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It is well known that the cohomology of a tensor product is
essentially the tensor product of the cohomologies. We look at
twisted tensor products, and investigate to which extent this is
still true. We give an explicit description of the Ext-algebra of
the tensor product of two modules, and under certain additional
conditions, describe an essential part of the Hochschild cohomology
ring of a twisted tensor product. As an application, we characterize
precisely when the cohomology groups over a quantum complete
intersection are finitely generated over the Hochschild cohomology
ring. Moreover, both for quantum complete intersections and in
related cases we obtain a lower bound for the representation
dimension of the algebra.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Given a field k and two k-algebras Λ and Γ , one may look at their tensor product Λ ⊗k Γ . This is
an algebra where multiplication is done componentwise. In other words, we use the multiplications
in Λ and Γ , and define elements of Λ and Γ to commute with one another. Given a Λ-module M
and a Γ -module N , it is well known that

Ext∗Λ⊗kΓ
(M ⊗k N, M ⊗k N) = Ext∗Λ(M, M) ⊗k Ext∗Γ (N, N),

HH∗(Λ ⊗k Γ ) = HH∗(Λ) ⊗k HH∗(Γ ),

where ⊗ is the usual tensor product, but with elements of odd degree anticommuting (and where
HH∗ denotes the Hochschild cohomology ring).
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In this paper we shall study graded algebras and twisted tensor products. That is, for two graded
algebras Λ and Γ , we give their tensor product an algebra structure by defining elements from Λ

and Γ to commute up to certain scalars, depending on the degrees of the elements. We denote these
twisted tensor products by Λ ⊗t

k Γ . Examples of algebras obtained in this way are quantum exterior
algebras (see [5,6,10]), and, more generally, quantum complete intersections (see [4,7,8]).

The first main result of this paper (Theorem 3.7) shows that the first formula above holds for
twisted tensor products. More precisely, we may make the identification

Ext∗
Λ⊗t

kΓ

(
M ⊗t

k N, M ⊗t
k N

) = Ext∗Λ(M, M) ⊗t̃
k Ext∗Γ (N, N),

where the twist on the right-hand side is the combination of the twist we started with and the sign
which already occurred in the classical case. This formula allows us to give an explicit description
of the Ext-algebra of the simple module over a quantum complete intersection in Theorem 5.3. As
for the second formula above, we shall see (Remark 5.4) that in general it does not carry over to
twisted tensor products. However, in Theorem 4.7 we show that the Hochschild cohomology ring of
a twisted tensor product contains a subalgebra, which is the twisted tensor product of corresponding
subalgebras of the Hochschild cohomology rings of the factors. Under certain additional conditions,
we show that these subalgebras are big enough to contain all the information on finite generation
and complexity (Corollary 4.8). When finite generation holds, we may use these subalgebras and a
result from [6] to find a lower bound for the representation dimension of the twisted tensor product.

In the final section we apply these results to quantum complete intersections. In particular, we
show that the cohomology groups of such an algebra are all finitely generated over the Hochschild
cohomology ring if and only if all the commutator parameters are roots of unity (Theorem 5.5). This
allows us to give a lower bound for the representation dimension of these algebras (Corollary 5.6),
thus generalizing the result of [8].

2. Notation

Throughout this paper, we fix a field k. All algebras considered are assumed to be associative
k-algebras.

2.1. Definition. Let A be an abelian group. An A-graded algebra is an algebra Λ together with a
decomposition Λ = ⊕

a∈A Λa as k-vector spaces, such that Λa · Λa′ ⊆ Λa+a′ . A module M over such a
graded algebra Λ is a graded module if it has a decomposition M = ⊕

a∈A Ma as k-vector spaces, such
that Λa · Ma′ ⊆ Ma+a′ . We denote the category of finitely generated graded Λ-modules by Λ -modgr.

Let Λ, A and M be as above. We denote the degree of homogeneous elements λ ∈ Λ and m ∈ M
by |λ| and |m|, respectively. For an element a ∈ A we denote by M〈a〉 the shift of M having the same
Λ-module structure as M , but with M〈a〉a′ = Ma′−a . Now let M ′ be another graded Λ-module. To
distinguish between graded and ungraded morphisms, we denote the set of all Λ-morphisms from M
to M ′ by HomΛ(M, M ′), and the set of degree preserving morphisms by grHomΛ(M, M ′). With this
notation we obtain a decomposition

HomΛ

(
M, M ′) =

⊕
a∈A

grHomΛ

(
M, M ′〈a〉).

