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Let I , I ′ be preinjective Kronecker modules (i.e. all their indecom-
posable components are preinjective). We describe the modules M
for which there exists an exact sequence 0 → I ′ → M → I → 0 by
explicit, easy to check numerical conditions, resulting in an algo-
rithm (linear in the number of indecomposable components) for
the decision problem. We also propose a method to generate all
extensions of I ′ by I and we give a different proof for a theorem
in [13] providing numerical criteria in terms of Kronecker invari-
ants for the existence of a monomorphism f : I ′ → I . All these
results apply dually to preprojective modules as well.
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1. Introduction

Let K : 1 2
β

α

be the Kronecker quiver and κ an arbitrary field. The path algebra κ K over

the Kronecker quiver is the Kronecker algebra. We will consider the category of finite dimensional
right modules over this algebra, the category of Kronecker modules, denoted by mod-κ K . The cat-
egory mod-κ K can and will be identified with the category rep-κ K of the finite dimensional
κ-representations of the Kronecker quiver. Such a representation is defined as a quadruple (M1, M2;
f , g) where M1, M2 are finite dimensional κ-vector spaces (corresponding to the vertices) and
f , g : M2 → M1 are κ-linear maps (corresponding to the arrows). The dimension vector of a mod-
ule (viewed as a representation) M = (M1, M2; f , g) ∈ mod-κ K is dim(M) = (dimκ M1,dimκ M2).
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For a module M ∈ mod-κ K , tM will denote M ⊕ · · · ⊕ M (t times) and [M] will mean the isomor-
phism class of M . For two modules M, M ′ ∈ mod-κ K we will denote by M ′ ↪→ M the fact that M ′ can
be embedded in M and by M � M ′ that M projects on M ′ . It is important to note that by writing
“an extension of M ′ by M” we mean a Kronecker module X , which is a middle term of elements in
Ext1(M, M ′), where Ext1(M, M ′) is the space of Yoneda extensions. Or simply put, an extension of M ′
by M is a module X for which there exists a short exact sequence 0 → M ′ → X → M → 0.

The indecomposables in mod-κ K are divided into three families: the preprojectives, the regulars
and the preinjectives (see [1,2,9]). Because in the current paper we deal only with preprojective and
preinjective Kronecker modules, we are going to introduce briefly only these (skipping regulars).

The preinjective indecomposable Kronecker modules are up to isomorphism uniquely determined by
their dimension vectors. For n ∈ N we will denote by In the indecomposable preinjective Kronecker
module of dimension (n,n + 1). So I0, I1 are the injective indecomposable modules (I0 being simple).
The module In can be identified with the linear representation

In : κn κn+1,
(0 En)

(En 0)

where choosing the canonical basis in κn and κn+1, the matrices of the two linear functions
from κn+1 to κn are (0 En) and (En 0) respectively. Here En denotes the n-dimensional identity
matrix.

A preinjective Kronecker module is a module with all its indecomposable components preinjective.
By Krull–Schmidt theorem a preinjective module up to isomorphism has the form Ib1 ⊕ · · · ⊕ Ibk ,
where (b1, . . . ,bk) is a finite decreasing sequence of nonnegative integers.

The preprojective Kronecker modules are just the categorical dual of the preinjectives and are
also determined up to isomorphism by their dimension vectors. For n ∈ N, we will denote by Pn the
indecomposable preprojective Kronecker module of dimension (n + 1,n), meaning that P0 and P1 will be
the projective indecomposable modules with P0 being simple. A module Pn can be identified with
the linear representation

Pn : κn+1 κn,(En
0

)
( 0

En

)

where the matrices of the two linear functions from κn+1 to κn are
(

En

0

)
and

(
0
En

)
in the canonical

basis.
A preprojective Kronecker module is a module with all its indecomposable components preprojective.

A preprojective module has the form Pb1 ⊕ · · · ⊕ Pbk up to isomorphism, where (b1, . . . ,bk) is a finite
increasing sequence of nonnegative integers.

In this paper we deal with a basic problem in the theory of Kronecker modules, the description
of extensions of I ′ by I , where I , I ′ are preinjective modules (or dually, the description of extensions
of P ′ by P , where P and P ′ are preprojective modules). It turns out that these extensions carry some
interesting combinatorial properties. Based on results from [10] we have described, albeit implicitly,
these extensions for the first time in [11] (see Theorems 2 and 17). In Section 2 we take the idea
further, turning the implicit characterization into explicit, easy to check numerical conditions, in the
form of the following theorem, the main result of our current work:

Theorem. Let a1 � · · · � ap � 0, b1 � · · · � bn � 0, c1 � · · · � cr � 0 be decreasing sequences of nonnegative

integers and let B j = {l ∈ {0, . . . ,n} | ∑l
k=1 bk + ∑ j

k=1 ak �
∑l+ j

k=1 ck} for 1 � j � p. Then there is a short
exact sequence
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0 → Ib1 ⊕ · · · ⊕ Ibn → I → Ia1 ⊕ · · · ⊕ Iap → 0

if and only if [I] = [Ic1 ⊕ · · · ⊕ Icr ], r = p + n,
∑r

i=1 ci = ∑p
i=1 ai + ∑n

i=1 bi , B j �= ∅, a j � cα j and bi � cβi

for 1 � j � p and 1 � i � n, where

α j =
{

min B1 + 1, j = 1,

max{α j−1 + 1,min B j + j}, 1 < j � p

and

βi =
{

min{l ∈ {1, . . . , r} | l �= α j, 1 � j � p}, i = 1,

min{l ∈ {βi−1 + 1, . . . , r} | l �= α j, 1 � j � p}, 1 < i � n.

As shown in Section 3, the previous theorem yields a straightforward method for solving the deci-
sion problem, i.e. given I, I ′, I ′′ ∈ mod-κ K preinjectives, decide whether I ′′ is as extension of I ′ by I .
An implementation would result in a linear-time algorithm (linear in the number of indecomposable
components of I ′′). A method for generating all the extensions of I ′ by I (efficiently enough to serve
as a practical helping tool in further investigation of Kronecker modules) may also be given. In Sec-
tion 4 we give a combinatorial proof of a theorem from [13] providing numerical criteria in terms of
Kronecker invariants for the existence of a monomorphism f : I ′ → I . We show how the same easy
and explicit criteria can be derived only from Theorem 2 using nothing more than some inequalities
involving integers. Finally, in Section 5 we enlist the relevant results dualized for the preprojective
case.

In what follows we are going to briefly sketch the relation between Kronecker modules and matrix
pencils. One of our motivations behind the current work is exactly this connection and the hope that
these results represent some first steps towards solving an important open problem in matrix theory
(see the statement of the challenge below).

Kronecker modules correspond to matrix pencils in linear algebra, so the Kronecker algebra relates
representation theory with numerical linear algebra and matrix theory. Recall that a matrix pencil
over a field κ is a matrix A + λB where A, B are matrices over κ of the same size and λ is an
indeterminate.

Two pencils A + λB , A′ + λB ′ are strictly equivalent, denoted by A + λB ∼ A′ + λB ′ , if and only if
there exist invertible, constant (λ independent) matrices P , Q such that P (A′ +λB ′)Q = A +λB . Kro-
necker proved that pencils are uniquely determined up to strict equivalence by their classical Kronecker
invariants, which are the minimal indices for columns, the minimal indices for rows, the finite elementary di-
visors, the infinite elementary divisors (see [4] for all the details).

