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Introduction

All algebras we consider are associative, not necessarily unitary, and over a fixed field 
F of characteristic 0. Let A be an associative algebra satisfying a polynomial identity 
(also called a PI algebra), and let G be a finite group. Assume that A is G-graded, 
then A satisfies non-trivial G-graded polynomial identities. Denote by Pn the vector 
space of all multilinear polynomials of degree n in the variables x1, . . . , xn in the 
free associative algebra F 〈X〉 freely generated over F by X = {x1, x2, . . .}. It is well 
known that in order to study the polynomial identities of A one may consider only the 
multilinear ones (as long as the characteristic of the base field equals 0). If A is an 
algebra and Id(A) is its T-ideal, that is the ideal of its polynomial identities in F 〈X〉
then Id(A) is generated as a T-ideal by the elements in Id(A) ∩ Pn for n ≥ 1. The 
vector space Pn is a left module over the symmetric group in a natural way, and it 
is isomorphic to the left regular Sn-module FSn, and moreover Pn ∩ Id(A) is its sub-
module. It is more convenient to consider the factor module Pn(A) = Pn/(Pn ∩ Id(A))
instead of Pn ∩ Id(A). Following this line one applies the theory of representations of 
the symmetric group to the study of PI algebras, and in an equivalent form, the repre-
sentations of the general linear group. Hence it is important to know the decomposition 
of Pn(A) into irreducible modules, its character, the generators of the irreducible mod-
ules and so on. One of the most important numerical invariants of a PI algebra is its 
codimension sequence cn(A) = dimPn(A). Despite its importance the exact computa-
tion of the codimensions of an algebra is extremely difficult, and it has been done for 
very few algebras. That is why one is led to study the asymptotic behaviour of the 
codimensions. A celebrated theorem of Regev asserts that if A is a PI algebra satisfy-
ing an identity of degree d then cn(A) ≤ (d − 1)2n. Thus the growth of the sequence 
cn(A) cannot be very “fast”: dimPn = n!. In the late nineties Giambruno and Zaicev 
(see for example their monograph [17]) proved that if A is a PI algebra then the limit 
limn→∞(cn(A)1/n) exists and is always a non-negative integer called the exponent (or 
PI exponent) of the algebra A, denoted by exp(A), thus answering in the affirmative a 
conjecture of Amitsur. The PI exponent of A can be explicitly computed; it is closely 
related to the structure of A and equals the dimension of certain semisimple algebra 
related to A.

One may thus classify the PI algebras according to their exponents. Of special interest 
are the PI algebras with “slow” codimension growth. It is well known that exp(A) ≤ 1
if and only if cn(A) is polynomially bounded. Various descriptions of such algebras were 
given, the interested reader might want to consult the monographs [17, Chapter 7] for 
further information about this topic. We recall that a theorem of Kemer [20,21] states 
that the following conditions are equivalent for the PI algebra A.

(1) The codimension sequence cn(A) is polynomially bounded.
(2) exp(A) ≤ 1.
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(3) There is a constant q depending only on A such that the nonzero irreducible 
Sn-modules appearing in the decomposition of Pn(A) correspond to Young diagrams 
having at most q boxes below the first row.

(4) Neither the Grassmann algebra G of an infinite dimensional vector space nor the 
algebra UT2 of the 2 × 2 upper triangular matrices lie in the variety of algebras 
generated by A.

Later on Giambruno and Zaicev [16] proved that a variety of algebras is of polynomial 
growth if and only if it can be generated by a finite direct sum of finite dimensional 
algebras Ai such that the Jacobson radical Ji of Ai is of codimension ≤ 1 in Ai for all i. 
Further results concerning PI algebras with polynomial growth of their codimensions 
were obtained in [9].

Gradings on algebras and the corresponding graded identities have proven an indis-
pensable tool in the study of PI algebras. In this paper we consider gradings by finite 
groups only. Recall that the algebra A is G-graded if A = ⊕g∈GAg is a decomposition of 
A into a direct sum of its vector subspaces Ag such that AgAh ⊆ Agh for all g, h ∈ G. 
The graded identities of large families of algebras are well understood while their or-
dinary analogues still remain very far from our knowledge. Recall that the polynomial 
identities of the matrix algebras Mn(F ) are known only for n ≤ 2, see [30,6,22]. Their 
graded counterparts have been extensively studied and described under any reasonable 
grading, see for example [34,3].

One defines graded multilinear elements in analogy with the case of ordinary identities, 
graded codimensions of an algebra (or variety of G-graded algebras), graded PI exponent 
and so on, see the precise definitions below. It is known that the graded PI exponent 
of an algebra exists and is always an integer, see [1]. (Recall that the case when G is 
abelian was dealt with in [2,10].)

It follows from the theory developed by Kemer that in characteristic 0, every PI 
algebra A satisfies the same polynomial identities as the Grassmann envelope of an 
appropriate finite dimensional Z2-graded algebra. Moreover as recalled above (see [16]) 
if the codimensions of A are polynomially bounded then A is PI equivalent to a finite 
dimensional algebra. In the graded case a precise information was obtained in [25]: the 
graded codimensions of A are polynomially bounded if and only if A satisfies the same 
graded identities as a finite direct sum of finite dimensional graded algebras Bi such that 
dimBi/J(Bi) ≤ 1 for all i. Here J(Bi) is as usual the Jacobson radical of Bi. Further 
detailed descriptions of the varieties of G-graded algebras with polynomial growth of 
their graded codimensions were given in [13,33,25], see Theorem 1.3 below.

In this paper we study PI algebras graded by a finite group G such that their graded 
codimensions are of polynomial growth. We deduce that the polynomial growth of the 
graded codimension sequence of A is equivalent to a condition that several concrete 
algebras do not belong to the variety generated by A and moreover the multiplicities of 
the irreducible modules are bounded by a constant, see Theorem 2.1. Later on we prove 
that in fact the non-zero multiplicities may occur only for multipartitions having bounded 
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quantity of boxes outside the first row of the first partition. In the sequel we transfer 
a theorem of Gordienko, see [18,19] to the graded case. Namely we prove that these 
multiplicities are eventually constants depending only on the shape of the multipartition 
below the first row. To this end we employ some ideas developed in [18,19] adapted to 
the graded case.

In the sequel we relate the polynomial growth of the graded codimensions to the cor-
responding colengths (that is the sum of all multiplicities of irreducible modules in the 
decomposition of the graded multilinear elements). Namely we prove that the colengths 
must be bounded by a constant, and moreover this condition is equivalent to the poly-
nomial growth of the codimensions.

Assume A is a G-graded algebra of polynomial growth: cGn (A) ≤ anp for some pos-
itive integer p and positive constant a. We prove that the nonzero irreducible modules 
correspond to multipartitions having at most p boxes outside the first row of the first 
partition. In order to make the last statement more precise we introduce some notation 
(see for details the beginning of Section 2). Let λ(i) 
 ni be a partition of ni, 1 ≤ i ≤ s, 
and denote 〈λ〉 = (λ(1), . . . , λ(s)) 
 (n1, . . . , ns) the corresponding multipartition of 
n = n1 + · · · + ns. The statement we discuss here says that n − λ(1)1 ≤ p. Moreover 
if the growth of the graded codimensions of A is asymptotically anp then there must 
appear in the decomposition into irreducibles at least one module corresponding to a 
multipartition with n −λ(1)1 = p. We describe further the graded algebras A with linear 
growth of their graded codimensions. We obtain that such an algebra is PI equivalent 
to a finite direct sum of algebras Mg satisfying the graded identities of UT g

2 , the upper 
triangular matrices of size 2, and a nilpotent algebra N . Moreover we use the description 
of the graded subvarieties of UT g

2 given in [25], and obtain a concrete list of possibilities 
for the algebras Mg.

