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Introduction and the main results

Throughout the paper, by an algebra we mean a basic indecomposable finite dimen-
sional associative K-algebra with an identity over a (fixed) field K. For an algebra A, we 
denote by modA the category of finite dimensional right A-modules, by indA the full 
subcategory of modA formed by the indecomposable modules, by ΓA the Auslander–
Reiten quiver of A, and by τA and τ−1

A the Auslander–Reiten translations DTr and 
TrD, respectively. We do not distinguish between a module in indA and the vertex of 
ΓA corresponding to it. An algebra A is of finite representation type if the category 
indA admits only a finite number of pairwise nonisomorphic modules. It is well known 
that a hereditary algebra A is of finite representation type if and only if A is of Dynkin 
type, that is, the valued quiver QA of A is a Dynkin quiver of type An (n ≥ 1), Bn

(n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4, or G2 (see [8–10]). A distinguished 
class of algebras of finite representation type is formed by the tilted algebras of Dynkin 
type, that is, the algebras of the form EndH(T ) for a hereditary algebra H of Dynkin 
type and a (multiplicity-free) tilting module T in modH. For an algebra A, we denote 
by D : modA → modAop the standard duality HomK(−, K). An algebra A is called 
selfinjective if A ∼= D(A) in modA, and symmetric if A ∼= D(A) as A–A-bimodules. 
We note that every algebra B is a quotient algebra of a symmetric algebra, namely the 
trivial extension algebra T (B) = B � D(B) of B by its minimal injective cogenerator 
D(B). Recall that T (B) = B ⊕D(B) as K-vector space and the multiplication in T (B)
is defined by

(x, f)(y, g) = (xy, xg + fy)

for x, y ∈ B and f, g ∈ D(B).
A prominent role in the representation theory of algebras is played by almost split 

sequences introduced by M. Auslander and I. Reiten in [2] (see [3] for general theory 
and applications). For an algebra A and a nonprojective module X in indA, there is an 
almost split sequence

0 −→ τAX −→ Y −→ X −→ 0,

with τAX a noninjective module in indA called the Auslander–Reiten translation of X. 
Then we may associate to X the numerical invariant α(X) being the number of sum-
mands in a decomposition Y = Y1⊕ . . .⊕Yr of Y into a direct sum of modules Y1, . . . , Yr

in indA. Then α(X) measures the complexity of homomorphisms in modA with domain 
τAX and codomain X. It has been proved by R. Bautista and S. Brenner in [4] (see 
also [17] for an alternative proof) that, if A is of finite representation type and X is 
a nonprojective module in indA, then α(X) ≤ 4, and if α(X) = 4, then the middle 
Y of an almost split sequence in modA with the right term X admits an indecompos-
able projective–injective direct summand. It follows from general theory that, if P is an 
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indecomposable projective–injective module in a module category modA, then there is 
in modA an almost split sequence of the form

0 −→ radP −→ (radP/ socP ) ⊕ P −→ P/ socP −→ 0.

An almost split sequence in a module category modA of an algebra A of finite rep-
resentation type with α(X) = 4 for its right term X is said to be a maximal almost 
split sequence in modA. Therefore, the module category modA of an algebra A of finite 
representation type admits a maximal almost split sequence if and only if there is a 
projective–injective module P in indA such that radP/ socP is a direct sum of three 
indecomposable modules.

We are concerned with the problem of describing the isomorphism classes of selfinjec-
tive algebras of finite representation type. For K algebraically closed, the problem was 
solved in the early 1980’s by C. Riedtmann (see [7,20–22]) via the combinatorial classi-
fication of the Auslander–Reiten quivers of selfinjective algebras of finite representation 
type over K. Equivalently, Riedtmann’s classification can be presented as follows (see 
[26, Section 3]): a nonsimple selfinjective algebra A over an algebraically closed field K is 
of finite representation type if and only if A is socle equivalent to an orbit algebra B̂/G, 
where B̂ is the repetitive category of a tilted algebra B of Dynkin type An (n ≥ 1), Dn

(n ≥ 4), E6, E7, E8, and G is an admissible infinite cyclic group of automorphisms of B̂. 
For an arbitrary field K, the problem seems to be difficult (see [5,33] for some results 
in this direction and [34, Section 12] for related open problems). An important known 
result towards solution of this general problem is the description of the stable Auslander–
Reiten quiver Γ s

A of a selfinjective algebra of finite representation type established by 
C. Riedtmann [20] and G. Todorov [36] (see also [35, Section IV.15]): Γ s

A is isomorphic 
to the orbit quiver ZΔ/G, where Δ is a Dynkin quiver of type An (n ≥ 1), Bn (n ≥ 2), 
Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4, or G2, and G is an admissible infinite cyclic 
group of automorphisms of the translation quiver ZΔ. Therefore, we may associate to 
any selfinjective algebra A of finite representation type a Dynkin graph Δ(A), called 
the Dynkin type of A, such that Γ s

A = ZΔ/G for a quiver Δ having Δ(A) as underlying 
graph. We also mention that, for a Dynkin quiver Δ and a tilted algebra B of type Δ, the 
orbit algebras B̂/G are selfinjective algebras of finite representation type whose Dynkin 
type is the underlying graph of Δ.

The aim of this paper is to investigate the structure of selfinjective algebras of finite 
representation type whose module category admits a maximal almost split sequence.

Let A be a selfinjective algebra of finite representation type, and assume that indA

admits a projective–injective module P with radP/ socP being a direct sum of three 
indecomposable modules. We denote by ΔP the full subquiver of ΓA given by the module 
τ−1
A (P/ socP ) and all modules X in indA such that there is a nontrivial sectional path 

in ΓA from P/ socP to X. We prove that ΔP is a Dynkin quiver whose underlying graph 
is the Dynkin type Δ(A) of A. Moreover, let MP be the direct sum of all modules lying 
on ΔP .
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In Section 3 we describe the family Bmax of tilted algebras of Dynkin type having 
an indecomposable projective module with injective top and the radical being a direct 
sum of three projective modules. Recall also that two selfinjective algebras A and A′ are 
called socle equivalent if the quotient algebras A/ socA and A′/ socA′ are isomorphic 
(see [35, Section IV.6]).

The following theorem is the main result of the paper.

Theorem 1. Let A be a selfinjective algebra over a field K. The following statements are 
equivalent.

(i) A is of finite representation type having an indecomposable projective module P with 
α(P/ socP ) = 4 and HomA(MP , τAMP ) = 0.

(ii) A is socle equivalent to an orbit algebra B̂/(ϕνm
B̂

), where B is an algebra from the 

family Bmax , m a positive integer, νB̂ the Nakayama automorphism of B̂, and ϕ a 
rigid automorphism of B̂.

Moreover, if K is an algebraically closed field, we may replace “socle equivalent” by 
“isomorphic”.

We would like to point that in general we cannot replace in the above theorem “socle 
equivalent” by “isomorphic” (see Section 9).

The next two theorems suggest that possibly the statement (ii) of the above theo-
rem provides description of all selfinjective algebras of finite representation type whose 
module category admits a maximal almost split sequence (equivalently, the assumption 
HomA(MP , τAMP ) = 0 in the statement (i) is superfluous).

Theorem 2. Let A = Λ̂/G for a tilted algebra Λ of Dynkin type and G an admissible 
infinite cyclic group of automorphisms of Λ̂. The following statements are equivalent.

(i) modA admits a maximal almost split sequence.
(ii) A is isomorphic to an orbit algebra B̂/(ϕνm

B̂
), where B is an algebra from the family 

Bmax , m a positive integer, νB̂ the Nakayama automorphism of B̂, and ϕ a rigid 
automorphism of B̂.

Theorem 3. Let A be a selfinjective algebra over an algebraically closed field K. The 
following statements are equivalent.

(i) A is of finite representation type and modA admits a maximal almost split sequence.
(ii) A is isomorphic to an orbit algebra B̂/(ϕνm

B̂
), where B is an algebra from the family 

Bmax , m a positive integer, νB̂ the Nakayama automorphism of B̂, and ϕ a rigid 
automorphism of B̂.
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We also mention that for an algebra B from Bmax , a positive integer m, a rigid 
automorphism ϕ of B̂, and the associated selfinjective orbit algebra A = B̂/(ϕνm

B̂
), the 

module category modA has exactly m maximal almost split sequences.
The following corollary is a direct consequence of Theorem 1 (and its proof), Theo-

rems 2.6, 4.3, and Corollary 4.4.

Corollary 4. Let A be a selfinjective algebra of finite representation type and P be an inde-
composable projective module in modA with α(P/ socP ) = 4 and HomA(MP , τAMP ) = 0. 
The following statements are equivalent.

(i) modA admits at least two maximal almost split sequences.
(ii) A is isomorphic to an orbit algebra B̂/(ϕνm

B̂
), where B is an algebra from the family 

Bmax , νB̂ the Nakayama automorphism of B̂, m ≥ 2, and ϕ a rigid automorphism 
of B̂.

In [19] Y. Ohnuki, K. Takeda and K. Yamagata proved that an orbit algebra A =
B̂/(ϕνB̂), with ϕ a positive automorphism of B̂, is a symmetric algebra if and only if 
A is isomorphic to the trivial extension algebra T (B) of B. Then we have the following 
consequence of the proof of Theorem 1 and Theorem 2.4(iv).

Corollary 5. Let A be a symmetric algebra of finite representation type over a 
field K having an indecomposable projective module P with α(P/ socP ) = 4 and 
HomA(MP , τAMP ) = 0. Then A is socle equivalent to the trivial extension algebra T (B)
of an algebra B from the family Bmax . Moreover, if K is an algebraically closed field, we 
may replace “socle equivalent” by “isomorphic”.

The following corollary is a direct consequence of Theorem 2 and [19].

Corollary 6. Let A = Λ̂/G for a tilted algebra Λ of Dynkin type and G an admissible 
infinite cyclic group of automorphisms of Λ̂. The following statements are equivalent.

(i) A is a symmetric algebra and modA admits a maximal almost split sequence.
(ii) A is isomorphic to the trivial extension algebra T (B) of a tilted algebra B from the 

family Bmax .

The paper is organized as follows. In Section 1 we recall the background on the 
orbit algebras of repetitive categories of algebras. Section 2 is devoted to presenting 
the theory of selfinjective algebras with deforming ideals developed by A. Skowroński 
and K. Yamagata, playing a prominent role in the proof of Theorem 1. In Section 3 we 
introduce the family Bmax of tilted algebras of Dynkin type occurring in the main results 
of the paper as well as provide sufficient conditions for an algebra to be in the family 
Bmax . In Section 4 we recall properties of the repetitive categories of tilted algebras of 
Dynkin type and their orbit algebras. Moreover, we prove that the module categories 



M. Błaszkiewicz, A. Skowroński / Journal of Algebra 422 (2015) 450–486 455
of the repetitive categories of the tilted algebras from the family Bmax have maximal 
almost split sequences. In Section 5 we describe properties of Dynkin quivers associated 
to maximal almost split sequences of selfinjective algebras of finite representation type. 
Sections 6, 7 and 8 are devoted to the proofs of Theorems 2, 3 and 1, respectively. In 
the final Section 9 we present examples illustrating the main results of the paper.