A pencil A′ + λB ′ is called subpencil of A + λB if and only if there are pencils A12 + λB12,
A21 + λB21, A22 + λB22 such that

A + λB ∼
(

A′ + λB ′ A12 + λB12
A21 + λB21 A22 + λB22

)
.

In this case we also say that the subpencil can be completed to the bigger pencil. We speak about
row completion when A12, B12, A22, B22 are zero matrices and about column completion when A21,
B21, A22, B22 are zero.

There is an unsolved challenge in pencil theory with lots of applications in control theory (prob-
lems related to pole placement, non-regular feedback, dynamic feedback etc. may be formulated in
terms of matrix pencils, for details see [8]):

Challenge: If A + λB , A′ + λB ′ are pencils over C, find a necessary and sufficient condition in
terms of their classical Kronecker invariants for A′ + λB ′ to be a subpencil of A + λB . Also construct
the completion pencils A12 + λB12, A21 + λB21, A22 + λB22. A particular case of the challenge above
is when we limit ourselves to column or row completions.
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Next we will translate all the terms above (taken from pencil theory) into the language of Kro-
necker modules (representations). A matrix pencil A + λB ∈ Mm,n(κ[λ]) corresponds to the Kro-
necker module M A,B = (κm, κn; f A, f B), where choosing the canonical basis in κn and κm , the
matrix of f A : κn → κm (respectively of f B : κn → κm) is A (respectively B). The strict equivalence
A + λB ∼ A′ + λB ′ means the isomorphism of modules M A,B ∼= M A′,B ′ . It follows easily that a pen-
cil A′ + λB ′ is a subpencil of A + λB if and only if the module M A′,B ′ is a subfactor of M A,B (i.e.
there is a module N such that M A′,B ′ � N ↪→ M A,B or equivalently there is a module L such that
M A,B � L ←↩ M A′,B ′ , see [5]). In particular a pencil A′ + λB ′ is a subpencil of A + λB by column
completions if and only if M A′,B ′ ↪→ M A,B with factor isomorphic to t I0 where t ∈ N is arbitrary. Re-
spectively, a pencil A′ +λB ′ is a subpencil of A +λB by row completions if and only if M A′,B ′ � M A,B
with kernel isomorphic to t P0 where t ∈ N is arbitrary.

A preinjective module Ib1 ⊕ · · · ⊕ Ibk corresponds to the matrix pencil with the following classical
Kronecker invariants:

• minimal indices for columns: b1, . . . ,bk;
• no minimal indices for rows, no finite elementary divisors, no infinite elementary divisors.

A preprojective module Pb1 ⊕ · · · ⊕ Pbk corresponds to the matrix pencil with the following classical
Kronecker invariants:

• minimal indices for rows: b1, . . . ,bk;
• no minimal indices for columns, no finite elementary divisors, no infinite elementary divisors.

This “subfactor–subpencil correspondence” has motivated us in the first place to study short exact
sequences of Kronecker modules. Also, note that (explicit) knowledge of certain short exact sequences
is sufficient for solving the matrix subpencil problem.

Certainly, the study of Kronecker modules is not interesting only because of the connection to
matrix pencils. The Kronecker algebra is an important special case of tame hereditary algebra [2,9].
Moreover, the category mod-κ K is derived equivalent with the category Coh(P1(κ)) of coherent
sheaves on the projective line (see [3]), as the Kronecker quiver K is just the Beilinson quiver for P1.
The preinjective and the preprojective Kronecker modules correspond in Coh(P1(κ)) to the indecom-
posable locally free coherent sheaves.

From now on, throughout the paper empty sums are considered to be zero. In case of integers
a and b, by {a, . . . ,b} we mean the set of all integers x, such that a � x � b, so if a > b, then
{a, . . . ,b} = ∅.

2. Some results on preinjective Kronecker modules

For two preinjective modules I and I ′ we know that their extensions are also preinjective, in other
words if we have a short exact sequence 0 → I ′ → X → I → 0, then X is also preinjective (see [1,2,9]).
In [11] we have given a somewhat implicit characterization based on results from [10], involving the
Ringel–Hall algebra associated to the Kronecker algebra κ̃ K , where κ̃ is a finite field. However, accord-
ing to the main result from [13], the short exact sequences of preinjective (preprojective) Kronecker
modules have the same form independently of the underlying field, so the finiteness of the base field
is not a requirement anymore. Moreover, in [12] it has been shown that short exact sequences are
field independent in general, not only in the preinjective (preprojective) case.

The extension of two indecomposable preinjectives has been described in [10] (
x� is the largest
integral value that is not greater than x):

Lemma 1. Let In1 and In2 be two indecomposable preinjective Kronecker modules. We have a short exact
sequence 0 → In2 → I → In1 → 0 if and only if the conditions are met from one of the following two cases:

(a) n1 � n2 and [I] = [In1 ⊕ In2 ],
(b) n1 < n2 and [I] ∈ {[In2 ⊕ In1 ], [In2−1 ⊕ In1+1], . . . , [In −
 n2−n1 � ⊕ In +
 n2−n1 �]}.
2 2 1 2
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One of the main results from [11] is a generalization of the previous lemma for the case of two
arbitrary preinjective Kronecker modules:

Theorem 2. If a1 � · · · � ap � 0, b1 � · · · � bn � 0 and c1 � · · · � cr � 0 are nonnegative integers, then
there exists a short exact sequence 0 → Ib1 ⊕ · · · ⊕ Ibn → I → Ia1 ⊕ · · · ⊕ Iap → 0 if and only if [I] =
[Ic1 ⊕· · ·⊕ Icr ], r = n + p, ∃β : {1, . . . ,n} → {1, . . . ,n + p}, ∃α : {1, . . . , p} → {1, . . . ,n + p} both functions
strictly increasing with Imα ∩ Imβ = ∅ and ∃mi

j � 0, 1 � i � n, 1 � j � p, such that ∀� ∈ {1, . . . ,n + p}

c� =
{

bi − ∑
β(i)<α( j), 1� j�p mi

j, where i = β−1(�), � ∈ Im β,

a j + ∑
β(i)<α( j), 1�i�n mi

j, where j = α−1(�), � ∈ Imα.
(2.1)

Example 3. Using the previous theorem we can make sure that there exists a short exact sequence of
the form:

0 → I9 ⊕ I6 ⊕ I4 → I7 ⊕ I5 ⊕ I5 ⊕ I4 ⊕ I4 ⊕ I4 ⊕ I2 ⊕ I1 → I7 ⊕ I3 ⊕ I2 ⊕ I1 ⊕ I0 → 0.

Using the notation from the theorem, we have p = 5, n = 3, r = 8 and the strictly increasing functions
are β : {1,2,3} → {1, . . . ,8} with β(1) = 2, β(2) = 3, β(3) = 4 and α : {1, . . . ,5} → {1, . . . ,8} with
α(1) = 1, α(2) = 5, α(3) = 6, α(4) = 7, α(5) = 8. For the values mi

j , 1 � i � n, 1 � j � p, we can

choose m1
2 = m1

4 = m2
5 = 1, m1

3 = 2 and mi
j = 0 in all other cases. With these values, Eq. (2.1) is

satisfied (remind that empty sums are taken to be zero). We can illustrate this as follows:

So, less formally, Theorem 2 claims that a short exact sequence of the form 0 → Ib1 ⊕ · · · ⊕ Ibn →
Ic1 ⊕ · · · ⊕ Icr → Ia1 ⊕ · · · ⊕ Iap → 0 exists if and only if the sequence c1 � · · · � cr � 0 is obtained
by merging the sequences a1 � · · · � ap � 0 and b1 � · · · � bn � 0 and by applying the “box dropping
rule” illustrated in the picture above. This rule says that in the middle term boxes can be dropped only
to the right and only from columns corresponding to elements of the sequence (b1, . . . ,bn) on top of
columns corresponding to elements of the sequence (a1, . . . ,ap). A value mi

j denotes the number of
boxes dropped from the column corresponding to the element bi on top of the column corresponding
to the element a j and the functions α and β give the positions of the columns in the sequence
(c1, . . . , cr) corresponding to the elements from the sequences (a1, . . . ,ap) respectively (b1, . . . ,bn).