1. Preliminaries

Throughout the paper F will denote a fixed field of characteristic zero, G a finite 
group and A an associative G-graded PI-algebra (i.e., A satisfies an ordinary polynomial 
identity) over F . We do not require the algebras to be unitary. All algebras and vector 
spaces we consider will be over the field F . Thus if G = {1G = g1, . . . , gs} then A =⊕s

i=1 Agi is a direct sum of its vector subspaces Agi such that AgiAgj ⊆ Agigj for all i, 
j = 1, . . . , s.

We denote by F 〈X〉 the free associative algebra freely generated over the field F by 
the countable set of free generators X = {x1, x2, . . .}. It can be given a natural structure 
of a G-graded algebra in the following way. We write

X =
s⋃

i=1
Xgi

where Xgi = {x1,gi , x2,gi , . . .} are disjoint infinite sets whose elements are said to be 
of homogeneous degree gi. Denote by Fgi the vector subspace of F 〈X〉 spanned by all 
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monomials in the variables of X having homogeneous degree gi. Then F 〈X〉 =
⊕s

i=1 Fgi

is a G-graded algebra; it is called the free G-graded algebra of countable rank over F . 
We shall denote it by F 〈X, G〉.

A graded polynomial f of F 〈X, G〉 is a graded (polynomial) identity of A and we 
write f ≡ 0 in case f vanishes under all graded substitutions xi,g → ag ∈ Ag. In other 
words f is a graded identity of A whenever f lies in the kernels of all homomorphisms 
of graded algebras ϕ: F 〈X, G〉 → A.

Let IdG(A) denote the set of all graded identities of A. It is clear that IdG(A) is an 
ideal of F 〈X, G〉 which is invariant under all graded endomorphisms of the free algebra; 
in analogy with the case of algebras satisfying ordinary polynomial identities it is called 
the TG-ideal of A.

It is well known that in characteristic zero, every graded identity is equivalent to a 
system of multilinear graded identities. We denote by

PG
n = spanF {xσ(1),gi1 · · ·xσ(n),gin | σ ∈ Sn, gi1 , . . . , gin ∈ G}

the vector space of multilinear G-graded polynomials in the variables x1,gi , . . . , xn,gi , 
i = 1, . . . , s. The study of IdG(A) is equivalent to the study of PG

n ∩ IdG(A) for all n ≥ 1
and we denote by

cGn (A) = dimF
PG
n

PG
n ∩ IdG(A)

, n ≥ 1,

the n-th G-graded codimension of A.
In order to capture the exponential rate of growth of the above introduced sequence 

of G-codimensions, in [2,10] for abelian groups and in [1] in the general case, the authors 
proved that for any associative G-graded algebra A, satisfying an ordinary identity, the 
limit

expG(A) = lim
n→∞

n

√
cGn (A)

exists and is an integer. It is called the G-exponent of A. Moreover expG(A) can be explic-
itly computed; it turns out expG(A) equals the dimension of a suitable finite dimensional 
semisimple G-graded algebra over an algebraically closed field.

In this paper we are interested in algebras having polynomial growth of their G-graded 
codimensions. The following theorem states that it is equivalent to study G-graded al-
gebras such that expG(A) ≤ 1.

Theorem 1.1. For a G-graded algebra A, expG(A) ≤ 1 if and only if the sequence cGn (A), 
n = 1, 2, . . . , is polynomially bounded.

Proof. This result follows from the upper and lower bound of the G-exponent obtained 
in [1] and in [2]. �



120 P. Koshlukov, D. La Mattina / Journal of Algebra 434 (2015) 115–137
Given a variety of G-graded algebras V, the growth of V is the growth of the sequence 
of G-codimensions of any algebra A generating V that is V = varG(A). As a consequence 
of the characterization of the G-exponent, in [25] the structure of a generating G-graded 
algebra of a given variety of polynomial growth was described.

We shall need the following definition.

Definition 1.1. Let A and B be G-graded algebras. We say that A is TG-equivalent to 
B and we write A ∼TG

B when A and B satisfy the same G-graded identities, that is 
IdG(A) = IdG(B).

Theorem 1.2. (See [25].) Let G be a finite group and A a G-graded algebra over the 
field F . Then cGn (A), n = 1, 2, . . . , is polynomially bounded if and only if A ∼TG

B

where B = B1 ⊕ · · · ⊕ Bm with B1, . . . , Bm finite dimensional G-graded algebras over 
F and dimBi/J(Bi) ≤ 1 for all i = 1, . . . , m.

Another characterization of varieties of polynomial growth can be given by means of 
exhibiting a finite list of G-graded algebras to be excluded from the variety. It consists 
of the following algebras:

1) E, the infinite dimensional Grassmann algebra with the trivial grading;
2) Ea, the Grassmann algebra with the G-grading induced by its canonical Z2-grading 

where a ∈ G is an element of order 2;
3) UT g

2 , the algebra of 2 × 2 upper triangular matrices over F with the elementary 
G-grading induced by g = (1G, g), g ∈ G;

4) FCh
p , the group algebra of the cyclic group Cp = 〈h〉, with the natural G-grading 

induced by Cp. Here h ∈ G is an element of order p where p is a prime.

The following theorem was essentially proved in [33] (see also [13,25]).

Theorem 1.3. (See [13,33,25].) Let G be a finite group and let A be a G-graded algebra. 
Then cGn (A), n = 1, 2, . . . , is polynomially bounded if and only if UT g

2 , E, Ea, FCh
p /∈

varG(A) for all g ∈ G, a ∈ G of order 2, and h ∈ G of prime order p.

2. Polynomial codimension growth and cocharacters

In this section we shall give characterizations of the varieties of polynomial growth 
through the behaviour of their sequences of cocharacters.

Let n ≥ 1 and write n = n1 + · · ·+ns as a sum of non-negative integers. We denote by 
Pn1,...,ns

⊆ PG
n the vector space of the multilinear graded polynomials in which the first 

n1 variables have homogeneous degree g1, the next n2 variables have homogeneous degree 
g2, and so on. The group Sn1 × · · · × Sns

acts on the left on the vector space Pn1,...,ns

by permuting the variables of the same homogeneous degree. Thus Sn1 permutes the 
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variables of homogeneous degree g1, Sn2 those of homogeneous degree g2, and so on. In 
this way Pn1,...,ns

becomes a module over the group Sn1 × · · · × Sns
. This action is very 

useful since TG-ideals are invariant under renaming of variables of the same homogeneous 
degree. Moreover the vector space

Pn1,...,ns
(A) = Pn1,...,ns

Pn1,...,ns
∩ IdG(A)

is an Sn1 × · · · × Sns
-module with the induced action. We denote by χG

n1,...,ns
(A) its 

character; it is called the (n1, . . . , ns)-th cocharacter of A.
If λ is a partition of n, we write λ 
 n. It is well-known that there is a one-to-one 

correspondence between partitions of n and irreducible Sn-characters. Hence if λ 
 n we 
denote by χλ the corresponding irreducible Sn-character. If λ(1) 
 n1, . . . , λ(s) 
 ns

are partitions we write 〈λ〉 = (λ(1), . . . , λ(s)) 
 (n1, . . . , ns) and we say that 〈λ〉 is a 
multipartition of n = n1 + · · · + ns.

Since charF = 0, by complete reducibility χG
n1,...,ns

(A) can be written as a sum of 
irreducible characters

χG
n1,...,ns

(A) =
∑

〈λ〉�(n1,...,ns)

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(s) (1)

where m〈λ〉 ≥ 0 is the multiplicity of χλ(1) ⊗ · · · ⊗ χλ(s) in χG
n1,...,ns

(A).

Theorem 2.1. Let A be a G-graded algebra, then the following two conditions are equiv-
alent.

(1) The sequence of the graded codimensions cGn (A), n = 1, 2, . . . , is polynomially 
bounded.

(2) The G-graded algebras E, Ea, FCh
p /∈ varG(A) and there exists a constant M such 

that m〈λ〉 ≤ M for all 〈λ〉 
 (n1, . . . , ns) and for all n1 + · · · + ns = n. (Here the 
gradings on the corresponding algebras are the ones given just before Theorem 1.3).