Setting HomΛ(M, M ′)a = grHomΛ(M, M ′〈a〉) turns EndΛ(M) and EndΛ(M ′) into A-graded algebras,
and Hom(M, M ′) into a graded EndΛ(M)– EndΛ(M ′) bimodule. Since M has a graded projective

resolution P, we can also define Exti,a
Λ (M, M ′) def= Hi(grHom(P, M ′〈a〉)). It follows that Ext∗Λ(M, M)

and Ext∗Λ(M ′, M ′) are (Z ⊕ A)-graded algebras, and that Ext∗Λ(M, M ′) is a graded Ext∗Λ(M, M)–
Ext∗Λ(M ′, M ′) bimodule.

Our main objects of study in this paper are twisted tensor products of two graded algebras, a con-
cept we now define.
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2.2. Definition/Construction. Let A and B be abelian groups, let Λ be an A-graded algebra and Γ a
B-graded algebra. Let t : A ⊗Z B −→ k× be a homomorphism of abelian groups, where k× denotes the
multiplicative group of nonzero elements in k. We write t〈a|b〉 = t(a ⊗ b), and, by abuse of notation,
also t〈λ|γ 〉 = t〈|λ|||γ |〉 for homogeneous elements λ ∈ Λ and γ ∈ Γ . The (t-)twisted tensor product of Λ

and Γ is the algebra Λ ⊗t
k Γ defined by

Λ ⊗t
k Γ = Λ ⊗k Γ as k-vector spaces,

(λ ⊗ γ ) ·t (λ′ ⊗ γ ′) def= t〈λ′ |γ 〉λλ′ ⊗ γ γ ′,

where λ,λ′ ∈ Λ and γ ,γ ′ ∈ Γ are homogeneous elements.

A straightforward calculation shows that this is indeed a well defined algebra. By defining
(Λ ⊗t

k Γ )a,b to be Λa ⊗k Γb , this algebra becomes (A ⊕ B)-graded.
We now define what it means for an algebra to have finitely generated cohomology.

2.3. Definition. Let Λ be an algebra. A commutative ring of cohomology operators is a commuta-
tive Z-graded k-algebra H together with graded k-algebra morphisms φM : H −→ Ext∗Λ(M, M), for
every M ∈ Λ -mod, such that for every pair M, M ′ ∈ Λ -mod the induced H-module structures on
Ext∗Λ(M, M ′) via φM and φM′ coincide. If A is an abelian group and Λ is A-graded, then we require
that H be a (Z⊕ A)-graded algebra, and that the maps φM are morphisms of (Z⊕ A)-graded algebras.

The main example of such a ring H is the even Hochschild cohomology ring of an algebra. Namely,
by [18] the Hochschild cohomology ring is graded commutative, so its even part is commutative. Note
that whenever an algebra is graded, then so is its Hochschild cohomology ring, and its even part is a
commutative ring of graded cohomology operators.

2.4. Definition. An algebra Λ satisfies the finite generation hypothesis Fg if it has a commutative ring
of operators H which is Noetherian and of finite type (i.e. dimk Hi < ∞ for all i), and such that for
any M, M ′ ∈ Λ -mod the H-module Ext∗Λ(M, M ′) is finitely generated.

Group algebras of finite groups and finite-dimensional complete intersections are examples of al-
gebras satisfying Fg (cf. [11] and [3]). For more general finite-dimensional algebras, this concept was
first studied in [9], using the Hochschild cohomology ring. We end this section with some remarks
concerning finite generation of cohomology.

2.5. Remarks. (i) Assume that Λ is a finite-dimensional algebra, and let H be a commutative Noethe-
rian ring of cohomology operators. Then all Ext∗Λ(M, M ′) are finitely generated over H if and only if
Ext∗Λ(Λ/Rad Λ,Λ/RadΛ) is. This follows from an induction argument on the length of M and M ′ .

(ii) By [16, Proposition 5.7] the following are equivalent for an algebra Λ.