In order to be able to handle this characterization computationally in the most efficient way pos-
sible, we must get rid of the condition requiring the existence of the nonnegative integers mi

j above.
In the following two lemmas, we replace the condition involving the existence by some inequalities
depending only on the sequences (a1, . . . ,ap), (b1, . . . ,bn) and (c1, . . . , cr) and on the functions α
and β .

Lemma 4. Let α : {1, . . . , p} → {1, . . . ,n + p} and β : {1, . . . ,n} → {1, . . . ,n + p} be two strictly increasing
functions with Imα ∩ Imβ = ∅, where p,n > 0. Let further a1 � · · · � ap � 0, b1 � · · · � bn � 0 and c1 �
· · · � cn+p � 0 be decreasing sequences of nonnegative integers. Then ∃mi

j � 0, 1 � i � n, 1 � j � p, such
that ∀� ∈ {1, . . . ,n + p}
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c� =
{

bi − ∑
β(i)<α( j), 1� j�p mi

j, where i = β−1(�), � ∈ Im β,

a j + ∑
β(i)<α( j), 1�i�n mi

j, where j = α−1(�), � ∈ Imα

if and only if bi � cβ(i) and a j � cα( j) for 1 � i � n, 1 � j � p,
∑n+p

i=1 ci = ∑p
i=1 ai + ∑n

i=1 bi and for any
j ∈ {1, . . . , p} the following inequality is satisfied:

∑
β(i)<α( j)

1�i�n

(bi − cβ(i)) �
j∑

k=1

(cα(k) − ak). (2.2)

Proof. “�⇒”. The equality of sums
∑n+p

i=1 ci = ∑p
i=1 ai + ∑n

i=1 bi as well as the inequalities bi � cβ(i)

and a j � cα( j) are obvious. Inequality (2.2) is again easy. Let j ∈ {1, . . . , p} and we immediately get

j∑
k=1

(cα(k) − ak) =
j∑

k=1

∑
β(i)<α(k)

1�i�n

mi
k =

∑
β(i)<α(k)

1�k� j
1�i�n

mi
k �

∑
β(i)<α( j)

1�k�p
1�i�n

mi
k =

∑
β(i)<α( j)

1�i�n

(bi − cβ(i)).

“⇐�”. We give a way to construct the values mi
j � 0, for 1 � i � n, 1 � j � p so that the sequence

(c1, . . . , cn+p) can be written in the form shown in Eq. (2.1). Let us first introduce the following sets
for 1 � j � p and 1 � i � n:

Mi =
{

i−1∑
k=1

(bk − cβ(k)) + 1, . . . ,

i∑
k=1

(bk − cβ(k))

}
,

M j =
{ j−1∑

k=1

(cα(k) − ak) + 1, . . . ,

j∑
k=1

(cα(k) − ak)

}

and set mi
j = |Mi ∩ M j |. In what follows, we are going to show that indeed, this is a valid choice.

First, note the following important properties of the sets Mi and M j : |Mi | = bi − cβ(i) , |M j | =
cα( j) − a j , Mi1 ∩ Mi2 = M j1 ∩ M j2 = ∅ for any i1, i2 ∈ {1, . . . ,n}, i1 �= i2 and j1, j2 ∈ {1, . . . , p}, j1 �= j2.
Moreover, since

∑p
j=1 a j + ∑n

i=1 bi = ∑p+n
k=1 ck = ∑p

j=1 cα( j) + ∑n
i=1 cβ(i) , |⋃p

j=1 M j | = ∑p
j=1(cα( j) −

a j) and |⋃n
i=1 Mi | = ∑n

i=1(bi − cβ(i)), follows that |⋃p
j=1 M j | = |⋃n

i=1 Mi | and consequently M =⋃p
j=1 M j = ⋃n

i=1 Mi . So we may conclude that {M j | 1 � j � p} and {Mi | 1 � i � n} are both par-
titions of the same set M .

Now, let us note some consequences of the inequality (2.2):

∑
β(i)<α( j)

1�i�n

(bi − cβ(i)) =
∣∣∣∣ ⋃
β(i)<α( j)

1�i�n

Mi

∣∣∣∣ �
j∑

k=1

(cα(k) − ak) =
∣∣∣∣∣

j⋃
k=1

Mk

∣∣∣∣∣,

from which (taking into account the definitions of M j and Mi ) follows, that

j⋃
k=1

Mk ⊆
⋃

β(i)<α( j)
1�i�n

Mi (2.3)
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and

M \
( j⋃

k=1

Mk

)
=

p⋃
k= j+1

Mk ⊇
⋃

β(i)>α( j)
1�i�n

Mi = M \
( ⋃

β(i)<α( j)
1�i�n

Mi
)

. (2.4)

Another immediate consequence is that β(i) > α( j) �⇒ mi
j = |Mi ∩ M j| = |∅| = 0, since by (2.4) we

have Mi ⊆ ⋃p
k= j+1 Mk and (

⋃p
k= j+1 Mk) ∩ M j = ∅.

Finally, we are ready to verify the correctness of our choice for the values mi
j , 1 � j � p and

1 � i � n. First let j ∈ {1, . . . , p}. Using (2.3) we can write

∑
β(i)<α( j)

1�i�n

mi
j =

∑
β(i)<α( j)

1�i�n

∣∣Mi ∩ M j
∣∣ =

∣∣∣∣ ⋃
β(i)<α( j)

1�i�n

(
Mi ∩ M j

)∣∣∣∣ =
∣∣∣∣M j ∩

( ⋃
β(i)<α( j)

1�i�n

Mi
)∣∣∣∣

= |M j| = cα( j) − a j.

Now let i ∈ {1, . . . ,n}. Using β(i) > α( j) �⇒ mi
j = 0 we have that

∑
β(i)<α( j)

1� j�p

mi
j =

p∑
j=1

mi
j =

p∑
j=1

∣∣Mi ∩ M j
∣∣ =

∣∣∣∣∣
p⋃

j=1

(
Mi ∩ M j

)∣∣∣∣∣ =
∣∣∣∣Mi ∩

( p⋃
j=1

M j

)∣∣∣∣∣
= ∣∣Mi ∩ M

∣∣ = ∣∣Mi
∣∣ = bi − cβ(i),

so we can conclude that using this choice for the mi
j we can obtain the sequence (c1, . . . , cn+p) in

the requested form. �
Another, equivalent way of stating Lemma 4 is the following one, where the inequality (2.2) involv-

ing the sum of the first j elements from the sequence (a1, . . . ,ap) is replaced by the inequality (2.5),
dealing instead with the sum of last i elements from the sequence (b1, . . . ,bn). We state Lemma 5
without proof, since everything goes analogously to the proof of Lemma 4.