For basic background on the representation theory applied in the paper we refer to 
[1,3,23,35].

1. Orbit algebras of repetitive categories

Let B be an algebra and 1B = e1 + · · ·+ en a decomposition of the identity of B into 
a sum of pairwise orthogonal primitive idempotents. We associate to B a selfinjective 
locally bounded K-category B̂, called the repetitive category of B (see [15]). The objects 
of B̂ are em,i, m ∈ Z, i ∈ {1, . . . , n}, and the morphism spaces are defined as follows

B̂(em,i, er,j) =

⎧⎨⎩
ejBei, r = m,

D(eiBej), r = m + 1,
0, otherwise.

Observe that ejBei = HomB(eiB, ejB), D(eiBej) = ejD(B)ei and⊕
(m,i)∈Z×{1,...,n}

B̂(em,i, er,j) = ejB ⊕D(Bej),

for any r ∈ Z and j ∈ {1, . . . , n}. We denote by νB̂ the Nakayama automorphism of B̂
defined by

νB̂(em,i) = em+1,i for all (m, i) ∈ Z× {1, . . . , n}.

An automorphism ϕ of the K-category B̂ is said to be:

• positive if, for each pair (m, i) ∈ Z× {1, . . . , n}, we have ϕ(em,i) = ep,j for some 
p ≥ m and some j ∈ {1, . . . , n};

• rigid if, for each pair (m, i) ∈ Z× {1, . . . , n}, there exists j ∈ {1, . . . , n} such that 
ϕ(em,i) = em,j ;

• strictly positive if it is positive but not rigid.

Then the automorphisms νr
B̂

, r ≥ 1, are strictly positive automorphisms of B̂.
A group G of automorphisms of B̂ is said to be admissible if G acts freely on the set 

of objects of B̂ and has finitely many orbits. Then, following P. Gabriel [12], we may 
consider the orbit category B̂/G of B̂ with respect to G whose objects are the G-orbits 
of objects in B̂, and the morphism spaces are given by

(B̂/G)(a, b) =
{

(fy,x) ∈
∏

B̂(x, y)
∣∣∣ gfy,x = fgy,gx, ∀g∈G, (x,y)∈a×b

}

(x,y)∈a×b
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for all objects a, b of B̂/G. Since B̂/G has finitely many objects and the morphism spaces 
in B̂/G are finite dimensional, we have the associated finite dimensional selfinjective 
K-algebra 

⊕
(B̂/G) which is the direct sum of all morphism spaces in B̂/G, called the 

orbit algebra of B̂ with respect to G. We will identify B̂/G with 
⊕

(B̂/G). For example, 
for each positive integer r, the infinite cyclic group (νr

B̂
) generated by the r-th power 

νr
B̂

of νB̂ is an admissible group of automorphisms of B̂, and we have the associated 
selfinjective orbit algebra

T (B)(r) = B̂/
(
νr
B̂

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 0 0 . . . 0 0 0
f2 b2 0 . . . 0 0 0
0 f3 b3 . . . 0 0 0
...

...
. . . . . .

...
...

...
...

...
...

. . . . . .
...

...
0 0 0 . . . fr−1 br−1 0
0 0 0 . . . 0 f1 b1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b1, . . . , br−1 ∈ B, f1, . . . , fr−1 ∈ D(B)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

called the r-fold trivial extension algebra of B. In particular, T (B)(1) ∼= T (B) = B�D(B)
is the trivial extension of B by the injective cogenerator D(B).

2. Selfinjective algebras with deforming ideals

In this section we present criteria for selfinjective algebras to be socle equivalent 
to orbit algebras of the repetitive categories of algebras with respect to infinite cyclic 
automorphism groups, playing fundamental role in the proof of Theorem 1.

Let A be a selfinjective algebra. For a subset X of A, we may consider the left 
annihilator lA(X) = {a ∈ A | aX = 0} of X in A and the right annihilator 
rA(X) = {a ∈ A | Xa = 0} of X in A. Then by a theorem due to T. Nakayama (see [35, 
Theorem IV.6.10]) the annihilator operation lA induces a Galois correspondence from 
the lattice of right ideals of A to the lattice of left ideals of A, and rA is the inverse Galois 
correspondence to lA. Let I be an ideal of A, B = A/I, and e an idempotent of A such 
that e + I is the identity of B. We may assume that 1A = e1 + · · · + er with e1, . . . , er
pairwise orthogonal primitive idempotents of A, e = e1 + · · · + en for some n ≤ r, and 
{ei | 1 ≤ i ≤ n} is the set of all idempotents in {ei | 1 ≤ i ≤ r} which are not in I. Then 
such an idempotent e is uniquely determined by I up to an inner automorphism of A, 
and is called a residual identity of B = A/I. Observe also that B ∼= eAe/eIe.

We have the following lemma from [32, Lemma 5.1].

Lemma 2.1. Let A be a selfinjective algebra, I an ideal of A, and e an idempotent of A
such that lA(I) = Ie or rA(I) = eI. Then e is a residual identity of A/I.

We recall also the following proposition proved in [27, Proposition 2.3].
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Proposition 2.2. Let A be a selfinjective algebra, I an ideal of A, B = A/I, e a residual 
identity of B, and assume that IeI = 0. The following conditions are equivalent.

(i) Ie is an injective cogenerator in modB.
(ii) eI is an injective cogenerator in modBop.
(iii) lA(I) = Ie.
(iv) rA(I) = eI.

Moreover, under these equivalent conditions, we have socA ⊆ I and leAe(I) = eIe =
reAe(I).

The following theorem proved in [29, Theorem 3.8] (sufficiency part) and [32, Theo-
rem 5.3] (necessity part) will be fundamental for our considerations.

Theorem 2.3. Let A be a selfinjective algebra. The following conditions are equivalent.

(i) A is isomorphic to an orbit algebra B̂/(ϕνB̂), where B is an algebra and ϕ is a 
positive automorphism of B̂.

(ii) There is an ideal I of A and an idempotent e of A such that
(1) rA(I) = eI;
(2) the canonical algebra epimorphism eAe → eAe/eIe is a retraction.

Moreover, in this case, B is isomorphic to A/I.

Let A be a selfinjective algebra, I an ideal of A, and e a residual identity of A/I. 
Following [27], I is said to be a deforming ideal of A if the following conditions are 
satisfied:

(D1) leAe(I) = eIe = reAe(I);
(D2) the valued quiver QA/I of A/I is acyclic.

Assume I is a deforming ideal of A. Then we have a canonical isomorphism of algebras 
eAe/eIe → A/I and I can be considered as an (eAe/eIe)–(eAe/eIe)-bimodule. Denote 
by A[I] the direct sum of K-vector spaces (eAe/eIe) ⊕ I with the multiplication

(b, x) · (c, y) = (bc, by + xc + xy)

for b, c ∈ eAe/eIe and x, y ∈ I. Then A[I] is a K-algebra with the identity (e +eIe, 1A−e), 
and, by identifying x ∈ I with (0, x) ∈ A[I], we may consider I as an ideal of A[I]. 
Observe that e = (e + eIe, 0) is a residual identity of A[I]/I = eAe/eIe ∼= A/I, 
eA[I]e = (eAe/eIe) ⊕ eIe and the canonical algebra epimorphism eA[I]e → eA[I]e/eIe
is a retraction.
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The following properties of the algebra A[I] were established in [27, Theorem 4.1], 
[28, Theorem 3] and [33, Lemma 3.1].

Theorem 2.4. Let A be a selfinjective algebra and I a deforming ideal of A. The following 
statements hold.

(i) A[I] is a selfinjective algebra with the same Nakayama permutation as A and I is 
a deforming ideal of A[I].

(ii) A and A[I] are socle equivalent.
(iii) A and A[I] are stably equivalent.
(iv) A[I] is a symmetric algebra if A is a symmetric algebra.

We note that if A is a selfinjective algebra, I an ideal of A, B = A/I, e an idempotent 
of A such that rA(I) = eI, and the valued quiver QB of B is acyclic, then by Lemma 2.1
and Proposition 2.2, I is a deforming ideal of A and e is a residual identity of B.

The following theorem proved in [29, Theorem 4.1] shows the importance of the alge-
bras A[I].

Theorem 2.5. Let A be a selfinjective algebra, I an ideal of A, B = A/I and e an 
idempotent of A. Assume that rA(I) = eI and QB is acyclic. Then A[I] is isomorphic 
to an orbit algebra B̂/(ϕνB̂) for some positive automorphism ϕ of B̂.

We point out that there are selfinjective algebras A with deforming ideals I such 
that the algebras A and A[I] are not isomorphic (see [29, Example 4.2]), and A is not 
isomorphic to an orbit algebra B̂/(ϕνB̂), where B is an algebra and ϕ is a positive 
automorphism of B̂ (see [30, Proposition 4]).

The following result proved in [31, Proposition 3.2] describes a situation when the 
algebras A and A[I] are isomorphic.

Theorem 2.6. Let A be a selfinjective algebra with a deforming ideal I, B = A/I, e be 
a residual identity of B, and ν the Nakayama permutation of A. Assume that IeI = 0
and ei 
= eν(i), for any primitive summand ei of e. Then the algebras A and A[I] are 
isomorphic. In particular, A is isomorphic to an orbit algebra B̂/(ϕνB̂) for some positive 
automorphism ϕ of B̂.

Moreover, we have the following consequence of [27, Theorem 3.2].

Theorem 2.7. Let A be a selfinjective algebra over an algebraically closed field K and I
a deforming ideal of A. Then A and A[I] are isomorphic.

3. Tilted algebras of Dynkin type

Let A be an algebra. Following [6,13] a module T in modA is said to be a tilting 
module if pdA T ≤ 1, Ext1A(T, T ) = 0 and T is a direct sum of n pairwise nonisomorphic 
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indecomposable modules, where n is the rank of the Grothendieck group K0(A) of A
(equivalently, the number of vertices of the quiver QA of A). In case H is a hereditary 
algebra and T is a tilting module in modH, the endomorphism algebra B = EndH(T )
is called a tilted algebra (of type QH). Then the images HomH(T, Ii) of indecomposable 
injective modules Ii, 1 ≤ i ≤ n (with n the rank of K0(H)), via the functor HomH(T, −) :
modH → modB form a faithful section ΔT of a connected component CT of ΓB , called 
the connecting component of ΓB determined by T , which connects the torsion-free part 
Y(T ) = {Y ∈ modB | TorB1 (Y, T ) = 0} and the torsion part X (T ) = {X ∈ modB |
X ⊗B T = 0} of modB (see [1,13]). Recall that a full valued subquiver Δ of a connected 
component C of an Auslander–Reiten quiver ΓA is called a section if Δ is an acyclic convex 
full subquiver of C intersecting every τA-orbit in C exactly once. Moreover, a subquiver 
Δ of ΓA is called faithful if the direct sum of all indecomposable modules lying on Δ is 
a faithful A-module.

