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Abstract

We study the concept of liaison addition for codimension two subschemes of an arithmetically Gorenstein
projective scheme. We show how it relates to liaison and biliaison classes of subschemes and use it to
investigate the structure of Gorenstein liaison equivalence classes, extending the known theory for complete
intersection liaison of codimension two subschemes. In particular, we show that on the non-singular quadric
threefold in projective 4-space, every non-licci ACM curve can be obtained from a single line by successive
liaison additions with lines and CI-biliaisons.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The Lazarsfeld–Rao property refers to a structure common to even liaison classes in codi-
mension two under complete intersection liaison (cf. [1–3,7,12,15]). The goal of our work is to
discover if there is an analogue of this property for Gorenstein liaison. In other words, we seek
to find some structure for an even Gorenstein liaison class.
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At this point, more precisely, the Lazarsfeld–Rao theorem for complete intersection liaison is
known only for subschemes of codimension two in an ambient projective scheme X, but X can
be taken quite generally: the most general result to date is for X an integral projective scheme
satisfying the condition S3 of Serre and H 1∗ (OX) = 0 [7]. In this case it says:

(1) If C is a codimension two subscheme of X (equidimensional without embedded compo-
nents) that is not of minimal degree in its CI-biliaison equivalence class, then it admits a
strictly descending biliaison.

(2) Any two subschemes C,C′ of minimal degree in the same biliaison equivalence class can be
joined by a sequence of elementary biliaisons of height 0.

Since nothing has been proved for subschemes of codimension three or higher in any ambient
scheme, we will also stick to codimension two. We refer to [5] and [4] for definitions and ba-
sic results on CI-liaison, Gorenstein liaison, and Gorenstein biliaison on a projective scheme X.
Our basic assumption throughout this paper is that X ∈ P

N is a normal arithmetically Gorenstein
scheme, and that we deal with closed subschemes C that are equidimensional of codimension
2 without embedded points. Recall that a coherent sheaf N on X is called extraverti [7, Defi-
nition 2.9] if H 1∗ (N∨) = 0 and Ext1(N ,OX) = 0. A sheaf F is dissocié if F = ⊕

OX(ai) for
some integers r, a1, . . . , ar . An N -type resolution of C [4, Definition 2.4] is an exact sequence

0 → L→ N → IC → 0

with L dissocié and N extraverti. In addition if C is locally Cohen–Macaulay, then N is a locally
Cohen–Macaulay sheaf on X. There are two (inequivalent) kinds of Gorenstein liaison that will
concern us, so we phrase two questions.

Question 1. What is the structure of a Gorenstein biliaison equivalence class of codimension two
subschemes of X (see [5] for Gorenstein biliaison)?

Question 2. What is the structure of an even Gorenstein liaison class of codimension two sub-
schemes of X?

Since any CI-biliaison is also an even Gorenstein liaison and a Gorenstein biliaison, the first
observation we can make is that each Gorenstein biliaison or even Gorenstein liaison class is
a disjoint union of CI-biliaison classes, and within each of these, the “classical” Lazarsfeld–
Rao property holds. So our problem is rather, how to get from one CI-biliaison class to another
within the Gorenstein biliaison or even Gorenstein liaison class. And, while we are at it, do our
constructions yield minimal elements of a CI-biliaison class if we start from a minimal element?

Interesting special cases are the following classes, all contained within the set of arithmetically
Cohen–Macaulay subschemes:

{licci} ⊆ {gobilicci} ⊆ {glicci}.

Here we follow the commonly used acronyms for the liaison class (respectively Gorenstein bili-
aison class; respectively Gorenstein liaison class) of a complete intersection.
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Another general observation is that in the case of Gorenstein biliaison, we have elemen-
tary Gorenstein biliaisons, which could play the role of elementary biliaisons in the traditional
Lazarsfeld–Rao property. But in the case of even Gorenstein liaison, it may happen that the only
Gorenstein biliaisons are CI-biliaisons, so we need some other operation to move from one class
to another. We investigate liaison addition as a possibility in this case, and have some success. In
particular, we give some additional justification to the name itself.

“Liaison Addition” was introduced by Schwartau in his thesis [17], where on page 1 he says:
“Does there exist a geometric addition of curves in P

3 corresponding to the direct sum of their
liaison invariants? This is the liaison addition problem. . . . We find that not only is there a way to
add curves in P

3, but that an explicit procedure is possible: that is, equations for the added curve
may be written down from the equations of the curves being added. The addition procedure
. . . admits a purely intrinsic formulation reminiscent of liaison itself.”

Since Schwartau considered the question only in P
3, where Rao had shown that liaison re-

duces to a question about the “liaison invariants” (subsequently dubbed “Rao modules”), the
name made perfect sense in his setting. Subsequently, liaison theory has exploded in the direc-
tion of Gorenstein liaison, thanks largely to [10] (see [13] for an extensive bibliography, albeit
now quite outdated). Liaison addition has also been generalized substantially (see [2,3,6,13]);
a treatment in the generality needed here can be found, for example, in [15]. The name has con-
tinued to make sense in the context of complete intersection liaison in codimension two (cf. [3,
15]). However, until now there has been no connection made between liaison addition and the
more general notion of Gorenstein liaison.

In Section 2 of this paper we recall the construction and first properties of liaison addition.
Our first main results of this paper are contained in Section 3, where we prove the following
about the liaison addition C of given codimension two subschemes C1 and C2 with respect to
forms F1 ∈ IC2 and F2 ∈ IC1 .

• If C2 is gobilicci then C1 and C are in the same Gorenstein biliaison class on X.
• If C2 is glicci then C1 and C are in the same even Gorenstein liaison class on X.

