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Let G be a finite group and let r be a prime divisor of the order 
of G. We prove that if r ≥ 5 and G has the E{r,t}-property 
for all t ∈ π(G)\{r}, then G is r-solvable. A group G is said 
to have the Eπ-property if G possesses a Hall π-subgroup.
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1. Introduction

Let G be a finite group and let π(G) be the set of prime divisors of the order of G. 
Suppose that π ⊆ π(G). A group G is said to have the Eπ-property (G is a Eπ-group) 
whenever G includes a Hall π-subgroup.

The structure of a finite group essentially depends on the existence of Hall subgroups 
in it. In 1956, P. Hall in [1] advanced the hypothesis on solvability of a finite group that 
contains biprimary Hall {p, q}-subgroups for all prime divisors p and q of its order. The 
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validity of this hypothesis was proven in 1982 by Z. Arad and M. Ward [2]. In [3], the 
author has obtained that a finite group G is solvable if it possesses the E{2,t}-property for 
all t ∈ π(G)\{2}. In [4], composition factors of a finite group G with the E{3,t}-property, 
where t ∈ π(G)\{3} were found. It is natural to establish the structure of a finite group 
G with the E{p,t}-property for some fixed p ∈ π(G) and all t ∈ π(G)\{p}.

In the present paper we complete this direction of research. The following result is 
proven.

Theorem 1. Let G be a finite group and let r ∈ π(G)\{2, 3}. If G has the E{r,t}-property 
for all t ∈ π(G)\{r}, then G is r-solvable.

Using Theorem 1 and taking papers [3] and [4] into account, we obtain the following 
theorem.

Theorem 2. Let G be a finite group with r ∈ π(G). Suppose that G has the E{r,t}-property 
for all t ∈ π(G)\{r}. Then the following hold:

(1) if r �= 3, then G is r-solvable;
(2) if r = 3, then all simple nonabelian composition factors of G belong to the list: 

PSL2(7); PSU 3(q) for a suitable value of the parameter q; Sz(22n+1).

From Theorem 1 and the paper [3], we immediately obtain the following criterion for 
a finite group to be p-nilpotent.

Corollary. Let G be a finite group, r ∈ π(G), r �= 3, and R ∈ Sylr(G). If R normalizes 
a Sylow t-subgroup for each t ∈ π(G)\{r}, then G is r-nilpotent.

Remark. The example of the group G ∼= PSU 3(4) shows that there are simple nonabelian 
groups having 3-nilpotent biprimary Hall {3, r}-subgroups for all r ∈ π(G)\{3}.

2. Auxiliary results

We give notation and auxiliary results that will be used to prove the theorem. We 
use [A]B to denote the semidirect product of A and B, where A is a normal subgroup 
of [A]B, while we use A ×B to denote the direct product of A and B. We write A < ·G to 
denote a maximal subgroup A of a group G. The notation Al denotes the direct product 
of l groups isomorphic to A. If a and b are positive integers, then (a, b) is the greatest 
common divisor of a and b.

Lemma 1. (See [5], Lemma 3.) Let a, m, n be positive integers. Then ( an−1
a(m,n)−1 , a

m−1) =
( n
(m,n) , a

(m,n) − 1). In particular, (a
n−1
a−1 , a − 1) = (n, a − 1).
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Definition. Let r and p be prime numbers, and let n be a positive integer not smaller 
than 2. The number r is said to be primitive in relation to the pair {p, n} if r divides 
pn − 1, but does not divide pi − 1 for all 1 ≤ i < n.

Lemma 2. (See [6].) Let p be a prime number, and let n be a positive integer not smaller 
than 2. Suppose that {p, n} �= {2, 6} or {p, n} �= {2, 2m − 1}. Then there exists a prime 
number r primitive in relation to the pair {p, n}.

Lemma 3. If r is a prime number primitive in relation to the pair {p, n}, then r ≥ n +1.

Proof. Follows from Fermat’s little theorem.