The following criterion established independently by S. Liu [16] and A. Skowroński 
[25] (see also [1, Theorem VIII.5.6] and its proof) provides a criterion for an algebra to 
be a tilted algebra.

Theorem 3.1. An algebra B is a tilted algebra if and only if ΓB contains a connected 
component C with a faithful section Δ such that HomB(X, τBY ) = 0 for all modules X
and Y lying on Δ. Moreover, in this case, the following statements hold.

(i) The direct sum T ∗
Δ of all modules lying on Δ is a tilting module in modB.

(ii) HΔ = EndB(T ∗
Δ) is a hereditary algebra.

(iii) TΔ = D(T ∗
Δ) is a tilting module in modHΔ.

(iv) There is a canonical isomorphism of algebras σ : B → EndHΔ(TΔ) such that 
σ(b)(f)(t∗) = f(t∗b) for b ∈ B, f ∈ TΔ and t∗ ∈ T ∗

Δ.
(v) The component C is the connecting component CTΔ of ΓB and Δ the section ΔTΔ

determined by TΔ.

We introduce now a family Bmax of tilted algebras of Dynkin type, occurring in The-
orems 1, 2, 3 and Corollaries 4, 5, 6.

A K-species is a system M = (Fi, iMj)1≤i,j≤n, where F1, . . . , Fn are division 
K-algebras and, for each pair i, j ∈ {1, . . . , n}, iMj is an Fi–Fj-bimodule on which K
acts centrally and dimK iMj is finite (see [8,11]). We may associate to such a K-species 
M the valued quiver QM defined as follows:

(1) The vertices of QM are 1, 2, . . . , n.
(2) For two vertices i and j in QM, there exists an arrow i −→ j if and only if 

iMj 
= 0. Moreover, we associate to an arrow of QM the valuation (dij , d′ij), with 
dij = dimFj iMj and d′ij = dimFi iMj , so we have in QM the valued arrow

i
(dij ,d

′
ij)−−−−−−→ j.
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We will write i −→ j instead of i (1,1)−−−→ j. A K-species M is said to be acyclic if the 
valued quiver QM is acyclic (has no oriented cycles).

Let M = (Fi, iMj)1≤i,j≤n be a K-species. Consider the K-algebra R = RM =
∏n

i=1 Fi, 
the R–R-bimodule M = MM =

⊕n
i,j=1 iMj , and the associated tensor algebra T (M) =

TR(M) of M over R. Then T (M) is a finite dimensional hereditary K-algebra if and 
only if the quiver QM is acyclic. Moreover, if it is the case, then QM is the valued quiver 
QT (M) of the algebra T (M).

By a branch we mean a finite connected full subquiver L, containing the lowest vertex 
a, of the following infinite tree

a

• •

•

•

•

• ••

α

β

β

α βα

αα

α α α αβ

β β

βββ

βα

bound by all possible zero relations of the form αβ = 0. Then |L| is the number of 
vertices of L.

We denote by Bmax the family of all algebras

B(M,L) = T (M)/I(M,L),

where M is a K-species with QM of one of the forms

0,

L

b

c

a

(1) 0,

L

b

a

(2) 0,

L

d

b

c

a

|L| = 2, 3, 4

(3) 0,

a

c d

(4) 0,

a

(5)

(1,3)

(1,2)

(1,2)

where c d denotes c −→ d or c ←− d, L is a branch with the lowest vertex a, and 
I(M, L) is the ideal in the tensor algebra T (M) of M generated by iMj ⊗RM jMk for all 
paths i α−→ j

β−→ k in L. The following proposition shows that Bmax consists of tilted 
algebras of Dynkin type.



M. Błaszkiewicz, A. Skowroński / Journal of Algebra 422 (2015) 450–486 461
Proposition 3.2. Let B be an algebra from the family Bmax. Then B is a tilted algebra of 
one of the Dynkin types:

(i) Dn (n ≥ 4), if QM is of type (1) and |L| = n − 3;
(ii) Bn (n ≥ 3), if QM is of type (2) and |L| = n − 2;
(iii) E6, if QM is of type (3) and |L| = 2;
(iv) E7, if QM is of type (3) and |L| = 3;
(v) E8, if QM is of type (3) and |L| = 4;
(vi) F4, if QM is of type (4);
(vii) G2, if QM is of type (5).

Proof. Let B = B(M, L). Let M(L) be the restriction of the K-species M to the vertices 
of the branch L. Consider the algebra C = T (M(L))/I(L), where T (M(L)) is the tensor 
algebra of M(L) and I(L) is the ideal in T (M(L)) generated by iMj ⊗RM(L) jMk for all 
paths i α−→ j

β−→ k in L. Then, applying [24, Theorem XVI.2.3], we conclude that C is a 
tilted algebra of the equioriented type Am with m = |L|, and ΓC admits a unique section 
Σ (of equioriented type Am) whose source is the indecomposable projective C-module 
PC(a) at the vertex a while the sink is the indecomposable injective C-module IC(a) at 
the vertex a. Then ΓB admits a section Δ consisting of the indecomposable C-modules 
lying on Σ and the indecomposable projective B-modules P (0), P (b), P (c), P (d) at the 
vertices 0, b, c, d, respectively. We note that PC(a) is the indecomposable projective 
B-module at the vertex a. Since Σ is a faithful section in ΓC , Δ is a faithful translation 
subquiver of ΓB. In fact, ΓB is a finite acyclic quiver and Δ intersects each τB-orbit 
of ΓB exactly once. Hence Δ is a faithful section of ΓB, and HomB(X, τBY ) = 0 for 
all indecomposable modules X and Y lying on Δ. Therefore, applying Theorem 3.1, we 
conclude that B is a tilted algebra of Dynkin type Δop. It follows from definition of Δ
that Δop is one of the Dynkin types required in (i)–(vii). We also note that ΓB admits 
the section τ−1

B Δ formed by the indecomposable modules τ−1
B X with X indecomposable 

module lying on Δ, because no module lying on Δ is an injective B-module. �
The following theorem will be crucial for the proofs of Theorems 1 and 2.

Theorem 3.3. Let B be a basic indecomposable finite dimensional algebra over a field K, 
P an indecomposable projective noninjective module in modB such that α(τ−1

B P ) = 3, 
and ΔP the full valued subquiver of ΓB given by the module τ−1

B P and the indecomposable 
modules in modB lying on a nontrivial sectional path in ΓB starting at P . Assume that 
the following conditions are satisfied.

(1) ΔP is a Dynkin quiver.
(2) ΔP does not contain a projective module.
(3) ΔP \{τ−1

B P} does not contain an injective module.
(4) For any arrow V

(d,d′)−−−−→ U in ΓB with U in ΔP , V belongs to ΔP or to τBΔP .
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(5) For any arrow U
(e,e′)−−−−→ W in ΓB with U in ΔP , W belongs to ΔP or to τ−1

B ΔP .
(6) The direct sum MP of indecomposable modules lying on ΔP is a faithful module in 

modB with HomB(MP , τBMP ) = 0.

Then the following statements hold.

(i) MP is a tilting module in modB.
(ii) B is a tilted algebra from Bmax.
(iii) τ−1

B P is not an injective module.

Proof. We abbreviate Δ = ΔP and M = MP . Since α(τ−1
B P ) = 3 and Δ is a Dynkin 

quiver, we conclude that Δ is one of the quivers:
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It follows from (6) and [1, Lemma VIII.5.1, Corollary IV.2.14] that pdB M ≤ 1
and Ext1B(M, M) ∼= DHomB(M, τBM) = 0. We claim that idB M ≤ 1. Since M
is a faithful B-module, it is enough to show that HomB(τ−1

B M, M) = 0, again by 
[1, Lemma VIII.5.1]. Observe that, by (3), (5) and the shape of Δ, we have an epi-
morphism M t → τ−1

B M in modB for some positive integer t. Suppose now that 
there exist modules L and U on Δ such that HomB(τ−1

B L, U) 
= 0. Then using 
(4) and [1, Lemma VIII.5.4] we conclude that HomB(τ−1

B L, τBM) 
= 0. But then 
HomB(M, τBM) 
= 0, because there is an epimorphism M t → τ−1

B M , a contradiction. 
Hence, indeed idB M ≤ 1.

We will show now that M is a tilting module in modB.
Let f1, . . . fd be a basis of HomB(B, M). Then we have a monomorphism f : B → Md

in modB, induced by f1, . . . fd, and a short exact sequence

0 −→ B
f−→ Md g−→ N −→ 0

in modB, where N = Coker f and g a canonical epimorphism. We give now the 
standard arguments showing that M ⊕ N is a tilting module in modB. Since B
is a projective module in modB, we have Ext2B(N, −) ∼= Ext2B(Md, −) and hence 
pdB N ≤ 1, because pdB M ≤ 1. Hence, pdB(M ⊕ N) ≤ 1. Applying HomB(−, M)
to the above short exact sequence, we obtain a short exact sequence in modK of the 
form

HomB

(
Md,M

) HomB(f,M)−−−−−−−−→ HomB(B,M) −→ Ext1B(N,M) −→ Ext1B
(
Md,M

)
,

where Ext1B(Md, M) = 0 and HomB(f, M) is an epimorphism by the choice of f , 
and so Ext1B(N, M) = 0. Applying now HomB(N, −), we obtain an epimorphism 
Ext1B(N, g) : Ext1B(N, Md) → Ext1B(N, N), because pdB N ≤ 1 implies Ext2B(N, B) = 0, 
and consequently Ext1B(N, N) = 0. Finally, applying HomB(M, −), we obtain an epi-
morphism Ext1B(M, g) : Ext1B(M, Md) → Ext1B(M, N), because pdB M ≤ 1 implies 
Ext2B(M, B) = 0, and hence Ext1B(M, N) = 0. Summing up, we have pdB(M ⊕
N) ≤ 1 and Ext1B(M ⊕ N, M ⊕ N) = 0, and so M ⊕ N is a tilting module in 
modB.

