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Let R be a semiprimitive algebra, d its algebraic derivation
and Rd = ker d the subalgebra of constants of d. It is proved
that the Jacobson radical J(Rd) of Rd is nilpotent. It is
also shown that the following properties are equivalent: Rd

is semilocal; R is semisimple Artinian; Rd is left and right
Artinian.
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Introduction

In [13, Theorem 2.2] Haïly et al. proved that a semiprimitive algebra containing an
algebraic element, whose centralizer is semiperfect, has to be Artinian. Using this result
they proved that a semiprimitive complex Banach algebra containing an element whose
centralizer is algebraic has to be finite-dimensional, answering affirmatively a question
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raised in [3]. Observe that the centralizer CR(a) of an element a ∈ R is equal to the kernel
of the inner derivation induced by a. Therefore, in terms of derivations, the above result
says that if the constants of a certain algebraic derivation of a semiprimitive algebra
are semiperfect, then the algebra is Artinian. On the other hand it is proved in [11,
Theorem 4.7] that if d is an algebraic derivation of a semiprime algebra, then Rd is left
Artinian if and only if R is semisimple Artinian. Thus comparing it with [13, Theorem 2.2]
we obtain that the centralizer CR(a) of an algebraic element of a semiprimitive algebra
R is semiperfect if and only if CR(a) is Artinian. In particular, in this situation the
Jacobson radical J(CR(a)) is nilpotent. Let us remind also that if R is semiprime and d

algebraic, then the prime radical P (Rd) is nilpotent (see [11, Theorem 3.4]). Therefore it
is reasonable to ask whether the Jacobson radical of constants of an algebraic derivation
of a semiprimitive algebra has to be nilpotent. In the first main result of this paper we
answer this question affirmatively and prove

Theorem A. Suppose that either R is a semiprimitive ring with a nilpotent derivation
(dn = 0) or R is a semiprimitive algebra over a field K with a derivation d satisfying
the identity

α0d
n + α1d

n+1 + · · · + αkd
n+k = 0,

where α0, α1, . . . , αk ∈ K and α0 �= 0. Then the Jacobson radical J(Rd) is nilpotent.
More precisely, J(Rd)γ = 0, where γ � 2n − 1.

Observe that, under assumptions of the above theorem, if Rd is semilocal, then Rd is
semiperfect. In the second main result of this paper we generalize Haïly et al. result on
semiperfect centralizers [13, Theorem 2.2] to the following form

Theorem B. Suppose that either R is a semiprimitive ring with a nilpotent derivation d

or R is a semiprimitive K-algebra with a K-linear algebraic derivation d. The following
conditions are equivalent:

(1) Rd is semilocal.
(2) R is semisimple Artinian.
(3) Rd is left and right Artinian.

We can now introduce some of the notation and terminology that will be used through-
out this paper. R will denote associative rings or associative algebras over a field K.
Although some of the rings and algebras in this paper may not have an identity, when
examining whether an algebra is Artinian, we will assume that the algebra has an identity.
By a derivation of R we mean an additive map d:R → R such that d(ab) = d(a)b+ad(b)
for a, b ∈ R. The kernel ker d we denote by Rd and call constants of d. For an element
a ∈ R, ada stands for the inner derivation induced by a, i.e., ada(r) = ar− ra for r ∈ R.
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An ideal I of R is called a d-ideal provided d(I) ⊆ I. If dn = 0 for some positive integer n,
then d is said to be a nilpotent derivation. If A is a subset of R, then the smallest integer
n = n(A) such that dn(x) = 0 for all x ∈ A is called the index of nilpotency of d on A.
We say that an ideal I of a ring R has a prime characteristic p, if pI = 0 for some prime
integer p > 0.

For subsets A, B of R we let annr
A B = {a ∈ A | Ba = 0} to denote the right

annihilator of B in A. Similarly ann�
A B will denote the left annihilator of B in A.

Given a ring R denote its Jacobson (prime) radical by J(R) (resp. P (R)). The Jacob-
son radical has a useful description in terms of elements. Namely an element a ∈ R is said
to be quasi-invertible if 1 − a is invertible in R. A subset of R is quasi-invertible if each
its element is quasi-invertible. It is well known (cf. [14, Proposition 2.5.4]) that the Ja-
cobson radical J(R) is a quasi-invertible ideal of R which contains every quasi-invertible
left ideal.

