [8, 3.4(ii)] we see that a nontrivial element 
of G does not fix pointwise the set of realizations of any nonalgebraic type over a finite 
set. Thus as in Lemma 4.8 we can replace h by some fixed point free element in 〈h〉G. 
Then as in Lemma 4.11 we can follow the construction of [12, 5.1] and [13] respectively 
to construct an element f ∈ G such that g = [h, f ] moves maximally in the sense of 
the stationary independence relation of M1. By the axioms of the random tournament 
and property (∗), we can construct f in such a way to ensure that a → [h, f ](a) for all 
a ∈ M . Thus, g = [h, f ] moves maximally. �
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Remark 4.14. An indiscernible set M carries a stationary independence relation by set-
ting A to be independent from B over C if A ∩B ⊂ C. Any fixed point free permutation 
of M moves maximally with respect to this stationary independence relation (see [12]). 
Then M< is isomorphic to (Q, <), and we conclude that given any unboundedly increas-
ing automorphism g of (Q, <), any h ∈ Aut(Q) can be written as a product of at most 
eight conjugates of g and g−1.

Similarly, in this case the tournament expansion M→ is just the countable random 
tournament and we conclude that for any automorphism g such that a → g(a) any h ∈ G

can be written as a product of at most eight conjugates of g and g−1.

Hence Theorem 1.5 applies to any unboundedly increasing automorphism of (Q, <)
and to any automorphism g of the random tournament such that a → g(a) for all a. 
We thus obtain as a corollary the following result which yields more specific information 
about Higman’s theorem on Aut(Q, <) and the result from [8] on the random tournament 
(T , →):

Corollary 4.15. If g is an unboundedly increasing automorphism of (Q, <) or an auto-
morphism of the random tournament (T , →) such that a → g(a) for all a ∈ M , then 
any element of Aut(Q, <) or of Aut(T , →) is the product of at most eight conjugates of 
g and g−1.
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