We will show now that N belongs to the additive category addM of M . Assume 
to the contrary that there exists an indecomposable summand W of N which is not 
in addM , or equivalently W does not lie on Δ. Clearly, we have HomB(M, W ) 
= 0, 
because N is a quotient module of Md. Hence HomB(V, W ) 
= 0 for an indecompos-
able module V from Δ. Applying now (5) and [1, Lemma VIII.5.4] we conclude that 
HomB(τ−1

B M, W ) 
= 0. Since idB M ≤ 1, applying [1, Corollary IV.2.14], we obtain that 
Ext1B(W, M) ∼= DHomB(τ−1

B M, W ) 
= 0, which contradicts Ext1B(N, M) = 0. Therefore, 
M is a tilting module in modB. Moreover, the rank of K0(B) coincides with the number 
of indecomposable modules lying on Δ.
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Let H = EndB(M). We will prove that H is a hereditary algebra. Let Q be an inde-
composable projective module in modH, R an indecomposable right H-submodule of Q, 
and f : R → Q the inclusion homomorphism. We claim that R is a projective module. 
The tilting module M induces the torsion pair (T (M), F(M)) in modB, with T (M) =
{U ∈ modB | Ext1B(M, U) = 0} and F(M) = {W ∈ modB | HomB(M, W ) = 0}, and 
the torsion pair (X (M), Y(M)) in modH, with X (M) = {X ∈ modH | X ⊗H M = 0}
and Y(M) = {Y ∈ modH | TorH1 (Y, M) = 0}. Since Q belongs to Y(M) and the 
torsion-free class Y(M) is closed under submodules, we conclude that R belongs to 
Y(M). Moreover, the functor HomB(M, −) : modB → modH induces an equiva-
lence of categories T (M) ∼−→ Y(M). Hence there exists a homomorphism g : V → U

in modB with V , U indecomposable modules from T (M), U from Δ, such that 
HomB(M, V ) = R, HomB(M, U) = Q, and HomB(M, g) = f . Take now a nonzero 
homomorphism h : Q′ → R in modH with Q′ an indecomposable projective mod-
ule. Then there exists a nonzero homomorphism u : V ′ → V in modB such that 
V ′ is in Δ, HomB(M, V ′) = Q′, and HomB(M, u) = h. Since f is a monomorphism, 
we conclude that fh 
= 0, and hence gu 
= 0. We claim that V lies on Δ. Suppose 
V is not on Δ. Then, applying (4) and [1, Lemma VIII.5.4], we conclude that there 
exist homomorphisms p : V → W and q : W → U in modB, with W being a di-
rect sum of modules from τBΔ, such that g = qp. But then qpu = gu 
= 0 implies 
pu 
= 0, and hence HomB(M, τBM) 
= 0, a contradiction. Hence V belongs to Δ, and 
consequently R = HomB(M, V ) is a projective module in modH. This shows that ev-
ery right H-submodule of Q is projective. Therefore, H is a hereditary algebra whose 
quiver QH is the opposite quiver Δop of Δ. It follows also from the Brenner–Butler 
tilting theorem [1, Theorem VI.3.8] that T = D(M) is a tilting module in modH

and there is a canonical K-algebra isomorphism B ∼−→ EndH(T ). In particular, we 
conclude that B is a tilted algebra of Dynkin type, and hence ΓB is a finite acyclic 
quiver. In fact, Δ is the section ΔT of ΓB given by the images HomH(T, I) of the in-
decomposable injective modules I in modH. Indeed, we have isomorphisms of right 
B-modules

HomH

(
T,D(B)

)
= HomH

(
D(M), D(B)

)
∼= HomHop(B,M)

∼= M.

Our next aim is to prove that B belongs to the family Bmax . We know that H
is the tensor algebra T (M) of a K-species M whose quiver QM = QH is one of the 
forms:
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am

am−1

0,b1

c1

a1

a2

am

am−1

0,

b1

a1

a2

0,b1

c1

a1

a2

c2
(1,2)

0,b1

c1

a1

a2

a3

c2

0,b1

c1

a1

a2

a3

a4

c2

0,

b1

a1

a2

0.

a1(1,2) (1,3)

For each vertex x of QH = QM, we denote by I(x) the indecomposable injective module 
in modH at the vertex x. Since Δ = ΔT , we have the equalities τ−1

B P = HomH(T, I(0)), 
Xi = HomH(T, I(ai)), Y1 = HomH(T, I(b1)), and Zj = HomH(T, I(cj)). It follows from 
(2) that Δ has no projective module, and hence T has no injective direct summand. In 
particular, we conclude that Ext1H(T, τHI(0)) ∼= DHomH(I(0), T ) = 0, and so τHI(0)
belongs to the torsion part T (T ) of modH induced by T . Then we have isomorphisms

HomH

(
T, τHI(0)

) ∼= τB HomH

(
T, I(0)

)
= τB
(
τ−1
B P
)

= P,

and consequently τHI(0) is the direct summand of T . Let T ′ be an indecomposable direct 
summand of T nonisomorphic to τHI(0). Then we have isomorphisms

0 = Ext1H
(
τHI(0), T ′) ∼= DHomH

(
T ′, τ2

HI(0)
) ∼= DHomH

(
τ−2
H T ′, I(0)

)
.

This implies that T ′ belongs to one of the cones C(τHI(a1)), C(τHI(b1)), C(τHI(c1)) in 
ΓH induced by the modules τHI(a1), τHI(b1), τHI(c1), respectively:
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τHI(a1)

τ2
HI(a2) τHI(a2)

τ2
HI(a3)

τ2
HI(am)

τHI(am−1)

τHI(am)τm−1
H I(am)

τm−1
H I(am−1)

τmH I(am)

C
(
τHI(a1)

)
:

C
(
τHI(b1)

)
: τHI(b1)

C
(
τHI(c1)

)
: τHI(c1) or τHI(c1)

τ2
HI(c2) τHI(c2)

We note that the full subcategory ind C(τHI(a1)) of modH given by the indecompos-
able modules from the cone C(τHI(a1)) is equivalent to the category of indecomposable 
modules over the tensor algebra T (M(a1)) of the K-species M(a1) with the equioriented 
quiver

QM(a1) : 1 ←− 2 ←− . . . ←− m− 1 ←− m,

and all division K-algebras and nonzero bimodules in M(a1) being isomorphic to the 
division endomorphism algebra Fa1 = EndH(τHI(a1)) ∼= EndH(I(a1)). Similarly, if the 
cone C(τHI(c1)) has the three indecomposable modules, then the full subcategory of 
modH given by these modules is equivalent to the category of indecomposable modules 
over the tensor algebra T (M(c1)) of the K-species M(c1) with the quiver

QM(c1) : 1 ←− 2,

and the division K-algebras and the nonzero bimodule in M(c1) being isomorphic to the 
division algebra Fc1 = EndH(τHI(c1)) ∼= EndH(I(c1)). Therefore, the tilting module T
has a decomposition

T = τHI(0) ⊕ Ta ⊕ Tb ⊕ Tc,
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where Ta, Tb, Tc are direct sums of indecomposable modules lying in the cones 
C(τHI(a1)), C(τHI(b1)), C(τHI(c1)), respectively. Observe also that for any indecom-
posable modules U in C(τHI(a1)), V in C(τHI(b1)), W in C(τHI(c1)), we have

Ext1H(U ⊕ V ⊕W,U ⊕ V ⊕W ) ∼= DHomH(U ⊕ V ⊕W, τHU ⊕ τHV ⊕ τHW ) = 0,

Ext1H
(
U ⊕ V ⊕W, τHI(0)

) ∼= DHomH

(
I(0), U ⊕ V ⊕W

)
= 0,

Ext1H
(
τHI(0), U ⊕ V ⊕W

) ∼= DHomH

(
U ⊕ V ⊕W, τ2

HI(0)
)

= 0.

Further, since B ∼= EndH(T ) is a basic algebra, T is a direct sum of pairwise nonisomor-
phic indecomposable modules, and the number of them is equal to the rank of K0(H), 
or equivalently, the number of τH-orbits in ΓH . Moreover, Ta, Tb, Tc are partial tilting 
modules from the additive categories addC(τHI(a1)), add C(τHI(b1)), add C(τHI(c1)) of 
the cones C(τHI(a1)), C(τHI(b1)), C(τHI(c1)), respectively. Hence, the numbers of inde-
composable direct summands of Ta, Tb, Tc are less than or equal to the depths of the 
cones C(τHI(a1)), C(τHI(b1)), C(τHI(c1)), respectively. Then it follows that the numbers 
of indecomposable direct summands of Ta, Tb, Tc are exactly the depths of C(τHI(a1)), 
C(τHI(b1)), C(τHI(c1)), and τHI(a1), τHI(b1), τHI(c1) are direct summands of Ta, Tb, Tc, 
respectively. Applying now the classification of tilted algebras of an equioriented type Am

(see [24, Section XVI.2]), we conclude that B = EndH(T ) = EndH(τHI(0) ⊕Ta⊕Tb⊕Tc)
is a tilted algebra from the family Bmax .

Finally, we prove that τ−1
B P is not an injective module in modB. Suppose τ−1

B P =
HomH(T, I(0)) is an injective module. Then it follows from [1, Lemma VI.4.9] that the 
indecomposable projective module P (0) at the vertex 0 of QH is a direct summand of T , 
and hence is isomorphic to τHI(0), or belongs to one of the cones C(τHI(a1)), C(τHI(b1)), 
C(τHI(c1)). But it is not possible, because P (0) has simple top and radP (0) is a direct 
sum of three indecomposable projective modules. Therefore, τ−1

B P is not an injective 
module in modB. �
4. Selfinjective algebras of Dynkin type

Let B be a triangular algebra (the quiver QB is acyclic) and e1, . . . , en be pairwise 
orthogonal primitive idempotents of B with 1B = e1 + · · · + en. We identify B with the 
full subcategory B0 of the repetitive category B̂ given by the objects e0,i, 1 ≤ j ≤ n. For 
a sink i of QB , the reflection S+

i B of B at i is the full subcategory of B̂ given by the 
objects

e0,j , 1 ≤ j ≤ n, j 
= i, and e1,i = νB̂(e0,i).

Then the quiver QS+
i B of S+

i B is the reflection σ+
i QB of QB at i (see [15]). Observe 

that B̂ = Ŝ+
i B. By a reflection sequences of sinks of QB we mean a sequence i1, . . . , it of 
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vertices of QB such that is is a sink of σ+
is−1

. . . σ+
i1
QB for all s in {1, . . . , t}. Moreover, 

for a sink i of QB , we denote by T+
i B the full subcategory of B̂ given by the objects

e0,j , 1 ≤ j ≤ n, and e1,i = νB̂(e0,i).

Observe that T+
i B is the one-point extension B[IB(i)] of B by the indecomposable in-

jective B-module IB(i) at the vertex i. By a finite dimensional B̂-module we mean a 
contravariant K-linear functor M from B̂ to the category of K-vector spaces such that ∑

x∈obB̂ dimK M(x) is finite. We denote by mod B̂ the category of all finite dimensional 
B̂-modules. Finally, for a module M in mod B̂, we denote by supp(M) the full subcate-
gory of B̂ formed by all objects x with M(x) 
= 0, and call the support of M .

The following consequences of results proved in [14,15] describe the supports of finite 
dimensional indecomposable modules over the repetitive categories B̂ of tilted algebras 
B of Dynkin type.

Theorem 4.1. Let B be a tilted algebra of Dynkin type and n the rank of K0(B). Then 
there exists a reflection sequence i1, . . . , in of sinks of QB such that the following state-
ments hold.

(i) S+
in
. . . S+

i1
B = νB̂(B).

(ii) For every indecomposable nonprojective module M in mod B̂, supp(M) is contained 
in one of the full subcategories of B̂

νm
B̂

(
S+
ir
. . . S+

i1
B
)
, r ∈ {1, . . . , n}, m ∈ Z.