Proof. The result follows by applying Theorem 1.3 and Theorem 4.6 in [4]. �
We shall see in the next section that, in case of polynomial growth, condition (2) of 

the above theorem can be strengthened: the multiplicities m〈λ〉 are eventually constant.
Now if we set cn1,...,ns

(A) = dimF Pn1,...,ns
(A) it is immediate to see that

cGn (A) =
∑

n1+···+ns=n

(
n

n1, . . . , ns

)
cn1,...,ns

(A) (2)

where 
(

n
n1,...,ns

)
= n!

n1!···ns! stands for the generalized binomial coefficient (also called 
multinomial coefficient).
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Hence the growth of cGn (A) is related to the growth of generalized binomial coefficients 
and of degrees of irreducible characters.

We next state some technical results. Given a partition λ = (λ1, . . . , λm) 
 n we 
denote by dλ the degree of the corresponding irreducible character. Also if f(n) and g(n)
are sequences (or functions N → R) we shall use the notation f ≈ g whenever there exist 
positive constants a and b such that ag(n) ≤ f(n) ≤ bg(n) for all (large enough) n.

Proposition 2.1. If λ1 = n − r then dλ ≈ cnr for some constant c.

Proof. By the hook formula we get immediately that dλ ≤ n!
(n−r)! ≤ anr and also dλ ≥

n!
kn(n−1)···(n−(r−1))(n−2r)! ≥ bnr for some constants a, k and b. �
Proposition 2.2. Let n = n1 + · · · + ns ≥ 1 and denote by t = n2 + · · · + ns. Then there 
exists a constant c such that 

(
n

n1,...,ns

)
≈ cnt.

Proof. Notice that
(

n

n1, . . . , ns

)
= n!

n1!n2! · · ·ns!
≥ n!

n1!n2! · · ·ns!(n2 + · · · + ns)!
= k

(
n

n1

)
≥ ant

and 
(

n
n1,...,ns

)
= r n!

n1! = r n!
(n−t)! ≤ bnt for some constants a, b, k and r. �

Theorem 2.2. Let A be a G-graded algebra over the field F . The sequence cGn (A), n = 1, 
2, . . . , is polynomially bounded if and only if there exists a constant q such that for every 
n1, . . . , ns with n1 + · · · + ns = n it holds

χG
n1,...,ns

(A) =
∑

〈λ〉�(n1,...,ns)
n−λ(1)1<q

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(s).

If A is finite dimensional then the constant q is such that J(A)q = 0.

Proof. Notice that neither the decomposition of χG
n1,...,ns

(A) into irreducible characters 
nor cGn (A) change under extensions of the base field. This fact can be proved following 
word by word the proof given in [17, Theorem 4.1.9] for the ordinary case. It relies on 
the well known fact that the irreducible representations of the symmetric group over Q
are absolutely irreducible (that is do not change under extension of the base field). Also 
if F̄ is the algebraic closure of F and J(A)q = 0 then J(A ⊗F F̄ )q = 0. Therefore we 
may assume, without loss of generality, that F is algebraically closed.

Suppose first that cGn (A), n = 1, 2, . . . , is polynomially bounded. According to The-
orem 1.2 we have that A ∼TG

B where B is a finite dimensional algebra. Therefore we 
assume that A is a finite dimensional algebra. By the Wedderburn–Malcev theorem 
[5,31], we can write
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A = A′ + J

where A′ is a maximal semisimple graded subalgebra of A and J = J(A) is its Jacobson 
radical. Recall that J is a graded (or homogeneous) ideal. Also the latter is a direct sum 
of vector subspaces of A. We can write

A′ = A1 ⊕ · · · ⊕Ak

where A1, . . . , Ak are G-graded simple algebras.
Since cGn (A) is polynomially bounded then expG(A) ≤ 1 and by the characterization 

of the G-exponent we must have AiJAj = 0 for all i �= j. Moreover Ai
∼= F (otherwise 

one would have expG(Ai) > 1 and consequently expG(A) > 1) and Ai is endowed with 
the trivial grading.

Hence 
⊕

g∈G,g 	=1G
Ag ⊆ J and, if q is the least positive integer such that Jq = 0

then 
⊕

g∈G,g 	=1G
Ag generates a nilpotent ideal of A of index of nilpotence ≤ q. Let 

〈λ〉 = (λ(1), . . . , λ(s)) be a multipartition of n = n1 + · · · + ns such that n − λ(1)1 ≥ q. 
We claim that every multilinear G-graded polynomial f = eT〈λ〉f0 corresponding to the 
multitableau T〈λ〉 = (Tλ(1), . . . , Tλ(s)) vanishes on A. Here eT〈λ〉 = eTλ(1) · · · eTλ(s) is an es-
sential idempotent of F (Sn1×· · ·×Sns

) corresponding to T〈λ〉. Write f = f(Xg1 , . . . , Xgs)
and let λ(1)′ = (λ(1)′1, . . . , λ(1)′d) be the conjugate (also called transpose) partition of 
λ(1). As in the proof of [10, Lemma 4], if λ(1)′1 > 1 then there exists a subset Y1G

of 
X1G

such that

Y1G
= Y 1 ∪ · · · ∪ Y d, (3)

|Y i| = λ(1)′i and for some r ∈ F (Sn1 × · · · × Sns
), the element rf �= 0 is alternating on 

Y i for all 1 ≤ i ≤ d.
Notice that f generates an irreducible left Sn1 × · · · × Sns

-module. Therefore

F (Sn1 × · · · × Sns
)f = F (Sn1 × · · · × Sns

)rf.

Thus in order to prove that f ∈ IdG(A) it is enough to prove that rf ∈ IdG(A).
Since rf is alternating on each set Y i, in order to get a non-zero value, no two variables 

of Y i can take values in the same Ai
∼= F . But AiAj = 0 whenever i �= j, hence in order 

to get a non-zero evaluation, we must substitute, in rf , at least n1 − λ(1)1 variables 
for elements of the radical J . Therefore as 

⊕
g∈G,g 	=1G

Ag ⊆ J , at least n − λ(1)1 ≥ q

variables must be evaluated on J , and since Jq = 0 we get that rf vanishes on A.
In this way all the irreducible characters appearing in χG

n1,...,ns
(A) with non-zero 

multiplicities correspond to multipartitions 〈λ〉 with n − λ(1)1 < q.
Now suppose that

χG
n1,...,ns

(A) =
∑

〈λ〉�(n1,...,ns)

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(s).
n−λ(1)1<q
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Thus if m〈λ〉 �= 0, for some multipartition 〈λ〉 = (λ(1), . . . , λ(s)) 
 (n1, . . . , ns), we have 
t = n1 − λ(1)1 < q. By Proposition 2.1 we obtain that

degχλ(1) ≤ ant ≤ anq.

Moreover degχλ(i) ≤ q! for any i = 2, . . . , s, and 
(

n
n1···ns

)
< nq since n2 + · · · + ns < q

(see Proposition 2.2).
Since the multiplicities are polynomially bounded by Lemma 2.1 of [1] and since there 

are finitely many multipartitions 〈λ〉 
 (n1, . . . , ns) satisfying the condition n −λ(1)1 < q, 
by (2) we have that the codimensions are polynomially bounded. �

We draw the reader’s attention to the fact that in case G is abelian, a weaker result 
was proved in [14].

3. The multiplicities are eventually constant

In this section we show that if A is a G-graded algebra of polynomial growth then the 
multiplicities of the irreducible characters in the decomposition of the G-graded cochar-
acter of A are eventually constants depending only on the shape of the multipartitions 
〈λ〉. We follow the scheme of proof of Gordienko, see [18,19] where the same fact was 
proved for the ordinary cocharacter instead of the G-graded one. We keep the notation 
introduced above.