(1) Λ satisfies Fg with respect to its even Hochschild cohomology ring HH2∗(Λ),
(2) Λ satisfies Fg with respect to some subalgebra of its even Hochschild cohomology ring.

3. Tensor products of graded modules

Throughout this section, we fix two abelian groups A and B , together with an A-graded algebra
Λ and a B-graded algebra Γ . Moreover, we fix a homomorphism t : A ⊗Z B −→ k× of abelian groups.
Given a graded Λ-module and a graded Γ -module, we construct a Λ ⊗t

k Γ -module, and study homo-
morphisms and extensions between such modules.
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3.1. Definition/Construction. Given modules M ∈ Λ -modgr and N ∈ Γ -modgr, the tensor product
M ⊗k N becomes a graded Λ ⊗t

k Γ -module by defining

(λ ⊗ γ ) · (m ⊗ n)
def= t〈m|γ 〉λm ⊗ γn.

We denote this module by M ⊗t
k N , its grading is given by (M ⊗t

k N)a,b = Ma ⊗k Nb .

We now prove some elementary results on these tensor products, the first of which shows that
the tensor product of two shifted modules is the shifted tensor product.

3.2. Lemma. Given modules M ∈ Λ -modgr and N ∈ Γ -modgr , the graded Λ ⊗t
k Γ -modules M〈a〉 ⊗t

k N〈b〉
and (M ⊗t

k N)〈a,b〉 are isomorphic via the map

M〈a〉 ⊗t
k N〈b〉 −→ (

M ⊗t
k N

)〈a,b〉,
m ⊗ n �−→ t〈a|n〉m ⊗ n.

Proof. The given map is clearly bijective, and it is straightforward to verify that it is a homomor-
phism. �

The following lemma shows that the tensor product of projective modules is again projective.
Given a graded algebra Δ, we denote by Δ -proj the category of finitely generated projective Δ-
modules, and by Δ -projgr the category of finitely generated graded projective Δ-modules.

3.3. Lemma. Given modules P ∈ Λ -projgr and Q ∈ Γ -projgr , the tensor product P ⊗t
k Q is a graded projec-

tive Λ ⊗t
k Γ -module.

Proof. By Lemma 3.2 we only have to consider the case P = Λ and Q = Γ . In this case P ⊗t
k Q =

Λ ⊗t
k Γ , so the lemma holds. �

As the following result shows, the tensor product of morphism spaces is the morphism space of
tensor products.

3.4. Lemma. Given modules M, M ′ ∈ Λ -modgr and N, N ′ ∈ Γ -modgr , the natural map

grHomΛ(M, M ′) ⊗k grHomΓ (N, N ′) −→ grHomΛ⊗t
kΓ

(
M ⊗t

k N, M ′ ⊗t
k N ′)

is an isomorphism.

Proof. If M = Λ〈a〉 and N = Γ 〈b〉 for some a ∈ A and b ∈ B , then

grHomΛ

(
Λ〈a〉, M ′) ⊗k grHomΓ

(
Γ 〈b〉, N ′) = M ′−a ⊗k N ′

−b

= (
M ′ ⊗t

k N ′)
−a,−b

= grHom
((

Λ ⊗t
k Γ

)〈a,b〉, M ′ ⊗t
k N ′)

= grHom
((

Λ〈a〉 ⊗t
k Γ 〈b〉), M ′ ⊗t

k N ′).
Now note that both sides commute with cokernels in the M and N position. �
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Note that given degree a and b morphisms ϕ : M −→ M ′ and ψ : N → N ′ , we obtain a degree
(a,b)-morphism

ϕ ⊗ ψ : M ⊗ N −→ M ′ ⊗ N ′

by composing the maps from Lemmas 3.4 and 3.2. Explicitly, the map is given by

(m ⊗ n) · (ϕ ⊗ ψ) = t〈ϕ|n〉m · ϕ ⊗ n · ψ

(we think of a module as a right module over its endomorphism ring). By applying this to the situ-
ation M = M ′ and N = N ′ , we obtain the following result, showing that the endomorphism ring of a
tensor product is the tensor product of the endomorphism rings.

3.5. Lemma. Let M ∈ Λ -modgr and N ∈ Γ -modgr . Then

EndΛ⊗t
kΓ

(
M ⊗t

k N
) = EndΛ(M) ⊗t

k EndΓ (N).