Lemma 5. Let α : {1, . . . , p} → {1, . . . ,n + p} and β : {1, . . . ,n} → {1, . . . ,n + p} be two strictly increasing
functions with Imα ∩ Imβ = ∅, where p,n > 0. Let further a1 � · · · � ap � 0, b1 � · · · � bn � 0 and c1 �
· · · � cn+p � 0 be decreasing sequences of nonnegative integers. Then ∃mi

j � 0, 1 � i � n, 1 � j � p, such
that ∀� ∈ {1, . . . ,n + p}

c� =
{

bi − ∑
β(i)<α( j), 1� j�p mi

j, where i = β−1(�), � ∈ Im β,

a j + ∑
β(i)<α( j), 1�i�n mi

j, where j = α−1(�), � ∈ Imα

if and only if bi � cβ(i) and a j � cα( j) for 1 � i � n, 1 � j � p,
∑n+p

i=1 ci = ∑p
i=1 ai + ∑n

i=1 bi and for any
i ∈ {1, . . . ,n} the following inequality is satisfied:

∑
β(i)<α( j)

1� j�p

(cα( j) − a j) �
n∑

k=i

(bk − cβ(k)). (2.5)
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The only “uncertainty” left now from Theorem 2 is around the functions α and β . The follow-
ing theorem clears everything up, characterizing the extension of preinjective Kronecker modules by
explicit, easy to check numerical conditions, involving only the decreasing sequences of integers ob-
tained from the dimension vectors of the respective modules.

Theorem 6. Let a1 � · · · � ap � 0, b1 � · · · � bn � 0, c1 � · · · � cr � 0 be decreasing sequences of nonnega-

tive integers and let B j = {l ∈ {0, . . . ,n} | ∑l
k=1 bk +∑ j

k=1 ak �
∑l+ j

k=1 ck} for 1 � j � p. Then there is a short
exact sequence

0 → Ib1 ⊕ · · · ⊕ Ibn → I → Ia1 ⊕ · · · ⊕ Iap → 0

if and only if [I] = [Ic1 ⊕ · · · ⊕ Icr ], r = p + n,
∑r

i=1 ci = ∑p
i=1 ai + ∑n

i=1 bi , B j �= ∅, a j � cα j and bi � cβi

for 1 � j � p and 1 � i � n, where

α j =
{

min B1 + 1, j = 1,

max{α j−1 + 1,min B j + j}, 1 < j � p

and

βi =
{

min{l ∈ {1, . . . , r} | l �= α j, 1 � j � p}, i = 1,

min{l ∈ {βi−1 + 1, . . . , r} | l �= α j, 1 � j � p}, 1 < i � n.

Proof. It is easy to see that α j and βi are both well defined: a j, βi ∈ {1, . . . , p + n}, so they can be
used to index the elements in the sequence (c1, . . . , cr). We are going to show that our statement is
equivalent with Theorem 2.

“�⇒”. First let us suppose that we have a short exact sequence 0 → Ib1 ⊕ · · · ⊕ Ibn → Ic1 ⊕
· · · ⊕ Icr → Ia1 ⊕ · · · ⊕ Iap → 0. Then r = p + n and ∃β : {1, . . . ,n} → {1, . . . , p + n}, ∃α : {1, . . . , p} →
{1, . . . , p +n} both functions strictly increasing with Imα∩ Imβ = ∅ and ∃mi

j � 0, 1 � i � n, 1 � j � p,
such that ∀� ∈ {1, . . . , p + n}

c� =
{

bi − ∑
β(i)<α( j), 1� j�p mi

j, where i = β−1(�), � ∈ Im β,

a j + ∑
β(i)<α( j), 1�i�n mi

j, where j = α−1(�), � ∈ Imα.

Using Lemma 4, the equality of sums follows immediately:
∑r

i=1 ci = ∑p
i=1 ai + ∑n

i=1 bi .
Now, let us show that B j �= ∅. So let j ∈ {1, . . . , p} and consider the following inequality:

∑
β(i)<α( j)

1�i�n

(bi − cβ(i)) �
j∑

k=1

(cα(k) − ak),

which also holds by Lemma 4.
We reorder it a bit to get

∑
β(i)<α( j)

1�i�n

bi +
j∑

k=1

ak �
j∑

k=1

cα(k) +
∑

β(i)<α( j)
1�i�n

cβ(i)

and by letting l j = |{i ∈ {1, . . . ,n} | β(i) < α( j)}|, we get
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l j∑
k=1

bk +
j∑

k=1

ak �
j∑

k=1

cα(k) +
l j∑

k=1

cβ(k) =
j+l j∑
k=1

ck,

exactly what we wanted, the last equality being true, because Imα ∩ Imβ = ∅ and both functions α
and β are strictly increasing. Now, obviously 0 � l j � n �⇒ l j ∈ B j , so the set B j = {l ∈ {0, . . . ,n} |∑l

k=1 bk + ∑ j
k=1 ak �

∑l+ j
k=1 ck} is nonempty.

It only remained to show that a j � cα j and bi � cβi for 1 � j � p and 1 � i � n. Observe that the
function α can be written in a similar way to the values α j , i.e.

α( j) =
{

l1 + 1, j = i,

max{α( j − 1) + 1, l j + j}, 1 < j � p

and β can be given in terms of the function α in a similar way to βi :

β(i) =
{

min{l ∈ {1, . . . , r} | l /∈ Imα}, i = 1,

min{l ∈ {β(i − 1) + 1, . . . , r} | l /∈ Imα}, 1 < i � n.

Now, since min B j � l j for any j ∈ {1, . . . , p}, it follows easily that α( j) � α j and consequently
β(i) � βi for 1 � j � p and 1 � i � n. But from Lemma 4 we know that a j � cα( j) and bi � cβ(i) ,
and since c1 � · · · � cr , we can conclude that a j � cα( j) � cα j and bi � cβ(i) � cβi .

“⇐�”. Obviously α j �= βi for 1 � j � p and 1 � i � n, moreover α1 < · · · < αp , β1 < · · · < βn and
a j, βi ∈ {1, . . . , p + n}, making them a natural choice for the functions α : {1, . . . , p} → {1, . . . , p + n}
and β : {1, . . . ,n} → {1, . . . , p + n}. So let α( j) = α j and β(i) = βi . With this choice for the functions
α and β we already know that a j � cα( j) and bi � cβ(i) and we have that for any j ∈ {1, . . . , p},
min B j = |{i ∈ {1, . . . ,n + b} | β(i) < α( j)}|, meaning that the steps already shown in the first part of
the proof involving the inequalities may also be done in reverse order:

∑
β(i)<α( j)

1�i�n

bi +
j∑

k=1

ak =
min B j∑

k=1

bk +
j∑

k=1

ak �
min B j+ j∑

k=1

ck =
j∑

k=1

cα(k) +
∑

β(i)<α( j)
1�i�n

cβ(i),

leading again to

∑
β(i)<α( j)

1�i�n

(bi − cβ(i)) �
j∑

k=1

(cα(k) − ak),

meaning that all the conditions in Lemma 4 are satisfied, so ∃mi
j � 0, 1 � i � n, 1 � j � p such that

∀� ∈ {1, . . . , p + n}, c� can be written according to (2.1) and we are done. �
Example 7. Let us show how this theorem works using the same short exact sequence as in Exam-
ple 3:

0 → I9 ⊕ I6 ⊕ I4 → I7 ⊕ I5 ⊕ I5 ⊕ I4 ⊕ I4 ⊕ I4 ⊕ I2 ⊕ I1 → I7 ⊕ I3 ⊕ I2 ⊕ I1 ⊕ I0 → 0.