Recall that R is said to be semiprimitive (resp. semiprime) if J(R) = 0 (resp.
P (R) = 0). The ring R is semilocal if R/J(R) is semisimple Artinian. If in addition
J(R) is idempotent lifting, then R is called semiperfect.

1. The Jacobson radical of constants

In this section we prove that the Jacobson radical of constants of an algebraic deriva-
tion of a semiprimitive algebra is nilpotent. To this end, first we consider a special case
where the derivation is nilpotent.

For a semiprime ring R let FR denote the set of all twosided ideals with zero an-
nihilator. Equivalently, FR consists of those ideals of R which are essential as left (or
right) ideals. For an ideal S ∈ FR the ring End(SR) or right R-module endomorphisms
of S is semiprime and R ↪→ End(SR) via the map r �→ r�, where r� is the left multi-
plication by r acting on S. Each derivation d:R → R leaving S invariant has a unique
extension to a derivation d̄: End(SR) → End(SR); where d̄(f)(s) = d(f(s)) − f(d(s))
for f ∈ End(SR) and s ∈ S. A derivation d is said to be E-inner if there is a
d-ideal S ∈ FR and x ∈ End(SR) such that d̄ = adx. It is clear that every E-inner
derivation is X-inner, i.e., has an inner extension to the Martindale ring of quo-
tients.

We will make use of the following description of nilpotent derivations

Theorem 1.1. (See [9, Corollary 8].) If d is a nilpotent derivation of a semiprime ring
R (dn = 0) and if for every d-ideal I of R of a prime characteristic p, p does not
divide the index of nilpotency of d on I, then d is E-inner. Furthermore, there ex-
ists an ideal S ∈ FR such that d = adx, where x is an element of End(SR) satisfying
x[(n+1)/2] = 0.

In light of Theorem 1.1 the assumptions of the next result seem to be natural.
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Theorem 1.2. Let d be a nilpotent derivation of a semiprimitive ring R. Suppose that d
is E-inner and d̄ = adx, where x ∈ End(SR), S ∈ FR and xm = 0. Then J(Rd)γ = 0,
where γ � 2m − 1.

Proof. Let R〈x〉 be the subring of End(SR) generated by R∪{x}. It is clear that R〈x〉 =
R + Rx + · · · + Rxm−1, and the relation xr = rx + d(r) is fulfilled in R〈x〉. Notice that
J(R〈x〉) = 0. Since Sx ∪ xS ⊂ S, it is clear that SJ(R〈x〉) is a quasi-invertible ideal of
R〈x〉 contained in S. Thus SJ(R〈x〉) is a quasi-invertible ideal of R and consequently
SJ(R〈x〉) = 0. Since annEnd(SR)(S) = annR(S) = 0, one obtains J(R〈x〉) = 0.

Let J = J(Rd). We will show that for k = 0, 1, . . . ,m there exists an integer f(k) � 0
such that

xm−kJf(k) = 0 and f(k + 1) � 2f(k) + 1.

For k = 0 it is enough to put f(0) = 0. Suppose that k � 0 and xm−kJf(k) = 0. For any
simple left R〈x〉-module M consider the left Rd-module M1 = xm−k−1Jf(k)M . We will
prove that if M1 is nonzero and not simple, then any proper Rd-submodule N of M1 is
annihilated by SJf(k), i.e., SJf(k)N = 0. To this end, suppose that SJf(k)N �= 0. Take
an element xm−k−1am1 ∈ M1 \ N , where a ∈ Jf(k) and an element xm−k−1bm2 ∈ N ,
where b ∈ Jf(k) such that for some c ∈ Jf(k)

Scxm−k−1bm2 = Sxm−k−1cbm2 �= 0.

Observe that our assumption that xm−kJf(k) = 0 implies that xm−ka = cxm−k = 0,
so for any s ∈ S the element

Ta,c(s) =
m−k−1∑

i=0
xiascxm−k−i−1

centralizes x. Thus Ta,c(s) ∈ Rd. Notice that

S ·R〈x〉xm−k−1cbm2 =
m−1∑
i=0

SRxixm−k−1cbm2 = Sxm−k−1cbm2 �= 0.