It follows from Rao’s theorem and the preparatory results on liaison addition that if C2 is
licci then C1 and C are in the same CI even liaison class. However, it is only an existence result
about a sequence of links. In Section 4 we make this more precise by showing that there is a very
concrete sequence of links, preserving the liaison addition structure all along the way from C

to C1.
In Section 5 we begin the study of a Lazarsfeld–Rao-type structure theorem for a Gorenstein

liaison class. Two specific situations that we will examine in some detail are the case of curves
on the non-singular quadric hypersurface in P

4 and on the singular quadric hypersurface with a
single double point in P

4. We hope that these cases will illustrate the type of phenomena one
finds, and may suggest what kind of results one could hope for in more general situations. The
special feature of these two examples is that in each case, the Rao module of a curve characterizes
the even Gorenstein liaison (respectively G-biliaison) equivalence class of a curve, in analogy to
the traditional Rao theorem, where the Rao module characterizes the CI-biliaison class of a curve
in P

3. (See [4, Theorem 6.2] for the first case and [5, Theorem 6.2] for the second.) Note that
it is an open question whether the Rao module characterizes an even Gorenstein liaison class of
curves in P

4.
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2. Liaison addition

Throughout this note we denote by R = k[x0, . . . , xn] the homogeneous coordinate ring of P
n

where k is any infinite field. We begin with the definition.

Definition 2.1. Let C1,C2 be codimension 2 subschemes of X ⊂ P
n. Let F1 ∈ IC1,X and F2 ∈

IC2,X be homogeneous elements of degree f1 and f2, respectively, such that {F1,F2} is an S-
regular sequence, where S = R/IX . Then the subscheme C ⊂ X defined by the ideal

IC,X := F2 · IC1,X + F1 · IC2,X

is called the liaison addition of C1 and C2 with respect to F1 and F2.

We record some of its properties:

Lemma 2.2. Assume X is an arithmetically Gorenstein scheme and that C1 and C2 are codi-
mension 2 equidimensional subschemes. Then the ideal J = F2 · IC1,X +F1 · IC2,X is a saturated
ideal in the coordinate ring S = R/IX of X. Thus, it is the homogeneous ideal of a subscheme
C ⊂ X which has the following properties:

(a) The Hilbert function of C is for all integers j :

hC(j) = hC1(j − f2) + hC2(j − f1) + hY (j)

where Y is the complete intersection defined by (F1,F2).
(b) Let

0 → Li → Ni → ICi,X → 0

be an N -type resolution of Ci , i = 1,2, on X. Then C has the following N -type resolution
on X

0 → OX(−f1 − f2) ⊕L1(−f2) ⊕L2(−f1) →N1(−f2) ⊕N2(−f1) → IC,X → 0.

(c) If dimX = 3 with d = degX and ωX = OX(e), and C1,C2 are curves of degrees d1 and d2
and arithmetic genera g1, g2, respectively, then the degree of C is

degC = d1 + d2 + df1f2

and its arithmetic genus is

gC = g1 + g2 − 1 + d1f2 + d2f1 + 1

2
df1f2(f1 + f2 + e).

Proof. Most of the claims are covered by [15, Proposition 4.1]. In any case, the proof given there
shows that there is an exact sequence

0 → S(−f1 − f2) → IC ,X(−f2) ⊕ IC ,X(−f1) → IC,X → 0.
1 2
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This implies (a) and (c). Claim (b) follows from (a) by noting that the arithmetic genus of the
complete intersection Y is gY = 1

2df1f2(f1 + f2 + e) + 1. �
Corollary 2.3. The CI-liaison class of C depends only on the CI-liaison classes of C1,C2 and
the difference f1 − f2 of the degrees of the hypersurfaces F1,F2.

Proof. Indeed, the N -type resolution of C involves N1(−f2) ⊕N2(−f1), whose stable equiva-
lence class depends only on those of N1,N2 and the difference f1 −f2. Hence, the claim follows
from Rao’s theorem [16], [7, Corollary 3.14] that CI-biliaison classes are determined by the sheaf
N appearing in the N -type resolution, up to stable equivalence. �
3. Properties of liaison addition

We hope to use liaison addition for elucidating the structure of a Gorenstein liaison class. To
this end it is important to know under what conditions on C2 the new subscheme C is in the same
G-biliaison or even G-liaison class as C1.

Proposition 3.1.

(a) If C2 is licci, then C1 and C are in the same CI-biliaison class.
(b) If C and C1 are in the same G-biliaison or even G-liaison class, then C2 must be ACM.

Proof. (a) If C2 is licci, then it has an N -type resolution with N2 dissocié. Hence C1 and C

have N -type resolutions with stably equivalent N .
(b) G-biliaison and even G-liaison preserve deficiency modules, up to twist, so the deficiency

modules of C2 must be all zero, i.e. C2 is ACM. �
Even though the above result has a very simple proof, it is based on deep theorems and the

links are not given explicitly (see however Section 4).
We now weaken the assumption on C2.

Theorem 3.2. Let X be a normal arithmetically Gorenstein subscheme of P
N and let C1,C2 be

locally Cohen–Macaulay codimension two subschemes of X. Let C be the liaison addition of C1

and C2 with respect to forms F1 ∈ IC2 , F2 ∈ IC1 .

(a) If C2 is gobilicci then C1 and C are in the same Gorenstein biliaison class on X.
(b) If C2 is glicci then C1 and C are in the same even Gorenstein liaison class on X.

To prove Theorem 3.2 we will use the fact that an N -type resolution of C is obtained es-
sentially as a direct sum of N -type resolutions of C1 and C2 (see Lemma 2.2(c) above). Then
we use criteria from the papers [5] and [4] respectively characterizing subschemes in the same
Gorenstein biliaison (respectively liaison) class to prove the results.