Using the notation from the theorem, we have p = 5, n = 3, r = 8, B1 = {0,1,2,3}, B2 = B3 =
{1,2,3}, B4 = B5 = {3} and consequently α1 = 1, α2 = 3, α3 = 4, α4 = 7, α5 = 8, β1 = 2, β2 = 5,
β3 = 6 and the inequalities a j � cα j and bi � cβi for 1 � j � p and 1 � i � n hold. We can illustrate
this case as follows:
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Comparing this image with the one from Example 3, one can get an intuition about what Theo-
rem 6 does: it gives an explicit way of choosing the positions of the columns corresponding to the
sequences (a1, . . . ,ap) and (b1, . . . ,bn) in the sequence (c1, . . . , cr) such that the “box dropping” can
be carried out, obeying the rule explained after Example 3.

Example 8. I8 ⊕ I5 ⊕ I5 ⊕ I4 ⊕ I4 ⊕ I3 ⊕ I2 ⊕ I1 is not an extension of I9 ⊕ I6 ⊕ I4 by I7 ⊕ I3 ⊕ I2 ⊕ I1 ⊕ I0
because B1 = B2 = {1,2,3}, B3 = {2,3}, B4 = B5 = {3} and consequently α1 = 2, α2 = 3, α3 = 5,
α4 = 7, α5 = 8, β1 = 1, β2 = 4, β3 = 6, but 7 = a1 > cα1 = 5.

Similarly, I9 ⊕ I8 ⊕ I6 ⊕ I5 ⊕ I2 ⊕ I1 ⊕ I1 ⊕ I0 is not an extension of I9 ⊕ I6 ⊕ I4 by I7 ⊕ I3 ⊕ I2 ⊕ I1 ⊕ I0
because B1 = ∅.

As we have already done with Lemmas 4 and 5, we give the analogue version of this theorem
without proof (the proof involves the same steps, but using Lemma 5 instead of Lemma 4).

Theorem 9. Let a1 � · · · � ap � 0, b1 � · · · � bn � 0, c1 � · · · � cr � 0 be decreasing sequences of non-

negative integers and let Bi = {l ∈ {0, . . . , p} | ∑n
k=i bk + ∑l

k=1 ap+1−k �
∑r

k=r−(n−i+l) ck} for 1 � i � n.
Then there exists a short exact sequence 0 → Ib1 ⊕ · · · ⊕ Ibn → I → Ia1 ⊕ · · · ⊕ Iap → 0 if and only if

[I] = [Ic1 ⊕ · · · ⊕ Icr ], r = p + n,
∑r

i=1 ci = ∑p
i=1 ai + ∑n

i=1 bi , Bi �= ∅, a j � cα j and bi � cβi for 1 � j � p
and 1 � i � n, where

βi =
{

r − min Bn, i = n,

min{βi+1 − 1, r − (n − i + min Bi)}, 1 � i < n

and

α j =
{

max{l ∈ {1, . . . , r} | l �= βi, 1 � i � n}, j = p,

max{l ∈ {1, . . . ,α j+1 − 1} | l �= βi, 1 � i � n}, 1 � j < p.

3. Computing the extensions

Theorem 6 may seem thorny at first sight, so we are going to show how to use it in order to
obtain an algorithm which decides in linear time whether a certain preinjective Kronecker module is
an extension of two other preinjective Kronecker modules.

Suppose we are given three preinjective modules Ia1 ⊕ · · · ⊕ Iap , Ib1 ⊕ · · · ⊕ Ibn and Ic1 ⊕ · · · ⊕ Icr

and we want to decide if a short exact sequence of the form 0 → Ib1 ⊕ · · · ⊕ Ibn → Ic1 ⊕ · · · ⊕ Icr →
Ia1 ⊕· · ·⊕ Iap → 0 can be written. Obviously, if r �= p +n or

∑r
k=1 cr �= ∑p

j=1 a j +∑n
i=1 bi , the answer

is a quick and unhesitating no, so in what follows, we suppose that r = p+n and
∑r

k=1 cr = ∑p
j=1 a j +∑n

i=1 bi both hold, and we work only with the decreasing sequences (a1, . . . ,ap), (b1, . . . ,bn) and
(c1, . . . , cr).

The practical use of Theorem 6 involves for every element of the sequence (c1, . . . , cr) a choice of
one element either from the sequence (a1, . . . ,ap) or from (b1, . . . ,bn) – in other words, for every
indecomposable summand of the module Ic1 ⊕ · · · ⊕ Icr there is a corresponding indecomposable
summand either from Ia1 ⊕ · · · ⊕ Iap or from Ib1 ⊕ · · · ⊕ Ibn . The values α j and βi (for 1 � j � p and
1 � i � n) in Theorem 6 describe this choice and indicate the positions in the sequence (c1, . . . , cr)
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against which elements from the sequence (a1, . . . ,ap) respectively (b1, . . . ,bn) must be checked.
From the definition of the set B j , one can observe that the condition B j �= ∅ practically says that
for each a j there should be a certain number of elements from the sequence (b1, . . . ,bn) such that
positioned in front of a j , inequality (2.2) from Lemma 4 is satisfied with α j being actually the smallest
such position (i.e. a minimal number of elements bi put in front of a j to satisfy the inequalities). This
justifies the strategy of choosing between the elements of the sequences (a1, . . . ,ap) and (b1, . . . ,bn):
first try with a value a j and only if that fails (one of the inequalities cannot be satisfied) try with
a bi . If none of the choices are possible, then the whole construction fails, meaning there is no exact
sequence involving the three modules.

So, let us set the initial values j = i = k = 1 for the integers used to index elements from the
sequences (a1, . . . ,ap), (b1, . . . ,bn) respectively (c1, . . . , cr). In a practical implementation one can
repeat the following steps for all successive values of 1 � k � r:

(1) If j � p and a j � ck and (a1 + · · · + a j−1) + (b1 + · · · + bi−1) + a j � c1 + · · · + ck , then increase j
by one.

(2) Else, if i � n and bi � ck and (a1 +· · ·+a j−1)+ (b1 +· · ·+bi−1)+bi � c1 +· · ·+ ck , then increase i
by one.

(3) If none of the steps above can be carried out then stop with a negative answer.

Finally, if one of the first two steps can be made for k = r too, then return a positive answer, i.e. we
have a 0 → Ib1 ⊕ · · · ⊕ Ibn → Ic1 ⊕ · · · ⊕ Icr → Ia1 ⊕ · · · ⊕ Iap → 0 exact.

It is trivial to see that the algorithm is linear in the number of indecomposables (i.e. in r = n + p),
since the only cycle in the algorithm runs at most r times and the partial sums a1 + · · · + a j , b1 +
· · · + bi and c1 + · · · + ck can be computed one term at a time at every iteration.

Remark 10. One immediate application of the algorithm we have just presented is that it can be
readily used to decide in linear time if a matrix pencil A′ + λB ′ having only minimal indices for
columns in the set of its classical Kronecker invariants, is a subpencil or not by column completions
of A + λB of the same type (see introduction). Such a matrix pencil A′ + λB ′ is subpencil by column
completion of A +λB if and only if a short exact sequence of the form 0 → M A′,B ′ → M A,B → nI0 → 0
exists, where both M A,B and M A′,B ′ are preinjectives and n is the difference between the number of
columns of the matrices A + λB and A′ + λB ′ .

To develop an algorithm for generating all the extensions X in the short exact sequence 0 → I ′ →
X → I → 0, we could use of course “brute force” and generate all possible modules while checking
every one in part with the previous method. But we can do a little better than that for example by
using the method of non-recursive backtracking (also known as “iterative backtracking”) to generate
all the possible modules X . In general, using the backtracking method, one can find all solutions to
some computational problem, by incrementally building solution candidates, and abandoning each
partial candidate as soon as it is determined that the candidate cannot possibly be completed to a
valid solution (see [7]).