Since M is simple as a left R〈x〉-module, we obtain that M = Sxm−k−1cbm2. In partic-
ular, there exists s ∈ S such that sxm−k−1cbm2 = m1. Observe that

xm−k−1am1 = xm−k−1a
(
sxm−k−1cbm2

)
= xm−k−1ascxm−k−1bm2

= Ta,c(s)xm−k−1bm2 ∈ N,

which contradicts the assumption that xm−k−1am1 ∈ M1 \N . Consequently, any proper
submodule of M1 is annihilated by SJf(k). In the case when M1 is not finitely generated
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as a left Rd-module, any its cyclic submodule is proper, so any cyclic submodule of M1 is
annihilated by SJf(k). It implies that 0 = SJf(k)M1 = Sxm−k−1J2f(k)M . On the other
hand if M1 is finitely generated as a left Rd-module, then by the Nakayama Lemma
JM1 �= M1. Thus SJf(k)JM1 = 0 and

Sxm−k−1J2f(k)+1M = 0.

The above holds for every simple R〈x〉-module, so since R〈x〉 is semiprimitive, we obtain

Sxm−k−1J2f(k)+1 = 0.

The ideal S of R has zero annihilator in R and in R〈x〉, so xm−k−1J2f(k)+1 = 0. Now
we can take the smallest integer f(k + 1) � 2f(k) + 1 satisfying xm−k−1Jf(k+1) = 0.

In particular, for k = m we have Jf(m) = 0. Since f(0) = 0 and f(k+ 1) � 2f(k) + 1,
it follows by induction that f(m) � 2m − 1. �

Now consider the case when pR = 0 for some prime number p > 0. In this situation it
may happen that the derivation d is not E-inner. Instead of a suitable endomorphism ring
we will make use of a construction of a minimum extension R{x} of R in which a nilpotent
derivation d of R becomes inner and adjoint to a nilpotent element. Namely, if d is a
nilpotent derivation of a semiprime ring R consider the ring of differential polynomials
R[X; d] and its ideal (Xn), where dn = 0. It is easy to see that R∩ (Xn) ⊂ dn(R)R = 0.
Thus we can take a minimal positive integer m such that R ∩ (Xm) = 0 and an ideal
M of R[X; d] containing Xm and maximal with respect to the property R ∩M = 0. We
denote the factor ring R[X; d]/M by R{x}, where x is the coset of X. Clearly we have
a natural embedding R ↪→ R{x}, d = (adx)|R and xm = 0. Since nonzero ideals of R{x}
have nonzero intersections with R, the ring R{x} has to be semiprime. The constructed
ring R{x} will be called the d-extension of R. This ring was extensively employed in the
papers [9–12]. More information on the structure of d-extensions of prime rings can be
found in Chuang and Lee paper [4]. If I is a d-ideal of R, by I{x} we denote the ideal of
R{x} generated by I. We need the following lemma proved in [11]:

Lemma 1.3. (See [11, Lemma 3.2].) Suppose that R is semiprime, R{x} is a d-extension
of R and pR = 0. Let S be a d-ideal of R and let k be an integer such that ann�

S xpk−1 = 0.
For a nonempty subset I of Rd, let j be a minimal integer with respect to the property

xjIS = SIxj = 0.

Then pk divides j.

Remark 1.4. Observe that in the above lemma SIxm−j = 0 if and only if xm−jIS = 0.
Indeed, it is clear for j = 0. If j � 0 and SIxm−j = 0, then SIxm−i = 0 for i � j, so
by induction one can assume that xm−j+1IS = 0. Then xm−jIS is a right ideal of R{x}
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and (xm−jIS)2 = xm−jI(Sxm−jI)S = xm−jI(SIxm−j)S = 0. Thus by semiprimeness
of R{x} it follows that xm−jIS = 0.

Now let S1, S2, S3, . . . be a chain of d-ideals of R defined as follows:

• S1 = ann�
R xpi1 ·R, where i1 = min{i | i � 0 and ann�

R xpi �= 0};
• if S1, . . . , Sl are defined then consider Al = ann�

R(S1 ⊕ · · · ⊕ Sl) and put Sl+1 =
ann�

Al
xpil+1 ·R, where il+1 = min{i | ann�

Al
xpi �= 0}.

It follows from the definition that i1 < i2 < · · · and since xm = 0, the construction
stabilizes.