First we need an alternative form of [5, Theorem 3.1] characterizing Gorenstein biliaison
equivalence classes.
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Proposition 3.3. Let X be a normal projective arithmetically Gorenstein scheme, and let C1,C2
be codimension two subschemes without embedded components in X. Then C1 and C2 are in the
same G-biliaison equivalence class if and only if they have N -type resolutions

0 → L1 →N1 → IC1(a1) → 0,

0 → L2 →N2 → IC2(a2) → 0

and there exists an extraverti sheaf F and exact sequences (with the same F on the left!)

0 F N1 E∨σ∨
1 0

0 F N2 E∨σ∨
2 0,

where E1 and E2 are layered ACM sheaves (see [5] for definition) of the same rank, and the
rank 1 factors of the layerings of E1 and E2 are isomorphic, up to twist, in some order. (Here ∨
represents dual, and σ represents the syzygy sheaf, see [4].)

Proof. This is obtained by rewriting the result of [5, Theorem 3.1] in terms of the N -type reso-
lutions. Given a sequence

0 → E →N → IC(a) → 0

as in the statement of [5, Theorem 3.1], where E is an ACM sheaf and N is just assumed to be
coherent (note this is neither an E-type nor an N -type resolution, in spite of the notation!), we
proceed as follows.

First take a sequence

0 → L′ →N ′ → N → 0

where N ′ is extraverti, which exists by [9, §2]. Then letting E ′ be the kernel of N ′ → IC(a), we
get a new sequence

0 → E ′ →N ′ → IC(a) → 0

as above, where now N ′ is extraverti. In other words, dropping primes, we may assume that the
original N was extraverti.

Next take the syzygies of E∨

0 → E∨σ → L→ E∨ → 0

with L dissocié. Dualize to obtain

0 → E → L∨ → E∨σ∨ → 0.
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Now we create a push-out diagram

0 0

0 E N IC(a) 0

0 L∨ N ′ IC(a) 0.

E∨σ∨ E∨σ∨

0 0

The middle row is then an N -type resolution of C.
To prove the proposition, first let C1,C2 be in the same Gorenstein biliaison class. Then there

are sequences

0 → E1 → N → IC1(a1) → 0,

0 → E2 → N → IC2(a2) → 0

as in [5, Theorem 3.1] with the same sheaf N in the middle. As above, we may assume N is
extraverti. Then performing the push-out construction for E1 and E2 as above, we get N -type
resolutions for C1 and C2 with sheaves N1 and N2 (as the N ′ above) and exact sequences as
desired with F taken as the N above.

Conversely, given N -type resolutions N1 and N2 for C1 and C2 respectively, and given the
sheaf F relating the two as above, for each one create a diagram (dropping subscripts)

0 0

0 R L E∨σ∨ 0

0 F N E∨σ∨ 0

IC(a) IC(a)

0 0
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defining R as the kernel of L → E∨σ∨ → 0. Then R becomes the syzygy sheaf of E∨σ∨ up to
a dissocié and this is just E up to a dissocié [4, Proposition 4.1(b)]. So the left-hand columns of
these two diagrams give the sequences of [5, Theorem 3.1] with R,F in place of E,N . Hence
C1,C2 are in the same Gorenstein biliaison class. �
Corollary 3.4. C is gobilicci if and only if it has an N -type resolution whose N belongs to an
exact sequence

0 → E ′ → N → E∨σ∨ → 0

where E and E ′ are layered ACM sheaves with the same rank 1 factors up to twist and order.

Proof. In the proposition we can take C1 = C and C2 to be a complete intersection. Then N2 is
dissocié, so F becomes just E2 up to a dissocié and we get the desired result.

Conversely, given this sequence for N , consider the syzygy sequence for E ′∨, compare its
dual

0 → E ′ → L∨ → E ′∨σ∨ → 0,

and apply Proposition 3.3 to see that C is gobilicci. �
Proof of Theorem 3.2(a). Let C1 and C2 have N -type resolutions with sheaves N1,N2. As-
suming that C2 is gobilicci, N2 admits a sequence

0 → E ′ → N2 → E∨σ∨ → 0

with E,E ′ as above.
Then by Lemma 2.2 above, C has an N -type resolution with N = N1(−f1) ⊕N2(−f2). To

show that C1 and C are in the same Gorenstein biliaison class, we apply Proposition 3.3. For
simplicity, we drop the twists from the notation.

Let

0 → E ′ → L→ E ′∨σ∨ → 0

be the dual syzygy sequence for E ′. Then L is dissocié, so C1 also has an N -type resolution with
N1 ⊕L in the middle. We take F = N1 ⊕ E ′ and use the sequences

0 → F →N1 ⊕L→ E ′∨σ∨ → 0,

0 → F →N1 ⊕N2 → E∨σ∨ → 0

which show by Proposition 3.3 that C1 and C are in the same Gorenstein biliaison class. �
Proof of Theorem 3.2(b). This time we use results from [4]. If C2 is glicci then it has an N -type
resolution whose sheaf N2 ∼= N0 ⊕ M0 with N0 double-layered and M0 dissocié [4, Corol-
lary 5.3].

Let C1 have an N -type resolution N1. Then C has an N -type resolution with N1 ⊕N2 (drop-
ping twists). We apply [4, Proposition 5.1]. Since N0 is double-layered, we take the filtration
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given in the definition [4, Definition 4.4], and insert N1 and M0 in the middle, to satisfy the
criterion of [4, Proposition 5.1] and show that C1 and C are in the same Gorenstein liaison class.
It is an even Gorenstein liaison class because the sheaf in the middle of the filtration is N1 and
not N σ∨

1 . �
4. Licci subschemes

It is interesting to see that the links needed in Proposition 3.1 can be described in a very
concrete way. We begin with the following preliminary tool.

