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Abstract

Let (W,S) be a finite Coxeter system and A := Z[Γ ] be the group algebra of a finitely generated free
abelian group Γ . Let H be an Iwahori–Hecke algebra of (W,S) over A with parameters vs . Further let
K be an extension field of the field of fractions of A and KH be the extension of scalars. In this situation
Kazhdan and Lusztig have defined their famous basis and the so-called left cell modules.

In this paper, using the Kazhdan–Lusztig basis and its dual basis, formulae for a K-basis are derived that
gives a direct sum decomposition of the right regular KH-module into right ideals each being isomorphic
to the dual module of a left cell module. For those left cells, for which the corresponding left cell module
is a simple KH-module, this gives explicit formulae for basis elements belonging to a Wedderburn basis
of KH . For the other left cells, similar relations are derived.

These results in turn are used to find preimages of the standard basis elements tz of Lusztig’s asymptotic
algebra J under the Lusztig homomorphism from H into the asymptotic algebra J. Again for those left
cells, for which the corresponding left cell module is simple, explicit formulae for the preimages are given.

These results shed a new light onto Lusztig’s homomorphism interpreting it as an inclusion of H into an
A-subalgebra L of KH . In the case that all left cell modules are simple (like for example in type A), L is
isomorphic to a direct sum of full matrix rings over A.
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1. Introduction

For the situation described in the abstract Kazhdan and Lusztig have constructed their famous
basis {Cx | x ∈ W }, where W is the Weyl group. Using that H is a symmetric algebra they also
defined the dual basis {Dy−1 | y ∈ W }. Later in [1] Lusztig defined the asymptotic algebra J
together with the Lusztig homomorphism φ :H → J. All these objects have been used success-
fully to study the representation theory of H .

In the present paper, we build on these results and obtain two theorems and a few corollaries,
that help to explain the connections to the representation theory of H .

After some preparations in Sections 2 to 4 we show in Section 5 that for a left cell Λ, for which
the left cell module is simple, the elements {c−1CxDy−1 | x, y ∈ Λ} where c is some constant
depending only on Λ fulfill the relations of the standard basis of a full matrix ring over A and
span the isotypic component of KH corresponding to the simple left cell module.

For the case that all left cell modules are simple, this explicitly yields a Wedderburn basis
of KH , giving an explicit isomorphism of K-algebras between KH and a direct sum of full
matrix rings over K . For the case of non-simple left cell modules the situation is not so good.
However, the rest of Section 5 exhibits, how much of the above results can still be shown. For
example, the right regular KH -module is still the direct sum of (explicitly given) right ideals
each of which is isomorphic to the dual of a left cell module.

Moreover, these results are used in Section 6 to construct preimages of the standard basis
(tz)z∈W of the asymptotic algebra J under the Lusztig homomorphism. This allows to interpret
the Lusztig homomorphism φ :H → J as the inclusion of H into an A-subalgebra of KH .

2. Notation

The basic reference for the setting is [2]. For the base ring we use a slightly more general
notation inspired by [3].

Let W be a finite Coxeter group with generating set S, and Γ a totally-ordered abelian
group, written additively. Let A := Z[Γ ] be the group algebra, written exponentially, that is,
as a Z-module, it is free with basis {vγ | γ ∈ Γ } and basis elements are multiplied by the rule
vγ · vγ ′ := vγ+γ ′

. We denote by Γ>0 the set of elements of Γ that are greater than 0 and set
A<0 := 〈vγ | γ ∈ Γ<0〉Z. We define Γ<0, Γ�0, Γ�0, A>0, A�0, and A�0 analogously. For ele-
ments a = ∑

γ∈Γ aγ · vγ ∈ A we define the degree by dega := max{γ ∈ Γ | aγ �= 0}.
Further, let L :W → Γ be a weight function in the sense of Lusztig (see [2, 3.1]), that is,

we have L(ww′) = L(w) + L(w′) whenever �(ww′) = �(w) + �(w′) for w,w′ ∈ W , where �

denotes the usual length function on W . We shall assume L(s) > 0 for s ∈ S.
Let vw := vL(w) for w ∈ W . We can now define the Iwahori–Hecke algebra H over A with

parameters vs to be the associative A-algebra with generators {Tw | w ∈ W } subject to the rela-
tions

T 2
s = Tid + (

vs − v−1
s

)
Ts for all s ∈ S,

Tw = Ts1 · · · · · Tsk for every reduced expression w = s1 · · · · · sk in W with si ∈ S,

where id ∈ W denotes the identity element. Note that we use here a slightly more general base
ring than in [2], however, all proofs go through without change. In addition, our setup here has
already been used in [4], [5], and [3].
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The algebra H is free as an A-module with basis {Tw | w ∈ W } (see [2, 3.3]) and has a
symmetrizing trace map τ :H → A,Tid �→ 1, Tw �→ 0 for id �= w ∈ W , which makes H into a
symmetric algebra in the sense of [5, 7.1.1]. Note that this means in particular that τ(h · h′) =
τ(h′ ·h) for all h,h′ ∈ H . The dual basis of {Tw | w ∈ W } with respect to τ is {T ∨

w | w ∈ W } with
T ∨

w = Tw−1 (for all of this, see [2, 10.3,10.4]).
Let K̃ ⊆ C be a splitting field for W . Then K := K̃(vs | s ∈ S) contains A as a subring and is

a splitting field for the extension of scalars KH := K ⊗A H . This follows from [5, 9.3.5] and the
fact that our parameters vs are square roots of the parameters us there. In addition, all irreducible
characters of KH can be realized over K .