As for projective resolutions, the behavior is also as expected. Namely, the following result shows
that the tensor product of two projective resolutions is again a projective resolution.

3.6. Lemma. Given modules M ∈ Λ -modgr and N ∈ Γ -modgr with graded projective resolutions

P : · · · −→ Pi −→ · · · −→ P1 −→ P0 −→ M −→ 0,

Q : · · · −→ Q i −→ · · · −→ Q 1 −→ Q 0 −→ N −→ 0,

the total complex of P ⊗t
k Q is a graded projective resolution of M ⊗t

k N.

Proof. By Lemma 3.3 all the terms of the total complex Tot(P⊗t
k Q) of P⊗t

k Q are projective. Moreover,
since k is a field Tot(P ⊗t

k Q) is exact. �
We are now ready to prove the main result of this section. It shows that the Ext-algebra of a

tensor product is the tensor product of the Ext-algebras.

3.7. Theorem. If M, M ′ ∈ Λ -modgr and N, N ′ ∈ Γ -modgr are modules, then

Ext∗
Λ⊗t

kΓ

(
M ⊗t

k N, M ⊗t
k N

) = Ext∗Λ(M, M) ⊗t̃
k Ext∗Γ (N, N),

with t̃((i,a), ( j,b)) = (−1)i jt〈a|b〉 . Moreover

Ext∗
Λ⊗t

kΓ

(
M ⊗t

k N, M ′ ⊗t
k N ′) = Ext∗Λ(M, M ′) ⊗t̃

k Ext∗Γ (N, N ′)

as Ext∗Λ(M, M) ⊗t
k Ext∗Γ (N, N)– Ext∗Λ(M ′, M ′) ⊗t

k Ext∗Γ (N ′, N ′) bimodule.

Proof. Let P and Q be graded projective resolutions of M and N receptively. Then by Lemma 3.6
Tot(P ⊗t

k Q) is a projective resolution of M ⊗t
k N , and therefore
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Ext∗
Λ⊗t

kΓ

(
M ⊗t

k N, M ′ ⊗t
k N ′) = H∗(HomΛ⊗t

kΓ

(
Tot

(
P ⊗t

k Q
)
, M ′ ⊗t

k N ′))
= H∗(Tot

(
HomΛ⊗t

kΓ

(
P ⊗t

k Q
)
, M ′ ⊗t

k N ′))
= H∗(Tot

(
HomΛ(P, M ′) ⊗t

k HomΓ (Q, N ′)
))

= Ext∗Λ(M, M ′) ⊗t̃
k Ext∗Γ (N, N ′).

Here the third equality holds by Lemma 3.4, whereas the final one holds since k is a field. The
multiplication is induced by the multiplication of morphisms in Lemma 3.5, with the additional signs
needed because of the signs added when passing from the double complex to its total complex. �

We end this section with the following result, which was shown in [17, Corollary 3.3 and
Lemma 3.4] for untwisted tensor products (in which case we may forget about the grading). It will
help us find upper bounds for the representation dimension of twisted tensor products. Given an
algebra Δ, we denote by gld Δ its global dimension.

3.8. Proposition. Let M ∈ Λ -modgr and N ∈ Γ -modgr be graded modules, such that M generates and cogen-
erates Λ -mod, and such that N generates and cogenerates Γ -mod. Then M ⊗t

k N is a generator-cogenerator
of Λ ⊗t

k Γ -mod, and gld EndΛ⊗t
kΓ

(M ⊗t
k N) = gld EndΛ(M) + gld EndΓ (N).

4. Tensor products of bimodules

Throughout this section, we keep the notation from the last section. That is, we fix two abelian
groups A and B , together with an A-graded algebra Λ and a B-graded algebra Γ . Moreover, we fix
a homomorphism t : A ⊗Z B −→ k× of abelian groups. Given an algebra Δ, we denote by Δe its
enveloping algebra Δ ⊗k Δop. Note that if Δ is G-graded, where G is some abelian group, then so
is Δe, and Δ is a graded Δe-module.