In our case the space of possible solutions (or candidates) is a subset of the set all decreasing
sequences of nonnegative integers (c1, . . . , cr) with a fixed length and a fixed sum, i.e. r = p + n and∑r

k=1 ck = s = ∑p
j=1 a j +∑n

i=1 bi . First, observe that we have the following recursive relation between
the elements of any such sequence (�x� meaning the smallest integral value that is not less than x):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⌈
s

r

⌉
� ck � s if k = 1,

⌈
s − ∑k−1

l=1 cl

r − k + 1

⌉
� ck � min

{
ck−1, s −

k−1∑
l=1

cl

}
if 1 < k � r.

(3.1)

So a sequence of nonnegative integers (c1, . . . , cr) having length r is decreasing and has the sum equal
to s � 0, if and only if relation (3.1) is satisfied by its elements.



JID:YJABR AID:14437 /FLA [m1G; v 1.114; Prn:27/09/2013; 8:23] P.12 (1-17)
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Thus, we say that a decreasing sequence of nonnegative integers (c1, . . . , ck) with 1 � k � r and

c1 + · · ·+ ck � s is a valid partial candidate if
∑ j′

l=1 al +∑i′
l=1 bl � c1 + · · ·+ ck for some j′ ∈ {0, . . . , p}

and i′ ∈ {0, . . . ,n} such that i′ + j′ = k, a j � cα j and bi � cβi for all j ∈ {1, . . . , j′} and i ∈ {1, . . . , i′},
where α j and βi are the indices defined in Theorem 6, moreover relation (3.1) is satisfied by all the
elements of the sequence (c1, . . . , ck). If k = r and (c1, . . . , ck) is a valid partial candidate, then it
is also a solution. If k < r, then we try to extend it to a valid partial candidate of length k + 1 by
computing the set Sk+1(c1, . . . , ck) of all possible values for ck+1 turning (c1, . . . , ck+1) into a valid
partial candidate.

Starting at level 1 (with k = 1) and working on the sequence (c1, . . . , cr), i.e. assigning different
values to an array of integers denoted by c1, . . . , cr , the general steps of the backtracking algorithm at
a certain level k are:

(1) If k > r, add the current sequence (c1, . . . , cr) to the result set and backtrack (return to the previ-
ous level by decreasing k by one).

(2) If k � r and level k has been reached from the previous level then:
(a) Compute the set Sk(c1, . . . , ck−1) of nonnegative integers, such that ∀ck ∈ Sk(c1, . . . , ck−1), the

sequence (c1, . . . , ck) is a valid partial candidate.
(b) If Sk(c1, . . . , ck−1) = ∅, then backtrack (since (c1, . . . , ck−1) cannot possibly be completed to a

valid solution).
(c) Else, assign a value from Sk(c1, . . . , ck−1) to ck (for example the greatest) and pass to the next

level (i.e. increase k by one).
(3) If k � r and level k has been reached from the next, higher level (as a result of a backtracking)

then:
(a) If there are any unused values in the set Sk(c1, . . . , ck−1), assign a new value (for example the

greatest unused value) to ck and pass to the next level.
(b) If all the elements of the set Sk(c1, . . . , ck−1) have been tried, backtrack.

The algorithm terminates when k gets assigned the value 0.

Remark 11. The purpose of this algorithm is to serve as a helping tool in investigating the extensions
of preinjective Kronecker modules by generating examples for modules with smaller dimensions.
While the decision problem was solved in linear time, the number of extensions can be huge. In
worst case, when we want to compute all the possible modules I in the short exact sequence
0 → mI0 → I → In → 0 where m � n, the number of isoclasses [I] is P(n), with P(n) being the
number of partitions of the integer n. It is well known that P(n) can be estimated by the Hardy–
Ramanujan asymptotic formula [6]:

P(n) ≈ 1

4n
√

3
eπ

√
2n
3 .

While in most of the cases the number of extensions is much smaller, P(n) – with n being the sum of
the dimensions of the two preinjectives – can be used as very rough and overly pessimistic estimate
for the upper bound, that is for the worse one can expect in terms of output size and running time. In
practice however, we have found that using the method described, one can generate almost instantly
extensions when they are up to around 100 000 in number, so the algorithm fits its purpose quiet
well.

Example 12. Using a non-recursive (iterative) backtracking implementation in GAP [14] of our method
it turns out that:

(1) There are 18 possible isoclasses of modules [I] such that there is a short exact sequence

0 → I5 ⊕ I3 ⊕ I3 ⊕ I2 ⊕ I1 → I → I4 ⊕ I3 ⊕ I1 ⊕ I0 → 0,
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namely the following: [I] ∈ {[I5 ⊕ I4 ⊕ I3 ⊕ I3 ⊕ I3 ⊕ I2 ⊕ I1 ⊕ I1 ⊕ I0], [I5 ⊕ I4 ⊕ I3 ⊕ I3 ⊕ I3 ⊕ I1 ⊕
I1 ⊕ I1 ⊕ I1], [I5 ⊕ I4 ⊕ I3 ⊕ I3 ⊕ I2 ⊕ I2 ⊕ I2 ⊕ I1 ⊕ I0], [I5 ⊕ I4 ⊕ I3 ⊕ I3 ⊕ I2 ⊕ I2 ⊕ I1 ⊕ I1 ⊕ I1],
[I5 ⊕ I4 ⊕ I3 ⊕ I2 ⊕ I2 ⊕ I2 ⊕ I2 ⊕ I1 ⊕ I1], [I4 ⊕ I4 ⊕ I4 ⊕ I3 ⊕ I3 ⊕ I2 ⊕ I1 ⊕ I1 ⊕ I0], [I4 ⊕ I4 ⊕ I4 ⊕
I3 ⊕ I3 ⊕ I1 ⊕ I1 ⊕ I1 ⊕ I1], [I4 ⊕ I4 ⊕ I4 ⊕ I3 ⊕ I2 ⊕ I2 ⊕ I2 ⊕ I1 ⊕ I0], [I4 ⊕ I4 ⊕ I4 ⊕ I3 ⊕ I2 ⊕ I2 ⊕
I1 ⊕ I1 ⊕ I1], [I4 ⊕ I4 ⊕ I4 ⊕ I2 ⊕ I2 ⊕ I2 ⊕ I2 ⊕ I1 ⊕ I1], [I4 ⊕ I4 ⊕ I3 ⊕ I3 ⊕ I3 ⊕ I2 ⊕ I2 ⊕ I1 ⊕ I0],
[I4 ⊕ I4 ⊕ I3 ⊕ I3 ⊕ I3 ⊕ I2 ⊕ I1 ⊕ I1 ⊕ I1], [I4 ⊕ I4 ⊕ I3 ⊕ I3 ⊕ I2 ⊕ I2 ⊕ I2 ⊕ I1 ⊕ I1], [I4 ⊕ I4 ⊕
I3 ⊕ I2 ⊕ I2 ⊕ I2 ⊕ I2 ⊕ I2 ⊕ I1], [I4 ⊕ I3 ⊕ I3 ⊕ I3 ⊕ I3 ⊕ I3 ⊕ I2 ⊕ I1 ⊕ I0], [I4 ⊕ I3 ⊕ I3 ⊕ I3 ⊕
I3 ⊕ I3 ⊕ I1 ⊕ I1 ⊕ I1], [I4 ⊕ I3 ⊕ I3 ⊕ I3 ⊕ I3 ⊕ I2 ⊕ I2 ⊕ I1 ⊕ I1], [I4 ⊕ I3 ⊕ I3 ⊕ I3 ⊕ I2 ⊕ I2 ⊕ I2 ⊕
I2 ⊕ I1]}.