Note that here and in the sequel we mean by a character of H an A-linear form on H with
values in K that comes from evaluating the trace of representing matrices of elements of H . We
denote the set of irreducible characters of KH by Irr(KH).

3. Kazhdan–Lusztig basis and cells

In this section we briefly repeat the definition of the famous Kazhdan–Lusztig basis and cells
and collect a few results for further reference.

We denote by ¯ :A → A,a �→ ā the ring automorphism mapping vγ to v−γ for γ ∈ Γ . This
involution can be extended to an involution of H by setting

∑
w∈W

aw · Tw :=
∑
w∈W

aw · T −1
w−1 .

The involution ¯ :H → H is in fact a ring homomorphism (see [2, Chapter 4]), but of course not
a homomorphism of A-algebras, as it is only A-semilinear with respect to ¯ and not A-linear.

The algebra H has an A-basis {Cw | w ∈ W }, defined by Kazhdan and Lusztig in [6, §1] by
the two properties that

Cw = Cw and Cw =
∑
y�w

py,w · Ty

for all w ∈ W , where py,w ∈ A<0 for y < w and pw,w = 1. Here and in the following, “�” for
elements of W denotes the Bruhat–Chevalley order. For a proof of existence and uniqueness see
[2, 5.2]. Note that our elements Cw are denoted by cw in [2] and by C′

w in [4–6].
For any y,w ∈ W and s ∈ S with sy < y < w < sw we define μs

y,w as in [2, 6.3] by the
requirements that

μ̄s
y,w = μs

y,w and
∑
z∈W

y�z<w; sz<z

py,z · μs
z,w − vs · py,w ∈ A<0

for all such y,w, s. Then we have (see [2, 6.6 and 6.7]):

Cs · Cw =

⎧⎪⎨
⎪⎩

(vs + v−1
s ) · Cw for sw < w,

Csw + ∑
y∈W

μs
y,w · Cy for sw > w, (1)
sy<y<w
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and

Cw · Cs =

⎧⎪⎨
⎪⎩

(vs + v−1
s ) · Cw for ws < w,

Cws + ∑
y∈W

ys<y<w

μs
y−1,w−1 · Cy for ws > w. (2)

We denote the structure constants of H with respect to the basis {Cw | w ∈ W } by hx,y,z, that is,
we have

Cx · Cy =:
∑
z∈W

hx,y,z · Cz for all x, y ∈ W.

Thus, Eq. (1) means, that we have

hs,w,y =

⎧⎪⎨
⎪⎩

μs
y,w if sy < y < w < sw,

1 if y = sw > w,

vs + v−1
s if y = w > sw,

0 otherwise.

The following definitions are from [2, 8.1]. We define y �L w to mean: either y = w or there is
an s ∈ S such that the coefficient of Cy in the expansion of Cs · Cw in the C-basis in Eq. (1) is
non-zero. Let �L be the transitive closure of the relation �L and denote by ∼L the associated
equivalence relation on W . The equivalence classes are called “left cells” and �L induces a
partial order on the set of left cells.

We define y �R w analogously and denote the equivalence relation induced by �R with ∼R

and call the equivalence classes “right cells.” For y,w ∈ W we write y �LR w if there is a se-
quence y = y0, y1, . . . , yn = w of elements of W , such that, for i = 0,1, . . . , n − 1 we have
yi �L yi+1 or yi �R yi+1. We denote the equivalence relation on W corresponding to the transi-
tive relation �LR on W by ∼LR and call the equivalence classes “two-sided cells.”

Note that y �R w is equivalent to y−1 �L w−1 (see [2, 8.1]).
If Ω ⊆ W is a disjoint union of left cells, we call Ω “complete,” if for every left cell Λ ⊆ Ω

and for every left cell Λ′ �L Λ we have Λ′ ⊆ Ω .
The set {Cs | s ∈ S} generates H as an A-algebra. Thus the definition of �L shows that if Ω

is a complete, disjoint union of left cells, the A-linear span 〈Cw | w ∈ Ω〉A is a left ideal in H
and thus a left H -module. We call such an ideal a “left cell module” and denote it by LC(Ω).

If Σ ⊆ Ω are both complete, then LC(Σ) is an A-pure H -submodule of LC(Ω) and we denote
the quotient module by LC(Ω\Σ) := LC(Ω) /LC(Σ). In particular, this definition covers the cell
modules LC(Λ) involving a single left cell Λ, which already appeared in [6, 1.4].

We denote by {Dw−1 | w ∈ W } the dual basis of {Cw | w ∈ W } with respect to the symmetriz-
ing trace τ , i.e. we have

τ(CwDy−1) =
{

0 for w �= y,

1 for w = y

(cf. [7, (5.1.10)]).
Using both bases and τ , we can now write every element of H as a linear combination in

either basis:
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h =
∑
w∈W

τ(Dw−1 · h)Cw =
∑
w∈W

τ(Cw · h)Dw−1 for all h ∈ H . (3)

To proof this equation just set h = ∑
w∈W αwCw = ∑

w∈W βwDw−1 for αw,βw ∈ A, multiply
both sides by Dz−1 or by Cz and apply τ .