Proposition 4.1. Let X be a normal arithmetically Gorenstein subscheme of P
n and let C1 and

C2 be codimension two subschemes of X. Choose B,F ∈ IC1 and A,G ∈ IC2 such that AF and
BG form a regular sequence. We make the following codimension two subschemes:

(1) C′
1 is the residual to C1 in the complete intersection (F,B);

(2) C′
2 is the residual to C2 in the complete intersection (G,A);

(3) C is the liaison addition subscheme defined by IC = G · IC1 + F · IC2 ;
(4) C′ is the liaison addition subscheme defined by IC′ = A · IC′

1
+ B · IC′

2
.

Then C and C′ are directly linked by the complete intersection (AF,BG).

Proof. By hypothesis we have

(F,B) : IC1 = IC′
1
,

(G,A) : IC2 = IC′
2
.

We have to show that

(AF,BG) : (G · IC1 + F · IC2) = A · IC′
1
+ B · IC′

2
. (4.1)

We proceed in two steps. First we show the inclusion ⊇. To this end, let H ∈ IC′
1
. By construction

we have H · IC1 ⊂ (F,B). Then it follows that

AH · (G · IC1 + F · IC2) ⊂ (AF,BG)

since

AHG · IC1 ⊂ (AGF,AGB) ⊂ (AF,BG)

and clearly

AHF · IC2 ⊂ (AF,BG).

Now let K ∈ IC′
2
. In a completely analogous way we have

BK · (G · IC1 + F · IC2) ⊂ (AF,BG).

We thus have shown the inclusion ⊇ of (4.1).
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Now, all ideals under consideration are the saturated ideals of codimension two subschemes
of X. Hence the equality of (4.1) will be established if we can show that both sides define schemes
of the same degree. Let f = degF , g = degG, a = degA, b = degB , and d = degX. Then

degC = degC1 + degC2 + dfg,

degC′ = degC′
1 + degC′

2 + dab

and we know degC1 + degC′
1 = dbf and degC2 + degC′

2 = dag, so

degC + degC′ = d(bf + ag + fg + ab)

= d(a + f )(b + g),

which completes the proof. �
In the following corollary, the fact that C is evenly CI-linked to C1 follows immediately

from Rao’s theorem, as noted above, since the N -type resolutions give bundles that are stably
equivalent. The content of this corollary is that we can follow the links in such a precise way.

Corollary 4.2. Let X be a normal arithmetically Gorenstein subscheme of P
n and let C1,C2 be

codimension two subschemes of X. Assume that C2 is licci, with r minimal generators. Choose
F ∈ IC1 and G ∈ IC2 such that F and G form a regular sequence, and let C be the liaison
addition subscheme defined by the saturated ideal IC = G · IC1 + F · IC2 . Then C is CI-linked to
C1 in an even number of steps. Furthermore, there is a sequence of subschemes

C,Zr−1, Yr−1,Zr−2, Yr−2, . . . ,Z2, Y2,Z1, Y1,D,C1

where

(a) any two consecutive subschemes in the sequence are directly linked (by complete intersec-
tions that we will specify);

(b) for i � 2, each Yi is obtained as the liaison addition of C1 with a licci subscheme with i

minimal generators;
(c) Each Zi is obtained as the liaison addition of a ( fixed) subscheme directly linked to C1 with

a licci subscheme;
(d) Y1 is a basic double link of C1, i.e. the liaison addition of C1 with the trivial subscheme.

Proof. By Rao’s theorem, a codimension two licci subscheme Y of X has a minimal free R/IX-
resolution of the form

0 → L2 → L1 → IY → 0.

By a standard trick due to Gaeta (in modern language this is shown via mapping cones—cf. [13]),
we have the following possibilities for linking Y . Suppose that F1,F2 ∈ IY are a regular se-
quence, linking Y to a residual subscheme Y ′ of X.

(1) If F1 and F2 are both minimal generators of IY then neither is a minimal generator of IY ′ . In
this case IY ′ has one less minimal generator than does IY .
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(2) If F1 is a minimal generator of IY but F2 is not, then F1 is again a minimal generator of IY ′ ,
but F2 is not. In this case IY ′ has the same number of minimal generators as does IY .

(3) If neither F1 nor F2 are minimal generators of IY then both are minimal generators of IY ′ .
In this case IY ′ has one more minimal generator than does IY .

Now, in our situation, we will show that C can be linked in two steps to a codimension two
subscheme C′′ that is the liaison addition of C1 and a licci subscheme C′′

2 whose ideal has one
fewer minimal generator than does IC2 . The result will then follow by induction.

Choose B ∈ IC1 and A ∈ IC2 such that A and B form a regular sequence, and such that
furthermore A is a minimal generator of IC2 . As before, let C1 be directly linked to C′

1 by (F,B)

and let C2 be directly linked to C′
2 by (G,A). Then by Proposition 4.1, C is directly linked via

(AF,BG) to the liaison addition subscheme C′ corresponding to the ideal A · IC′
1
+ B · IC′

2
.

Now replace the data (C1,C2,F,G,B,A) by the data (C′
1,C

′
2,B,A,F,A′) where A′ is a

minimal generator of IC′
2
. We get that C′

2 is directly linked by (A,A′) to a subscheme C′′
2 , C′

1 is
directly linked by (B,F ) back to C1, and C′ is directly linked by (A′B,FA) to a subscheme C′′
defined by the liaison addition IC′′ = A′ · IC1 + F · IC′′

2
.