4.1. Definition/Construction. Given modules X ∈ Λe -modgr and Y ∈ Γ e -modgr, the tensor product
X ⊗k Y becomes a graded (Λ ⊗t

k Γ )e-module by defining

(λ ⊗ γ )(x ⊗ y)(λ′ ⊗ γ ′) def= t〈x|γ 〉t〈λ′ |y〉t〈λ′ |γ 〉λxλ′ ⊗ γ yγ ′.

We denote this bimodule by X ⊗t
k Y .

4.2. Remark. In general the graded (Λ⊗t
k Γ )e-modules X〈a〉⊗t

k Y 〈b〉 and (X ⊗t
k Y )〈a,b〉 are not isomor-

phic. To see this, take Λ = k[x]/(x2) and Γ = k, both Z-graded, and with x in degree one. Furthermore,
choose a nonzero element q ∈ k, and define a homomorphism t : xZ ⊗Z Z → k× by t〈a|b〉 = qab . If the
(Λ ⊗t

k Γ )e-modules Λ〈a〉 ⊗t
k Γ 〈b〉 and (Λ ⊗t

k Γ )〈a,b〉 were isomorphic, then there would exist an
isomorphism

(
Λ ⊗t

k Γ
)〈a,b〉 f−→ Λ〈a〉 ⊗t

k Γ 〈b〉

such that

1 ⊗ 1 �→ α(1 ⊗ 1) + β(x ⊗ 1),

where α and β are scalars with α 
= 0. But then
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qbα(x ⊗ 1) = f (1 ⊗ 1) · (x ⊗ 1)

= f (x ⊗ 1)

= (x ⊗ 1) · f (1 ⊗ 1)

= α(x ⊗ 1)

in Λ〈a〉 ⊗t
k Γ 〈b〉, hence when qb 
= 1 the modules cannot be isomorphic.

The following results are analogues of Lemmas 3.3, 3.4 and 3.6. We prove only the first result, as
the proofs of the other two results are more or less the same as those of Lemmas 3.4 and 3.6.

4.3. Lemma. Given modules X ∈ Λe -projgr and Y ∈ Γ e -projgr , the tensor product X ⊗t
k Y is a graded pro-

jective (Λ ⊗t
k Γ )e-module.

Proof. It suffices to show that Λe〈a〉 ⊗t
k Γ e〈b〉 is graded projective for any a ∈ A and b ∈ B . This can

be seen by noting that the map

(
Λ ⊗t

k Γ
)e〈a,b〉 −→ Λe〈a〉 ⊗t

k Γ e〈b〉,
(l ⊗ g) ⊗ (l′ ⊗ g′) �−→ t〈l′ |g〉t〈a|g〉t〈l′ |b〉(l ⊗ l′) ⊗ (g ⊗ g′)

is an isomorphism of graded (Λ ⊗t
k Γ )e-modules. �

4.4. Lemma. Given modules X, X ′ ∈ Λe -modgr and Y , Y ′ ∈ Γ e -modgr , the natural map

grHomΛe (X, X ′) ⊗k grHomΓ e (Y , Y ′) −→ grHom(
Λ⊗t

kΓ
)e

(
X ⊗t

k Y , X ′ ⊗t
k Y ′)

is an isomorphism.

4.5. Lemma. Given modules X ∈ Λe -modgr and Y ∈ Γ e -modgr with graded projective bimodule resolutions

P : · · · −→ Pi −→ · · · −→ P1 −→ P0 −→ X −→ 0,

Q : · · · −→ Q i −→ · · · −→ Q 1 −→ Q 0 −→ Y −→ 0,

the total complex of P ⊗t
k Q is a graded projective bimodule resolution of X ⊗t

k Y .

Now note that for a fixed b ∈ B the map t induces a morphism t〈−|b〉 : A −→ k× (and similarly for
a fixed a ∈ A). With this notation, we make the following observation.

4.6. Lemma. Let a′ ∈ ⋂
b∈B Ker t〈−|b〉 � A and b′ ∈ ⋂

a∈A Ker t〈a|−〉 � B. Then the map

Λ〈a′〉 ⊗t
k Γ 〈b′〉 −→ (

Λ ⊗t
k Γ

)〈a,b〉,
λ ⊗ γ �−→ λ ⊗ γ

is an isomorphism of graded (Λ ⊗t
k Γ )e-modules.