We can now give a formula for the character afforded by a cell module of a single left cell Λ:

χΛ(h) =
∑
z∈Λ

τ(Dz−1 · h · Cz) for all h ∈ H . (4)

This holds, because the set {Cz + LC(Σ) | z ∈ Λ} is a basis of the left cell module LC(Λ) =
LC(Ω) /LC(Σ) where Ω is the union of all left cells which are �L than Λ and Σ = Ω \ Λ. The
entries of the representing matrix of h on LC(Λ) with respect to this basis are τ(Dx−1 ·h ·Cz) for
x, z ∈ Λ.

All these definitions can be done analogously for right cells Λ and right cell modules RC(Λ).
For the convenience of the reader we give the formula for the character value of an algebra

element with respect to the right cell module of a single right cell Λ:

χΛ(h) =
∑
z∈Λ

τ(Cz · h · Dz−1) for all h ∈ H .

This uses the basis {Cz + RC(Σ) | z ∈ Λ} of the right cell module RC(Λ), where Σ is the union
of the right cells that are <R Λ.

3.1. Definition (a-values, D , see [2, Chapter 13]). For z ∈ W let

a(z) := max{deghx,y,z | x, y ∈ W } and Δ(z) := −degp1,z,

such that Δ(z) � 0.
For x, y, z ∈ W let γx,y,z−1 ∈ Z be the coefficient of va(z) in hx,y,z and set

D := {
d ∈ W | a(d) = Δ(d)

}
.

Further, let nz ∈ Z \ {0} denote the coefficient of v−degp1,z in p1,z.

4. Some results for later reference

In this section we recall some results and statements for later reference and convenience of
the reader. The first few are for arbitrary type of the Coxeter group W . Then some stronger
results for type A are presented and finally, we repeat a subset of Conjectures P1 to P15 from [2,
Chapter 14], under the assumption of which we will later prove some results.

4.1. Lemma (Characterization of �L and �R , see [7, (5.1.14)]). We have y �L w if CwDy−1 �= 0
and we have y �R w if Dy−1Cw �= 0.

Comment. In both statements also “only if” is proved in [7, (5.1.14)] for the equal parameter
case using that all μs

y,w are non-negative.

If W is of type An−1, we have the following strong result:
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4.2. Theorem (One-cell modules are simple, see [6, Theorem 1.4]). Let W be of type An−1 and
K = Q(Γ ) be the field of fractions of A. Then for each left cell Λ, the extension of scalars
KLC(Λ) of the corresponding left cell module LC(Λ) is a simple KH -module. Further, the cell
modules coming from two left cells are isomorphic if and only if they lie in the same two-sided
cell, and all isomorphism classes of simple KH -modules arise as left cell modules.

Comment on the proof. All this is shown in [6, Theorem 1.4]. For a more detailed exposition
see [8, Kapitel VI]. There also the connections to the Robinson–Schensted correspondence are
described in detail. �
Note. This result implies especially that all simple modules of KH are realizable as modules
of H over A. Therefore all characters χ ∈ Irr(KH) take values in A when restricted to H , such
that we can safely consider characters in Irr(KH) as A-linear forms on H whenever convenient.

Hidden in the proof of the previous theorem are proofs for the following statements, which
explain parts of the above theorem in more detail:

4.3. Theorem (Left and right cells, equal cell modules, see [6, Proof of 1.4]). Let W be of type
An−1. If Λ is a left cell, then Λ−1 = {x−1 | x ∈ Λ} is a right cell. For x, y ∈ Λ with x �= y, we
have x−1 �L y−1, such that we have:

If x ∼L y and x ∼R y, then x = y.

If Ω is a two-sided cell, then the number of left cells in Ω is equal to the number of elements
in each left cell in Ω and to the number of elements in each right cell in Ω and to the number
of right cells in Ω . The intersection between any left cell in Ω and any right cell in Ω contains
exactly one element. Moreover, if Λ1 and Λ2 are two left cells in the same two-sided cell, then
there is a bijective mapping ϕ :Λ1 → Λ2, such that

τ(Dx−1 · h · Cz) = τ(Dϕ(x)−1 · h · Cϕ(z)) for all x, z ∈ Λ1,

i.e. the two matrix representations with respect to the two bases

{
Cz + LC(Σ1) | z ∈ Λ1

}
and

{
Cz + LC(Σ2) | z ∈ Λ2

}

are in fact equal (here Σi is the union of all left cells <L than Λi for i = 1,2).
The mapping ϕ can be described explicitly: For x ∈ Λ1, the element ϕ(x) ∈ Λ2 is the unique

element of Λ2 lying in the same right cell than x.

Comment on the proofs. The combinatorics regarding left and right cells follow from the
results about the “generalized τ -invariant” cited there, which is the Robinson–Schensted corre-
spondence in this type A case. The statements about the number of elements and the number of
cells follow from the statements in Theorem 4.2 and the statement about equal matrix represen-
tations are proved in the proof of [6, Theorem 1.4] disguised as two W -graphs being isomorphic.
See [8, Kapitel VI] for a more detailed exposition. �

In the rest of this section, we present a subset of the Conjectures P1 to P15 from [2, Chap-
ter 14], under the assumption of which we will prove some results later on.
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4.4. Conjectures (Lusztig).