Now we consider the number of minimal generators of IC2 and IC′′
2
. Since G may or may not

have been a minimal generator of IC2 , while A was a minimal generator, we have two possibili-
ties.

If G was a minimal generator of IC2 then IC′
2

has one fewer minimal generator than does IC2 ,
but then IC′′

2
has the same number of minimal generators as IC′

2
, which is one less than IC2 .

If G was not a minimal generator of IC2 then IC′
2

has the same number of minimal generators
as IC2 , but then A and A′ are both minimal generators of IC′

2
, so IC′′

2
has one fewer minimal

generator. Note that neither A nor A′ are minimal generators of IC′′
2
.

By induction, we arrive in an even number of steps to the liaison addition of C1 and a complete
intersection, C2. As we have seen above, but using the notation of Proposition 4.1, the polynomial
G ∈ IC2 used in the liaison addition is not one of the minimal generators of IC2 . One more link
as we did above results in the subscheme C′ consisting of the liaison addition of C′

1 with another
complete intersection, but this time the polynomial A ∈ IC′

2
used in the liaison addition is a

minimal generator of IC′
2
. We will write IC′

2
= (A,A′), where A and A′ have no common factor.

So at this stage we are considering the subscheme C′ which is a liaison addition of the form

A · IC′
1
+ B · (A′,A).

This is linked by the complete intersection (A′B,FA) to the subscheme C′′ defined by A′ · IC1 +
(F ), since C′

2 is linked by (A,A′) to the trivial ideal R/IX . But C′ is precisely a basic double
link ideal, which is linked in two steps to C1. �
Remark 4.3. In the proof of Corollary 4.2, we used in a heavy way the theory of liaison for
codimension two licci ideals. We wonder about the following questions.

(1) Since Proposition 4.1 did not assume that C2 was licci, it should have additional applications.
If we start with any liaison addition of subschemes C1 and C2, can we explicitly link it in a
finite number of steps to a suitable liaison addition of a minimal element in the even liaison
class of C1 and a minimal element in the even liaison class of C2?
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(2) Liaison addition and basic double linkage have been developed for higher codimension [2,
6,15] in a way that is very similar to the codimension two picture. Can Proposition 4.1 and
Corollary 4.2 also be extended to higher codimension?

5. Curves on quadric threefolds in PPP
4—toward a Lazarsfeld–Rao-type structure

There is a beautiful structure theorem for an even liaison class of codimension two sub-
schemes. It was discovered for curves in P

3 by Martin-Deschamps and Perrin [12] and for
codimension two subschemes in P

n by Ballico, Bolondi and Migliore [1], based on a conjecture
of Harris and a special case proved by Lazarsfeld and Rao. It has been extended to codimension
two subschemes of arithmetically Gorenstein varieties in [3] and in a more general way in [15]
and in [7], but always for even CI-liaison. It was pointed out in [13] that extending this property
to Gorenstein liaison will be difficult. Here, we study the question in two special cases.

Non-singular quadrics

Let X be a non-singular quadric 3-fold in P
4. The only surfaces on X are complete inter-

sections, so for curves in X, Gorenstein biliaison is equivalent to CI-biliaison, which is also
equivalent to even CI-liaison. The even CI-liaison class of a curve C is determined by a triple
(M,P,α), where M = H 1∗ (IC) is the Rao module of C, P is a maximal Cohen–Macaulay mod-
ule over the homogeneous coordinate ring of X, say S = H 0∗ (OX) = R/Q (where Q is the
defining polynomial of X), and α :P ∨ → M∗ → 0 is a surjective map of graded S-modules [7,
Corollary 4.3]. This triple is determined up to isomorphism and shift of degrees for M , up to
stable equivalence and (the same) shift of degrees for P , and compatible maps α.

On the other hand, the even G-liaison class of a curve on X is determined by the Rao module
alone (up to shift)—cf. [4, Theorem 6.2].

For each CI-biliaison equivalence class we have the traditional Lazarsfeld–Rao theorem [7,
Theorem 3.4]. Each even Gorenstein liaison class is a union of CI-biliaison classes, so we can
ask what kind of structure the even Gorenstein liaison class can have. That is, how are the CI
subclasses related?

We will show that for ACM curves, which form one even Gorenstein liaison class since their
Rao modules are zero, we can obtain all the non-licci curves by a combination of CI-biliaisons
and liaison additions with a line, starting from a line. On the other hand, for an even Gorenstein
liaison class of curves with non-zero Rao module, it is not possible to obtain them all from a
single one, or even from minimal ones, by CI-biliaisons and liaison additions with ACM curves
(see Remark 5.4 and Example 5.5).

Theorem 5.1. Every CI-biliaison class of non-licci ACM curves on the non-singular quadric
3-fold X contains a minimal curve C that can be obtained by liaison addition with a line from a
minimal curve of lower degree in another such class, unless C is already a line.

The proof requires some preparation. Let L ⊂ X be a line. Let E0 be the locally free sheaf
defined by the minimal N -type resolution of L:

0 →OX → E0 → IL,X(1) → 0.
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Then, according to [4], each non-licci CI-liaison class of ACM curves on X corresponds via its
N -type resolution to the stable equivalence class of one of the sheaves

N0,a2,...,ar := E0 ⊕ E0(−a2) ⊕ E0(−a2 − a3) ⊕ · · · ⊕ E0(−a2 − · · · − ar)

where a2, . . . , ar � 0 are integers. Note that N0 = E0.
Using liaison addition we first construct curves that we will then show to be minimal in their

CI-biliaison classes.

