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We investigate subgroups of a Chevalley group G = G(Φ, A) over
a ring A, containing its elementary subgroup E = E(Φ, F ) over a
subring F ⊆ A. Assume that the root system Φ is simply laced and
A = F [t] is a polynomial ring. We show that if G is of adjoint type,
then there exists an element g ∈ E(Φ, A) such that 〈g,E(Φ, F )〉 =
〈g〉 ∗ E(Φ, F ), where 〈X〉 denotes the subgroup, generated by a
set X , and ∗ stands for the free product.
It follows that under the above assumptions the lattice L =
L(E, G) is not standard. Moreover, combining the above result with
theorems of Nuzhin and the author one obtains a necessary and
sufficient condition for L to be standard provided that A and F
are fields of characteristic not 2 and Φ �= G2.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Let G(Φ, ) = GP (Φ, ) denote a Chevalley–Demazure group scheme with root system Φ and
weight lattice P . Let A be a ring (all rings are assumed to be associative, commutative with a unit).
Denote by E(Φ, A) = EP (Φ, A) the elementary subgroup of G(Φ, A), i.e. the subgroup generated by all
elementary root unipotent elements xα(t), α ∈ Φ , t ∈ A. Let F be a subring of A. We study the lattice
L = L(E(Φ, F ),G(Φ, A)) of subgroups of G(Φ, A), containing E(Φ, F ). Denote by N(R) the normalizer
of E(Φ, R) in G(Φ, A).
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Definition. The lattice L is called standard if it breaks into disjoint union of intervals L R =
L(E(Φ, R), N(R)) over all subrings R of A.

For example, for an algebraic field extension A/F the lattice L is known to be standard by the
result of Nuzhin [8].

Assume that the root system Φ is simply laced, i.e. Φ = Al, Dl, E6, E7, or E8 (in other words, all
roots in Φ have the same length). Let A = F [t] be the polynomial ring over a field F . We prove that
in this case the lattice L is not standard, and this is a first published example of this kind for Φ �= Al .
With this end we construct a free product subgroup in L. Denote by G the quotient of G(Φ, A) by its
center (so that G is a subgroup of Gad(Φ, A)) and let E be the image of E(Φ, F ) in G .

Theorem A. There exists an element g ∈ Ead(Φ, F [t]) such that

〈g, E〉 = 〈g〉 ∗ E,

where 〈X〉 denotes the subgroup, generated by a set X , and ∗ stands for the free product.

Combining the above result with theorems of Nuzhin [8] and the author [13] one obtains a neces-
sary and sufficient condition for L to be standard provided A and F are fields of characteristic not 2
and Φ �= G2.

Corollary. Suppose that F is a field, char F �= 2, A is an F -algebra, and Φ �= G2 . The lattice L is not standard
if and only if Φ is simply laced and A is not algebraic over F .

In characteristic 2 the notion of standardness is more complicated, therefore the result for Φ =
Bl, Cl, F4 is not written yet. This is the work in progress. The case Φ = G2 is not clear at all.

Now we need some notation.

Notation. Let G be a group. For two elements x, y ∈ G we write [x, y] = x−1 y−1xy for their commu-
tator and xy = y−1xy for the element, conjugate to x by y. If Z is a subset of G , then 〈Z〉 denotes
the subgroup generated by Z . For subgroups X, Y ⊆ G we let X Y denote the normal closure of X in
〈X ∪ Y 〉 whereas [X, Y ] stands for their mutual commutator subgroup.

To display relations between Theorem A and the above corollary we recall some group theoretic
notions from [2]. Note that standardness of the lattice L is equivalent to the following statement: For
any H ∈ L we have E(Φ, F )E(Φ,F )H = E(Φ, F )H = E(Φ, P ) for some subring P .

Definition. (See Z.I. Borevich [2].) A subgroup D of a group G is called polynormal if D D H = D H for
all subgroups H lying between D and G .