P4. If z′ �LR z then a(z′) � a(z). Hence, if z′ ∼LR z, then a(z′) = a(z).
P5. If d ∈ D , y ∈ W , and γy−1,y,d �= 0, then γy−1,y,d = nd = ±1.

P6. If d ∈ D , then d2 = 1.
P7. For any x, y, z ∈ W , we have γx,y,z = γy,z,x .
P9. If z′ �L z and a(z′) = a(z) then z′ ∼L z.

P10. If z′ �R z and a(z′) = a(z) then z′ ∼R z.
P11. If z′ �LR z and a(z′) = a(z) then z′ ∼LR z.
P13. Any left cell Λ of W contains a unique element d ∈ D . We have γx−1,x,d �= 0 for all x ∈ Λ.
P14. For any z ∈ W we have z ∼LR z−1.

These conjectures are all proved for important cases: If L = � and W is a finite or affine Weyl
group (the “split case,” see [2, Chapter 15]), if W is dihedral (see [2, Chapter 17]), and if W is
quasi-split (see [2, Chapter 16]).

The following two corollaries are immediate consequences of P4, P9, and P10:

4.5. Corollary (Left cells and two-sided cells, see [7, (5.1.13)]). Assume that P4 and P9 hold.
Then we have:

• If y �L w and y ∼LR w hold, then also y ∼L w.

4.6. Corollary (Right cells and two-sided cells). Assume that P4 and P10 hold. Then we have:

• If y �R w and y ∼LR w hold, then also y ∼R w.

5. Wedderburn decomposition

In this section, we show connections between the Kazhdan–Lusztig basis and the Wedder-
burn decomposition of KH . The best results are for the case that all cell modules are simple as
KH modules, where we show, how to construct a Wedderburn basis explicitly in terms of the
Kazhdan–Lusztig basis and its dual basis.

We need one more piece of notation, namely the Schur elements.

5.1. Definition (Schur elements). Let Z be the element
∑

w∈W T ∨
w Tw ∈ H . For every irreducible

character χ of KH we call the element

cχ := χ(Z)

χ(Tid)2
∈ K

the Schur element of the character χ .

Note. Using that H is a symmetric algebra with symmetrizing trace τ one can define an averaging
procedure to make a K-linear map from a KH -module into itself into a KH -endomorphism. The
Schur elements play an important role in this as can be seen from [5, 7.2.1].

We need the following statement:
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5.2. Theorem (Semisimplicity and Schur elements, see [5, 7.2.6]). For the split semisimple alge-
bra KH all Schur elements cχ for all χ ∈ Irr(KH) are non-zero and we have:

τ =
∑

χ∈Irr(KH)

χ

cχ

as A-linear maps.

We have now everything in place to proof our first main theorem:

5.3. Theorem (Simple cell module, cf. [8, VI.(4.1)]). Let Λ be a left cell, such that the extension
of scalars KLC(Λ) of the left cell module LC(Λ) is simple as a KH module. If χ denotes the
corresponding irreducible character, then the elements

B := (
c−1
χ CxDy−1

)
x,y∈Λ

are K-linearly independent and span the isotypic component of KH belonging to the charac-
ter χ . Further, we have the relations

c−1
χ CxDy−1 · c−1

χ Cx′Dy′−1 = δy,x′ · c−1
χ CxDy′−1

for all x, y, x′, y′ ∈ Λ. That is, B is a matrix unit for the isotypic component of KH correspond-
ing to the simple module KLC(Λ).

Proof. By [5, 7.2.7] we obtain a matrix unit for the isotypic component of KH corresponding
to the simple module KLC(Λ) by the elements

1

cχ

∑
z∈W

τ(Dy−1 · Cz · Cx) · Dz−1 = 1

cχ

∑
z∈W

τ(Cz · CxDy−1) · Dz−1

for x, y ∈ Λ. But this is equal to c−1
χ · CxDy−1 , because {Dz−1} is the dual basis of {Cz} with

respect to τ (use Eq. (3)). �
This result immediately yields explicit formulae for a Wedderburn decomposition of KH for

the case that all cell modules are simple, which is for example true for type A by Theorem 4.2:

5.4. Corollary (Wedderburn decomposition and basis). Assume that for all left cells Σ the ex-
tension of scalars KLC(Σ) of the cell module is a simple KH module and that two such modules
KLC(Σ) and KLC(Σ ′) are isomorphic if and only Σ and Σ ′ lie in the same two-sided cell.

Let Λ1,Λ2, . . . ,Λr be left cells, such that from every two-sided cell exactly one left cell
occurs, and let Λ := ⋃r

i=1 Λi . We denote by χ1, χ2, . . . , χr the irreducible characters of H af-
forded by the left cell modules KLC(Λ1), . . . ,KLC(Λr ) and with cχ1, . . . , cχr the corresponding
Schur elements. Let

B := (
c−1
χ · CxDy−1 ∈ KH | i ∈ {1,2, . . . , r} and x, y ∈ Λi

)
.

i
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Then B is a K-basis of KH , such that

(
c−1
χi

· CxDy−1

) · (c−1
χj

· Cx′Dy′−1

) = δi,j · δy,x′ · (c−1
χi

· CxDy′−1

)
.