Lemma 1.5. If R is semiprime and pR = 0, then R contains a collection of d-ideals
S1, . . . , St and there exists a sequence 0 � i1 < · · · < it such that

(1) S = S1 ⊕ · · · ⊕ St ∈ FR;
(2) ann�

Sl
xpil−1 = 0 for l = 1, . . . , t;

(3) xpilSl ⊆ Sl and Slx
pil ⊆ Sl for l = 1, . . . , t.

Proof. (1) follows directly from the construction.
For (2) suppose that L = ann�

Sl
xpil−1 �= 0. Then L is a d-stable left ideal contained

in Sl. Clearly Al−1L
d ⊂ L ⊂ Sl ⊂ Al−1. Since ann�

Al−1
xpil−1 = 0 and Al−1L

dxpil−1 = 0,
by Lemma 1.3 the number j � pil−1 minimal with respect to the property Al−1L

dxj = 0
is divided by pil , what is impossible.

For (3) notice that xpilSl = xpil (ann�
Al−1

xpil · R) ⊂ dp
il (ann�

Al−1
xpil )R ⊂ Sl and

Slx
pil = (ann�

Al−1
xpil ·R)xpil ⊂ (ann�

Al−1
xpil ) · dpil (R) ⊂ Sl. �

The above implies immediately that for any integer k > 0 if k ≡ j (mod pil), where
0 � j < pil , then Slx

k ⊂ Slx
j . Thus the ideal of R{x} generated by Sl has the form

Sl{x} = Sl + Slx+ · · ·+ Slx
pil−1. Since ann�

Sl
xpil−1 = 0, we have a decomposition into

a direct sum of left R-modules

Sl{x} = Sl ⊕ Slx⊕ · · · ⊕ Slx
pil−1.

Since xr = rx+ d(r) for r ∈ R, it can be easily checked that Sl{x} has a decomposition
into a direct sum of right R-modules Sl ⊕ xSl ⊕ · · · ⊕ xpil−1Sl. Therefore we can write

Sl{x} = Sl ⊕ Slx⊕ · · · ⊕ Slx
pil−1 = Sl ⊕ xSl ⊕ · · · ⊕ xpil−1Sl.

As a result the ideal of R{x} generated by S has the form

S{x} =
t⊕(

Sl ⊕ Slx⊕ · · · ⊕ Slx
pil−1). (1)
l=1
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From the construction it follows immediately that S{x} ∈ FR{x}. We are now ready
to prove

Lemma 1.6. If pR = 0 and J(R) = 0, then J(R{x}) = 0.

Proof. Notice that Sl{x}J(R{x}) is a quasi-invertible ideal contained in Sl{x}, for l =
1, . . . , t. Suppose J(R{x}) �= 0. Then Sl{x}J(R{x}) �= 0 for some l. Hence J(Sl{x}) �= 0.
Since every nonzero ideal of R{x} has a nonzero intersection with R, J(Sl{x})∩R must
be nonzero. We claim that J(Sl{x}) ∩ Sl �= 0. Indeed, if a = a0 + a1x + · · · + akx

k ∈ R,
where aj ∈ Sl, then Sla must be nonzero. Otherwise, the decomposition Sl{x} = Sl ⊕
Slx ⊕ · · · ⊕ Slx

pil−1 implies that Slaj = 0 for all j. Thus Sl ∩ annr
R Sl �= 0, what

is impossible in a semiprime ring. Consequently, J(Sl{x}) ∩ Sl �= 0. Again using the
decomposition of Sl{x} into a direct sum of left R-modules, we obtain that J(Sl{x})∩Sl

is a quasi-invertible ideal of Sl. Thus J(Sl) �= 0. Therefore also J(R) �= 0. �
Remark 1.7. In the general case, one can consider the set πn of prime numbers p � n

such that Rp = {r ∈ R | pr = 0} �= 0. It is clear that each Rp is a d-ideal of R.
Let A = ann�

R(
⊕

p∈πn
Rp). Then A is a d-ideal and A ⊕

⊕
p∈πn

Rp ∈ FR. According
to Theorem 1.1, d acts on A as an E-inner derivation adjoint to a nilpotent element
from End(BA), where B ∈ FA. Indeed, from the construction of R{x} and the proof of
Theorem 1.1 it follows that B = ann�

A x ·A satisfies the required property. Furthermore,
for any p ∈ πn there exists a d-ideal Sp of R, such that Sp ⊆ Rp and Sp{x} has the
form (1). Now it is easy to see that Lemma 1.6 holds for every semiprimitive ring (without
restrictions on characteristic and with the same proof).