A. Bak called this description “a sandwich classification theorem” for subgroups between D and G .
In [12] the author proved that existence of a free product subgroup as in Theorem A ensures that

E(Φ, F ) is not polynormal in G(Φ, F [t]). Further, if a pair of groups D � H projects onto the pair
E(Φ, F ) � G(Φ, F [t]), then D is not polynormal in H . In particular, if a pair of rings R ⊆ A projects
onto the pair F ⊆ F [x], then E(Φ, R) is not polynormal in G(Φ, A). Obviously, the same holds if the
ring A is bigger.
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In view of this, we call a ring extension R ⊆ A quasi-transcendental if there exists a commutative
diagram

R P A

F F [x]

where F is a field, the horizontal arrows are injective, and the vertical ones are surjective. Otherwise
the extension is called quasi-algebraic. Using the above observations we get the following result.

Corollary. If a ring extension R ⊆ A is quasi-transcendental and Φ is a simply laced root system, then E(Φ, R)

is not polynormal in G(Φ, A).

If F is a finitely generated algebra over a field or over Z and A is a domain, then the condition
of being quasi-algebraic has especially elegant reformulation (see [12, Theorem B]), and therefore, we
can rewrite the above corollary as follows.

Theorem B. Let F be a finitely generated algebra over a field or over Z and let A be an F -algebra. Suppose that
A is a domain and Φ is a simply laced root system. If the lattice of subgroups between E(Φ, F ) and G(Φ, A) is
polynormal, then one of the following holds:

(1) A is an integral extension of F ; or
(2) dim F � 1 and A is contained in the algebraic closure of the field of fractions of F .

There is some evidence that the converse to the theorem above holds. Namely, the standard de-
scription of the lattice of subgroups between E(Φ, F ) and G(Φ, A) is established by R.A. Schmidt
in [10] for the case where Φ = Al and A is the field of fractions of a Dedekind domain. Using the
technique developed in [17] and the notion of ideal stable rank of a module in spirit of [11] we hope
to extend the result by Schmidt to all Chevalley groups of rank � 3 (at present the standard descrip-
tion for all Chevalley groups over the field of fractions is known by Nuzhin and Yakushevich [9] only
for the case where F is a Euclidean domain). The most complicated part is to extend the result by
Nuzhin [8] to integral ring extensions. Once this done, one can try to combine the two above results
to prove the converse to Theorem B.

The situation with Chevalley groups corresponding to not simply laced root systems is quite dif-
ferent. Recently the author has proved that if Φ �= G2, then the lattice of subgroups between E(Φ, F )

and G(Φ, A) is standard for an arbitrary pair of rings F ⊆ A provided 2 is invertible in F . Technically,
this is motivated by the following results by Golubchik, Mikhalev [4], Tomanov [15], Gordeev [5] and
Nesterov and Stepanov [7] on so-called identities with constants.

Let G be a group. Denote by F(y1, . . . , yk) the free group on symbols y1, . . . , yk . Let S(y1, . . . , yk)

be a nontrivial element in the free product G ∗ F(y1, . . . , yk). The equation S(y1, . . . , yk) = 1 is called
an identity with constants in G . Given g1, . . . , gk ∈ G the notation S(g1, . . . , gk) is self-explanatory.
One says that an identity S with constants holds in G if for any elements g1, . . . , gk ∈ G the equality
S(g1, . . . , gk) = 1 is satisfied.

Theorem C (Tomanov, Gordeev). Let G = G(Φ, K )/Center(G(Φ, K )), where K is an infinite field. Suppose that
the root system Φ is simply laced. Then there is no valid identity with constants in G, i.e. for any S(y1, . . . , yk)

there are elements g1, . . . , gk ∈ G such that S(g1, . . . , gk) �= 1.

In contrary, when Φ is not simply laced a certain identity with constants holds in G . To formulate
the identity we need the concept of small elements from [15] and [5]. Let K be an algebraically
closed field. Let g ∈ G(Φ, K ) be a semisimple element. Then it belongs to a torus T and the roots,



1552 A. Stepanov / Journal of Algebra 324 (2010) 1549–1557
being characters of torus, map T to K . A noncentral semisimple element is called small if it goes to the
identity under all long roots. It is known that such elements exist if Φ is not simply laced provided
2 �= 0 for Φ = Bl, Cl, F4 and 3 �= 0 for Φ = G2. In the case of the bad characteristic (i.e. the conditions
above do not hold) we say that a short root element is a small unipotent element. If R is a ring, then
an element g ∈ G(Φ, R) is called small if for any homomorphism ϕ from R to a closed field K the
element G(Φ,ϕ)(g) is small.