We need the following results which can be found, for example, in [7]. Let Σ be an 
irreducible root system, and let a ∈ Σ. Denote a∗ = 2a/(a, a). Then Σ∗ = {a∗|a ∈ Σ} is 
a root system dual of Σ.

Definition. (See [7], Definition 4.1.) A prime p is called a torsion prime if L(Σ∗)/L(Σ1
∗)

has a p-torsion for some closed subsystem Σ1 ⊂ Σ.

Lemma 4. (See [7], 4.3, 4.4, p. 173.) For an arbitrary root system, the torsion primes 
are:

(1) for Al, Cl — no;
(2) for Bl, Dl, G2 — 2;
(3) for E6, E7, F4 — 2, 3;
(4) for E8 — 2, 3, 5.

Lemma 5. (See [8], Lemma 1.7.) Let G be a connected semisimple algebraic group over 
the algebraic closure of the field Fq, where q = pn, and let σ be a Frobenius endomorphism 
of the group G. Then a direct product E = Y1×Y2×· · ·×Ym of cyclic semisimple groups 
Yi of Gσ can be embedded into a maximal torus Tσ of Gσ, if the number of such |Yi|
not coprime to all torsion primes of G is at most two. In particular, NGσ

(E)/CGσ
(E) ≤

W (G), where W (G) is a Weyl group of G.

Lemma 6. (See [9], Lemma 3.) Let G be a simple Chevalley group and let G /∈ {PSL6(2),
PSp6(2), PΩ+

8 (2),PSU 4(2)}. Then there exists a prime divisor of |G| that does not divide 
the order of any proper parabolic subgroup of G.

We consider the following situation. Let G ∈ {PSU (l, q2),PSU (l + 1, q2)}, where 
q = pn, n ≥ 3, and l is an odd number; let r be a prime number primitive in relation to 
the pair {p, 2nl} �= {2, 6}. In this notation, the following lemma holds.
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Lemma 7. (See [10], Lemma 18 (a), (b).) Let M be a maximal solvable subgroup of G. 
Suppose that the order of M is divisible by r. Then the following assertions hold:

(a) |M | divides l(ql + 1)(q + 1)−1 for G ∼= PSU (l, q2);
(b) |M | divides l(ql + 1) for G ∼= PSU (l + 1, q2).

3. Proof of Theorem 1

To prove the theorem we use the technique of Chigira’s [11] and L.S. Kazarin’s [10]
works.

Show that there are no simple nonabelian groups satisfying the conditions of the 
theorem. We consider separately the cases when G is alternating, sporadic and a group 
of Lie type.

1. G ∼= An (n ≥ 5) is an alternating group.

Since π(An) ≥ 3, by hypothesis, An has a biprimary Hall subgroup F of odd index. 
Since |Sn : An| = 2 for n �= 6, while |S6 : A6| = 4, it follows that F is a Hall subgroup 
of Sn. This contradicts Theorem A4 of [1].

2. G is either a sporadic group or the Tits group 2F4(2)′.

From Corollary 6.13 in [12] and Theorem 4.1 in [13], we obtain the list of groups 
containing proper Hall subgroups. All these groups do not satisfy the conditions of The-
orem 1.

3. G is a simple group of Lie type over the field GF(q), where q = pn.

Suppose that r = p. It follows that for each t ∈ π(G)\{r} there is a Hall 
{r, t}-subgroup L = UT of G, where U ∈ Sylp(G), T ∈ Sylt(G). By Theorem 3.3 
in [14], L is either parabolic or is contained in a Borel subgroup B = UH (U ∈ Sylp(G),
H is a Cartan subgroup of G). Suppose first that L > B. Since r = p ≥ 5, it follows that 
G � Sz(22l+1). So by Corollary 3.4 in [14], π(q + 1) ∪ π(q − 1) = {t}. Since r = p ≥ 5, 
we have q − 1 ≥ 4 and (q + 1, q − 1) = 2. Hence t = 2, and q − 1 = 2β , q + 1 = 2α, 
where β ≥ 2. It follows that 2β(2α−β − 1) = 2, this is impossible. Therefore, L is always 
contained in a Borel subgroup.