Theorem 3.1. Let G be a finite group and let A be G-graded algebra over the field F of 
characteristic 0. Assume that expG(A) ≤ 1 and that χG

n1,...,ns
(A) =

∑
m〈λ〉χλ(1) ⊗ · · · ⊗

χλ(s). Here the summation runs over all multipartitions 〈λ〉 = (λ(1), . . . , λ(s)) of n such 
that n − λ(1)1 < q.

There exists a positive integer n0 such that for every n ≥ n0 and for every multi-
partitions 〈λ〉 of n as above, and 〈μ〉 = (μ(1), λ(2), . . . , λ(s)) of n + 1 where |μ(1)1| =
|λ(1)1| + 1, |μ(1)2| = |λ(1)2|, |μ(1)3| = |λ(1)3|, . . . , it holds m〈λ〉 = m〈μ〉.

We shall divide the proof of the theorem into several steps. We keep the notation 
introduced in Theorem 2.2 and its proof. First we make a number of reductions and 
remarks.

(1) As we mentioned in the beginning of the proof of Theorem 2.2, we consider the field 
F algebraically closed. Since expG(A) ≤ 1 then we may assume dimF A < ∞, and 
moreover A = Fa1 ⊕ · · · ⊕ Fak + J where J = J(A) is the Jacobson radical of A. 
Furthermore a1, . . . , ak ∈ A are orthogonal idempotents. As it was done in the proof 
of Theorem 2.2 we may suppose Jq−1 �= 0 and Jq = 0.
Once again by expG(A) ≤ 1 we have aiJaj = 0 whenever i �= j and, since the 
theorem is true when the algebra A is nilpotent, we may assume that there exists 
ai = a such that B = Fa + J is a non-nilpotent subalgebra of A. Here a2 = a.
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(2) If n ≥ (2r + 1)2 and m is a multilinear monomial of degree n in the variables 
x1, . . . , xn then by the pigeonhole principle there exists a submonomial m′ of m, 
degm′ ≥ 2r + 1 such that no variable from the set {x1, . . . , x2r} appears in m′.

(3) Let Qn = Pn∩IdG(B), and suppose that in the decomposition of the module Pn(B) =
Pn/Qn into irreducibles the module corresponding to the multipartition 〈λ〉 appears 
with multiplicity m〈λ〉. There are exactly m〈λ〉 linearly independent elements of the 
type eT〈λ〉h in Pn/Qn. Here eT〈λ〉 is the standard essential idempotent corresponding 
to the multidiagram T〈λ〉 obtained from the multipartition 〈λ〉 by filling it with 
the integers from 1 to n in some (fixed) way. Thus it suffices to prove that the 
multiplicities m〈λ〉 are constant whenever n is sufficiently large.

(4) The vector space Pn1,...,ns
has a basis consisting of all multilinear monomials such 

that exactly ni variables are of G-degree gi, i = 1, . . . , s. We denote by Rn1,...,ns

the set of all multilinear polynomials where for gi ∈ G there are exactly ni variables 
of degree gi and, moreover, there is a distinguished variable y of G-degree g1 = 1G
(thus n1 ≥ 1).

(5) Suppose that f1 = f |y=xi
and f2 = f |y=xixn+1···xn+v

are graded multilinear poly-
nomials of degrees n and n + v, respectively, obtained from the same polynomial 
f ∈ Rn1,...,ns

, n1 + · · · + ns = n, by substituting the variable y with xi and with 
xixn+1 · · ·xn+v, correspondingly. Then the evaluations of f1 and of f2 on A where 
one substitutes xi, and all of xn+1, . . . , xn+v, by the element a ∈ B coincide, since 
a2 = a.

(6) We fill the multi-diagram T〈λ〉 with the integers {1, 2, . . . , n} as follows. The integers 
{1, 2, . . . , 2q} fill in the leftmost columns of λ(1), and fill in the whole of λ(2), . . . , 
λ(s). As we shall add boxes to the first row of λ(1) the corresponding variables 
will be of G-degree g1 = 1G. Moreover the polynomial that corresponds to eT〈λ〉 is 
symmetric in {xr | r > 2q}, and all of these variables are of G-degree g1.

(7) In order to evaluate such a graded polynomial on B one has to substitute x1, . . . , x2q

by some homogeneous elements in B (respecting the grading), and the xr, r > 2q, by 
either elements a or by elements from J . Suppose one chooses ν elements from the 
radical, then one may suppose ν < q (otherwise the polynomial vanishes on B and 
on A). As our polynomials are multilinear one may consider for such substitutions 
only elements from some fixed bases of the vector spaces B and J . But dimB < ∞
hence one has finitely many such substitutions to consider, as a2 = a.
Let these substitutions be σ1, . . . , σz where σi is defined by the ordered sets 
(β1, . . . , β2q), βj ∈ B, and (γ1, . . . , γν), γj ∈ J .
We choose a homogeneous basis of graded polynomials f1, . . . , fρ in the vector 
space Pn1,...,ns

(B), and write the corresponding elements eT〈λ〉fi. Evaluate them on 
the substitutions σj and write the resulting elements in B as linear combinations of 
a fixed basis bτ of B, as in [18, Lemma 2]:

eT〈λ〉fi|σj
=

∑
H([j, τ ]; i)bτ .
τ
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Let H = (H([j, τ ]; i)) be the matrix whose rows are indexed by all ordered pairs 
[j, τ ], the latter ordered in some way, and whose columns are indexed by the i’s.
Thus H = H(n) has z dimB rows and its rank satisfies r(H) ≤ z dimB. While the 
number of rows of H is constant the number of columns varies with n.
We denote by rn = r(H) the rank of H. Suppose r(N) is the largest value in 
the sequence rn, n ≥ n0 for some large enough n0. Here n = n1 + · · · + ns. Then in 
H(N) there exist r(N) linearly independent rows and also r(N) linearly independent 
columns whose intersection produces an invertible matrix of order r(N). Without 
loss of generality we suppose these are the leftmost r(N) columns of H(N) (this 
can be achieved by reordering the basic vectors). Therefore the linearly independent 
columns come from the polynomials eT〈λ〉fi, 1 ≤ i ≤ r(N).

(8) The polynomials {f1, . . . , fr(N)} can be obtained by some {ϕ1, . . . , ϕr(N)} ⊆ Rn′ for 
some n′, by means of substituting the variable y by some product of variables of 
homogeneous degree g1 = 1G, according to Step 2. We suppose that fi is obtained 
by ϕi substituting the variable y by some monomial mi.
Substitute, in ϕi, the variable y by the monomial mixN+1 · · ·xN+v where v ≥ 1 and 
denote the resulting polynomials by hi. Clearly deg hi = N+v and hi are multilinear. 
Setting M = N+v, as in [18] one writes down the matrix H(M); its columns coming 
from the hi consist of entries of the type H([j, τ ]; i) =

∑
κ πκ(M)Gκ([j, τ ]; i).

Here κ runs over all triples (m, �, k) (following the notation of [18]) where m, �, k
depend on the substitution σ:
• m stands for the quantity of radical elements that we substitute for variables from 

the first row of λ(1) plus the quantity of all boxes in 〈λ〉 outside the first row of 
λ(1) (which equals M − λ(1)1). Clearly m < 2r.

• � stands for the quantity of variables in the first row of λ(1), not coming from 
the monomials mi substituted for the variable y, and that are evaluated on the 
element a. Clearly � is bounded by above.

• k is the quantity of nontrivial segments in the monomial mi that are substituted 
by the element a. Since two such segments are separated by an element from the 
radical, one has k ≤ r.

Therefore we have to compute the coefficients πκ(M). We draw the readers’ attention 
that Gκ([j, τ ]; i) does not depend on M .

(9) The coefficient πκ(M) counts the possibilities to place M −m symbols a in the first 
row of λ(1). As these can be inside the mi as well as outside it one has, repeating 
the argument from the proof of Lemma 2 in [18], that

πκ(M) = (M −m)!
(
M −m− �

k − 1

)
.