Theorem D (Golubchik, Mikhalev, Gordeev, Nesterov, Stepanov). Let h �= 1 be a small element. Let u �= 1 be a
long root unipotent element. Then the following identity with constants holds: [u, [u, uhy ]] = 1. Moreover, if
Φ = Bl, Cl, F4 , then the identity [u, uhy ] = 1 holds.

Theorem C provides another motivation for investigation of free product subgroups in G(Φ, F [t]).
Let A be the affine algebra of G(Φ, F ) and let g denote the “generic element” of G(Φ, A). Then the
theorem shows in particular (with k = 1) that the subgroup in G(Φ, A)/Center(G(Φ, F )) generated by
G(Φ, F )/Center(G(Φ, F )) and the cyclic subgroup 〈g〉 is their free product. From this point of view
Theorem A is a strengthening of this corollary.

1. Opposite transvections

In this section we develop some tools for the proof of Theorem A.

Notation. Let Φ be a root system and let R be a ring. For a root α ∈ Φ and an element ξ ∈ R we
denote by xα(ξ) the corresponding elementary root unipotent element and by Xα(R) = {xα(ξ) | ξ ∈ R}
the root subgroup. For a given order on Φ B(R) denotes the standard Borel subgroup of G(Φ, R). Of
course, B and Xα are affine group schemes. However, we shall write B and Xα instead of B(R) and
Xα(R) when this cannot lead to confusion and R is uniquely specified by context.

Let K be a field and G = G(Φ, K ). Let α be a long root and a,b ∈ G . Consider two subgroups Xa
α

and Xb
α . It is easy to prove (see [16]) that there exists c ∈ G such that (Xa

α)c = Xα and (Xb
α)c = Xβ

for some long root β ∈ Φ . Recall that the subgroups Xa
α and Xb

α are called opposite if β = −α. In this
case, any two elements xα(ξ)a and xα(ζ )b also will be called opposite.

In the sequel we use the following reformulation of the latter condition.

Lemma 1.1. Let α be a long root and a,b ∈ G. Choose a split maximal torus in G and an ordering on Φ such
that α is a maximal root. Then the following conditions are equivalent.

(1) Xa
α and Xb

α are opposite.
(2) If ba−1 ∈ B w B is a Bruhat decomposition of ba−1 , then w(α) = −α.
(3) For any x ∈ Xa

α \ {1} and y ∈ Xb
α \ {1} the commutator [x, y] does not commute with x.

Proof. Obviously, Xa
α and Xb

α are opposite if and only if Xα and Xba−1

α are opposite. Let ba−1 = b1 wb2

be a Bruhat decomposition of ba−1. Since α is the maximal root, B normalizes Xα . Therefore, Xba−1

α =
X wb2

α . Conjugating by b2 we see that Xα and Xba−1

α are opposite if and only if Xα and X w
α are opposite

which is equivalent to saying that w(α) = −α. Thus, (1) ⇐⇒ (2).
Clearly condition (3) is stable under conjugation. Therefore, we may assume that x ∈ Xα and y ∈

Xβ for some long root β ∈ Φ . If β = −α, then Xα and Xβ generates the subgroup isomorphic to
SL2(K ) or PGL2(K ). Moreover, this isomorphism sends x and y to the elementary transvections t12(ξ)

and t21(ζ ), respectively. It is clear that [t12(ξ), t21(ζ )] does not commute with t12(ξ), thus, [x, y] does
not commute with x. Conversely, if β �= −α, then either α + β is not a root, hence [x, y] = 1, or
γ = α + β ∈ Φ but α + γ /∈ Φ in which case [x, y] ∈ Xγ and Xα commutes with Xγ . �
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From now on we always assume that Φ is a simply laced root system. Let F be a field and F [t]
the polynomial ring over F . In the sequel we use the notion of degree of an element from a Chevalley
group over F [t] or over its quotient field F (t).