We are now able to prove that the Jacobson radical of constants is nilpotent in the
case when R is a semiprimitive ring of a prime characteristic.

Theorem 1.8. Let d be a nilpotent derivation of a semiprimitive ring R such that pR = 0,
where p is a prime number. Then J(Rd)γ = 0, where γ � 2n − 1 and n is the nilpotency
index of d.

Proof. Consider the ring R{x} = R +Rx+ · · ·+Rxm−1, d-ideals S1, . . . , St of R and a
sequence 0 � i1 < · · · < it such that

(a) S = S1 ⊕ · · · ⊕ St ∈ FR;
(b) ann�

Sl
xpil−1 = 0 for l = 1, . . . , t;

(c) xpilSl ⊆ Sl and Slx
pil ⊆ Sl for l = 1, . . . , t.

Let J = J(Rd). We will prove that for l = 1, . . . , t

SlJ
γl = 0 for some γl � 2[m/pil ] − 1. (2)
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The case i1 = 0 is covered by Theorem 1.2. Thus it suffices to show that if A is a nonzero
d-ideal of R and k � 1 is an integer such that ann�

A xpk−1 = 0 and Axpk ∪ xpk

A ⊆ A,
then

Ax(q−j)pk

Jf(j) = 0, (3)

for j = 0, 1, . . . , q = [m/pk], where f(0) = 0 and f(j + 1) � 2f(j) + 1.
Since Axm = 0, Lemma 1.3 (for S = A and I = {1}) forces that Axqpk = 0; so one

can put f(0) = 0 (We mean here J0 = Rd). Suppose that j � 0 and

x(q−j)pk

Jf(j) = 0.

Let M be a simple R{x}-module and M1 = x(q−j)pk−1Jf(j)M . Then M1 is a left
Rd-module. Similarly as in Theorem 1.2 we prove that for any proper Rd-submodule
N ⊂ M1, AJf(j)N = 0. If AJf(j)N �= 0, one can take a, b, c ∈ Jf(j) and m1,m2 ∈ M

such that

x(q−j)pk−1am1 ∈ M1 \N, x(q−j)pk−1bm2 ∈ N

and

Acx(q−j)pk−1bm2 = Ax(q−j)pk−1cbm2 �= 0.

For s ∈ A let

Ta,c(s) =
(q−j)pk−1∑

i=0
ax(q−j)pk−1−isxic.

It is clear that Ta,c(s) centralizes x and from computations in [11, Theorem 3.3], it follows
that

Ta,c(s) =
q−j∑
i=1

(−1)i
(
q − j

i

)
ax(q−j−i)pk

dip
k−1(s)c ∈ R.

Thus Ta,c(s) ∈ Rd for any s ∈ A. Since M is simple as a left R{x}-module, one obtains
AR{x}x(q−j)pk−1cbm2 = Ax(q−j)pk−1cbm2 = M . Hence there exists s ∈ A such that
sx(q−j)pk−1cbm2 = m1. Now it is clear that

x(q−j)pk−1am1 = x(q−j)pk−1a
(
sx(q−j)pk−1cbm2

)
= x(q−j)pk−1ascx(q−j)pk−1bm2 = Ta,c(s)x(q−j)pk−1bm2 ∈ N,

a contradiction with assumption that x(q−j)pk−1am1 /∈ N . Therefore AJf(j)N = 0 for
any proper submodule N ⊂ M1 and hence
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Ax(q−j)pk−1J2f(j)+1M = 0,

for any simple R{x}-module M . Since J(R{x}) = 0, we obtain

Ax(q−j)pk−1J2f(j)+1 = AJ2f(j)+1x(q−j)pk−1 = 0.

Now Lemma 1.3 forces that AJ2f(j)+1x(q−j−1)pk = 0. This finishes the proof of (3). Since
S ∈ FR and by (2) γl � 2[m/pil ] − 1 � 2[m/pi1 ] − 1, we obtain

SJ2[m/pi1 ]−1 =
t∑

l=1

SlJ
2[m/pi1 ]−1 = 0.