(iii) For every indecomposable projective module P in mod B̂, supp(P ) is contained in 
one of the full subcategories of B̂

νm
B̂

(
T+
ir
S+
ir−1

. . . S+
i1
B
)
, r ∈ {1, . . . , n}, m ∈ Z.

It follows from Theorem 4.1 that the repetitive category B̂ of a tilted algebra B of 
Dynkin type is a locally representation-finite category [12], that is, for any object x
in B̂ the number of isomorphism classes of indecomposable modules N in mod B̂ with 
N(x) 
= 0 is finite. Then we obtain the following consequence of [12, Theorem 3.6].

Theorem 4.2. Let B be a tilted algebra of Dynkin type, G an admissible infinite cyclic 
automorphism group of B̂, and A = B̂/G the associated selfinjective orbit algebra. Then 
the following statements hold.

(i) The push-down functor Fλ : mod B̂ → modA, associated to the Galois covering 
F : B̂ → B̂/G = A, is dense and preserves the almost split sequences.
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(ii) The Auslander–Reiten quiver ΓA of A is the orbit quiver ΓB̂/G of ΓB̂ with respect 
to the induced action of G on ΓB̂.

(iii) A is of finite representation type.

Theorem 4.3. Let B be an algebra from the family Bmax. The following statements hold.

(i) For any integer m, the indecomposable projective module P (m, 0) in mod B̂ given 
by the idempotent em,0 = νm

B̂
(e0,0) has the property α(P (m, 0)/ socP (m, 0)) = 4.

(ii) For any indecomposable projective module P in mod B̂ nonisomorphic to a module 
P (m, 0), m ∈ Z, we have α(P/ socP ) ≤ 3.

Proof. For a vertex i of QB and m ∈ Z, we denote by P (m, i) the indecomposable 
projective module in mod B̂ given by the idempotent em,i = νm

B̂
(e0,i) and by S(m, i) the 

top of P (m, i). Let a = a0 → a1 → . . . → ar, with r ≥ 0, be the maximal path in QB

starting from a, and c = c0 −→ cs, with s ∈ {0, 1}, the maximal path in QB starting 
from c (if B is of type (1), (3) or (4)). For each m ∈ Z, we denote by U(m, a) the uniserial 
module in mod B̂ with the radical layers radi U(m, a)/ radi+1 U(m, a) = S(m, ai) for 
i ∈ {0, . . . , r}. Similarly, for each m ∈ Z, we denote by U(m, c) the uniserial module in 
mod B̂ of length two with U(m, c)/ radU(m, c) = S(m, c) and radU(m, c) = S(m, d), if 
s = 1, and the simple module S(m, c), if s = 0.

Let n be the rank of K0(B). Then there is a reflection sequence i1, . . . , in of sinks of 
QB with in = 0 such that

(α) S+
in
. . . S+

i1
B = νB̂(B).

(β) For D = S+
in−1

. . . S+
i1
B, the indecomposable injective module ID(0) at the sink 

0 = in of QD = σ+
in−1

. . . σ+
i1
QB has the property ID(0)/ soc ID(0) = U1 ⊕ U2 ⊕ U3, 

where U1, U2, U3 are uniserial modules in mod B̂ of the forms:
• U1 = U(1, a);
• U2 = U3 = S(1, b) if B is of type (2);
• U2 = U3 = U(1, c) if B is of type (4);
• U2 = S(1, b) and U3 = U(1, c) if B is of type (1) or (3);
• U1 = U2 = U3 = U(1, a) = S(1, a) if B is of type (5).

Then the indecomposable projective module P (1, 0) in mod B̂ has the property 
α(P (1, 0)/ socP (1, 0)) = 4, because radP (1, 0) = ID(0). On the other hand, for 
r ∈ {1, . . . , n − 1}, and the indecomposable injective module IS+

ir−1
...S+

i1
B(ir) in 

mod(S+
ir−1

. . . S+
i1
B) at the sink ir of σ+

ir−1
. . . σ+

i1
QB , we have IS+

ir−1
...S+

i1
B(ir)/

soc IS+
ir−1

...S+
i1

B(ir) being a direct sum of at most two uniserial modules, and conse-

quently α(P (1, ir)/ socP (1, ir)) ≤ 3. Since the Nakayama automorphism ν ̂ of B̂ induces 
B
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an automorphism of the module category mod B̂, we have P (m, i) = νm−1
B̂

P (1, i) for any 
vertex i of QB and m ∈ Z. Then the statements (i) and (ii) follow. �
Corollary 4.4. Let B be an algebra from the family Bmax and G an admissible group of 
automorphisms of B̂. Then G is an infinite cyclic group generated by an automorphism 
ϕνm

B̂
, for a positive integer m and a rigid automorphism ϕ of B̂.

Proof. Let g be an element of G. Then, for any indecomposable projective module P
in mod B̂, we have α(g(P )/ soc g(P )) = α(P/ socP ), because g is an automorphism of 
mod B̂. In particular, it follows from Theorem 4.3 that there exists an integer mg such 
that g(P (m, 0)) ∼= P (m + mg, 0) for any m ∈ Z. Observe that then g−1(P (m, 0)) ∼=
P (m −mg, 0). Assume mg = 0. Then g(P (m, 0)) ∼= P (m, 0), and hence g(em,0) = em,0

for any m ∈ Z. Since G acts freely on the objects of B̂, we obtain g = 1. We also 
note that G is infinite because B̂ has infinitely many objects and there are only finitely 
many G-orbits of objects in B̂. Take now g ∈ G with mg positive and minimal. Then, 
for any h ∈ G\{1}, we have mh = smg + r with s ∈ Z and r ∈ {0, . . . , mg − 1}. 
Consider f = hg−s ∈ G. Then mf = 0, and hence h = gs. This shows that G is an 
infinite cyclic group generated by g. On the other hand, the automorphism ϕ = gν

−mg

B̂

of B̂ has the property ϕ(P (m, 0)) = P (m, 0) for any m ∈ Z. This forces the equalities 
ϕ(νm

B̂
(B)) = νm

B̂
(B) for m ∈ Z, and so ϕ is a rigid automorphism of B̂. Therefore, 

g = ϕν
mg

B̂
, as required. �

5. Dynkin quivers of maximal almost split sequences

In this section we describe some properties of the quiver ΔP associated to an in-
decomposable projective module P occurring in a maximal almost split sequence of a 
selfinjective algebra of finite representation type.

Proposition 5.1. Let A be a selfinjective algebra of finite representation type and P be an 
indecomposable projective module in modA with α(P/ socP ) = 4. Moreover, let

X = X0 −→ X1 −→ . . . −→ Xr

be a sectional path of irreducible homomorphisms between indecomposable modules in 
modA with X a direct summand of radP/ socP . Then X0, X1, . . . , Xr are nonprojective 
modules.

Proof. Observe first that X is not projective, being a proper submodule of the indecom-
posable module P/ socP . Assume to the contrary that one of the modules X1, . . . , Xr is 
projective. We have two cases to consider.
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(1) Assume X1 
= P/ socP . Then ΓA contains a full valued subquiver of the form

X = X0

Y0 = P/ socP

X1

Y1

Xm−1

Xm

Ym−1

Ym

(1,d)

with d ∈ {1, 2}, 1 ≤ m ≤ r, X0, X1, . . . , Xm nonprojective, and Xm = radQ for an 
indecomposable projective module Q. Then Ym is an indecomposable direct summand 
of radQ/ socQ, and hence l(Xm) > l(Ym). Moreover, we have the equalities

l(Xi−1) + l(Yi) = l(Xi) + l(Yi−1)

for all i ∈ {1, . . . , m}. Then l(Xm) > l(Ym) implies that l(X) = l(X0) > l(Y0) =
l(P/ socP ), a contradiction because X is a proper submodule of P/ socP .

(2) Assume X1 = P/ socP . Clearly, X1 is not projective. Then ΓA contains a full 
valued subquiver of the form

X2

V2

X3

V3

Xm−1

Xm

Vm−1

Vm

(1,d)
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with d ∈ {1, 2}, 2 ≤ m ≤ r, X2, X3, . . . , Xm nonprojective, and Xm = radQ for an 
indecomposable projective module Q. Then Vm is an indecomposable direct summand 
of radQ/ socQ, and hence l(Xm) > l(Vm). Moreover, if m ≥ 3, we have the equalities

l(Xj−1) + l(Vj) = l(Xj) + l(Vj−1)

for all j ∈ {3, . . . , m}. Then l(Xm) > l(Vm) implies that l(X2) > l(V2). Since 
α(P/ socP ) = 4 we have in modA an almost split sequence

0 −→ radP −→ U1 ⊕ U2 ⊕ U3 ⊕ P −→ P/ socP −→ 0

with U1, U2, U3 indecomposable modules (possibly not pairwise nonisomorphic). Observe 
also that, for any i ∈ {1, 2, 3}, we have in modA an almost split sequence

0 −→ Ui −→ P/ socP ⊕Wi −→ τ−1
A Ui −→ 0,

and hence l(Ui) +l(τ−1
A Ui) ≥ l(P/ socP ). Moreover, rad(P/ socP ) = radP/ socP = U1⊕

U2⊕U3 has nonsimple socle, and hence P/ socP is not the radical of an indecomposable 
projective module in modA. Hence we have in modA an almost split sequence of the 
form

0 −→ P/ socP −→ τ−1
A U1 ⊕ τ−1

A U2 ⊕ τ−1
A U3 −→ τ−1

A (P/ socP ) −→ 0,

and then

l(P/ socP ) + l
(
τ−1
A (P/ socP )

)
= l
(
τ−1
A U1
)

+ l
(
τ−1
A U2
)

+ l
(
τ−1
A U3
)
.

Note that X2 = τ−1
A Ui for some i ∈ {1, 2, 3}. We may assume that X2 = τ−1

A U1. Then 
l(τ−1

A U1) = l(X2) > l(V2) = l(τ−1
A (P/ socP )) implies that l(P/ socP ) > l(τ−1

A U2) +
l(τ−1

A U3). Moreover, we have the inequality

l(U2) + l
(
τ−1
A U2
)

+ l(U3) + l
(
τ−1
A U3
)
≥ 2l(P/ socP ).

This leads to the inequality l(U2) + l(U3) > l(P/ socP ), a contradiction because U2 ⊕U3
is a direct summand of radP/ socP . �

The following theorem is a direct consequence of Proposition 5.1 and description of 
the stable Auslander–Reiten quiver of a selfinjective algebra of finite representation type, 
established by C. Riedtmann [20] and G. Todorov [36] (see also [35, Theorem IV.15.6]).

Theorem 5.2. Let A be a selfinjective algebra of finite representation type, P an inde-
composable projective module in modA with α(P/ socP ) = 4, and ΔP the full valued 
subquiver of ΓA given by the module τ−1

A (P/ socP ) and all modules X in indA lying 



M. Błaszkiewicz, A. Skowroński / Journal of Algebra 422 (2015) 450–486 473
on a nontrivial sectional path in ΓA from P/ socP to X. Then the following statements 
hold.