Continuing as in [18] we cancel out the common multiplier from the chosen rows of 
H(M) (all of these contain a multiplier (M − M1)! where M1 = max{m}). Then 
the remaining entries will be polynomials in M , and the determinant of order rM is 
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a polynomial in M as well. If this polynomial is identically 0 then the multiplicity 
will always be 0. If it is nonzero we take M large enough so that the determinant is 
always nonzero.
But this means one has at least rM independent columns and r(H) ≥ rM . As the 
opposite inequality is obvious we have the equality, and the theorem is proved.

4. Polynomial codimension growth and colengths

One of the known characterizations of the ordinary varieties of polynomial growth in-
volves the sequence of colengths; these must be bounded by some constant [28]. A similar 
result also holds for varieties of graded algebras. We start with recalling a definition.

Definition 4.1. For n ≥ 1 we define the n-th graded colength of A as:

lGn (A) =
∑

〈λ〉�(n1,...,ns)
n1+···+ns=n

m〈λ〉,

where m〈λ〉 ≥ 0 is defined as in (1).

For every n = n1 + · · · + ns ≥ 1 the (n1, . . . , ns)-cocharacter of the algebras UT g
2 , E, 

Ea were computed (see [4,13,28,29]) and it turned out that the corresponding sequences 
of colengths are not bounded by any constant.

In the next theorem we give the decomposition of the (n1, . . . , ns)-th cocharacter and 
of the n-th graded colength of FCh

p . (Recall that these algebras were defined just after 
Theorem 1.2.)

We observe that FCh
p has the structure of Cp-graded algebra and moreover 

varG(FCh
p ) = varCp(FCh

p ). In order to simplify the notation, we assume it in the follow-
ing theorem.

A sequence of non-negative integers μ = (μ1, . . . , μp) is called a composition of n into 
p parts if 

∑p
i=1 μi = n.

Theorem 4.1. For all n = n1 + · · · + np one has

χn1,...,np
(FCh

p ) = χ(n1) ⊗ · · · ⊗ χ(np) and lGn (FCh
p ) = c(n),

where c(n) denotes the number of all compositions of n into p parts.
Here G stands for the group Cp.

Proof. It follows from [33] that IdG(FCh
p ) = 〈[x1, x2]〉TG

where x1, x2 ∈Xhi , i = 1, . . . , p, 
and for every n1, . . . , np the vector space Pn1,...,np

is generated modulo Pn1,...,np
∩

IdG(FCh
p ) by the monomial

x1,1G
· · ·xn1,1G

x1,h · · ·xn2,h · · ·x1,hp−1 · · ·xnp,hp−1 . (4)



128 P. Koshlukov, D. La Mattina / Journal of Algebra 434 (2015) 115–137
Since such a monomial does not vanish on FCh
p we get that

dimPn1,...,np
/(Pn1,...,np

∩ IdG(FCh
p )) = 1, χG

n1,...,np
(A) = χ(n1) ⊗ · · · ⊗ χ(np).

Therefore lGn (A) = c(n) where c(n) denotes the number of all compositions of n into p
parts. �

As a consequence we also have that the sequence of the graded colengths of FCh
p is 

not bounded by any constant.
Now we are in a position to prove the following theorem.

Theorem 4.2. Let A be a G-graded algebra. Then cGn (A), n = 1, 2, . . . , is polynomially 
bounded if and only if there exists a constant k such that lGn (A) ≤ k for all n ≥ 1.

Proof. Assume first that cGn (A), n = 1, 2, . . . , is polynomially bounded. By Theorem 2.2
we obtain that

χG
n1,...,ns

(A) =
∑

〈λ〉�(n1,...,ns)
n−λ(1)1<q

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(s)

for some constant q. Moreover, by Theorem 2.1, there exists a constant M such that 
m〈λ〉 ≤ M for all 〈λ〉 
 (n1, . . . , ns) and for all n1 + · · · + ns = n. On the other hand 
there are finitely many multipartitions 〈λ〉 satisfying the condition n −λ(1)1 < q. Hence 
it follows that

lGn (A) =
∑

〈λ〉�(n1,...,ns)
n1+···+ns=n

m〈λ〉 ≤ k

for some constant k.
Conversely, assume that lGn (A) ≤ k is bounded by a constant k. In this case UT g

2 , E, 
Ea, FCh

p /∈ varG(A) for all g ∈ G, a ∈ G of order 2, and h ∈ G of order a prime p (see [4,
13,28,29] and Theorem 4.1). By Theorem 1.3 this implies that varG(A) is of polynomial 
growth. �
Remark 4.1. Actually, if cGn (A), n = 1, 2, . . . , is polynomially bounded, by Theorem 3.1
the multiplicities are eventually constant and so are the colengths.

The following theorem collects results about graded varieties of polynomial growth.

Theorem 4.3. For a G-graded algebra A the following conditions are equivalent:

1) cGn (A) is polynomially bounded;
2) expG(A) ≤ 1;
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3) A ∼TG
B where B = B1 ⊕ · · · ⊕ Bm with B1, . . . , Bm finite dimensional G-graded 

algebras over F , and dimBi/J(Bi) ≤ 1 for all i = 1, . . . , m;
4) UT g

2 , E, Ea, FCh
p /∈ varG(A) for all g ∈ G, a ∈ G of order 2 and h ∈ G of order a 

prime p;
5) there exists a constant q such that for every n1, . . . , ns with n1 + · · · + ns = n it 

holds

χG
n1,...,ns

(A) =
∑

〈λ〉�(n1,...,ns)
n−λ(1)1<q

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(s).

If A is a finite dimensional algebra then q is such that J(A)q = 0;
6) E, Ea, FCh

p /∈ varG(A) and there exists a constant M such that m〈λ〉 ≤ M for all 
〈λ〉 
 (n1, . . . , ns) and for all n1 + · · · + ns = n;

7) there exists a constant k such that lGn (A) ≤ k.

Let G be a group. Then the group G � Sn acts on the space PG
n (see [15]) and, since 

TG-ideals are invariant under this action, PG
n /(PG

n ∩ IdG(A)) becomes a G � Sn-module 
whose character, denoted by χG

n (A) is called the n-th graded cocharacter of A. Now 
assume that G is an abelian group.

By complete reducibility we write

χG
n (A) =

∑
〈λ〉�n

m′
〈λ〉χ〈λ〉 (5)

where χ〈λ〉 is the irreducible G � Sn-character associated to the multipartition 〈λ〉, and 
m′

〈λ〉 is the corresponding multiplicity. If 〈λ〉 = (λ(1), . . . , λ(s)) 
 (n1, . . . , ns) is a mul-
tipartition of n then in (1) and (5) one has that m〈λ〉 = m′

〈λ〉 [8].
Thus the statement (5) in the previous theorem can be rewritten in the following way:

5) There exists a constant q such that

χG
n (A) =

∑
〈λ〉=(λ(1),...,λ(s))�n

|λ(1)|+···+|λ(s)|−λ(1)1<q

m〈λ〉χ〈λ〉.

If A is a finite dimensional algebra then q is such that J(A)q = 0.

5. Classifying varieties of slow growth

In this section we present a classification, up to TG-equivalence, of the G-graded 
algebras that generate varieties of at most linear growth.

First we show that the growth of the codimensions is strictly related to the number of 
some boxes of the multipartitions corresponding to irreducible characters which appear 
with non-zero multiplicities.
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Theorem 5.1. Let A be a G-graded algebra. Then cGn (A) ≤ anp for some constants a and 
p if and only if for every n1 + · · · + ns = n it holds

χG
n1,...,ns

(A) =
∑

〈λ〉�(n1,...,ns)
n−λ(1)1≤p

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(s).

The summation runs over all multipartitions 〈λ〉 = (λ(1), . . . , λ(s)) 
 (n1, . . . , ns) such 
that n − λ(1)1 ≤ p, n = n1 + · · · + ns.