Using the above notation, we now prove the main result of this section. It shows that Hochschild
cohomology commutes with twisted tensor products, provided we only consider the graded parts
corresponding to the subgroups

⋂
b∈B Ker t〈−|b〉 � A and

⋂
a∈A Ker t〈a|−〉 � B .
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4.7. Theorem. Let A′ = ⋂
b∈B Ker t〈−|b〉 � A and B ′ = ⋂

a∈A Ker t〈a|−〉 � B. Then there is an isomorphism

HH∗,A′
(Λ) ⊗(−1)∗∗

k HH∗,B ′
(Γ ) −→ HH∗,A′⊕B ′(

Λ ⊗t
k Γ

)
,

where (−1)∗∗ denotes the morphism mapping ((i,a′), ( j,b′)) to (−1)i j .

Proof. Let P and Q be graded bimodule projective resolutions of Λ and Γ , respectively. Given a ∈ A
and b ∈ B , the same arguments as in the proof of Theorem 3.7 give

HH∗,a,b(Λ ⊗t
k Γ

) = H∗(grHom(Λ⊗t
kΓ )e

(
Tot

(
P ⊗t

k Q,
(
Λ ⊗t

k Γ
)〈a,b〉)))

= H∗(Tot
(
Hom(Λ⊗t

kΓ )e

(
P ⊗t

k Q,
(
Λ ⊗t

k Γ
)〈a,b〉)))

and

H∗(Tot
(
Hom(Λ⊗t

kΓ )e

(
P ⊗t

k Q,Λ〈a〉 ⊗t
k Γ 〈b〉)))

= H∗(Tot
(
HomΛe

(
P,Λ〈a〉) ⊗t

k HomΓ e (Q,Γ )
))

= HH∗,a(Λ) ⊗t̃
k HH∗,b(Γ ),

where t̃ = (−1)∗∗ · t as in Theorem 3.7. Now if a ∈ A′ and b ∈ B ′ , then from Lemma 4.6 we see that
we may identify

H∗(Tot
(
Hom(Λ⊗t

kΓ )e

(
P ⊗t

k Q,
(
Λ ⊗t

k Γ
)〈a,b〉)))

with

H∗(Tot
(
Hom(Λ⊗t

kΓ )e

(
P ⊗t

k Q,Λ〈a〉 ⊗t
k Γ 〈b〉))).

Finally, note that HH∗,A′
(Λ) ⊗t̃

k HH∗,B ′
(Γ ) = HH∗,A′

(Λ) ⊗(−1)∗∗
k HH∗,B ′

(Γ ), since all degrees occurring
are in the kernel of t . �

We end this section with the following corollary to Theorem 4.7. It shows that, given certain
conditions, if Λ and Γ satisfy Fg, then so does Λ ⊗t

k Γ .

4.8. Corollary. With the same notation as in Theorem 4.7, assume Λ and Γ satisfy Fg with respect to their even
Hochschild cohomolgy rings HH2∗(Λ) and HH2∗(Γ ). Moreover, suppose [A : A′] and [B : B ′] are finite, and
that Λ/Rad Λ and Γ/RadΓ are separable over k. Then Λ ⊗t

k Γ satisfies Fg with respect its even Hochschild

cohomolgy ring HH2∗(Λ ⊗t
k Γ ).

Proof. Since [A : A′] is finite, the algebra HH2∗,A(Λ) is a finitely generated module over HH2∗,A′
(Λ).

Therefore, since Λ satisfies Fg, we see that Ext∗Λ(Λ/Rad Λ,Λ/RadΛ) is finitely generated over

HH2∗,A′
(Λ). The same arguments apply to Γ , hence

Ext∗Λ(Λ/RadΛ,Λ/Rad Λ) ⊗t
k Ext∗Γ (Γ/RadΓ,Γ/RadΓ )

is finitely generated over HH2∗,A′
(Λ) ⊗k HH2∗,B ′

(Γ ). Then by Theorems 3.7 and 4.7, we see that

Ext∗
Λ⊗t Γ

(
Λ/RadΛ ⊗t

k Γ/RadΓ,Λ/Rad Λ ⊗t
k Γ/RadΓ

)

k
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must be a finitely generated HH2∗,A′⊕B ′
(Λ ⊗t

k Γ )-module. Finally, since Λ/Rad Λ and Γ/RadΓ are
separable over k, the equality