Lemma 5.2. For each a2, . . . , ar � 0 there is a curve C0,a2,...,ar with N -type resolution

0 → (
OX ⊕O2

X(−a2) ⊕ · · · ⊕O2
X(−a2 − · · · − ar)

)
(−r)

→N0,a2,...,ar (−r) → IC0,a2,...,ar ,X → 0

and with E-type resolution:

0 →N0,a2,...,ar (−r − 1)

→ (
O3

X ⊕O2
X(−a2) ⊕ · · · ⊕O2

X(−a2 − · · · − ar)
)
(−r) → IC0,a2,...,ar ,X → 0.

Furthermore, for r � 2 the curve C0,a2,...,ar can be obtained by liaison addition with a line
from C0,a3,...,ar .

Proof. We use induction on r . For r = 1, we take C0 to be a line L. Its N - and E-type resolutions
are well known. If r � 2, then the E-type resolution of C0,a3,...,ar shows that its homogeneous
ideal contains an element F2 of degree r − 1. Let F1 ∈ IL,X be an element of degree a2 + 1 � 1,
such that {F1,F2} is a regular sequence. Then Lemma 2.2 shows that the curve C0,a2,...,ar defined
by the liaison addition ideal F2 · IL + F1 · IC0,a3,...,ar

has the required N -type resolution. The E-

type resolution of the curve C0,a2,...,ar can be obtained using the syzygy sequence

0 → E0(−1) → O4
X → E0 → 0

and the method of converting an N -type resolution to an E-type resolution described in [4,
Proposition 4.3(a)] (see also [14]).

This proves the lemma, since all these curves have been constructed by liaison addition with
a line, starting with C0 = L which is a line. �

We now show that the constructed curves are minimal in their CI-biliaison classes.

Lemma 5.3. Each curve C0,a2,...,ar described in Lemma 5.2 is minimal in its CI-biliaison class.

Proof. For this lemma we will change the above notation and rewrite the N -type resolution of
C = C0,a2,...,ar as

0 → O2r1−1 ⊕O2r2(−b2) ⊕ · · · ⊕OX(−bm)2rm →N → IC,X(r) → 0
X X
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where N = E r1
0 ⊕ E0(−b2)

r2 ⊕ · · · ⊕ E0(−bm)rm is of total rank r = 2
∑

ri and 0 = b1 < b2 <

· · · < bm. To prove that C is minimal, it is enough to show that if

0 →
2r−1⊕

i=1

OX(−ci) → N → ID,X(s) → 0

is the N -type resolution of any other curve D on X, then

2r−1∑

i=1

ci � 2
m∑

j=1

rj bj .

We may assume that c1 � · · · � c2r−1. It follows from the existence of D that for any subset
J of {1, . . . ,2r − 1}, the cokernel of the map

αJ :
⊕

i∈J

OX(−ci) → N

is torsion free. Let J := {ci | ci < b2}. Then the image of αJ lands inside the sheaf E r1
0 , so the

rank of αJ must be less than 2r1. This means that for all i � 2r1, we have ci � b2.
Next, let J := {ci | ci < b3}. Then the image of αJ lands inside the sheaf E r1

0 ⊕ E0(−b2)
r2 ,

and the same argument shows that, for all i � 2(r1 + r2), we must have ci � b3.
Continuing in this fashion, the inequalities on the ci ’s and bj ’s show that

∑
ci � 2

∑
rj bj , as

required. �
The above theorem follows now easily.

Proof of Theorem 5.1. Each non-licci CI-biliaison class of ACM curves on X corresponds to
one of the sheaves N0,a2,...,ar of rank � 2. Thus, the theorem follows by combining Lemmas 5.2
and 5.3 and the Lazarsfeld–Rao property for CI-biliaison classes. �
Remark 5.4. In the case of the traditional Lazarsfeld–Rao property, Bolondi and Migliore [3,
Corollary 4.10] have shown that one can get from a minimal scheme in a codimension two CI-
liaison class to any other (up to flat deformation) by liaison addition with a licci scheme. In
general, the analogous result is not true in even Gorenstein liaison classes.

Example 5.5. To see that a method similar to that used for ACM curves cannot work with non-
ACM classes of curves on X, consider the even Gorenstein liaison class of curves with Rao
module M = k. Among these there is one CI-biliaison class corresponding to a triple (M,P,α),
where P is a non-free maximal Cohen–Macaulay module over S, and α :P ∨ → M∗ → 0. There
is another CI-biliaison class corresponding to the triple (M,S,β), where we think of S as the free
rank 1 S-module and β :S → k → 0 the natural map [7, Corollary 4.3]. Since liaison addition
acts as direct sum on Rao modules and on N -type resolutions, one sees easily that it also acts
as direct sums on the triples (M,P,α). An ACM curve will have triple (0,Q,σ ). Adding this
to the first curve above will give a triple (M,P ⊕ Q,α), where α acts by 0 on the Q factor.
Similarly, adding to the second will give (M,S ⊕ Q,β), with β acting as 0 on the Q-factor. So
it is clear that no combination of liaison additions with ACM curves will ever connect these two
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types of curves with Rao module k, because in one case k is covered by a non-free maximal
Cohen–Macaulay module and in the other case by a free maximal Cohen–Macaulay module.

Singular quadrics with one double point

Let X be the singular quadric threefold in P
4 having just one double point. In this case two

curves are in the same Gorenstein biliaison equivalence class if and only if their Rao modules
are isomorphic up to shift [5, Theorem 6.2]. It follows that Gorenstein biliaison is the same as
even Gorenstein liaison in this case. Indeed, we know in general that any Gorenstein biliaison
is an even Gorenstein liaison. Conversely, if two curves are in the same even Gorenstein liaison
class, then their Rao modules are isomorphic up to shift, and so by the theorem above they are
equivalent for Gorenstein biliaison.