Definition 1.2. First, define the degree deg p
q of a rational function p

q as deg p − deg q. Let ρ :
G(Φ, F (t)) → GLn(F (t)) be a representation of G(Φ, F (t)) and g ∈ G(Φ, F (t)). Then we define the
degree deg(g) of an element g ∈ G(Φ, F (t)) (with respect to ρ) to be the maximal degree of the
entries of the matrix ρ(g).

The following lemma is a key step in the proof of the main theorem.

Lemma 1.3. Let α ∈ Φ be a root. There exists an element g ∈ G(Φ, F [t]) such that for any noncentral element a

in G(Φ, F ) the root subgroups Xα and X gag−1

α are opposite.

Proof. For g ∈ G(Φ, F [t]) denote by C(g) the set of all elements a ∈ G(Φ, F ) such that

[[
Xα, X gag−1

α

]
, Xα

] = {1}. (1)

Clearly, C(g) is Zariski closed in G(Φ, F ). Now we construct a sequence of elements g0 =
1, g1, . . . , gk, . . . in G(Φ, F [t]) such that C(g0) � C(g1) � · · · � C(gk) � · · · is a proper chain of Zariski
closed subsets in G(Φ, F ) and their intersection equals to the center of G(Φ, F ). Since G(Φ, F ) is a
Noetherian variety, this chain terminates in some C(gn) = Center(G(Φ, F )).

Suppose that we have obtained g0, . . . , gk satisfying the above conditions, except that C(gk) �=
Center(G(Φ, F )). It suffices to prove that we can construct the next element of the chain. Clearly, we
can choose M ∈ N such that

[[
Xα, X

gkag−1
k

α

]
, Xα

] �≡ {1} mod tM F [t]

for any a /∈ C(gk). Indeed, if m � deg(g),deg(g−1), then for any a ∈ G(Φ, F ) the degree of

[[
xα(1), xα(1)gag−1]

, xα(1)
]

is at most 16m. Therefore, it equals 1 if and only if it is equivalent to 1 modulo tM F [t] where M >

16m.
Now, take a ∈ C(gk). Obviously, the set X of all g ∈ G(Φ, F (t)) such that

[[
Xα, X (gk g)a(gk g)−1

α

]
, Xα

] �= {1}
is open in G(Φ, F (t)). By Gordeev’s Theorem C, this set is nonempty. Note that the congruence sub-
group G(Φ, F [t], tM F [t]) is Zariski dense in G(Φ, F (t)) (because G(Φ, F [t], tM F [t])∩ Xα is dense in Xα

as an infinite subset in A1 over a field). Therefore, it has nonempty intersection with X . Take g ∈
X ∩ G(Φ, F [t], tM F [t]) and put gk+1 = gk g . Since gk+1 ≡ gk mod tM F [t], by the choice of M we have
C(gk+1) ⊆ C(gk). But a ∈ C(gk) \ C(gk+1), therefore, C(gk+1) �= C(gk), which completes the proof. �
2. Proof of the main theorem

For the proof of the main theorem we need to evaluate degrees of certain elements of a Chevalley
group and its Lie algebra. Let ρ be a faithfull representation of G(Φ, ). For an element g ∈ G(Φ, F (t))
we define the negative degree n.deg g as a supremum of −deg(ρ(g)i j), where 1 � i, j � n.

First we consider Bruhat decomposition in G(Φ, F (t)). Fix a split maximal torus T and the ordering
on Φ . Denote by U the unipotent radical of the standard Borel subgroup B and by N the (scheme
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theoretic) normalizer of T . As usually, W = W (Φ) denotes the Weyl group. Let R be a commutative
ring. For w ∈ W denote by U w(R) the subgroup of U (R) generated by root subgroups Xα(R) for
all roots α ∈ Φ+ such that w(α) ∈ Φ− . Then, B(R)w B(R) = U w(R)w B(R) and a = b′ ẇb′′ is called a
reduced Bruhat decomposition of an element a ∈ G(Φ, R) if b′ ∈ U w(R), b′′ ∈ B and ẇ ∈ N(R) is a
preimage of w .