(i) ΔP consists of nonprojective modules.
(ii) ΔP is a Dynkin quiver whose underlying graph ΔP is the type Δ(A) of A.
(iii) There is no arrow Q → X in ΓA with Q a projective module and X a module on 

ΔP .
(iv) There is no arrow X → Q in ΓA with Q a projective module and X a module on 

ΔP different from τ−1
A (P/ socP ).

6. Proof of Theorem 2

Let Λ be a tilted algebra of Dynkin type, G an admissible infinite cyclic group of 
automorphisms of Λ̂, and A = Λ̂/G the associated orbit algebra. Then it follows from 
Theorem 4.2 that A is a selfinjective algebra of finite representation type, the push-down 
functor Fλ : mod Λ̂ → modA associated to the Galois covering F : Λ̂ → Λ̂/G = A is 
dense and preserves almost split sequences, and the Auslander–Reiten quiver ΓA of A is 
the orbit quiver ΓΛ̂/G of ΓΛ̂ with respect to the induced action of G on ΓΛ̂.

Assume modA admits a maximal almost split sequence. Then there exists an inde-
composable projective module P in modA such that α(P/ socP ) = 4. Let ΔP be the full 
valued subquiver of ΓA given by the module τ−1

A (P/ socP ) and all modules X in indA ly-
ing on a nontrivial sectional path in ΓA from P/ socP to X. Since the push-down functor 
Fλ is dense and preserves almost split sequences, there exists an indecomposable projec-
tive module P ∗ in mod Λ̂ such that Fλ(P ∗) = P and α(P ∗/ socP ∗) = α(P/ socP ) = 4. 
Denote by ΔP∗ the full valued subquiver of ΓΛ̂ given by the module τ−1

Λ̂
(P ∗/ socP ∗)

and all modules X∗ in ind Λ̂ lying on a nontrivial sectional path in ΓΛ̂ from P ∗/ socP ∗

to X∗. Observe that Fλ(ΔP∗) = ΔP . It follows from Theorem 5.2 that ΔP is a Dynkin 
quiver consisting of nonprojective modules, and the underlying graph ΔP of ΔP is 
the Dynkin type Δ(A) of A. Then ΔP∗ is a Dynkin quiver isomorphic to ΔP , con-
sisting of nonprojective modules, and the stable Auslander–Reiten quiver Γ s

Λ̂
of ΓΛ̂ is 

isomorphic to the translation quiver ZΔP∗ . Let MP∗ be the direct sum of all indecom-
posable modules lying on ΔP∗ . Observe that, by Theorem 4.1, MP∗ is a module over 
a bounded full subcategory Λ[−n, n] of Λ̂ given by all objects of νr

Λ̂
(Λ) for integers r

with −n ≤ r ≤ n, for some positive integer n. Let I = IP∗ be the right annihilator of 
MP∗ in Λ[−n, n], and B = Λ[−n, n]/I. Then MP∗ is a faithful B-module. Moreover, 
since ΔP∗ consists of nonprojective modules, we infer that P = P ∗/ socP ∗ is an in-
decomposable projective module in modB and ΔP∗ coincides with the full translation 
subquiver ΔP of ΓB given by the module τ−1

B P = τ−1
Λ̂

(P ∗/ socP ∗) and the indecom-
posable modules X in indB lying on a nontrivial sectional path in ΓB starting from 
P = P ∗/ socP ∗. Applying now Theorem 5.2 to ΔP we conclude that α(τ−1

B P ) = 3
and ΔP = ΔP∗ satisfies the assumptions of Theorem 3.3. Therefore, B is a tilted al-
gebra from the family Bmax , and the full subquiver of ΓB given by the modules from 
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τBΔP∗ ∪ ΔP∗ ∪ τ−1
B ΔP∗ coincides with the full subquiver of ΓΛ̂ given by the modules 

from τΛ̂ΔP∗ ∪ ΔP∗ ∪ τ−1
Λ̂

ΔP∗ . Then it follows from [14] and [15] that mod Λ̂ = mod B̂, 
and consequently Λ̂ ∼= B̂. Applying now Corollary 4.4 we conclude that A = Λ̂/G is iso-
morphic to an orbit algebra B̂/(ϕνm

B̂
), for a positive integer m and a rigid automorphism 

ϕ of B̂.
Therefore the implication (i) ⇒ (ii) in Theorem 2 holds. The converse implication 

(ii) ⇒ (i) in Theorem 2 is a direct consequence of Theorems 4.2 and 4.3.

7. Proof of Theorem 3

Let K be an algebraically closed field. By general theory established by C. Riedt-
mann in [7,21,22] the class of all (basic, indecomposable) selfinjective algebras of finite 
representation type over K splits into two disjoint classes: the standard algebras having 
simply connected Galois covering and the remaining nonstandard algebras. The standard 
algebras A, nonisomorphic to K, are exactly the orbit algebras B̂/G, where B is a tilted 
algebra of type An (n ≥ 1), Dn (n ≥ 4), E6, E7, E8, and G is an admissible infinite cyclic 
group of automorphisms of B̂ (see [26, Theorem 3.5]). The nonstandard selfinjective 
algebras of finite representation type occur only for K of characteristic 2, and can be 
described as modified Brauer tree algebras (see [22,37] and [26, Theorem 3.8]). By The-
orem 2, in order to prove Theorem 3, it is enough to show that the module categories of 
nonstandard algebras of finite representation type over K do not admit maximal almost 
split sequences.

Assume K is of characteristic 2 and A is a nonstandard selfinjective algebra of finite 
representation type over K. Then there exists a tilted algebra B of Dynkin type D3n

(n ≥ 2), and a positive automorphism ψ of B̂ such that ψ3 = νB̂ and A is socle equivalent 
to the orbit algebra A = B̂/(ψ) (the standard form of A). Observe now that modA

admits an indecomposable projective module P with α(P/ socP ) = 4 if and only if modA

admits an indecomposable projective module P with α(P/ socP ) = 4. Suppose that 
modA admits an indecomposable projective module P with α(P/ socP ) = 4. Then it 
follows from Theorem 2 that A is isomorphic to an orbit algebra B̂∗/(ϕνm

B̂∗), where B∗ is a 
tilted algebra from the family Bmax , m is a positive integer, and ϕ is a rigid automorphism 
of B̂∗. But then B̂ ∼= B̂∗, and consequently there is no positive automorphism ψ of B̂
with ψ3 = νB̂ (see Corollary 4.4). Therefore, modA does not admit a maximal almost 
split sequence. The fact that α(P/ socP ) ≤ 3 for any indecomposable projective module 
P over the nonstandard algebra A follows also from the description of A as a modified 
Brauer tree algebra (see [26, Section 3.6]).

8. Proof of Theorem 1

Let A be a finite dimensional basic indecomposable selfinjective K-algebra over a 
field K. We show first that (ii) implies (i).
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Assume A is socle equivalent to an orbit algebra A′ = B̂/(ϕνm
B̂

), where B is an al-
gebra from the family Bmax , m a positive integer, and ϕ a rigid automorphism of B̂. 
Then there is an isomorphism of algebras φ : A/ socA → A′/ socA′ and the induced 
isomorphism of module categories Φ : mod(A/ socA) → mod(A′/ socA′). Obviously, 
A is of finite representation type, because A′ is of finite representation type, by Theo-
rem 4.2. It follows from Theorem 2 that modA′ admits a maximal almost split sequence, 
and consequently there is an indecomposable projective module P ′ in modA′ such that 
α(P ′/ socP ′) = 4. Let P be the indecomposable projective module in modA such that 
Φ(P/ socP ) = P ′/ socP ′. Observe that α(P/ socP ) = α(P ′/ socP ′) = 4, because the 
Auslander–Reiten quivers ΓA and ΓA′ are isomorphic. Let ΔP ′ be the full subquiver of 
ΓA′ given by the module τ−1

A′ (P ′/ socP ′) and all modules X ′ in indA′ lying on a non-
trivial sectional path in ΓA′ from P ′/ socP ′ to X ′. It follows from Theorem 5.2 that 
ΔP ′ consists of nonprojective modules in modA′, and consequently ΔP ′ is a full trans-
lation subquiver of ΓA′/ soc A′ . Then ΔP ′ = Φ(ΔP ) for the full subquiver ΔP of ΓA/ soc A

given by the module τ−1
A (P/ socP ) and all modules X in indA lying on a nontrivial 

sectional path in ΓA from P/ socP to X. Observe that, by Theorem 5.2, ΔP consists 
of nonprojective modules in modA, and hence is a full subquiver of ΓA/ soc A. Let MP

be the direct sum of all modules in indA lying on ΔP and MP ′ the direct sum of all 
modules in indA′ lying on ΔP ′ . Then MP is a module in modA/ socA, MP ′ is a mod-
ule in modA′/ socA′, and Φ(MP ) = MP ′ . Moreover, we have τAMP = τA/ soc AMP , 
τA′MP ′ = τA′/ soc A′MP ′ , Φ(τA/ soc AMP ) = τA′/ soc A′MP ′ , and an isomorphism of 
K-vector spaces

HomA/ soc A(MP , τA/ soc AMP ) ∼−→ HomA′/ soc A′(MP ′ , τA′/ soc A′MP ′)

induced by Φ. Clearly, we have HomA(MP , τAMP ) = HomA/ soc A(MP , τA/ soc AMP ) and 
HomA′(MP ′ , τA′MP ′) = HomA′/ soc A′(MP ′ , τA′/ soc A′MP ′). Therefore, in order to prove 
that HomA(MP , τAMP ) = 0, it is enough to show that HomA′(MP ′ , τA′MP ′) = 0. Con-
sider the Galois covering F : B̂ → B̂/G = A′, where G is the infinite cyclic group 
generated by g = ϕνm

B̂
, and the associated push-down functor Fλ : mod B̂ → modA′. 

Since Fλ is dense and preserves almost split sequences, there exists an indecompos-
able projective module P ∗ in mod B̂ such that α(P ∗/ socP ∗) = α(P ′/ socP ′) = 4 and 
ΔP ′ = Fλ(ΔP∗) for the full subquiver ΔP∗ of ΓB̂ given by the module τ−1

B̂
(P ∗/ socP ∗)

and all modules X∗ in ind B̂ lying on a nontrivial sectional path in ΓB̂ from P ∗/ socP ∗

to X∗. Clearly, then MP ′ = Fλ(MP∗), where MP∗ is the direct sum of all mod-
ules in ind B̂ lying on ΔP∗ . We also note that τA′MP ′ = Fλ(τB̂MP∗). Further, 
the push-down functor Fλ : mod B̂ → modA′ is a Galois covering of module cat-
egories (see [12, Theorem 3.6]), and hence it induces an isomorphism of K-vector 
spaces ⊕

HomB̂

(
MP∗ , gr(τB̂MP∗)

)
∼−→ HomA′(MP ′ , τA′MP ′).
r∈Z
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Moreover, we have gr(τB̂MP∗) = τB̂g
r(MP∗) for any r ∈ Z. Since α(P ∗/ socP ∗) = 4, 

applying Theorem 4.3, we conclude that MP∗ is a module in a module category 
mod νs

B̂
(B), for some integer s. We may assume without loss of generality that s = 0. 