Thus, having the operation of Gorenstein biliaison available, one might hope, as in the case of
the traditional Lazarsfeld–Rao theorem, that in any Gorenstein biliaison equivalence class, every
curve could be obtained by a finite sequence of ascending Gorenstein biliaisons from one, or a
small number of “minimal” curves in the class. The following example shows that this is too
ambitious.

Example 5.6. For ACM curves on X, the natural choice for minimal curves would be a line or
a conic. There are three types of lines: those contained in a D-plane, those contained in an E-
plane, or those passing through the double point of X, where D and E refer to the rulings over
a general hyperplane section Q of X (which is a smooth quadric surface), and we think of X as
a cone over Q. These lines have N -type resolution using E1,E ′

1 or ID ⊕ IE respectively, in the
notation of [5, Theorem 6.2]. However, we will exhibit here an infinite sequence of ACM curves
that do not admit any descending Gorenstein biliaisons.

Take two D-planes in X, say D1 and D2. They meet only at the singular point P of X. Take
curves C1 ⊆ D1, C2 ⊆ D2 of degrees d and e, respectively, each passing simply through the
common point P of the two planes. Consider the exact sequence

0 → IC1 ∩ IC2 → IC1 ⊕ IC2 → IC1 + IC2 → 0.

Note that IC1 +IC2 = IP , and that C1 and C2 are both ACM, being plane curves. Then sheafifying
this sequence and taking cohomology, it is immediate to see that C = C1 ∪ C2 is an ACM curve
of degree d + e. Assuming that e � 2 and d � e + 2, we will show that C does not admit any
descending Gorenstein biliaison in X.

So suppose that C admits a descending Gorenstein biliaison on an ACM surface Y in X. We
distinguish four cases.

Case 1. Y = D1 ∪ D2 ∪ F for some other surface F . This is impossible, because there is nothing
in F to subtract a hyperplane section from.

Case 2. Y = D1 ∪F , where F is some other surface containing C2, but not containing D2. Letting
(a, b) be the bidegree of F on X, i.e. F ∼ aD + bE on X, we see that b � e by intersecting F

with D2. On the other hand, since C2 passes only simply through P , we must have a > 0. Then
the degree of F is a + b > e, and we cannot subtract a hyperplane section of F from C2.

Case 3. Y = F ∪ D2. This is similar to Case 2.
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Case 4. Y does not contain either D1 or D2. Then Y has bidegree (a, b) with b � d , and since Y

is an ACM surface on X, we must have |a − b| � 1. Hence

degY = a + b � (b − 1) + b � (d − 1) + d > e + d,

because of our hypotheses on d and e. Hence we cannot bilink down on Y .

Remark 5.7. As in the case of the non-singular quadric threefold, one could ask whether every
ACM curve can be obtained by a succession of complete intersection bilinks and liaison ad-
ditions, for example with a line. On the non-singular quadric threefold X, there is only one
non-trivial indecomposable ACM sheaf, up to twist, namely E0, and it corresponds to a line.
Thus any ACM sheaf can be obtained by adding direct sums of twists of this one to a dissocié
sheaf and this explains why the method shown above works in this case.

On the singular quadric threefold, there are two infinite sequence of indecomposable ACM
sheaves, E� and E ′

� for � = 1,2, . . . [5, proof of Theorem 6.2], so in order to formulate an analo-
gous result, one would have to allow (at least) liaison additions with plane curves of all degrees
in both D-planes and E-planes, either passing or not passing through the singular point P .

Example 5.8. Now we consider curves with Rao module k. In P
4 the curves with minimal left-

ward shift of k, namely k in degree 0, have been classified [11], [8, Proposition 4.1]. They exist
in any degree d � 2, and the general such curve is the disjoint union of a plane curve of degree
d − 1 and a line not meeting the plane of the first curve. Curves of this kind for every d � 2 can
be found on the singular quadric threefold X, so we take these as the minimal curves. One might
hope that curves whose Rao module has a shift into positive degrees of the module k could be
obtained by ascending Gorenstein biliaison from these minimal curves. We show this is not the
case by exhibiting some non-singular curves of degree 5 and genus 0 on X that have Rao module
k in degree 1 and do not admit any descending Gorenstein biliaison on X.

We begin by recalling some basic facts about degree 5 and genus 0 curves C in P
4 [8, Exam-

ple 4.3]. Such curves can be obtained by generic projection from the rational normal curve in P
5.

As long as the curve is non-degenerate (i.e. not contained in any P
3), we find from Riemann–

Roch that h0(IC(2)) = 4. Taking two general quadric hypersurfaces containing C, the curve C

will be contained in their intersection Y , a degree 4 Del Pezzo surface, which will be non-singular
provided C is general. Conversely, on the Del Pezzo surface Y , we can find smooth curves in
the divisor classes (2;1,04), (3;2,12,02), (4;23,1,0), and (5;3,23,1) (and their permutations),
which we will denote by C1,C2,C3,C4, respectively. Here we use the standard notation for di-
visor classes on Y [8, Notation 3.3]. There is no difference between these curves as curves in P

4.
However, as curves on Y they are distinguished by their divisor classes on Y .

Next we observe that each general non-singular, non-degenerate curve C in P
4 of degree 5 and

genus 0 has a unique trisecant. Indeed, any trisecant of C must lie in every quadric hypersurface
containing C and therefore on the Del Pezzo surface Y . Then, checking each of the lines on Y ,
one finds exactly one trisecant for each Ci on Y .