Therefore J(Rd)γ = 0, for some γ � 2[m/pi1 ] − 1 � 2m − 1. �
We can now use Theorems 1.1, 1.2 and 1.8 to obtain Theorem A.

Proof of Theorem A. First suppose that R is a semiprimitive ring, dn = 0 and consider
d-extension R ⊂ R{x}. According to Remark 1.7, for any p ∈ πn let B ⊆ A, Sp ⊆ Rp be
d-ideals of R such that d|A = adx, xB ∪Bx ⊆ B, and Sp{x} is an ideal of Rp{x} having
decomposition (1).

By Theorem 1.8, applied to the extension Rp ⊂ Rp{x} ⊂ R{x}, we obtain SpJ(Rd)γ =
0 for γ = 2n − 1. Since from the proof of Theorem 1.2 it follows that BJ(Rd)γ = 0, we
get that

(
B ⊕

⊕
p∈πn

Sp

)
J
(
Rd

)γ = 0.

However, B ⊕
⊕

p∈πn
Sp has zero right annihilator in R, so J(Rd)γ = 0.

If in addition R is a semiprimitive algebra over a field K and d is an algebraic deriva-
tion of R, then d acts on the 0-eigenspace R0 =

⋃
j�1 ker dj as a nilpotent derivation and

clearly Rd = Rd
0 ⊂ R0. Furthermore, R0 is semiprimitive. Indeed, it is easy to see that

if K has a prime characteristic p, then there exists a finite separable extension of fields
K ⊂ F , such that F contains all eigenvalues of dpk , for some integer pk � n. Clearly the
kernel of δ = dp

k coincides with the zero eigenspace of d, so R0 ⊗K F = (R ⊗K F )δ⊗1

can be viewed as the identity component of the algebra R⊗K F graded by a finite sub-
group of F+ generated by eigenvalues of δ. Since J(R ⊗K F ) = J(R) ⊗K F (cf. [14,
Theorem 2.5.36]) and J(Re) = J(R) ∩Re for a ring R = ⊕

∑
g∈G Rg graded by a finite

group G (cf. [7, Theorem 4.4] or [8, Corollary 2c]) it follows that the algebras R ⊗K F ,
R0⊗KF , and consequently also R0 are semiprimitive. If K has characteristic zero we can
apply a similar argument. Namely, it suffices to consider a finite field extension K ⊂ F

containing all eigenvalues of d. Then the algebra R ⊗K F is graded by the subgroup G

of the additive group F+ generated by the eigenvalues of d. Furthermore R ⊗K F can
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be viewed as an algebra graded by a finite abelian group (being a homomorphic image
of G), with the same set of homogeneous components (cf. [1, Lemma 2.2]). �
2. Rings with semilocal constants of algebraic derivations

In this section we prove that if the subalgebra of constants Rd of an algebraic deriva-
tion d of a semiprimitive algebra R is semilocal, then R must be semisimple Artinian.
An important role will be played by the following

Theorem 2.1. Suppose that d is either a nilpotent derivation of a semiprime ring or an
algebraic derivation of a semiprime algebra over a field. Then

(a) [10, Theorem 4] Id = I ∩Rd is nonnilpotent for any nonzero d-stable ideal I of R.
(b) [11, Theorem 3.4] the prime radical P (Rd) of Rd is nilpotent. More precisely, if

dn = 0, then P (Rd)γ = 0, where γ � 2n − 1.

We should point out that from [5] it follows even more; namely Id = I ∩Rd is not nil
of bounded index.

The next lemma is well known. We include a short proof using known properties of
group graded rings (cf. [6]).

Lemma 2.2. Assume that J(R) = 0 and 1 ∈ R can be written as e1 + e2 + · · ·+ en where
ei’s are orthogonal idempotents. If every eiRei is left Artinian, then R is left Artinian

Proof. First consider the case n = 2. Notice that

R = R0 ⊕R1, where R0 = e1Re1 + e2Re2 and R1 = e1Re2 + e2Re1.

It is easy to see that R0R0 ∪R1R1 ⊆ R0, R1R0 ∪R0R1 ⊆ R1. Thus R is a semiprimitive
Z2-graded ring with the semisimple Artinian identity component R0. Hence R must be
left Artinian by [6]. The result follows by induction on n. �

Recall that a ring R is said to be d-simple, if R does not contain nonzero proper
d-ideals.