Proof. Suppose first that cGn (A) ≤ anp. According to Theorem 2.2, since cGn (A) is poly-
nomially bounded, for all n1 + · · · + ns = n one has

χG
n1,...,ns

(A) =
∑

〈λ〉�(n1,...,ns)
n−λ(1)1<q

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(s),

for some q.
Moreover, since cGn (A) ≤ anp, by (2) it follows that

(
n

n1, . . . , ns

)
cn1,...,ns

≤ anp.

Hence if 〈λ〉 = (λ(1), . . . , λ(s)) 
 (n1, . . . , ns) is a multipartition we must have

(
n

n1, . . . , ns

)
m〈λ〉 degχλ(1) · · ·degχλ(s) ≤ anp.

But the multiplicities m〈λ〉 are bounded by a constant, and degχλ(i) is a constant for i =
2, . . . , s. This implies 

(
n

n1,...,ns

)
degχλ(1) ≤ a′np for some constant a′. By Propositions 2.1

and 2.2, we have that

bnt+r ≤
(

n

n1, . . . , ns

)
degχλ(1) ≤ cnt+r

where r is the number of boxes under the first row of λ(1) and t = n2 + · · ·+ ns. Hence 
we must have t + r = n − λ(1)1 ≤ p and this implies

χG
n1,...,ns

(A) =
∑

〈λ〉�(n1,...,ns)
n−λ(1)1≤p

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(s).

The converse is deduced by proceeding backward through the proof. �
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As a consequence we obtain the following corollaries.

Corollary 5.1. Let A be a G-graded algebra. Then cGn (A) ≈ anp if and only if there exists 
n0 such that for every n ≥ n0

a) χG
n1,...,ns

(A) =
∑

〈λ〉�(n1,...,ns)
n−λ(1)1≤p

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(s) for every n1 + · · · + ns = n;

b) there exist n′
1+· · ·+n′

s = n and a multipartition 〈μ〉 = (μ(1), . . . , μ(s)) 
 (n′
1, . . . , n

′
s)

such that n − μ(1)1 = p, and the corresponding multiplicity m〈μ〉 �= 0.

Corollary 5.2. Let A be a G-graded algebra. Then cGn (A) ≤ an for some constant a if and 
only if for every n1 + · · · + ns = n it holds

χG
n1,...,ns

(A) =
∑

〈λ〉�(n1,...,ns)

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(s),

where 〈λ〉 = (λ(1), . . . , λ(s)) is such that either

λ(1) = (n− 1, 1) and λ(i) = ∅, i = 2, . . . , s

or

λ(1) = (n) and λ(i) = ∅, i = 2, . . . , s

or

λ(1) = (n− 1) and λ(i) = (1) for some i ∈ {2, . . . , s}and λ(j) = ∅, for all j �= i.

Proof. Both corollaries follow directly from Theorem 5.1. �
As a consequence of the previous corollary we get the following.

Corollary 5.3. Any G-graded algebra A such that cGn (A) ≤ an, for some constant a, 
satisfies the polynomial identities x1,gx2,h ≡ 0 for all g, h ∈ G \ {1G}.

In what follows we denote by y1, y2, . . . , graded variables from X1G
and by zg1 , zg2 , 

. . . , graded variables from Xg, and by tĝ1, t
ĝ
2, . . . , graded variables from X\{X1G

∪Xg}.
Recall that if A = F + J is a finite dimensional G-graded algebra over F where 

J = J(A) is its Jacobson radical, then J is a graded ideal which can be decomposed into 
the direct sum of graded F -bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11.

Here for i ∈ {0, 1}, Jik is a left faithful module or a 0-left module according as i = 1 or 
i = 0, respectively. Similarly, Jik is a right faithful module or a 0-right module according 
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as k = 1 or k = 0, respectively. Moreover, for i, k, l, m ∈ {0, 1}, one has JikJlm ⊆ δklJim
where δkl is the Kronecker delta.

Lemma 5.1. Let A = F + J be a G-graded algebra satisfying the polynomial identities 
x1,gx2,h ≡ 0 for all g, h ∈ G \ {1G}. Then A ∼TG

⊕
g∈G Bg where Bg = F ⊕ Jg.

Proof. Notice that for each g ∈ G the vector space Bg is a graded subalgebra of A. 
Hence IdG(A) ⊆ IdG(

⊕
g∈G Bg). Conversely, let f ∈ IdG(

⊕
g∈G Bg) be a multilinear 

polynomial of degree n. By multihomogeneity of TG-ideals we may assume that, modulo 
〈x1,gx2,h | g, h �= 1G〉TG

, either

f =
∑
σ∈Sn

ασyσ(1) · · · yσ(n)

or

f =
∑

i=1,...,n
σ∈Sn

αi,σyσ(1) · · · zgσ(i) · · · yσ(n), g ∈ G. (6)

If f is of the second type, in order to get a non-zero value, we should evaluate f on Bg. 
Since by hypothesis f ∈ IdG(Bg), we get that f ≡ 0 on A. In a similar manner if f is 
of the first type, we get that f vanishes on A. Hence IdG(

⊕
g∈G Bg) ⊆ IdG(A) and the 

proof of the lemma is complete. �
Lemma 5.2. Let g ∈ G and let A = F + Jg be a G-graded algebra such that cGn (A) ≤ an

for some constant a. Then A ∼TG
B ⊕ N where B ∈ var(UT g

2 ) and N is a nilpotent 
G-graded algebra.

Proof. If g �= 1G the result is obvious since [y1, y2] ≡ 0, zg1z
g
2 ≡ 0 and tĝ1 ≡ 0 are identities 

for A. Therefore A ∈ var(UT g
2 ) [32].

Suppose now g = 1G. Then A is endowed with the trivial grading and we write 
A = F + J10 + J01 + J11 + J00. We must have J10J01 = J01J10 = J10J00 = J00J01 = 0.

Suppose that J10J01 �= 0 and let a ∈ J10 and b ∈ J01 such that ab �= 0. Let

f(n−2,1,1) =
∑
σ∈S3

(sgnσ)yσ(1)y
n−3
1 yσ(2)yσ(3)

be a highest weight vector corresponding to λ = (n − 2, 1, 1) (see [7, Chapter 12, Theo-
rem 12.4.12]). By making the evaluation y1 = 1F , y2 = a, and y3 = b we get ab + ba �= 0
since ab ∈ J11 and ba ∈ J00. Thus the polynomial f(n−2,1,1) is not an identity of A. There-
fore χ(n−2,1,1) appears with non-zero multiplicity in the decomposition of Pn/(Pn∩Id(A)
into irreducible characters which is a contradiction to Corollary 5.2.

If J01J10 �= 0 or J10J00 �= 0 then, as above, we reach a contradiction since the same 
polynomial f(n−2,1,1) is not an identity for A.
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Finally suppose J00J01 �= 0. Then f(n−2,1,1) =
∑

σ∈S3
(sgnσ)yσ(1)yσ(2)y

n−3
1 yσ(3) is 

a highest weight vector corresponding to λ = (n − 2, 1, 1) which is not an identity, 
a contradiction. Then clearly one has

A = (F + J10 + J01 + J11) ⊕ J00 ∼TG
A1 ⊕A2 ⊕N

where A1 = (F + J11 + J10), A2 = (F + J11 + J01), and N is a nilpotent algebra. 
Now we claim that [J11, J11] = 0. If not let a, b ∈ J11 be such that ab �= ba and let 
f(n−2,1,1) =

∑
σ∈S3

(sgnσ)yσ(1)yσ(2)yσ(3)y
n−3
1 be a highest weight vector corresponding to 

λ = (n −2, 1, 1). By evaluating y1 = 1F , y2 = a, and y3 = b we get f(n−2,1,1) = ab −ba �= 0
which is a contradiction.

Now it is immediate to see that [y1, y2][y3, y4] ≡ 0 is an identity of A1 and A2 and the 
proof is complete [32]. �
Lemma 5.3. Let A = F ⊕ J be a G-graded algebra such that cGn (A) ≤ an, for some 
constant a. Then A ∼TG

Mg1 ⊕ · · · ⊕Mgs ⊕N where Mgi ∈ var(UT gi
2 ), i = 1, . . . , s and 

N is a nilpotent G-graded algebra.