We can also find non-singular degree 5 genus 0 curves C5 on the rational cubic scroll S in
the divisor class (4;3), and this is the only possibility. This curve C5 meets a fiber F = (1;1)

of the ruling in one point, and it meets the exceptional curve E = (0;1) three times. Thus, the
ruling determines an isomorphism of C5 to the projective line E. This isomorphism is uniquely
determined by the three intersection points of C5 with E (which are necessarily distinct), and
we can recover the surface S as the closure of the union of lines joining corresponding points
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on C5 and E. This shows that C5 lies on a unique cubic scroll. Since we saw earlier that each
general degree 5 genus 0 curve in P

4 has a unique trisecant, it follows that every such curve C is
contained in this way in a cubic scroll.

On the cubic scroll, the divisor class C − H = (2;2) contains a union of two fibers of the
rulings. The passage from C −H to C is a Gorenstein biliaison in P

4, hence C has Rao module k

in degree 1, and as a curve in P
4 it does admit a descending Gorenstein biliaison [8, Example 4.3].

Now we consider non-singular degree 5 genus 0 curves C on the singular quadric threefold
X in P

4. There are cubic scrolls S in X, having bidegrees (2,1) and (1,2). If C is in S, then
its projection π(C) from the singular point P of X to a general hyperplane section Q, which
is a non-singular quadric surface in P

3, is isomorphic to C because the projection maps S to Q

birationally, blowing up the point P and blowing down the ruling through P , which meets C just
once. Hence π(C) is a curve of bidegree (1,4) or (4,1) on Q.

There are also Del Pezzo surfaces Y on X, having bidegree (2,2). The intersections of the
two families of planes on X with Y are conics adding to a hyperplane section of Y , and without
loss of generality we can take these to be Γ = (1;1,04) and Γ ′ = (2;0,14). For any curve C

on X, the two intersection numbers C.Γ,C.Γ ′ will give the bidegree of the projection π(C) of
C onto the hyperplane section Q. Thus we find that π(C1) and π(C2) have bidegree (4,1) or
(1,4), whereas π(C3) and π(C4) have bidegree (3,2) or (2,3). Since we saw above that a (5,0)

curve on a cubic scroll must project onto a curve with bidegree (1,4) or (4,1) on Q, the curves
C3 and C4 cannot be contained in any cubic scroll on X.

Now, finally, we show that neither C3 nor C4 admit any descending biliaison on X. Indeed,
let C be one of these two curves and suppose that C is contained in an ACM surface T in X

and that C − H is effective on T . Then deg(C − H) = 5 − degT must be at least 2, since any
curve of degree 1 is ACM. So degT � 3. The degree cannot be 2, since C is not contained in a
hyperplane. We conclude that degT = 3. However, the only irreducible surfaces of degree 3 in X

are the cubic scroll, which does not contain C, and the cone over a twisted cubic, which contains
no non-singular curves of degree 5 and genus 0. Hence a descending Gorenstein biliaison of C

is not possible on X.
Note of course that either curve C3 or C4 is contained in a unique cubic scroll in P

4, but this
argument shows that in this case the cubic scroll lies outside of X, and intersects X only in the
curve Ci (i = 3,4) together with its trisecant.

We close this section by wondering if the concept of liaison addition can be extended. This
could potentially be useful to address some of the problems we encountered above.

Remark 5.9. Let C1,C2 be two codimension 2 subschemes of some projective scheme X ⊂ P
n

with Rao modules M1 and M2. Then the liaison addition with respect to hypersurfaces of degrees
d1, d2 is a curve with Rao module M1(−d2) ⊕ M2(−d1). Assume now that N is any graded
module corresponding to an extension

0 → M2(−d1) → N → M1(−d2) → 0.

Is it then possible to construct a curve C starting directly from C1 and C2 such that the Rao
module of C is isomorphic to N? If the answer is affirmative, this could possibly provide a natural
extension of liaison addition and it would be justified to call the curve C a liaison extension of
C1 and C2.
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6. Conclusion

Our motivation for the work in this paper was to investigate Questions 1 and 2 from the
introduction: What is the structure of a Gorenstein biliaison class or an even Gorenstein liaison
class of codimension 2 subschemes of an arithmetically Gorenstein subscheme? To address this
question we employ the idea of liaison addition. Liaison addition has been used to investigate
CI-liaison classes. Here we show that it can also be used to study Gorenstein liaison classes.

Our two main test cases have been the non-singular quadric 3-fold and the singular quadric
3-fold with one double point in P

4, because in each case we have available explicit descriptions
of CI-biliaison classes as well as of Gorenstein biliaison and even liaison classes of curves.

We found a satisfactory answer for ACM curves on the non-singular quadric 3-fold where
the non-licci ACM curves can all be obtained starting from a single line by successive liaison
additions with a line and CI-biliaisons. One could perhaps get an analogous result for ACM
curves on the singular quadric 3-fold, using liaison additions with plane curves of all degrees
in both families. This gives some hope for liaison addition as a key operation in explaining the
structure of an even Gorenstein liaison class. However, simple examples show that this alone is
not sufficient to deal with the case of non-ACM curves. Thus, we wonder if liaison addition can
be extended to liaison extension.

On the singular quadric 3-fold we have available the method of Gorenstein biliaison, and
one might hope to reach any curve by ascending Gorenstein biliaison from a suitable class of
“minimal” curves. For curves with non-zero Rao module, the natural definition would be those
whose Rao module has the left-most shift. But examples show that with this definition there are
non-minimal curves with no descending biliaisons. For ACM curves, we have found infinitely
many classes of curves with no descending biliaisons, so there does not appear to be a suitable
class of “minimal” curves from which all others can be obtained by ascending biliaisons.

In summary, some new ideas will be necessary to give satisfying answers to Questions 1 and
2 in general.
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