Λ/RadΛ ⊗t
k Γ/RadΓ = (

Λ ⊗t
k Γ

)
/Rad

(
Λ ⊗t

k Γ
)

holds. The claim now follows from Remarks 2.5. �
5. Quantum complete intersections

We now apply the cohomology theory of twisted tensor products to the class of finite-dimensional
algebras known as quantum complete intersections. Throughout this section, fix integers n � 1 and
a1, . . . ,an � 2, together with a nonzero element qij ∈ k for every 1 � i < j � n. We define the algebra
Λ by

Λ
def= k〈x1, . . . , xn〉/(xai

i , x j xi − qij xi x j
)
,

a codimension n quantum complete intersection in its most general form. This is a selfinjective algebra
of dimension

∏
ai . We shall determine precisely when such an algebra satisfies Fg, and consequently

obtain a lower bound for its representation dimension.

Note that Λ is Zn graded by |xi | def= (0, . . . ,1, . . . ,0), the ith unit vector. In particular, we use the Z-
grading |x| = 1 for the special case of a codimension one quantum complete intersection k[x]/(xa). The
following observation allows us to study the cohomology inductively, starting with the well known
case k[x]/(xa).

5.1. Lemma. Let Λ′ be the subalgebra of Λ generated by x1, . . . , xn−1 . Then

Λ = Λ′ ⊗t
k k[xn]/(xan

n
)
,

where t〈d1,...,dn−1|dn〉 def= ∏n−1
i=1 qdidn

in .

As for quantum complete intersections of codimension one, that is, truncated polynomial algebras,
their cohomology is well known. We record this in the following lemma.

5.2. Lemma. If Γ = k[x]/(xa), then

(1) HH2∗(Γ ) = k[x, z]/(xa,axa−1z),

(2) Ext∗Γ (k,k) =
{

k[y, z]/(y2 = z) if a = 2,
k[y, z]/(y2) if a 
= 2,

with |x| = 0, |y| = 1 and |z| = 2. In particular, the algebra Γ satisfies Fg with respect to its even Hochschild
cohomology ring.

Proof. The first part is [12, Theorem 3.2], the second part can be read off directly from the projective
resolution. �

Using this lemma and Theorem 3.7, we obtain the following result on the Ext-algebra of the simple
module of a quantum complete intersection.

5.3. Theorem. The Ext-algebra of k is given by

Ext∗Λ(k,k) = k〈y1, . . . , yn, z1, . . . , zn〉/I,
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where I is the ideal in k〈y1, . . . , yn, z1, . . . , zn〉 defined by the relations

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi zi − zi yi
y j yi + qij yi y j i < j

y j zi − qai
i j zi y j i < j

z j yi − q
a j

i j yi z j i < j

z j zi − q
aia j

i j zi z j i < j

y2
i = zi ai = 2
y2

i ai 
= 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5.4. Remark. Lemma 5.2 shows that if Γ and Δ are arbitrary algebras, then the algebra HH∗(Γ ) ⊗̃t
k

HH∗(Δ) does not in general embed into HH∗(Γ ⊗t
k Δ). Namely, the latter is always graded commuta-

tive, whereas HH∗(Γ ) ⊗̃t
k HH∗(Δ) need not be.

We are now ready to characterize precisely when a quantum complete intersection satisfies Fg.

5.5. Theorem. The following are equivalent.

(1) Λ satisfies Fg,
(2) Λ satisfies Fg with respect to its even Hochschild cohomology ring HH2∗(Λ),
(3) all the commutators qij are roots of unity.

Proof. The implication (2) ⇒ (1) is obvious, and the implication (3) ⇒ (2) follows from Corollary 4.8.
To show (1) ⇒ (3), we assume that (1) holds but not (3), so there are i and j such that qij is not a
root of unity. By (1), the Ext-algebra of k is finitely generated as a module over its center, hence so
is every quotient of this ring. By factoring out all yk, zk with k /∈ {i, j} and {yk | k ∈ {i, j} and y2

k = 0},
we obtain a ring of the form k〈r, s〉/(sr − qrs), where q is not a root of unity. The center of this ring
is trivial, hence the ring cannot be finitely generated over its center, a contradiction. �

As a corollary, we obtain a lower bound for the representation dimension of a quantum complete
intersection. Recall that the representation dimension of a finite-dimensional algebra Δ is defined as

repdimΔ
def= inf

{
gld EndΔ(M)

}
,

where the infimum is taken over all the finitely generated Δ-modules which generate and cogenerate
Δ -mod.