It follows that L ≤ M < ·G, where M is any maximal parabolic subgroup of G

up to conjugation. Therefore, t divides the order of each own maximal parabolic 
subgroup of G. Since t is an arbitrary prime divisor of |G|, by Lemma 6, we have 
G ∈ {PSL6(2), PSp6(2), PΩ8

+(2), PSU 4(2)}. These groups are defined over the field 
of characteristic 2. This is a contradiction to the fact that r ≥ 5.
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So r �= p. Consider a biprimary Hall {r, p}-subgroup L = UR, where U ∈ Sylp(G), 
R ∈ Sylr(G). By Theorem 3.3 in [14], L is either parabolic or is contained in a Borel 
subgroup B of G. Suppose that B < L. If G ∼= Sz(22l+1), then L ≤ B because the 
Lie rank of Sz(22l+1) is 1. Thus G � Sz(22l+1), and Corollary 3.4 in [14] implies that 
π(q+1) ∪π(q−1) = {r}. If q−1 > 2, then (q+1, q−1) = 2, and r = 2. This contradicts 
the fact that r ≥ 5. So q−1 = 1, that is q = 2. Thus q+1 = 3 = r ≥ 5, this is impossible. 
Therefore, L is contained in a Borel subgroup.

Lemma 1.4.3 in [12] implies that UR ≤ B, R ≤ H, where B and H are Borel and 
Cartan subgroups respectively. In particular, R is an abelian group. Moreover, since 
R ∈ Sylr(G), we have (r, |W (G)|) = 1, where W (G) is a Weyl group of G.

We need the following facts about algebraic groups. Let G be a simple connected 
algebraic group. Surjective endomorphism σ of G is called the Frobenius map, if its 
group of fixed points Gσ = CG(σ) is finite. There is a connected algebraic group G with 
Frobenius map σ such that Gσ/Z(Gσ) ∼= G, where G is a finite simple group of Lie 
type except the case when G ∼= 2F4(2)′. Denote by Bσ a Borel subgroup of Gσ. Then 
Bσ = UσHσ, where Uσ ∈ Sylp(Gσ), Hσ is a Cartan subgroup. Note that if G contains 
a biprimary Hall π-subgroup for π ⊂ π(G), then Gσ also contains a biprimary Hall 
π-subgroup and vice versa, if Gσ contains a biprimary Hall π-subgroup for π ⊂ π(Gσ), 
then G contains a biprimary Hall π-subgroup. At the same time for R ∈ Sylr(Gσ) we 
see that R ⊆ Hσ, R is an abelian group, (r, |W (Gσ)|) = 1.

Consider consecutively all cases.

(1) G ∼= Al(q), l ≥ 1, q = pn; |Gσ| = ql(l+1)/2 ∏l+1
i=2(qi − 1).

In this case, Hσ
∼= Zl

q−1 and R ≤ Hσ. Wherein r divides q− 1, and (r, |W (Gσ)|) = 1. 
Since r ≥ 5, we have q ≥ 11. Gσ has a maximal tor Tσ of order (ql+1−1)/(q−1) by [15]. 
If G ∼= A5(2), then q− 1 = 1. This is a contradiction to the fact that r divides q− 1. Let 
G ∼= A1(q), where q = pn = 2k − 1. By Dixon’s theorem (II.8.27 [16]), we obtain that 
G does not have the E{2,r}-property. So by Lemma 2, there is a prime m such that m
divides ql+1 − 1, but does not divide qi − 1 for all i ∈ {1, . . . , l}. By Lemma 3, we get 
that m ≥ l + 2. Let M ≤ Tσ for some abelian m-subgroup M ∈ Sylm(Gσ). Consider 
the Hall subgroup L = M R of Gσ. Since M and R are abelian, we deduce that either 
L = [M ]R or L = [R]M . Let L = [M ]R. By Lemma 5, NGσ

(M)/CGσ
(M) ≤ W (G). 