Lemma 2.3. If R is semiprimitive and d-simple, then either R{x} = R or there exists a
positive integer m = pk, where p is a prime number such that pR = 0 and

R{x} = R⊕Rx⊕ · · · ⊕Rxm−1 = R⊕ xR⊕ · · · ⊕ xm−1R.

In this case

R{x}adx = Rd ⊕Rdx⊕ · · · ⊕Rdxm−1
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is a finite centralizing extension. Furthermore, if Rd is a local ring then R{x}adx is also
local. If R{x} is left Artinian, then R is also left Artinian.

Proof. First part follows immediately form the decomposition (1). Since

adx

(
m−1∑
i=0

rix
i

)
=

m−1∑
i=0

adx(ri)xi =
m−1∑
i=0

d(ri)xi,

it is clear that adx(
∑m−1

i=0 rix
i) = 0 if and only if ri ∈ Rd. Suppose that Rd is local with

the Jacobson radical J = J(Rd) (we know that J is nilpotent). Since x is nilpotent and
central in R{x}adx , Ĵ = J ⊕ Rdx ⊕ · · · ⊕ Rdxm−1 is a nilpotent ideal of R{x}adx , and
clearly R{x}adx/Ĵ is isomorphic to Rd/J . Therefore R{x}adx is local.

Finally, L �→ R{x}L = L ⊕ xL ⊕ · · · ⊕ xm−1L is an order preserving, injective map
from the lattice of left ideals of R into the lattice of left ideals of R{x}. Therefore if
R{x} is left Artinian, then R also must be left Artinian. �

We are now ready to prove the main result of this section. The above construction
allows us to extend [13, Theorem 2.2] to nilpotent derivations with semilocal constants.

Theorem 2.4. Let d be a nilpotent derivation of a semiprimitive ring R. If the ring of
constants Rd is semilocal, then R is semisimple Artinian.

Proof. Suppose that Rd is semilocal. Since J(Rd) is nilpotent, the ring Rd is semiperfect.
By [14, Proposition 2.7.20] there exist orthogonal idempotents e1, . . . , el of Rd, such that
e1 + · · ·+ el = 1 and each eiR

dei is a local ring. It is clear that (eiRei)d = ei(eiRei)dei,
so (eiRei)d = eiR

dei.
First, we examine a special case where R is semiprimitive and Rd is local. In this

situation, R has to be d-simple. Indeed, if I is a nonzero proper d-stable ideal of R,
then Id = Rd ∩ I is a proper ideal of a local ring Rd. By previous section the Jacobson
radical of Rd is nilpotent. Thus Id = Rd∩ I is nilpotent, but this is impossible in light of
Theorem 2.1(a). Consequently, R must be d-simple. Notice that if R{x} = R, then d is
inner and hence R has to be simple. On the other hand, if the second case of Lemma 2.3
is satisfied, then since R{x}adx is local, the ring R{x} is adx-simple and consequently
simple. Recapitulating, we may assume that R is simple, d is inner, d = adx, where x is
a nilpotent element of R.

Suppose xm = 0 and xm−1 �= 0. Let M be a simple left R-module. Since R is a
simple ring with 1, M is faithful, that is annR M = 0. Consider the division ring Δ =
(EndR M)op; i.e., multiplication in Δ is the composition of maps in the reverse order.
It is clear that the map λx:M → M , given by λx(m) = xm is Δ-linear, i.e., λx is a
nilpotent endomorphism of the right vector space MΔ. We claim that dimΔ kerλx = 1.
If not, since 0 �= xm−1M ⊆ kerλx, we can find two linearly independent (over Δ)
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elements xm−1u, v ∈ kerλx. Notice that the elements u, xu, x2u, . . . , xm−1u, v ∈ M are
also Δ-independent. To this end, suppose that ϕ0, ϕ1, . . . , ϕm−1, ϕ ∈ Δ satisfy

m−1∑
i=0

(
xiu

)
ϕi + vϕ = 0 that is

m−1∑
i=0

xi(uϕi) + vϕ = 0.