Proof. Since cGn (A) ≤ an, by Corollary 5.3 A satisfies the polynomial identities 
x1,gx2,h ≡ 0 for all g, h ∈ G \ {1G}. Hence by Lemma 5.1, A ∼TG

⊕
g∈G Bg where 

Bg = F ⊕ Jg. By applying Lemma 5.2 we get the desired conclusion. �
Theorem 5.2. Let A be a G-graded algebra such that cGn (A) ≤ an for some constant a. 
Then

A ∼TG
Mg1 ⊕ · · · ⊕Mgs ⊕N

where Mgi ∈ var(UT gi
2 ), i = 1, . . . , s, and N is a nilpotent G-graded algebra.

Proof. By Theorem 1.2 we may assume that

A = A1 ⊕ · · · ⊕Am

where A1, . . . , Am are finite dimensional G-graded algebras with dimAi/J(Ai) ≤ 1, 
1 ≤ i ≤ m. Notice that this says that either Ai

∼= F +J(Ai) or Ai = J(Ai) is a nilpotent 
algebra. Since cGn (Ai) ≤ cGn (A) then cGn (Ai) ≤ an for all i = 1, . . . , s. Now the result 
follows by applying Lemma 5.3 to each non-nilpotent Ai. �

Here we recall that the algebras inside the graded varieties var(UT g
2 ), for all g ∈ G, 

have been classified up to TG-equivalence (see [23,24,26,27,25]).
We shall give the list of these algebras since we will need them in order to get a com-

plete classification of the algebras, up to TG-equivalence, of linear codimension growth.
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Let g = (g1, . . . , gk) ∈ Gk be a k-tuple of elements of G. One defines a G-grading on 
the algebra of the k× k upper triangular matrices, UTk, by setting (UTk)g = span{eij |
g−1
i gj = g} for all g ∈ G. Such a grading is called the elementary G-grading defined by 

the k-tuple g. If A is a graded subalgebra of UTk the induced grading on A is also called 
elementary.

Let k ≥ 2 and denote

Nk = span{U,U1, U
2
1 , . . . , U

k−2
1 ; e12, e13, . . . , e1k} ⊆ UTk

where U denotes the k× k identity matrix, U1 =
∑k−1

i=1 ei,i+1 and the eij ’s are the usual 
matrix units.

Also let

Ak = Ak(F ) = span{e11, U1, U
2
1 , . . . , U

k−2
1 ; e12, e13, . . . , e1k} ⊆ UTk

and let A∗
k be the graded subalgebra of UTk obtained by flipping Ak along its secondary 

diagonal.
Fixed g ∈ G let Ng

k and Ag
k denote the algebra Nk and Ak, respectively, with the 

elementary grading induced by g = (1G, g, . . . , g) ∈ Gk.
Therefore (Ag

k)∗ is a G-graded algebra with ((Ag
k)∗)h = ((Ag

k)h)∗ for all h ∈ G. The 
following result characterizes the graded identities and the graded codimensions of Nk

(see [12] and [26]).

Theorem 5.3. The TG-ideal IdG(Ng
k ) is generated by the polynomials

[y1, y2], [zg1 , y2, . . . , yk], zg1z
g
2 , tĝ1

in case g �= 1G, and by

[y1, y2, . . . , yk], [y1, y2][y3, y4], t1̂G
1

in case g = 1G.
Moreover cGn (Nk) = 1 +

∑k−1
j=2 (j − 1)

(
n
j

)
≈ k−2

(k−1)! n
k−1 and, whenever g �= 1G, 

cGn (Ng
k ) = 1 +

∑k−1
j=1

(
n
j

)
j ≈ 1

(k−2)! n
k−1.

Theorem 5.4. The TG-ideal IdG(Ag
k) is generated by the polynomials

[y1, y2], zg1y2 · · · yk, zg1z
g
2 , tĝ1

in case g �= 1G, and by

[y1, y2][y3, y4], [y1, y2]y3 . . . yk+1, t1̂G
1

in case g = 1G.
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Moreover cGn (Ak) =
∑k−2

l=0
(
n
l

)
(n − l−1) +1 ≈ qnk−1, and for every g �= 1G, cGn (Ag

k) =∑k−2
l=0

(
n
l

)
(n − l) + 1 ≈ q′nk−1. Here q, q′ ∈ Q are non-zero constants.

In order to describe the generators of the TG-ideal IdG((Ag
k)∗) it is enough to reverse 

the order of the variables in each monomial of the generators of the TG-ideal IdG(Ag
k). 

Clearly for each n ≥ 1 one has cGn ((Ag
k)∗) = cGn (Ag

k).
The following lemma gives the classification of the algebras with at most linear codi-

mension growth.

Lemma 5.4. (See [25].) Let A be a G-graded algebra such that A ∈ var(UT g
2 ) for some 

g ∈ G, and cGn (A) ≤ an for some constant a. Then A is TG-equivalent to one of the 
following algebras:

C ⊕N, Ag
2 ⊕N, (Ag

2)∗ ⊕N, Ag
2 ⊕ (Ag

2)∗ ⊕N,

N, Ng
2 ⊕N, Ag

2 ⊕Ng
2 ⊕N, (Ag

2)∗ ⊕Ng
2 ⊕N, Ag

2 ⊕ (Ag
2)∗ ⊕Ng

2 ⊕N

where C is a commutative algebra equipped with the trivial grading and N is a nilpotent 
G-graded algebra.

Notice that if g = 1G and A is an algebra satisfying the statement of the lemma then 
A satisfies the same graded identities as one of the algebras in the second row. This 
follows from the fact that N1G

2 ∼TG
F .

The previous lemma allows us to get a finer classification of the algebras of linear 
codimension growth. This finer classification is given in the following theorem.

Theorem 5.5. Let A be a G-graded algebra such that cGn (A) ≤ an for some constant a. 
Then

A ∼TG
Mg1 ⊕ · · · ⊕Mgs ⊕N

where N is a nilpotent G-graded algebra and Mgi is TG-equivalent to one of the following 
algebras:

C ⊕Ni, Agi
2 ⊕Ni, (Agi

2 )∗ ⊕Ni, Agi
2 ⊕ (Agi

2 )∗ ⊕Ni,

Ni, Ngi
2 ⊕Ni, Agi

2 ⊕Ngi
2 ⊕Ni, (Agi

2 )∗ ⊕Ngi
2 ⊕Ni, Agi

2 ⊕ (Agi
2 )∗ ⊕Ngi

2 ⊕Ni

where C is a commutative algebra with the trivial grading and Ni is a nilpotent G-graded 
algebra.

Notice that we could have obtained this last result directly from Theorem 1.2, con-
sidering that every graded algebra Bg = F + Jg in Lemma 5.1 has a structure of a 
superalgebra whose graded codimension sequence is linearly bounded and thus it must 
be TG-equivalent to one of the algebras in Lemma 5.4 (see [9] and [11]).
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Recall that a variety V is called minimal of polynomial growth if cGn (V) ≈ qnk for 
some k ≥ 1, q > 0, and for any proper subvariety U � V we have that cGn (U) ≈ q′nt with 
t < k.

As a consequence of the previous theorem and Theorem 4.5 in [25] we obtain the 
following corollary.

Corollary 5.4. A G-graded algebra A generates a minimal variety of linear growth if and 
only if either A ∼TG

Nh
2 or A ∼TG

Ag
2 or else A ∼TG

(Ag
2)∗, for some g, h ∈ G with h �= 1G.

Hence all the minimal varieties of linear growth are inside varG(UT g
2 ), g ∈ G.

Acknowledgment

Thanks are due to the referee whose suggestions improved several sloppily explained 
statements.