Since |W (G)| = |W (Gσ)| and (r, |W (Gσ)|) = 1, we have L = M ×R. If L = [R]M , then 
by Lemma 5, NGσ

(R)/CGσ
(R) ≤ W (G). Since |W (Gσ)| = (l + 1)!, and m ≥ l + 2, then 

we again get that L = M ×R.
The group Gσ has the only maximal torus Tσ such that |Tσ| is divisible by m, so 

L ≤ Tσ. It follows that r ∈ π( q
l+1−1
q−1 , q − 1). By Lemma 1, ( q

l+1−1
q−1 , q − 1) = (l + 1,

q − 1), hence r divides l + 1. But |W (Gσ)| = (l + 1)!. This contradicts the fact that 
(r, |W (Gσ)|) = 1.
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(2) G ∼= Bl(q), l ≥ 2, q = pn; |Gσ| = ql
2 ∏l

i=1(q2i − 1).

The Cartan subgroup Hσ
∼= Zl

q−1, and r divides q − 1. In particular, q ≥ 11. Gσ has 
a maximal torus Tσ of order ql + 1 by [15]. The case 2l = 2, q = 2a − 1 is not fulfilled 
since l ≥ 2, the case 2l = 6, q = 2 also is not fulfilled since q ≥ 11. Thus there is a prime 
m such that m divides q2l − 1, but does not divide qi − 1 for all i ∈ {1, 2, . . . , 2l − 1}. 
By Lemma 3, we obtain that m ≥ 2l + 1. Since q2l − 1 = (ql − 1)(ql + 1), we see 
that m divides ql + 1. Denote by Mσ ≤ Tσ some abelian m-subgroup M ∈ Sylm(Gσ). 
Consider the Hall subgroup L = M R of Gσ. Since M and R are abelian, then either 
L = [M ]R or L = [R]M . Suppose first that L = [M ]R. For the root system Bl, the 
torsion prime is 2. Then by Lemma 5, NGσ

(M)/CGσ
(M) ≤ W (G). Since |W (G)| =

|W (Gσ)|, and (r, |W (Gσ)|) = 1 we have L = M × R. If L = [R]M , then by Lemma 5
NGσ

(R)/CGσ
(R) ≤ W (G). Since |W (Gσ)| = 2l−1l! and m ≥ 2l + 1, we conclude that 

(m, |W (Gσ)|) = 1, and L = R×M .
Since Gσ has the only maximal torus Tσ such that |Tσ| is divisible by m, we have 

L ≤ Tσ. It follows that r ∈ π(ql + 1, q − 1) ⊆ π(ql + 1, ql − 1) ⊆ {1, 2}. This contradicts 
the fact that r ≥ 5.

(3) G ∼= Cl(q), l ≥ 2, q = pn.

This case is considered exactly the same as (2).

(4) G ∼= Dl(q), l ≥ 4, q = pn; |Gσ| = ql(l−1)(ql − 1) 
∏l−1

i=1(q2i − 1).

The Cartan subgroup Hσ
∼= Zl

q−1, and r divides q−1. In particular, q ≥ 11. Gσ has a 
maximal torus Tσ of order (ql−1 + 1)(q + 1) by [15]. Since q ≥ 11 and l ≥ 4, we see that 
the cases 2(l− 1) = 6, q = 2, and 2(l− 1) = 2, q = 2k − 1 are not fulfilled. By Lemma 2, 
there is a prime m which divides q2(l−1) −1, but does not divide qi−1 for all i such that 
1 ≤ i ≤ 2l − 3. By Lemma 2, we get that m ≥ 2l − 1. Let M ≤ Tσ be an abelian Sylow 
m-subgroup of Gσ. Since m ≥ 2l−1, we have m �= 2. By Lemma 4, the torsion prime for 
type Dl is 2. Consider the Hall subgroup L = M R of Gσ. Since M and R are abelian, then 
either L = [M ]R or L = [R]M . Let L = [M ]R. By Lemma 5, NGσ

(M)/CGσ
(M) ≤ W (G). 