(2) There are 102 501 possible isoclasses [I] such that there is a short exact sequence

0 → I26 ⊕ I12 ⊕ I10 ⊕ I8 ⊕ I4 → I → I19 ⊕ I15 ⊕ I8 ⊕ I4 ⊕ I1 ⊕ I1 → 0,

all of which were generated in 2 seconds on a laptop computer.
(3) There are 3 322 698 possible isoclasses [I] such that a short exact sequence of the form

0 → I20 ⊕ I19 ⊕ I18 ⊕ I10 ⊕ I8 ⊕ I3 ⊕ I2 ⊕ I2 → I

→ I16 ⊕ I11 ⊕ I7 ⊕ I6 ⊕ I3 ⊕ I1 ⊕ I1 ⊕ I0 → 0

exists, and all the 3 322 698 extensions were generated in just under 2 minutes on a laptop com-
puter.

4. Embedding preinjective Kronecker modules

In [13] we have given simple numerical criteria in terms of Kronecker invariants for the existence
of a monomorphism I ′ ↪→ I between two preinjective modules using a homological proof. We will
reprove this theorem using only Theorem 2 and Lemma 5.

Theorem 13. Let b1 � · · · � bn > 0 and c1 � · · · � cr > 0 be decreasing sequences of integers. We have a
monomorphism

f : Ib1 ⊕ · · · ⊕ Ibn ⊕ bI0 → Ic1 ⊕ · · · ⊕ Icr ⊕ cI0

if and only if b � c and bi + · · · + bn �
∑

ck�bi
ck for 1 � i � n.

Proof. We know that the existence of a monomorphism f is equivalent with the existence of a short
exact sequence

0 → Ib1 ⊕ · · · ⊕ Ibn ⊕ bI0 → Ic1 ⊕ · · · ⊕ Icr ⊕ cI0 → Ia1 ⊕ · · · ⊕ Iap → 0.

“�⇒”. If Ic1 ⊕ · · · ⊕ Icr ⊕ cI0 is an extension of Ib1 ⊕ · · · ⊕ Ibn ⊕ bI0 by Ia1 ⊕ · · · ⊕ Iap , where
c1 � · · · � cr > cr+1 = · · · = cr+c = 0 and b1 � · · · � bn > bn+1 = · · · = bn+b = 0, then by Theorem 2
and Lemma 5 we know that r +c = p +n+b, ∃α : {1, . . . , p} → {1, . . . , p +n+b} and ∃β : {1, . . . ,n} →
{1, . . . , p + n + b} two strictly increasing functions with Imα ∩ Imβ = ∅ such that bi � cβ(i) and the

inequality
∑

β(i)<α( j), 1� j�p(cα( j) − a j) �
∑n+b

k=i (bk − cβ(k)) is satisfied for i ∈ {1, . . . ,n + b}.

It is clear that 0 = bn+1 � cβ(n+1) �⇒ cβ(n+1) = 0 �⇒ cβ(n+1) = · · · = cr+c = 0, so r + 1 � β(n +
1). But since we must have β(n + 1) � p + n + 1 = r + c − b + 1 (otherwise we would get β(n +
b) /∈ {1, . . . , p + n + b}), follows that b � c. Let now i ∈ {1, . . . ,n + b} and consider the inequality∑

β(i)<α( j), 1� j�p(cα( j) − a j) �
∑n+b

k=i (bk − cβ(k)). By reordering and leaving out a sum we get
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n∑
k=i

bk =
n+b∑
k=i

bk �
∑

β(i)<α( j)
1� j�p

cα( j) +
n+b∑
k=i

cβ(k) −
∑

β(i)<α( j)
1� j�p

a j �
∑

β(i)�k�r+c

ck

and because bi � cβ(i) � · · · � cr+c follows that bi + · · · + bn �
∑

β(i)�k�r+c ck �
∑

ck�bi
ck .

“⇐�”. Easy recursive argument shows that in the inequality bi + · · · + bn �
∑

ck�bi
ck the sum

on the right hand side contains at least as many summands as the sum on the left hand side, i.e.
for any i ∈ {1, . . . ,n}, |{ck | ck � bi, 1 � k � r}| � n − i + 1. This also means, that r � n and (since
c � b) r + c � n + b. So we can choose a strictly increasing sequence of integers (l1, . . . , ln) such that
1 � l1 < · · · < ln � r and for any i ∈ {1, . . . ,n}, bi +· · ·+bn �

∑r
k=li

ck . If r +c = n+b, then clearly r = n,
c = b, bi = ci for 1 � i � n and f is just the identity, i.e. the trivial embedding of Ib1 ⊕ · · · ⊕ Ibn ⊕ bI0
in itself. From now on we suppose that r + c > n + b.

Let us now define a strictly increasing function β ′ : {1, . . . ,n} → {1, . . . , r + c − b}, β ′(i) = li , so
that our inequality now reads

∑r
k=β ′(i) ck �

∑n
k=i bk . With our choice for β ′ we know that bi � cβ ′(i) ,

1 � i � n, so extracting these values from the previous inequality we get

∑
β ′(i)�k�r

k/∈Im β ′

ck �
n∑

k=i

(bk − cβ ′(k)),

which looks promising because it begins to resemble the inequality (2.5) from Lemma 5. To make it
look even better, let us introduce the strictly increasing function α′ : {1, . . . , p} → {1, . . . , r + c − b},

α′( j) =
{

min{l ∈ {1, . . . , r} | l �= β ′(i), 1 � i � n}, j = 1,

min{l ∈ {α′( j − 1) + 1, . . . , r} | l �= β ′(i), 1 � i � n}, 1 < j � p,

where 0 < p = r + c − (n + b). Using it we have so far

∑
β ′(i)<α′( j)

1� j�p

cα′( j) �
n∑

k=i

(bk − cβ ′(k)),

with only the sequence a1 � · · · � ap � 0 missing. We claim that there exist decreasing sequences
such that inequality (2.5) holds and in what follows, we are going to show how to construct one. We
borrow the idea from the proof of Lemma 4, so let in this case

Mb =
{ p∑

k=1

cα′(k) −
n∑

k=1

(bk − cβ ′(k)) + 1, . . . ,

p∑
k=1

cα′(k)

}
,

M j =
{ j−1∑

k=1

cα′(k) + 1, . . . ,

j∑
k=1

cα′(k)

}

and set a j = |M j \ Mb|. It is clear that for j ∈ {1, . . . , p}, |M j| = cα′( j) , |Mb| = ∑n
k=1(bk − cβ ′(k)), Mb ⊆⋃p

j=1 M j and M j1 ∩ M j2 = ∅ for j1, j2 ∈ {1, . . . , p}, j1 �= j2, so we have

p∑
j=1

a j =
p∑

j=1

∣∣M j \ Mb
∣∣ =

∣∣∣∣∣
p⋃

j=1

(
M j \ Mb)∣∣∣∣∣ =

∣∣∣∣∣
( p⋃

j=1

M j

)
\ Mb

∣∣∣∣∣
=

∣∣∣∣∣
( p⋃

j=1

M j

)∣∣∣∣∣ − ∣∣Mb
∣∣ =

p∑
j=1

cα′( j) −
n∑

k=1

(bk − cβ ′(k)) =
r∑

k=1

ck −
n∑

k=1

bk.
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Observe that (because Mb ⊆ ⋃p
j=1 M j ) the set M j \ Mb can be either M j (always the case when