Lemma 2.1. Given m ∈ N there exists M ∈ N satisfying the following: for any element a ∈ G(Φ, F [t]) of degree
at most m there are b′,b′′ ∈ U (F (t)) and ẇ ∈ N(F (t)) such that a = b′ ẇb′′ and deg(b′),deg(b′′),deg(ẇ),

n.deg(ẇ),deg(b′−1
),deg(b′′−1

),deg(ẇ−1),n.deg(ẇ−1) � M.

Proof. Let ρ : G → GLn be a faithfull representation of G . If a = b′ ẇb′′ is a reduced Bruhat decom-
position of a, then the matrix coefficients of ρ(b′), ρ(b′′) and ρ(ẇ) are rational functions on matrix
coefficient of ρ(a), hence the result follows.

A rigorous proof uses formalism of affine schemes. In this proof T , B , U , U w and N denote the
corresponding group subschemes of G = G(Φ, ). For each w ∈ W fix a preimage w̃ of w in N(Z).
Let ϕ : U w × B → G be a morphism of affine schemes given by ϕR(u,b) = uw̃b, where R is a ring,
u ∈ U w(R), b ∈ B(R), and w̃ is identified with its canonical image in N(R). The image C w of ϕ is
called a Bruhat cell. It is known that C w is an open subscheme of a closed subscheme of G and that
ϕ induces an isomorphism of schemes U w × B → C w (see [3, Exp. XXII, 5.7.3]). As affine schemes
B ∼= T × U , thus we obtain an isomorphism ψ : U w × T × U → C w .

Let Mn denote the full matrix ring. Then Mn is an affine scheme with affine algebra Z[Mn] = Z[hij |
1 � i, j � n]. The representation ρ induces a morphism σ : C w → Mn and a ring homomorphism
σ ∗ : Z[Mn] → Z[C w ]. Put gij = σ ∗(hij). Since ρ is faithfull, the map σ is a composition of open
and closed immersions. Therefore, the image of C w is an open subscheme of a closed subscheme
of Mn (“closed of an open” and “open of a closed” is the same thing for affine schemes, see, e.g.,
[6, Ch. 3, Exercise 2.3]). It follows that Z[C w ] is a localization of σ ∗(Z[Mn]) = Z[gij].

Consider a commutative diagram

U w × T × U
τ

ψ

Mn × Mn × Mn

θ

C w
σ

Mn

where the horizontal arrows are induced by ρ and θR(b, c,d) = bw̃cd for any ring R and b, c,d ∈
Mn(R). Let a ∈ G(F [t]) � G(F (t)) be an element of degree � m. The group G(F (t)) is a disjoint union
of Bruhat cells C w(F (t)) (see [1, 2.11]). If w ∈ W is such that a ∈ C w(F (t)), then a = b′ w̃sb′′ , where
b′ ∈ U w(F (t)), s ∈ T (F (t)), and b′′ ∈ U (F (t)). By definition an R-rational point of a Z-scheme X is a
ring homomorphism Z[X] → R . Thus, we obtain the following commutative diagram.

Z[hij] = Z[Mn] σ ∗

θ∗

Z[C w ] a

ψ∗

F (t)

Z[xij, yij, zi j] = Z[Mn] ⊗ Z[Mn] ⊗ Z[Mn] τ ∗
Z[U w ] ⊗ Z[T ] ⊗ Z[U ] b′⊗s⊗b′′

F (t) ⊗ F (t) ⊗ F (t)

mult

where mult is the multiplication homomorphism. Note that

ρ
(
b′)

i j = b′ ◦ ρ∗(xij) = mult ◦ (
b′ ⊗ s ⊗ b′′) ◦ τ ∗(xij) = a ◦ (

ψ∗)−1 ◦ τ ∗(xij).