Proof. This result follows immediately from Theorem 5.3. �
Remark. This shows that the elements c−1

χi
· CxDy−1 form a Wedderburn basis of KH , i.e.

KH = KH1 ⊕ KH2 ⊕ · · · ⊕ KHr as K-algebras,

where KHi := 〈c−1
χi

· CxDy−1 | x, y ∈ Λi〉K is the isotypic component of KH corresponding to
the irreducible character χi and the K-linear mapping from KHi to the full matrix ring M|Λi |(K),
mapping each c−1

χi
· CxDy−1 to a matrix with exactly one 1 in position (x, y) and zeroes every-

where else, is an isomorphism of K-algebras.

These basis elements will also play a prominent role in the following sections about the
Lusztig homomorphism.

For the case that the left cell modules to different left cells in the same two-sided cell yield
the very same matrix representation (as is for example guaranteed for type A by Theorem 4.3)
we even have the following corollary.

5.5. Corollary (Different left cells in the same two-sided cell). Assume that Λ and Λ′ are two
left cells in the same two-sided cell, that KLC(Λ) is a simple KH -module and that there is a
bijection ϕ :Λ → Λ′ with

τ(Dy−1 · h · Cx) = τ(Dϕ(y)−1 · h · Cϕ(x)) for all x, y ∈ Λ and h ∈ H .

Then CxDy−1 = Cϕ(x)Dϕ(y)−1 for all x, y ∈ Λ.

Proof. This follows directly from the formulae in the proof of Theorem 5.3. �
In the rest of this section we investigate, which of the nice results above can still be obtained

in the case that the cell modules are not all simple. For the next few results, we still do not have
to use Conjectures P1 to P15.

5.6. Lemma. If Λ is a left cell, then the element s := ∑
z∈Λ CzDz−1 is central in H .

Proof. If χΛ is the character corresponding to the left cell module LC(Λ), then we have for all
elements h,h′ ∈ H (note Eq. (4) in Section 3):

τ(sh · h′) =
∑
z∈Λ

τ(Dz−1hh′Cz) = χΛ(hh′) = χΛ(h′h) =
∑
z∈Λ

τ(Dz−1h
′hCz)

= τ(hs · h′).

Thus sh = hs for all h ∈ H , because τ is non-degenerate. �
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5.7. Proposition. Let Λ and Λ′ be two left cells that do not lie in the same two-sided cell. Then the
two left cell modules KLC(Λ) and KLC(Λ′) have no common simple KH -module as constituent.

Proof. The elements s := ∑
z∈Λ CzDz−1 and s′ := ∑

z′∈Λ′ Cz′Dz′−1 are both central in H by
Lemma 5.6 and we have

χΛ(h) = τ(s · h) and χΛ′(h) = τ(s′ · h)

for all h ∈ H as in the proof of Lemma 5.6. Thus s is a linear combination of the central primitive
idempotents in KH corresponding to the simple constituents occurring in KLC(Λ), namely

s =
∑

χ∈Irr(KH)

(χ,χΛ)cχeχ ,

where (χ,χΛ) stands for the number of simple constituents of KLC(Λ) with character χ and
eχ is the central primitive idempotent in KH corresponding to the character χ . To proof this,
calculate

τ

( ∑
χ∈Irr(KH)

(χ,χΛ)cχeχ · h
)

=
∑

χ∈Irr(KH)

(χ,χΛ)cχ · τ(eχ · h)

=
∑

χ∈Irr(KH)

(χ,χΛ)cχ ·
( ∑

χ ′∈Irr(KH)

c−1
χ ′ χ ′(eχ · h)

)

=
∑

χ∈Irr(KH)

(χ,χΛ)χ(h) = χΛ(h)

using Theorem 5.2 and the fact, that χ ′(eχ ·h) = δχ,χ ′ ·χ(h) for all h ∈ H and χ,χ ′ ∈ Irr(KH).
The analogous statement holds for s′.

We now consider the element ss′ = s′s:

∑
z∈Λ

∑
z′∈Λ′

CzDz−1Cz′Dz′−1 =
(∑

z∈Λ

CzDz−1

)
·
( ∑

z′∈Λ′
Cz′Dz′−1

)
= ss′ (5)

= s′s =
∑
z∈Λ

∑
z′∈Λ′

Cz′Dz′−1CzDz−1 . (6)

Assume that this sum is non-zero.
There must be at least one pair (z1, z

′
1) ∈ Λ × Λ′ with D

z−1
1

Cz′
1
�= 0 (see Eq. (5)) and at least

one pair (z2, z
′
2) ∈ Λ × Λ′ with D

z′−1
2

Cz2 �= 0 (see Eq. (6)). But this means z1 �R z′
1 ∼L z′

2 �R

z2 ∼L z1 by Lemma 4.1 and thus contradicts the hypothesis that Λ and Λ′ are not in the same
two-sided cell. Therefore we have shown that ss′ = 0 = s′s.