5.6. Corollary. Define the integer c � 0 by

c
def= max

{
card I

∣∣ I ⊆ {1, . . . ,n} and qij is a root of unity ∀i, j ∈ I, i < j
}
.

Then repdimΛ � c + 1. In particular, if all the commutators qij are roots of unity, then repdimΛ � n + 1.

In order to prove this result we need to recall some notions. Let Δ be an algebra, and let M be a
finitely generated Δ-module with minimal projective resolution

· · · −→ P2 −→ P1 −→ P0 −→ M −→ 0,

say. The complexity of M , denoted cx M , is defined as

cx M
def= inf

{
t ∈ N ∪ {0} ∣∣ ∃r ∈ R such that dimk Pn � rnt−1 for n � 0

}
.
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Now let V be a positively graded k-vector space of finite type, i.e. dimk Vn < ∞ for all n. The rate of
growth of V , denoted γ (V ), is defined as

γ (V )
def= inf

{
t ∈ N ∪ {0} ∣∣ ∃r ∈ R such that dimk Vn � rnt−1 for n � 0

}
.

It is well known that the complexity of a module M equals γ (Ext∗Δ(M,Δ/Rad Δ)). Now suppose Δ

is selfinjective, and denote by Δ -mod the stable module category of Δ -mod, that is, the category
obtained from Δ -mod by factoring out all morphisms which factor through a projective module. This
is a triangulated category, and we denote by dim(Δ -mod) its dimension, as defined in [15].

Proof of Corollary 5.6. Choose a subset I of {1, . . . ,n} realizing the maximum in the definition of
the integer c, and let Λ′ be the subalgebra of Λ generated by the xi with i ∈ I . By Theorem 5.5 the
algebra Λ′ satisfies Fg, and so from [6, Theorem 3.1] we see that dim(Λ′ -mod) � cxΛ′ k−1. Moreover,
by Theorem 5.3 the complexity of k as a Λ′-module equals card I , giving dim(Λ′ -mod) � card I − 1.

The forgetful functor Λ -mod −→ Λ′ -mod is exact, dense, and maps projective Λ-modules to
projective Λ′-modules. Therefore it induces a dense triangle functor Λ -mod −→ Λ′ -mod, and so
from [15, Lemma 3.4] we obtain the inequality dim(Λ -mod) � dim(Λ′ -mod). Finally, by [14, Proposi-
tion 3.7] the inequality repdimΛ � dim(Λ -mod) + 2 holds, and the proof is complete. �
5.7. Remark. By [8, Theorem 3.2] the inequality repdimΛ � 2n always holds.

It was shown in [13] that the representation dimension of the truncated polynomial algebra
k[x, y]/(x2, ya) is three. Using their construction and exactly the same proof, one can show that the
quantum complete intersection Γ = k〈x, y〉/(yx − qxy, x2, ya) has a generator-cogenerator M which
is graded with gld EndΓ (M) = 3. Moreover, for a quantum exterior algebra Γ on n variables (that is,
a codimension n quantum complete intersection where all the defining exponents are 2), the global
dimension of the endomorphism ring of the graded generator-cogenerator

⊕
Γ/(RadΓ )i is n + 1

(cf. [1]). Using this and Proposition 3.8, we obtain the following improvement of Remark 5.7.

5.8. Theorem. If h = card{i | ai = 2}, then

repdimΛ �
{

2n − h if h � n/2,
2n − h + 1 if h > n/2.

Proof. In the first case decompose the algebra into h parts of the form k〈x, y〉/(yx − qxy, x2, ya), and
n −2h parts of the form k[x]/(xa). Adding up the global dimensions of the endomorphism rings of the
graded Auslander generators (which we may do by Proposition 3.8), we obtain h · 3 + (n − 2h) · 2 =
2n − h. In the second case, we decompose the algebra into n − h parts of the form k〈x, y〉/(yx −
qxy, x2, ya), and a quantum exterior algebra on 2h − n variables, and add up global dimensions as
above. �
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