We also note that supp(τB̂MP∗) = supp(MP∗), because τB̂MP∗ = τBMP∗ and 
every homomorphism from an indecomposable projective B̂-module to MP∗ factors 
through a module of the form (τB̂MP∗)t for some integer t. On the other hand, 
g = ϕνm

B̂
with m ≥ 1 and ϕ a rigid automorphism of B̂. Hence, applying The-

orem 4.1, we conclude that the modules MP∗ and τB̂g
r(MP∗), with r ∈ Z\{0}, 

have disjoint supports, and consequently HomB̂(MP∗ , gr(τB̂MP∗)) = 0. We have also 
HomB̂(MP∗ , τB̂MP∗) = 0, because the quiver ΓB̂ is acyclic and every nonzero noni-
somorphism between modules in ind B̂ is a finite sum of compositions of irreducible 
homomorphisms between indecomposable modules. Summing up, we conclude that 
HomB̂(MP∗ , gr(τB̂MP∗)) = 0 for any r ∈ Z, and consequently HomA′(MP ′ , τA′MP ′) = 0. 
Therefore, we obtain HomA(MP , τAMP ) = 0. This finishes the proof of implication 
(ii) ⇒ (i).

Assume now that A is of finite representation type and modA admits an indecom-
posable projective module P with α(P/ socP ) = 4 and HomA(MP , τAMP ) = 0. Let 
IP = rA(MP ) and BP = A/IP . Then it follows from Theorems 3.3 and 5.2 that:

(a) MP is a tilting module in modBP ;
(b) BP is a tilted algebra of Dynkin type from the family Bmax ;
(c) ΔP is a section of ΓBP

without projective and injective modules;
(d) the full translation subquiver of ΓBP

given by all modules from τBP
ΔP ∪ ΔP ∪

τ−1
BP

ΔP is the full translation subquiver of ΓA given by all modules from τAΔP ∪
ΔP ∪ τ−1

A ΔP .

A crucial step for proving the implication (i) ⇒ (ii) of Theorem 1 is the following 
theorem.

Theorem 8.1. The ideal IP is a deforming ideal of A with rA(IP ) = eP IP for an idem-
potent eP of A.

We will prove the above theorem in several steps. Let e1, . . . , er be a set of pairwise 
orthogonal primitive idempotents of A such that 1A = e1+· · ·+er and eP = e1+· · ·+en, 
for some n ≤ r, is a residual identity of BP = A/IP . We abbreviate Δ = ΔP , M = MP , 
I = IP , B = BP , and e = eP . We denote by J the trace ideal of M in A, that is, the 
ideal of A generated by the images of all homomorphisms from M to A, and by J ′ the 
trace ideal of the left A-module D(M) in A. Observe that I = lA(D(M)). Then we have 
the following lemma.

Lemma 8.2. We have J ⊆ I and J ′ ⊆ I.
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Proof. First we show that J ⊆ I. By definition, there exists an epimorphism ϕ : Ms → J

for some integer s ≥ 1. Suppose that J is not contained in I. Then there exists a homo-
morphism f : A → M in modA with f(J) 
= 0. Observe that, by (c) and (d), we have 
τAM = τBM and τAM , M do not contain projective direct summands. Then, applying 
[1, Lemma VIII.5.4], we conclude that there are a positive integer t and homomorphisms 
g : A → (τAM)t, h : (τAM)t → M such that f = hg. But then hgϕ = fϕ 
= 0 because
J = Imϕ, and hence gϕ 
= 0. This implies HomA(M, τAM) 
= 0, contradicting the 
assumption imposed on M . Therefore J ⊆ I.

Suppose now that J ′ is not contained in I. Then there is a homomorphism f ′ : A →
D(M) in modAop such that f ′(J ′) 
= 0. Moreover, we have in modAop an epimorphism 
ϕ′ : D(M)m → J ′ for some integer m ≥ 1. Then f ′w′ϕ′ 
= 0 for w′ : J ′ → A the inclusion 
homomorphism in modAop. Applying the duality functor D : modAop → modA we 
obtain homomorphisms

D
(
D(M)
) D(f ′)−−−−→ D(A) D(w′)−−−−→ D(J ′) D(ϕ′)−−−−→ D

(
D(M)m

)
in modA, where D(D(M)) ∼= M , D(D(M)m) ∼= Mm, D(A) ∼= A, and

D
(
ϕ′)D(w′)D(f ′) = D

(
f ′w′ϕ′) 
= 0.

Then, as in the first part of the proof, we conclude that HomA(M, τAM) 
= 0, a contra-
diction. Hence J ′ ⊆ I. �
Lemma 8.3. We have lA(I) = J , rA(I) = J ′ and I = rA(J) = lA(J ′).

Proof. We prove that lA(I) = J and I = rA(J). Since J is a right B-module, we 
have JI = 0, and hence I ⊆ rA(J). In order to show the converse inclusion, take a 
monomorphism u : M → At

A for some integer t ≥ 1, and let ui : M → A be the composite 
of u with the projection of At

A on the i-th component. Then there is a monomorphism 
v : M →

⊕t
i=1 Im ui induced by u. Further, by definition of J , 

⊕t
i=1 Im ui is contained 

in 
⊕t

i=1 J . This leads to the inclusions

rA(J) = rA

(
t⊕

i=1
J

)
⊆ rA(M) = I.

Therefore, I = rA(J). Moreover, applying a theorem by T. Nakayama (see [35, Corol-
lary IV.6.11]), we obtain that lA(I) = lA(rA(J)) = J .

Applying similar arguments, one shows the equalities I = lA(J ′) and rA(I) =
rA(lA(J ′)) = J ′. �
Lemma 8.4. We have eIe = eJe. In particular, (eIe)2 = 0.
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Proof. Since e is a residual identity of B = A/I, we have B ∼= eAe/eIe. In particular, 
we conclude that M is a module in mod eAe with reAe(M) = eIe. Observe also that eJe
is the trace ideal of M in eAe, generated by the images of all homomorphisms from M
to eAe in mod eAe. It follows from Lemma 8.2 that eJe = eJ is an ideal of eAe with 
eJe ⊆ eIe ⊆ rad eAe. Let Λ = eAe/eJe. Then M is a sincere module in modΛ. We will 
prove that M is a faithful module in modΛ. Observe that then eIe/eJe = rΛ(M) = 0, 
and consequently eIe = eJe. Clearly, then (eIe)2 = (eJe)(eIe) = 0, because JI = 0.

We shall first show that idΛ M ≤ 1. Consider the exact sequence

0 −→ eJe
u−→ eAe

v−→ Λ −→ 0

in modΛ, where u is the inclusion homomorphism and v is the canonical epimorphism. 
Applying the functor HomeAe(τ−1

eAeM, −) : mod eAe → modK to this sequence, we get 
the exact sequence in modK of the form

HomeAe

(
τ−1
eAeM, eJe

) α−→ HomeAe

(
τ−1
eAeM, eAe

)
β−→ HomeAe

(
τ−1
eAeM,Λ

)
γ−→ Ext1eAe

(
τ−1
eAeM, eJe

)
where α = HomeAe(τ−1

eAeM, u), β = HomeAe(τ−1
eAeM, v), and γ is the connecting homo-

morphism. Observe that there is an epimorphism M t → τ−1
eAeM in mod eAe for some posi-

tive integer t. Indeed, it follows from the properties (c) and (d) of M that τ−1
eAeM = τ−1

B M

and the full translation subquiver of ΓB given by the indecomposable direct summands of 
M and τ−1

B M is the full translation subquiver of ΓeAe given by the indecomposable direct 
summands of M and τ−1

eAeM . Moreover, no indecomposable projective module in mod eAe

is a direct summand of τ−1
eAeM . Then a projective cover Q → τ−1

eAeM of τ−1
eAeM in mod eAe

factors through a module of the form M t, and the claim follows. Observe that then the 
image of every homomorphism g : τ−1

eAeM → eAe in mod eAe is contained in eJe, and 
hence α is an isomorphism. This implies that γ is a monomorphism. Further, applying 
[1, Lemma VIII.5.4(b)], we conclude that every homomorphism f : M → eAe in mod eAe

factors through a module of the form (τ−1
eAeM)s for some positive integer s. Hence there is 

an epimorphism (τ−1
eAeM)m → eJe in mod eAe. We claim that then HomeAe(eJe, M) = 0. 

Assume HomeAe(eJe, M) 
= 0. Since there is an epimorphism M t → τ−1
eAeM , we con-

clude that there exist homomorphisms ϕ : M → τ−1
eAeM and ψ : τ−1

eAeM → M such that 
ψϕ 
= 0. Applying [1, Lemma VIII.5.4(a)] again, we conclude that ϕ factors through a 
module of the form (τeAeM)p, for some positive integer p, and hence HomA(M, τAM) =
HomeAe(M, τeAeM) 
= 0, a contradiction. Thus HomeAe(eJe, M) = 0. Then we 
have Ext1eAe(τ−1

eAeM, eJe) ∼= DHomeAe(eJe, M) = 0. Summing up, we conclude that 
HomΛ(τ−1

Λ M, Λ) = HomeAe(τ−1
eAeM, Λ) = 0, or equivalently, idΛ M ≤ 1. Clearly, we have 

Ext1Λ(M, M) = DHomΛ(M, τΛM) = DHomeAe(M, τeAeM) = DHomA(M, τAM) = 0. 
Since the rank of K0(Λ) is the rank of K0(B), we conclude that M is a cotilting module 
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in modΛ, and hence D(M) is a tilting module in modΛop. In particular, D(M) is a faith-
ful module in modΛop. Then we obtain the required fact rΛ(M) = lΛop(D(M)) = 0. �
Lemma 8.5. Let f be a primitive idempotent in I such that fJ 
= fAe. Then L =
fAeAf+fJ+fAeAfAe +eAf+eIe is an ideal of F = (e +f)A(e +f), and N = fAe/fLe

is a module in modB such that HomB(N, M) = 0 and HomB(M, N) 
= 0.

Proof. It follows from Lemma 8.4 that fAeIe ⊆ fJ . Then the fact that L is an ideal 
of F is a direct consequence of fJ ⊆ fAe. Observe also that fLe = fJ + fAeAfAe, 
fLf ⊆ rad(fAf), eLe = eIe, and eLf = eAf . We have N 
= 0. Indeed, if fAe = fLe

then, since eAfAe ⊆ rad(eAe), we obtain fAe = fJ+fAe(rad(eAe)), and so fAe = fJ , 
by the Nakayama lemma [35, Lemma I.3.3], which contradicts our assumption. Further, 
B = eAe/eIe and (fAe)(eIe) = fAeJ ⊆ fJ ⊆ fLe, and hence N is a right B-module. 
Moreover, N is also a left module over S = fAf/fLf and F/L is isomorphic to the 
triangular matrix algebra

Λ =
(
S N

0 B

)
.