α′( j) < β ′(1)) or some M such that ∅ � M � M j (for at most one j, where α′( j) > β ′(1)) or the
empty set. Formally,

M j \ Mb =
⎧⎨
⎩

M j, 1 � j < j′,
M ⊆ M j, j = j′,
∅, j′ < j � p

�⇒ a j =
⎧⎨
⎩

cα′( j), 1 � j < j′,
a j � cα′( j), j = j′,
0, j′ < j � p,

for some j′ ∈ {1, . . . , p}, such that α′( j′) > β ′(1). Now it is clear that a1 � · · · � ap and a j � cα′( j) ,
1 � j � p. We have already seen that

∑n
k=1(bk −cβ ′(k)) = ∑p

j=1 cα′( j)−∑p
j=1 a j . Knowing the structure

of the sequence (a1, . . . ,ap) we can write

n∑
k=1

(bk − cβ ′(k)) =
p∑

j=1

cα′( j) −
( j′−1∑

j=1

a j + a j′ +
p∑

j= j′+1

a j

)

=
j′−1∑
j=1

(cα′( j) − a j)

︸ ︷︷ ︸
=0

+ (cα′( j′) − a j′) +
p∑

j= j′+1

( cα′( j) − a j︸ ︷︷ ︸
=cα′( j)

)

and because
∑n

k=i(bk − cβ ′(k)) �
∑n

k=1(bk − cβ ′(k)) for all i ∈ {1, . . . ,n},

∑
β ′(i)<α′( j)

1� j�p

(cα′( j) − a j) �
n∑

k=i

(bk − cβ ′(k))

follows.
Consider now the functions α : {1, . . . , p} → {1, . . . , r + c}, α( j) = α′( j) and β : {1, . . . ,n + b} →

{1, . . . , r + c},

β(i) =
{

β ′(i), 1 � i � n,

r + c − b + (i − n), n < i � n + b.

Functions α and β are strictly increasing, clearly satisfy Imα ∩ Imβ = ∅, and since cr+1 = · · · =
cr+c = bn+1 = · · · = bn+b = 0, we have that bi � cβ(i) and a j � cα( j) for 1 � i � n, 1 � j � p,∑r+c

i=1 ci = ∑p
i=1 ai + ∑n+b

i=1 bi , moreover, inequality
∑

β ′(i)<α′( j), 1� j�p(cα′( j) − a j) �
∑n

k=i(bk − cβ ′(k))

can be extended to
∑

β(i)<α( j), 1� j�p(cα( j) − a j) �
∑n+b

k=i (bk − cβ(k)) and the existence of the exact
sequence 0 → Ib1 ⊕ · · · ⊕ Ibn ⊕ bI0 → Ic1 ⊕ · · · ⊕ Icr ⊕ cI0 → Ia1 ⊕ · · · ⊕ Iap → 0 follows by Lemma 5
and Theorem 2. �
Remark 14. If we know that I ′ ↪→ I , then the possible factors I/I ′ are explicitly described by the
result in Theorem 6. So, if we are given three preinjective Kronecker modules I , I ′ and I ′′ such that
I ′ ↪→ I , then we can decide in linear time if [I ′′] ∈ {[I/ Im f ] | f : I ′ → I is a monomorphism}.

Remark 15. Based on Theorem 6 a similar method to that described in Section 3 can be developed to
generate all factors I/I ′ , when I ′ ↪→ I is given.

5. The preprojective case

For two preprojective modules P and P ′ we know that their extensions are also preprojective, in
other words if we have a short exact sequence 0 → P ′ → Y → P → 0, then Y is also preprojective.
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Since the preprojective modules are the duals of preinjectives, all the results of the previous section
apply. So we will just restate the main results, applied for the case of preprojectives. The dual of
Lemma 1 is the following:

Lemma 16. Let Pn1 and Pn2 be two indecomposable preprojective Kronecker modules. We have a short exact
sequence 0 → Pn1 → P → Pn2 → 0 if and only if the conditions are met from one of the following two cases:

(a) n1 � n2 and [P ] = [Pn2 ⊕ Pn1 ],
(b) n1 < n2 and [P ] ∈ {[Pn1 ⊕ Pn2 ], [Pn1+1 ⊕ Pn2−1], . . . , [Pn1+
 n2−n1

2 � ⊕ Pn2−
 n2−n1
2 �]}.

The dual of Theorem 2 is the following:

Theorem 17. If a1 � · · · � ap � 0, b1 � · · · � bn � 0 and c1 � · · · � cr � 0 are nonnegative integers, then
there exists a short exact sequence 0 → Pap ⊕ · · · ⊕ Pa1 → P → Pbn ⊕ · · · ⊕ Pb1 → 0 if and only if [P ] =
[Pcr ⊕· · ·⊕ Pc1 ], r = n+ p, ∃β : {1, . . . ,n} → {1, . . . ,n+ p}, ∃α : {1, . . . , p} → {1, . . . ,n+ p} both functions
strictly increasing with Imα ∩ Imβ = ∅ and ∃mi

j � 0, 1 � i � n, 1 � j � p, such that ∀� ∈ {1, . . . ,n + p}

c� =
{

bi − ∑
β(i)<α( j), 1� j�p mi

j, where i = β−1(�), � ∈ Im β,

a j + ∑
β(i)<α( j), 1�i�n mi

j, where j = α−1(�), � ∈ Imα.

The dual of Theorem 6:

Theorem 18. Let a1 � · · · � ap � 0, b1 � · · · � bn � 0, c1 � · · · � cr � 0 be decreasing sequences of non-

negative integers and let B j = {l ∈ {0, . . . ,n} | ∑l
k=1 bk + ∑ j

k=1 ak �
∑l+ j

k=1 ck} for 1 � j � p. Then there is a
short exact sequence

0 → Pap ⊕ · · · ⊕ Pa1 → P → Pbn ⊕ · · · ⊕ Pb1 → 0

if and only if [P ] = [Pcr ⊕ · · ·⊕ Pc1 ], r = p +n,
∑r

i=1 ci = ∑p
i=1 ai +∑n

i=1 bi , B j �= ∅, a j � cα j and bi � cβi

for 1 � j � p and 1 � i � n, where

α j =
{

min B1 + 1, j = 1,

max{α j−1 + 1,min B j + j}, 1 < j � p

and

βi =
{

min{l ∈ {1, . . . , r} | l �= α j, 1 � j � p}, i = 1,

min{l ∈ {βi−1 + 1, . . . , r} | l �= α j, 1 � j � p}, 1 < i � n.

Dually to Theorem 13, in the case or preprojective modules we get easy and explicit criteria for
the existence of a projection (instead of embedding):

Theorem 19. Let b1 � · · · � bn > 0 and c1 � · · · � cr > 0 be decreasing sequences of integers. We have an
epimorphism

g : c P0 ⊕ Pcr ⊕ · · · ⊕ Pc1 → bP0 ⊕ Pbn ⊕ · · · ⊕ Pb1

if and only if b � c and bi + · · · + bn �
∑

ck�bi
ck for 1 � i � n.
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Remark 20. As it can be seen, the algorithms described in Section 3 will work in the case of pre-
projective modules as well, after switching over the order of arguments and reversing the indices,
conforming to Theorems 17 and 18.
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