Thus, we have

0 =
∑

χ∈Irr(KH)

(χ,χΛ) · (χ,χΛ′) · c2
χeχ

which proves the proposition, because all Schur elements are non-zero. �
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Comment. This and the fact that every simple KH -module occurs in at least one left cell module
shows that the two-sided cells induce a partition of the set of isomorphism classes of simple KH -
modules. Therefore, we speak of “the two-sided cell a character χ ∈ Irr(KH) belongs to” in the
sequel.

5.8. Proposition. Assume that x ∼L y �LR z ∼L w holds for x, y, z,w ∈ W . Then

CxDy−1 · CzDw−1 = 0.

Proof. Denote the left cell in which x and y lie by Λ and the two-sided cell in which Λ lies
by Σ .

We consider the action of CxDy−1 on the left cell module LC(Λ′) for some left cell Λ′ outside
of Σ . The representing matrix for CxDy−1 is

(
τ(Dw′−1 · CxDy−1 · Cz′)

)
z′,w′∈Λ′ .

By Lemma 4.1 Dw′−1 · Cx = 0 unless w′ �R x and Dy−1 · Cz′ = 0 unless y �R z′. But in that
case we would have w′ �R x ∼L y �R z′ ∼L w′ and this would mean that Λ′ is in Σ , contrary
to our assumption.

Thus we have shown that CxDy−1 acts as zero on all left cell modules of left cells Λ′ outside
of Σ . This means that CxDy−1 lies in the direct sum of those isotypic components of irreducible
characters that belong to Σ .

The same arguments hold for CzDw−1 and for the two-sided cell in which z and w lie. There-
fore the product must be zero. �
5.9. Definition/Proposition (Ideals Ly and Rx ). Let Λ be a left cell and x, y ∈ Λ.

Then the A-module Ly := 〈CzDy−1 | z ∼L y〉A is a left ideal in H , and Ly is isomorphic as

left H -module to LC(Λ) via the A-linear map

Cz + LC(Λ′) �→ CzDy−1 ,

where Λ′ is the union of left cells that are <L Λ.
Further, the A-module Rx := 〈CxDz−1 | z ∼L x〉A is a right ideal in H and as a right module

isomorphic to the dual module homA(LC(Λ),A) of the left cell module LC(Λ) via the A-linear
map

(
Cz + LC(Λ′))∨ �→ CxDz−1 ,

where ((Cz + LC(Λ′))∨)z∈Λ stands for the dual basis of the basis (Cz + LC(Λ′))z∈Λ.

Proof. For arbitrary h ∈ H we have (use Eq. (3))

h · Cz =
∑

τ(h · CzDx−1) · Cx =
∑

τ(h · CzDx−1) · Cx.
x∈W x�Lz
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Initially, x runs through all of W , but we may restrict the sum to x �L z because otherwise
CzDx−1 = 0 by Lemma 4.1, thereby proving the second equality. We multiply this equation from
the right by Dy−1 and get

h · CzDy−1 =
∑
x�Lz

τ (h · CzDx−1) · CxDy−1 =
∑
x∼Ly

τ (h · CzDx−1) · CxDy−1 .

The term CxDy−1 is equal to 0 unless we have y �L x again by Lemma 4.1. But in that case,
we have y �L x �L z ∼L y and thus x ∼L y. This shows the right equality and thus that Ly is
indeed a left ideal in H .

As a left H -module the left ideal Ly is isomorphic to LC(Λ) via the A-linear map that maps
Cz + LC(Λ′) to CzDy−1 for all z ∈ Λ, because the entries of the representing matrices of h with
respect to these bases are in both cases τ(Dx−1 · h · Cz) for x, z ∈ Λ.

The proofs for the right handed version are completely analogous. �
Remark. An analogous result can be obtained for the right cell modules by using elements of
the form Dy−1Cx with x ∼R y.

2. Remark. This result specializes for an irreducible left cell module to the fact that in a full
matrix ring the set of matrices having zeroes everywhere except in a single column form a left
ideal isomorphic to the natural left module and that the set of matrices having zeroes everywhere
except in a single row form a right ideal isomorphic to the natural right module. Compare to
Theorem 5.3.

5.10. Theorem (Generation of KH ). The algebra KH is generated as a K-vectorspace by the
set {CxDy−1 | x ∼L y}.

Proof. The element Z := ∑
w∈W CwDw−1 is central in H as sum of central elements (see

Lemma 5.6), and has the property that

ρ(h) = τ(Z · h) =
∑
w∈W

τ(Dw−1 · h · Cw)

for all h ∈ KH holds, where ρ is the regular character. Thus Z is equal to

Z =
∑

χ∈Irr(KH)

χ(Tid) · cχ · eχ ,

where cχ is the Schur element and eχ is the central primitive idempotent belonging to the char-
acter χ (remember Theorem 5.2 and the proof of Proposition 5.7). In particular Z is invertible
in KH .

Therefore, we can write every element h ∈ H as

h = h · Z−1 · Z = (
h · Z−1) ·

∑
w∈W

CwDw−1 .