Similarly, ρ(s)i j = a ◦ (ψ∗)−1 ◦ τ ∗(yij), ρ(b′′)i j = a ◦ (ψ∗)−1 ◦ τ ∗(zi j), and ρ(a)i j = a ◦ σ ∗(hij) = a(gij).
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We have already shown that any element of Z[C w ] is a rational function on the elements gij . Let
kw be an integer greater than degrees of numerators and denominators of (ψ∗)−1 ◦ τ ∗(xij), (ψ∗)−1 ◦
τ ∗(yij), and (ψ∗)−1 ◦ τ ∗(zi j), viewed as rational functions on gij ’s. Put M1 = nm · maxw∈W kw . Since
degρ(a)i j � m, the degrees of numerators and denominators of ρ(b′)i j , ρ(s)i j , and ρ(b′′)i j are not
greater than m · maxw∈W kw . On the other hand, a = b′ ẇb′′ where ẇ = w̃s. Since w̃ comes from
N(Z), degrees of numerators and denominators of elements ρ(ẇ)i j are not greater than M1.

The elements of a matrix are rational functions on the elements of its inverse. Since the degrees of
numerators and denominators of b′ , ẇ , and b are bounded by M1, there exists an integer M , satisfying
the condition of the lemma. �
Notation. Let α1, . . . ,αr be the simple roots. We consider the adjoint representation of G(Φ, F (t)) on
its Lie algebra Lie(Φ, F (t)) with a Chevalley base consisting of root elements eα and elements hi = hαi

from the Cartan subalgebra H = H(Φ, F (t)). For g ∈ G(Φ, F (t)) and u ∈ Lie(Φ, F (t)) we write ug to
denote the (right) action of g on u.

For an element u = ∑
β∈Φ λβeβ + ∑r

i=1 μihi ∈ Lie(Φ, F (t)) we write deg(u) to denote the maxi-
mum of the degrees of the coefficients λβ and μi . For a given root α we use the following notation:

degα(u) = degλα and d̂egα(u) = max
β �=α

(degλβ,degμi).

Lemma 2.2. Let α ∈ Φ be the maximal root. Put d = bẇxα(mtN ), where b ∈ U (F (t)), ẇ ∈ N(F (t)), w is its
image in W , and m, N ∈ Z. Suppose that w(α) = −α. For u ∈ Lie(Φ, F (t)) we have:

(1) deg(ud) � deg(u) + 2N + deg(b) + deg(b−1) + deg(ẇ) + deg(ẇ−1);
(2) d̂egα(ud) � deg(u) + N + deg(b) + deg(b−1) + deg(ẇ) + deg(ẇ−1);
(3) degα(ed

α) � 2N − n.deg(ẇ) − n.deg(ẇ−1);

(4) degα(ed
α) − d̂egα(ed

α) = N.

Proof. For the proof we need the following calculations in Lie algebras sl2 and sl3.

exα(mtN )
−α = −m2t2N eα + tNh + e−α, for some h ∈ H, deg(h) = 0,

exα(mtN )
γ = eγ ± mtN eα+γ , if α + γ ∈ Φ,

exα(mtN )
γ = eα, if α + γ /∈ Φ ∪ {0},

hxα(mtN )
i = hi + ktN eα, for some k ∈ Z.

Clearly, deg(ubẇ) � deg(u) + deg(b) + deg(ẇ) + deg(b−1) + deg(ẇ−1). On the other hand, the above
formulas show that deg( f xα(mtN )) � deg( f ) + 2N and d̂egα( f xα(mtN )) � deg( f ) + N for any f ∈
Lie(Φ, F (t)), which proves the first and the second assertions of the lemma.

Since α is the maximal root, eα commutes with U . Since w(α) = −α, we have eẇ
α = pe−α , where

p ∈ F (t) and deg p � −n.deg(ẇ) − n.deg(ẇ−1). Now, items (3) and (4) follow from the first of the
displayed formulas. �

Now, we are ready to prove the main result of the article.