Involving the properties (c) and (d) of M , we conclude that for every indecomposable 
direct summand X of M , we have in modB an almost split sequence

0 −→ X −→ Y −→ Z −→ 0

which is also an almost split sequence in modA, and hence an almost split sequence 
in modΛ. Applying now [27, Lemma 5.6] (or [24, Theorem XV.1.6]), we conclude that 
HomB(N, M) = 0. Then we obtain HomB(M, N) 
= 0, because every indecomposable 
module in modB is either generated or cogenerated by M . �
Proposition 8.6. We have Ie = J and eI = J ′.

Proof. This follows exactly as [27, Proposition 5.9] by applying Lemmas 8.2, 8.3, 8.4, 
8.5. �
Proof of Theorem 8.1. It follows from Lemma 8.3 and Proposition 8.6 that rA(I) = J ′ =
eI and lA(I) = J = Ie. In particular, we have IeI = 0, because JI = 0. Then, applying 
Proposition 2.2, we conclude that socA ⊆ I and leAe(I) = eIe = reAe(I). Moreover, the 
valued quiver QA/I of A/I = B is acyclic, because B is a tilted algebra. Therefore, I is 
a deforming ideal of A with rA(I) = eI.

We complete now the proof of implication (i) ⇒ (ii) of Theorem 1. It follows from 
Theorem 2.5 that the algebra A[I] associated to I is isomorphic to an orbit algebra 
B̂/(ψν ̂) for some positive automorphism ψ of B̂. Moreover, since B is a tilted algebra 
B
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from the family Bmax , applying Corollary 4.4, we conclude that (ψνB̂) = (ϕνm
B̂

) for a 

positive integer m and a rigid automorphism ϕ of B̂. Finally, by Theorem 2.4, we obtain 
that A is socle equivalent to A[I], and consequently A is socle equivalent to B̂/(ϕνm

B̂
). 

Moreover, if K is an algebraically closed field, then A and A[I] are isomorphic, by 
Theorem 2.7, and hence A is isomorphic to B̂/(ϕνm

B̂
). �

9. Examples

In this section we present examples illustrating the main results of the paper.

Example 9.1. Let Q be the quiver

0

1 2 3

α1
α2

α3

and B = KQ the path algebra of Q over a field K. We note that B belongs to the family 
Bmax . The repetitive category B̂ of B is the bound quiver category KQ̂/Î, where Q̂ is 
the quiver

(m, 0)

(m, 1) (m, 2) (m, 3)

(m− 1, 0)

...
...

...

(m + 1, 0)

(m + 1, 1)(m + 1, 2)(m + 1, 3)

...
...

...

αm,1
αm,2

αm,3

βm,1
βm,2

βm,3

αm−1,3
αm−1,2

αm−1,1

αm+1,1
αm+1,2

αm+1,3

βm+1,1
βm+1,2

βm+1,3

βm+2,1
βm+2,2

βm+2,3
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and Î is the ideal in the path category KQ̂ generated by the elements αm,iβm,i−αm,jβm,j , 
βm,iαm−1,j , for m ∈ Z and i 
= j in {1, 2, 3}. For each (m, i) ∈ Z × {1, 2, 3}, denote 
by em,i the object of B̂ corresponding to the vertex (m, i) of Q̂. Then the Nakayama 
automorphism νB̂ of B̂ is given by νB̂(em,i) = em+1,i for any (m, i) ∈ Z × {1, 2, 3}. 
Consider the automorphisms ϕ and ψ of B̂ given by the cyclic permutations of objects 
of B̂

ϕ = (em,1, em,3), for all m ∈ Z,

ψ = (em,1, em,2, em,3), for all m ∈ Z.

Then

T (B)(r) = B̂/
(
νr
B̂

)
, B̂/
(
ϕνr

B̂

)
, B̂/
(
ψνr

B̂

)
,

for r ∈ N+ = {1, 2, . . .}, form a complete family of pairwise nonisomorphic selfinjective 
orbit algebras of finite representation type, created by the algebra B, whose module 
categories admit maximal almost split sequences. In particular, A = B̂/(νB̂) = T (B), 
A′ = B̂/(ϕνB̂), A′′ = B̂/(ψνB̂) are isomorphic to the bound quiver algebras KΩ/J , 
KΩ/J ′, KΩ/J ′′, respectively, where Ω is the quiver

0

3

1

2

α1

α2

α3

β3

β1

β2

and J , J ′, J ′′ are the ideals

J = 〈α1β1 − α2β2, α2β2 − α3β3, β1α2, β1α3, β2α3, β2α1, β3α1, β3α2〉,

J ′ = 〈α1β1 − α2β2, α2β2 − α3β3, β1α1, β1α2, β2α3, β2α1, β3α2, β3α3〉,

J ′′ = 〈α1β1 − α2β2, α2β2 − α3β3, β1α1, β1α3, β2α1, β2α2, β3α2, β3α3〉.

Moreover, the Auslander–Reiten quivers ΓA, ΓA′ , ΓA′′ of A, A′, A′′, respectively, are of 
the forms
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(see [26, 3.3]).

We exhibit now the classes of selfinjective algebras of finite representation type with 
maximal almost split sequences which are not orbit algebras of repetitive categories of al-
gebras, showing that we cannot replace in Theorem 1 “socle equivalent” by “isomorphic”.

Example 9.2. Let L be a finite field extension of K, Q a finite acyclic quiver, and Q0 the 
set of vertices of Q. Then the path algebra H = LQ of Q over L is a finite dimensional 
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hereditary K-algebra whose quiver QH coincides with Q. Moreover, the H–H-bimodules 
D(H) = HomK(H, K) and HomL(H, L) are canonically isomorphic, so we may iden-
tify them. We denote by ei, i ∈ Q0, the canonical set of pairwise orthogonal primitive 
idempotents in H, and by e∗i , i ∈ Q0, the associated dual elements in D(H).

Let α : L × L → L be a 2-cocycle of the K-algebra L, that is, a K-bilinear map 
satisfying the condition

λ1α(λ2, λ3) − α(λ1λ2, λ3) + α(λ1, λ2λ3) − α(λ1, λ2)λ3 = 0

for all λ1, λ2, λ3 ∈ L. Then we have the associated Hochschild extension

0 −→ L −→ T (L,α) −→ L −→ 0

such that T (L, α) = L ⊕ L as K vector space and the multiplication is defined by

(λ, ξ)(μ, η) =
(
λμ, λη + ξμ + α(λ, μ)

)
for all λ, μ, ξ, η ∈ L. We may associate to α the 2-cocycle α̂ : H ×H → D(H) given by

α̂(a, b) =
∑
i∈Q0

α(eiaei, eibei)e∗i

for a, b ∈ H. Consider the associated Hochschild extension

0 −→ D(H) −→ T (H, α̂) −→ H −→ 0.

Recall that T (H, α̂) = H ⊕D(H) as K-vector space and the multiplication is defined by

(a, f)(b, g) =
(
ab, ag + fb + α̂(a, b)

)
for a, b ∈ H and f, g ∈ D(H). It follows from [38] that T (H, α̂) is a finite dimensional 
selfinjective K-algebra, the elements (ei, −α(1, 1)e∗i ), i ∈ Q0, form a set of pairwise 
orthogonal primitive idempotents of T (H, α̂), whose sum (1, −α(1, 1) 

∑
i∈Q0

e∗i ) is the 
identity of T (H, α̂). Then we have the following facts:

(1) The extension

0 −→ D(H) −→ T (H, α̂) −→ H −→ 0

is splittable if and only if the extension

0 −→ L −→ T (L,α) −→ L −→ 0

is splittable (see [18, Proposition 3.8], [27, Proposition 6.1], [34, Theorem 5.8]).
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(2) T (H, α̂) is a symmetric algebra if and only if T (L, α) is a symmetric algebra (see 
[18, Theorem 3.9]).

(3) T (H, α̂) is socle equivalent to the trivial extension algebra T (H) = H � D(H), 
because the elements e∗i , i ∈ Q0, belong to the socle of T (H, α̂).

Assume now that H = LQ is a hereditary algebra (over K) from the family Bmax . 
Then T (H, α̂) is a selfinjective algebra of finite representation type and modT (H, α̂)
admits exactly one maximal almost split sequence, because T (H, α̂) is socle equivalent 
to T (H) = Ĥ/(ν

Ĥ
) (see Theorem 2 and Corollary 6). We consider now two choices of 

the finite extension fields.
(i) Let K = Zp(u, v) be the rational function field in two indeterminates u, v over the 

prime field Zp of characteristic p > 0, and L be the finite extension field K[X, Y ]/(Xp−
u, Y p−v) of K. Moreover, let x and y be the residue classes of X and Y in L, respectively. 
Then L has a K-basis given by the elements of the form xlym, l, m ∈ {0, 1, . . . , p − 1}. 
Consider the 2-cocycle (see [18, Example 3.10]) α : L × L → L given by

α
(
xlym, xrys

)
= lsxl+rym+s

for l, m, r, s ∈ {0, 1, . . . , p − 1}. Observe that α(x, y) = xy 
= 0 = α(y, x). Then it follows 
from [18, Lemma 1.3] that the extension

0 −→ L −→ T (L,α) −→ L −→ 0

is not splittable. Moreover, T (L, α) is a symmetric algebra, because L is an extension of K
by two elements (see [18, Theorem 4.2]). Therefore, by (1)–(3), T (H, α̂) is a symmetric 
algebra which is socle equivalent but not isomorphic to the trivial extension algebra 
T (H).

(ii) Let K = Zp(u, v, w) be the rational function field in three indeterminates u, v, 
w over the prime field Zp of characteristic p > 0, and L be the finite extension field 
K[X, Y, Z]/(Xp − u, Y p − v, Zp − w) of K. Moreover, let x, y, z be the residue classes 
of X, Y , Z in L, respectively. Then L has a K-basis given by the elements of the form 
xlymzn, l, m, n ∈ {0, 1, . . . , p − 1}. Consider the 2-cocycle (see [18, Lemma 4.5 and 
comments below it]) α : L × L → L given by

α
(
xlymzn, xryszt

)
= xl+r−1ym+s−1zn+t−1(lsz + mtxy)

for l, m, n, r, s, t ∈ {0, 1, . . . , p − 1}. Observe that α(xy, yz) = y(z + xy) 
= 0 = α(yz, xy). 
Hence, applying [18, Lemma 1.3] again, we conclude that the extension

0 −→ L −→ T (L,α) −→ L −→ 0

is not splittable. Moreover, T (L, α) is not a symmetric algebra, by [18, Proposition 4.6 
and comments below it]. Therefore, by (1)–(3), T (H, α̂) is not a symmetric algebra and 
is socle equivalent but not isomorphic to the trivial extension algebra T (H).
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We also note that, in the both cases (i) and (ii), T (H, α̂) is a selfinjective algebra 
of finite representation type, modT (H, α̂) admits a maximal almost split sequence, and 
T (H, α̂) is not isomorphic to an orbit algebra B̂/(ϕνB̂), where B is a K-algebra and ϕ
is a positive automorphism of B̂ (see [30, Proposition 4]).
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