If we assume that ϕi = 0 for all i < k (where 0 � k < m−1), then multiplying the above
equality on the left by xm−1−k yields xm−1(uϕk) = (xm−1u)ϕk = 0. Since xm−1u �= 0,
ϕk = 0. At the end we get (xm−1u)ϕm−1 +vϕ = 0; thus ϕm−1 = ϕ = 0, according to our
assumption that xm−1u and v are linearly independent over Δ. Therefore the Jacobson
Density Theorem implies that there exists r ∈ R such that

rv = ru = rxu = · · · = rxm−2u = 0, rxm−1u = u.

Observe that the element T (r) =
∑m−1

i=0 xirxm−1−i ∈ Rd satisfies

T (r)u = rxm−1u = u and T (r)v = 0.

Thus (1−T (r))u = 0 = T (r)v, so T (r) and 1−T (r) are not invertible in a local ring Rd.
The contradiction, just obtained, shows that the kernel of λx is one dimensional, as
claimed. Notice that there is a sequence

M
λx−→ xM

λx−→ x2M
λx−→ · · · λx−→ xm−1M = kerλx,

of Δ-linear surjections, so dimMΔ � m < ∞. On the other hand if 0 �= xm−1u ∈ kerλx,
then the elements u, xu, . . . , xm−1u are linearly independent over Δ, so dimMΔ = m.
Therefore R is isomorphic to the ring Mm(Δ) of all m × m matrices over the division
ring Δ.

Returning to the general case, we can conclude that R contains orthogonal idempo-
tents e1, . . . , el ∈ Rd such that e1 + · · · + el = 1 and each eiRei is simple Artinian. In
light of Lemma 2.2, the ring R is semisimple Artinian. �

We can now prove our second main result.

Proof of Theorem B. Let R be a semiprimitive algebra over a field K and d be an
algebraic derivation of R. Suppose that the subalgebra of constants Rd is semilocal. By
Theorem 2.4 the 0-eigenspace R0 of d is left Artinian and [12, Proposition 2.4] shows
that R is left Artinian. This proves the implication (1) ⇒ (2). The equivalency (2) ⇔ (3)
follows directly from [11, Theorem 4.7]. The part (3) ⇒ (1) is obvious. �

Theorem B can be strengthened if we assume some natural restrictions on character-
istic.
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Corollary 2.5. Suppose that either R is a semiprime n!-torsion free ring with a nilpotent
derivation (dn = 0) or R is a semiprime algebra over a field K with a derivation d

satisfying the identity

α0d
n + α1d

n+1 + · · · + αkd
n+k = 0,

where α0, α1, . . . , αk ∈ K, α0 �= 0 and the characteristic charK of K does not divide n!.
The following conditions are equivalent:

(1) Rd/P (Rd) is left Artinian.
(2) Rd is semilocal and R is semiprimitive.
(3) R is semisimple Artinian.
(4) Rd is left and right Artinian.

Proof. In light of Theorem B it suffices to show that (1) implies (2). Our assumptions
guarantee that the Jacobson radical J(R) is d-stable (cf. [2, Theorem 7]). By Theo-
rem 2.1(a) if J(R) �= 0, then J(R)d = J(R) ∩ Rd is a nonnilpotent ideal of Rd. Notice
that the ideal J(R)d is quasi-invertible, so J(R)d ⊆ J(Rd). Thus J(Rd) is also nonnilpo-
tent. By assumption Rd/P (Rd) is left Artinian, so Rd/P (Rd) is semisimple Artinian,
and consequently P (Rd) = J(Rd). However, by Theorem 2.1(b) the prime radical of Rd

is nilpotent. Therefore J(R) = 0, J(Rd) = P (Rd) and Rd is semilocal. �
We conclude the paper with some remark concerning Goldie and dual Goldie dimen-

sions.

Remark 2.6. Recall that the dual Goldie dimension of an R-module M is defined as the
supremum of positive integers k such that M can be mapped homomorphically onto the
product of k nonzero R-modules. Sarath and Varadarajan proved in [15] that a ring with
identity R has finite dual Goldie dimension as a left module over itself if and only if R is
semilocal. From this point of view Theorem B and Corollary 2.5 say that if R is either
semiprimitive or semiprime with some restriction on characteristic, then Rd has finite
dual Goldie dimension if and only if R has finite dual Goldie dimension. We should also
point out that there is a strong relationship between the Goldie dimensions of Rd and
R when R is semiprime and d is algebraic. In particular, it is proved in [12] that if R is
semiprime and dn = 0, then dimRd � dimR � n dimRd.
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