Proof of Theorem A. Since G(Φ, F [t])/Center(G(Φ, F [t])) is a subgroup of the adjoint group
Gad(Φ, F [t]) containing Ead(Φ, F [t]), we may assume that G is of adjoint type. Let ρ : G(Φ, F (t)) →
GLn(F (t)) be the adjoint representation. Since ρ is faithfull we may identify the elements of
G(Φ, F (t)) with their images under ρ . Choose a split maximal torus T , and an ordering on Φ . Let



1556 A. Stepanov / Journal of Algebra 324 (2010) 1549–1557
α ∈ Φ be the maximal root. By Lemma 1.3 we can find a ∈ G(Φ, F [t]) such that for any c ∈ G(Φ, F )

the root subgroups Xa
α and Xac

α are opposite.
Let m � deg(a),deg(a−1). Obviously, the degree of the element aca−1 is at most 2m for any c ∈

G(Φ, F ). Let b′ ẇb′′ be the reduced Bruhat decomposition of aca−1 with b′,b′′ in the unipotent radical
U = U (F (t)) of the Borel subgroup. By Lemma 2.1 there exists M ∈ N such that

sup
c∈G(Φ,F )

(
deg

(
b′),deg

(
b′−1)

,deg
(
b′′),deg

(
b′′−1)

,deg(ẇ),deg
(

ẇ−1),n.deg(ẇ),n.deg
(

ẇ−1)) = M.

Take an integer N > 8M and put g = xα(tN )a . By the main result of [14] the elementary subgroup is
normal, therefore g ∈ E(Φ, F [t]).

Consider the product z = c1 gm1 c2 · · · gml cl+1, where ci ∈ G(Φ, F ), ci �= 1 for all i = 2, . . . , l, and
each mi is not divisible by char F (otherwise, gmi = 1). We have to prove that z �= 1. Suppose that z is
a product of minimal length such that z = 1. Conjugating the equation z = 1 by cl+1 we may assume
that cl+1 = 1 and c1 �= 1 (otherwise the product z can be shortened by conjugation by gml ). Now,
conjugating z by a−1 we get

aza−1 = (
ac1a−1)xα

(
m1tN)(

ac2a−1)xα

(
m2tN) · · · (acla

−1)xα

(
mlt

N) = 1.

Let acka−1 = b′
k wkb′′

k be the reduced Bruhat decomposition of acka−1 with b′
k,b′′

k ∈ U . Since Xα

commutes with U , we can rewrite the equation above in the form

b1 w1xα

(
m1tN)

b2 w2xα

(
m2tN) · · ·bl wlxα

(
mlt

N) = (
b′′

l

)−1
(�)

where bk = b′′
k−1b′

k for k > 1 and b1 = b′
1. Recall that by the choice of a we have wk(α) = −α and

deg(bk),deg(b−1
k ) � 2M .

Since eU
α = eα and (b′′

l )−1 ∈ U , the right hand side of (�) acts trivially on eα . Consider the action
of the left hand side of (�) on eα . Let

u j = e
y j
α , where y j = b1 w1xα

(
m1tN) · · ·b j w jxα

(
m jt

N)
.

We prove by induction on j that degα(u j) � d̂egα(u j) + N . Base of induction coincides with item (4)
of Lemma 2.2.

Let j > 1. Put d = b j w j xα(m jtN ). Let u j−1 = peα + u, where u belongs to the span of hi and eβ

for all i = 1, . . . , r and β ∈ Φ \ {α}. By induction hypothesis deg p � N + deg(u). Items (3) and (1) of
Lemma 2.2 imply that

degα

(
ped

α

)
� deg p + 2N − n.deg w j − n.deg w−1

j � deg(u) + 3N − 2M � deg
(
ud).

Therefore, degα(u j) = degα(ped
α) � deg p + 2N − n.deg(w j) − n.deg(w−1

j ). By item (4) of Lemma 2.2,

d̂egα(ped
α) = degα(u j) − N . Finally, by item (1) of Lemma 2.2,

d̂egα

(
ud) � deg(u) + 2N + deg(b j) + deg

(
b−1

j

) + deg(w j) + deg
(

w−1
j

)

� deg p + N + deg(b j) + deg
(
b−1

j

) + deg(w j) + deg
(

w−1
j

)

� deg p + 2N − n.deg(w j) − n.deg
(

w−1
j

)
� degα(u j).

This competes the proof that degα(u j) � d̂egα(u j) + N and shows that Eq. (�) is impossible, i.e.
z �= 1. �
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