Because the element CwDw−1 lies in the left ideal Lw , which is spanned as an A-module by the
elements CxDw−1 with x ∼L w, the theorem is proved. �
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Remark. Compare to Theorem 6.4, which shows (under the assumption of Conjectures P1
to P15) that the right regular KH -module KHKH is isomorphic to the direct sum

⊕
d∈D KRd ,

because the set {CdDz−1 | z ∈ W and d ∈ D with d ∼L z} is a K-basis of KH .

From now on, we will assume Conjectures P1 to P15 if necessary. Then also the relations for
a matrix unit can be generalized to the case of reducible cell modules:

5.11. Proposition (Generalized matrix unit relations). Assume that P4, P9, and P10 hold. Let Σ

be a two-sided cell, x, y, z,w ∈ Σ and x ∼L y and z ∼L w. Then we have

CxDy−1 · CzDw−1 =
{

0 for y �R z,∑
u∈S(w,x) τ (CxDy−1CzDu−1)CuDw−1 for y ∼R z,

=
{

0 for y �R z,∑
u∈S(x,w) τ (CuDy−1CzDw−1)CxDu−1 for y ∼R z,

where S(x, y) stands for the set {u ∈ W | u ∼L x and u ∼R y}. (Note that this means that S(x, y)

is the intersection of the left cell of x with the right cell of y.)

Proof. If y ��R z, the product Dy−1 · Cz is zero by Lemma 4.1. If, on the other hand, we have
y �R z, then by Corollary 4.6 we have y ∼R z, because all elements lie in the two-sided cell Σ .
In this case, we get

CxDy−1Cz =
∑
u∈W

auCu =
∑
u�Lz
u�Rx

auCu,

where au = τ(CxDy−1CzDu−1) ∈ A. Thus, we have au = 0 for u ��L z or u ��R x, so we only
have to sum over those u with u �L z and u �R x as indicated in the sum. We now multiply this
equation by Dw−1 from the right:

CxDy−1CzDw−1 =
∑
u�Lz
u�Rx

auCuDw−1,

where all summands vanish for which u ��L w. Thus, because of z ∼L w, we only have to sum
over the left cell of w. However, since all elements u in this left cell are in Σ , and we conclude
u ∼R x from u �R x by Corollary 4.6, we finally reach the summation over S(w,x) as stated in
the statement of the proposition.

The other equality follows completely analogously by writing Dy−1CzDw−1 as linear combi-
nation of the Du−1 , multiplying the result by Cx from the left, and analogous reasoning using
Corollary 4.5. �
6. The asymptotic algebra J and the Lusztig homomorphism φ

In this section we briefly recall the definitions for the asymptotic algebra J and the Lusztig
homomorphism from H to J, which were first introduced in [1]. Then we derive preimages of
the elements tz in the standard basis of J, which leads to a new interpretation of the Lusztig
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homomorphism. Finally, the results are made even more explicit for the case that the left cell
modules are simple KH -modules like for example in type A.

We assume from now on that P1 to P15 hold. Note that we assume that W is finite throughout,
therefore we automatically have that W is tame in the sense of [2, 1.1.11], which allows us to
use the results of [2, Chapter 18].

6.1. Definition/Proposition (Lusztig’s asymptotic algebra, see [2, Chapter 18]). Let J be the
free abelian group with basis {tw | w ∈ W }. It becomes an associative Z-algebra by using the
γx,y,z−1 as structure constants, i.e. if we set

tx · ty :=
∑
z∈W

γx,y,z−1 tz for all x, y ∈ W.

Its unit element is
∑

d∈D ndtd . We denote the associative A-algebra A ⊗Z J by J, it is called
Lusztig’s asymptotic algebra.

Proof. See [2, 18.3]. �
The asymptotic algebra turns out to be closely related to H , as is shown by the following

statement:

6.2. Definition/Proposition (Lusztig homomorphism, see [2, 18.9]). As in [2, 3.5] we denote by
h �→ h† the unique algebra involution of H such that T

†
s = −T −1

s for all s ∈ S.
The A-linear mapping φ :H → J with

φ
(
C†

x

) :=
∑

d∈D, z∈W
a(d)=a(z)

hx,d,z · n̂z · tz =
∑

d∈D, z∈W
z∼Ld

hx,d,z · n̂z · tz for all x ∈ W,

where n̂z := nd ′ for the unique (use P13) d ′ ∈ D with d ′ ∼L z−1, is a homomorphism of
A-algebras. It is called the Lusztig homomorphism. We denote the extension idK ⊗A φ :KH →
KJ to the extension of scalars with K also by φ. It is an isomorphism of K-algebras.

Comment on proofs. See [2, 18.8 to 18.12]. The fact that idK ⊗A φ is an isomorphism follows
from [2, 18.12.(b)]. The second equals sign in the formula above follows from the fact that
hx,d,z = τ(CxCdDz−1) = 0 unless z �L d (use Lemma 4.1) and that z ∼L d is equivalent to
z �L d and a(d) = a(z) by P9 and P4. �
6.3. Corollary (Lusztig homomorphism for a general element). Let h ∈ H be arbitrary. Then we
have for the image φ(h†) of h† under the Lusztig homomorphism:

φ
(
h†) =

∑
d∈D, z∈W

z∼Ld

τ (h · CdDz−1) · n̂z · tz.