References

[1] E. Aljadeff, A. Giambruno, Multialternating graded polynomials and growth of polynomial identi-
ties, Proc. Amer. Math. Soc. 41 (9) (2013) 3055–3065.

[2] E. Aljadeff, A. Giambruno, D. La Mattina, Graded polynomial identities and exponential growth, 
J. Reine Angew. Math. 650 (2011) 83–100.

[3] S. Azevedo, Graded identities for the matrix algebras of order n over an infinite field, Comm. Algebra 
30 (2002) 5849–5860.

[4] A. Cirrito, A. Giambruno, Group graded algebras and multiplicities bounded by a constant, J. Pure 
Appl. Algebra 217 (2) (2013) 259–268.

[5] C.W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley 
Classics Library, John Wiley & Sons, Inc., New York, 1988.

[6] V. Drensky, A minimal basis for the identities of a second-order matrix algebra over a field of 
characteristic 0, Algebra Logika 20 (3) (1981) 282–290 (in Russian); English translation in: Algebra 
Logic 20 (1981) 188–194, 1982.

[7] V. Drensky, Free Algebras and PI-Algebras: Graduate Course in Algebra, Springer-Verlag Singapore, 
Singapore, 2000.

[8] V. Drensky, A. Giambruno, Cocharacters, codimensions and Hilbert series of the polynomial iden-
tities for 2 × 2 matrices with involution, Canad. J. Math. 46 (1994) 718–733.

[9] A. Giambruno, D. La Mattina, PI-algebras with slow codimension growth, J. Algebra 284 (1) (2005) 
371–391.

[10] A. Giambruno, D. La Mattina, Graded polynomial identities and codimensions: computing the 
exponential growth, Adv. Math. 225 (2) (2010) 859–881.

[11] A. Giambruno, D. La Mattina, P. Misso, Polynomial identities on superalgebras: classifying linear 
growth, J. Pure Appl. Algebra 207 (1) (2006) 215–240.

[12] A. Giambruno, D. La Mattina, V.M. Petrogradsky, Matrix algebras of polynomial codimension 
growth, Israel J. Math. 158 (2007) 367–378.

[13] A. Giambruno, S. Mishchenko, M. Zaicev, Polynomial identities on superalgebras and almost poly-
nomial growth, Comm. Algebra 29 (9) (2001) 3787–3800.

[14] A. Giambruno, S. Mishchenko, M. Zaicev, Group actions and asymptotic behavior of graded poly-
nomial identities, J. Lond. Math. Soc. (2) 66 (2) (2002) 295–312.

[15] A. Giambruno, A. Regev, Wreath products and P.I. algebras, J. Pure Appl. Algebra 35 (1985) 
133–149.

[16] A. Giambruno, M. Zaicev, A characterization of algebras with polynomial growth of the codimen-
sions, Proc. Amer. Math. Soc. 129 (2001) 59–67.

http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4147s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4147s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib41474C4Ds1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib41474C4Ds1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib617A657665646Fs1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib617A657665646Fs1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4347s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4347s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4352s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4352s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib6472656E736B79616Cs1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib6472656E736B79616Cs1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib6472656E736B79616Cs1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4C44s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4C44s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4447s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4447s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib67696C61s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib67696C61s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib474C4Ds1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib474C4Ds1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib474C4D4Ds1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib474C4D4Ds1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib474C4D50s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib474C4D50s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib474D5As1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib474D5As1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib474D5A31s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib474D5A31s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib6769616D627265676576s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib6769616D627265676576s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib677A36s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib677A36s1


P. Koshlukov, D. La Mattina / Journal of Algebra 434 (2015) 115–137 137
[17] A. Giambruno, M. Zaicev, Polynomial Identities and Asymptotic Methods, Math. Surveys Monogr., 
vol. 122, AMS, Providence, RI, 2005.

[18] A.S. Gordienko, The Regev conjecture and cocharacters for identities of associative algebras of PI 
exponent 1 and 2, Mat. Zametki 83 (6) (2008) 815–824; English translation: Math. Notes 83 (6) 
(2008) 744–752.

[19] A.S. Gordienko, Regev’s conjecture and codimensions of P.I. algebras, Acta Appl. Math. 108 (2009) 
33–55.

[20] A.R. Kemer, T-ideals with power growth of the codimensions are Specht, Sibirsk. Mat. Zh. 19 (1978) 
54–69 (in Russian); English translation: Sib. Math. J. 19 (1978) 37–48.

[21] A.R. Kemer, Varieties of finite rank, in: Proc. 15-th All Union Algebraic Conf., vol. 2, Krasnoyarsk, 
1979, p. 73 (in Russian).

[22] P. Koshlukov, Basis of the identities of the matrix algebra of order two over a field of characteristic 
p �= 2, J. Algebra 241 (2001) 410–434.

[23] D. La Mattina, Varieties of almost polynomial growth: classifying their subvarieties, Manuscripta 
Math. 123 (2007) 185–203.

[24] D. La Mattina, Varieties of algebras of polynomial growth, Boll. Unione Mat. Ital. (9) 1 (3) (2008) 
525–538.

[25] D. La Mattina, Almost polynomial growth: classifying varieties of graded algebras, Israel J. Math. 
(2015), http://dx.doi.org/10.1007/s11856-015-1171-y, in press.

[26] D. La Mattina, Varieties of superalgebras of almost polynomial growth, J. Algebra 336 (2011) 
209–226.

[27] D. La Mattina, Varieties of superalgebras of polynomial growth, Serdica Math. J. 38 (1–3) (2012) 
237–258.

[28] S.P. Mishchenko, A. Regev, M.V. Zaicev, A characterization of P.I. algebras with bounded multi-
plicities of the cocharacters, J. Algebra 219 (1) (1999) 356–368.

[29] J.B. Olsson, A. Regev, Colength sequence of some T-ideals, J. Algebra 38 (1) (1976) 100–111.
[30] Yu.P. Razmyslov, Finite basing of the identities of a matrix algebra of second order over a field of 

characteristic zero, Algebra Logika 12 (1973) 83–113 (in Russian); English translation in: Algebra 
Logic 12 (1973) 47–63, 1974.

[31] E.J. Taft, Invariant Wedderburn factors, Illinois J. Math. 1 (1957) 565–573.
[32] A. Valenti, The graded identities of upper triangular matrices of size two, J. Pure Appl. Algebra 

172 (2–3) (2002) 325–335.
[33] A. Valenti, Group graded algebras and almost polynomial growth, J. Algebra 334 (2011) 247–254.
[34] S. Vasilovsky, Zn-graded polynomial identities of the full matrix algebras of order n, Proc. Amer. 

Math. Soc. 127 (1999) 3517–3524.

http://refhub.elsevier.com/S0021-8693(15)00166-0/bib475A626F6F6Bs1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib475A626F6F6Bs1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib676F726469656E6B6F31s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib676F726469656E6B6F31s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib676F726469656E6B6F31s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib676F726469656E6B6F32s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib676F726469656E6B6F32s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib6B656D657231s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib6B656D657231s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib6B656D657232s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib6B656D657232s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib706B6D32s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib706B6D32s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4C4D31s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4C4D31s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4C4D32s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4C4D32s1
http://dx.doi.org/10.1007/s11856-015-1171-y
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4C4Ds1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4C4Ds1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4C4D35s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4C4D35s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4D525As1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4D525As1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib4F52s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib72617A6D616Cs1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib72617A6D616Cs1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib72617A6D616Cs1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib54s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib56s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib56s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib5631s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib76617370616D73s1
http://refhub.elsevier.com/S0021-8693(15)00166-0/bib76617370616D73s1

	Graded algebras with polynomial growth of their codimensions
	Introduction
	1 Preliminaries
	2 Polynomial codimension growth and cocharacters
	3 The multiplicities are eventually constant
	4 Polynomial codimension growth and colengths
	5 Classifying varieties of slow growth
	Acknowledgment
	References