Proof. Write h = ∑
u∈W αuCu and use hu,d,z = τ(CuCdDz−1) and the fact that τ and φ are

A-linear. �
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We can now find the preimages of the elements tz under the Lusztig homomorphism:

6.4. Theorem (Preimages of the tz under the Lusztig homomorphism). The set

B∨ := {CdDz−1 | z ∈ W and d ∈ D with d ∼L z}

is K-linearly independent in KH . Let {hy ∈ KH | y ∈ W } be the dual basis of B∨ in KH with
respect to τ in the sense that τ(hy · CdDz−1) = δy,z for z ∈ W and d ∈ D with d ∼L z. Then

φ(h
†
z) = n̂ztz for all z ∈ W .

Proof. We derive these results in the opposite order than in the theorem:
The map φ :KH → KJ is an isomorphism of K-algebras. Therefore, every element n̂ztz ∈ J

has a unique preimage, which we denote by h
†
z . Because the set {n̂ztz | z ∈ W } is a K-basis of J

and h �→ h† is a K-linear involution, the set {hz | z ∈ W } is a K-basis of KH . By Corollary 6.3
we have

φ
(
h†

y

) =
∑

d∈D, z∈W
z∼Ld

τ (hy · CdDz−1) · n̂z · tz = n̂y · ty .

Thus, each hy fulfills the relation τ(hy · CdDz−1) = δy,z for all z ∈ W and d ∈ D with d ∼L

z. Therefore, the set B∨ is the dual basis of {hy | y ∈ W } with respect to τ and in particular
K-linearly independent. �
6.5. Corollary (Direct sum decomposition of KHKH ). The right regular module KHKH is iso-
morphic as a right KH -module to the direct sum

⊕
d∈D

Rd =
⊕
d∈D

〈CdDz−1 | z ∼L d〉K

of right ideals. Each Rd is isomorphic to the dual module homK(KLC(Λ),K) of the left cell
module KLC(Λ) (where Λ is the left cell with d ∈ Λ and Λ′ is the union of left cells that are <L

than Λ) via the K-linear map

(
Cz + LC(Λ′))∨ �→ CdDz−1,

where ((Cz + LC(Λ′))∨)z∈Λ stands for the dual basis of the basis (Cz + LC(Λ′))d∈Λ.

Proof. The direct sum decomposition follows directly from Theorem 6.4 and the fact that Rd is
a right ideal from Proposition 5.9. The isomorphism to the dual of the left cell module follows
by extension of scalars from Proposition 5.9. �
6.6. Corollary (A new interpretation of the Lusztig homomorphism). Let B∨ be the K-basis

B∨ := {CdDz−1 | z ∈ W and d ∈ D with d ∼L z}
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of KH and

B := {hz | z ∈ W }

be the dual basis of B∨ with respect to τ in the sense of τ(hy · CdDz−1) = δy,z for all y, z ∈ W

and d ∈ D with d ∼L z.
Then the asymptotic algebra J is, as an A-algebra, isomorphic to the A-algebra

〈B〉†
A := 〈hz | z ∈ W 〉†

A

via the restriction of the Lusztig homomorphism φ to 〈B〉†
A.

Thus, the Lusztig homomorphism φ :H → J can be interpreted as the inclusion of H

into 〈B〉†
A.

Proof. We have 〈B∨〉A ⊆ H and by Theorem 6.4 the set B∨ is a K-basis of KH . Thus, because
H is a symmetric algebra with symmetrizing trace form τ , the A-span 〈B〉A of B contains H .
Therefore H = H† is a subset of 〈B†〉A = 〈B〉†

A. The result follows now directly from Theo-

rem 6.4, because φ maps 〈B〉†
A bijectively onto J. �

Finally we can give even more explicit results for the special case, that the left cell modules
are simple KH -modules (like for example if W is of type An−1 by Theorem 4.2):

6.7. Corollary (Explicit interpretation for the case of simple cell modules). Let Λ be a left cell,
such that KLC(Λ) is a simple KH -module.

For y ∈ Λ let hy := c−1
χ ·CyDd ′ ∈ KH , where d ′ ∈ D is the unique element with d ′ ∼L y and

cχ is the Schur element to the character χ corresponding to the left cell module LC(Λ). Then

φ(h
†
y) = n̂y ty .

Proof. By Theorem 6.4 we only have to show that τ(hy · CdDz−1) = δy,z for all z ∈ W and
d ∈ D with d ∼L z. Let z ∈ W and d ∈ D with d ∼L z. Then

τ
(
c−1
χ · CyDd ′ · CdDz−1

) = τ
(
c−1
χ · Dd ′ · CdDz−1 · Cy

)

is equal to zero unless d ′ �R d and z �R y by Lemma 4.1 (note d ′ = d ′−1 by P6). Now assume
that case. Then we have y ∼L d ′ �R d ∼L z �R y and thus that all four elements d ′, y, d , and z

are in the same two-sided cell. By P4 and P10 it follows, that d ′ ∼R d and z ∼R y. Using P6 and
P13 we conclude that d = d ′ and that all four elements are in Λ. Now we can apply Theorem 5.3
and get

τ
(
c−1
χ · CyDd ′ · Cd ′Dz−1

) = τ(CyDz−1) = δy,z

proving all our claims. �
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