Since |W (Gσ)| = |W (G)| and (r, |W (Gσ)|) = 1, we have L = M ×R. If L = [R]M , then 
by Lemma 5, NGσ

(R)/CGσ
(R) ≤ W (G). Since |W (Gσ)| = 2l−1 · l! and m ≥ 2l − 1, we 

have L = M ×R.
The group Gσ has the only maximal torus Tσ such that |Tσ| is divisible by m, so 

L ≤ Tσ. It follows that r divides ((ql−1 +1)(q+1), q−1). Since r ≥ 5 and (q+1, q−1) ∈
{1, 2}, we conclude that r divides (ql−1 + 1, q − 1), and thus r divides ( q

2(l−1)−1
q−1 , q − 1). 

By Lemma 1, r divides l− 1. Since (|W (Gσ)|, r) = 1 and |W (Gσ)| = 2l−1 · l!, we deduce 
that r does not divide l − 1. We have a contradiction.
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(5) G ∼= E6(q), q = pn; |Gσ| = q36(q2 − 1)(q5 − 1)(q6 − 1)(q8 − 1)(q9 − 1)(q12 − 1).

The Cartan subgroup Hσ
∼= Z6

q−1, and r divides q − 1. Gσ has a maximal torus Tσ

of order (q4 − q2 + 1)(q2 + q + 1) by [15]. By Lemma 2, there exists a prime m that 
divides q12 − 1 but does not divide qi− 1 for all i ∈ {1, 2, . . . , 11}. By Lemma 3, m ≥ 13. 
Have the equality: q12 − 1 = (q6 − 1)(q2 + 1)(q4 − q2 + 1). Hence it is easy to deduce 
that m divides q4 − q2 + 1. Consider a group M ∈ Sylm(Gσ) such that M ≤ Tσ. Let 
L = M R. Torsion primes for the root system of type E6 are 2 and 3. If L = [M ]R, then by 
Lemma 5, NGσ

(M)/CGσ
(M) ≤ W (G). Since |W (G)| = |W (Gσ)| and (r, |W (Gσ)|) = 1, 

we have L = M ×R. If L = [R]M , then by Lemma 5, NGσ
(R)/CGσ

(R) ≤ W (G). Since 
|W (Gσ)| = 27 · 34 · 5 and m ≥ 13, we have (m, |W (Gσ)|) = 1 and L = R×M .

From the uniqueness of the maximal torus Tσ whose order is divisible by m, we 
conclude that L ≤ Tσ. It follows that r divides ((q4 − q2 + 1)(q2 + q + 1), q − 1) =
((q2(q − 1)2 + 1)((q − 1)2 + 3q), q − 1) ∈ {1, 3}. This contradicts the fact that r ≥ 5.

(6) G ∼= E7(q), q = pn; |Gσ| = q63(q2 − 1)(q6 − 1)(q10 − 1)(q12 − 1)(q14 − 1)(q18 − 1).

The Cartan subgroup Hσ
∼= Z7

q−1, and r divides q − 1. Gσ has a torus Tσ of order 
(q6−q3+1)(q+1) by [15]. By Lemma 2, there is a prime m which divides q18−1, but does 
not divide qi − 1 for all i ∈ {1, 2, . . . , 17}. By Lemma 3, m ≥ 19. The following equality 
holds: q18−1 = (q9−1)(q3+1)(q6−q3+1). It is easy to see that m divides q6−q3+1. Let 
M ∈ Sylm(Gσ) and M ≤ Tσ. Torsion primes for the root system of type E7 are 2 and 3. 
Denote L = M R. If L = [M ]R, then by Lemma 5, we have NGσ

(M)/CGσ
(M) ≤ W (G). 

Since |W (G)| = |W (Gσ)|, and (r, |W (Gσ)|) = 1, we get L = M × R. If L = [R]M , then 
by Lemma 5, NGσ

(R)/CGσ
(R) ≤ W (G). Since |W (Gσ)| = 24 · 35 · 52 · 7 and m ≥ 19, 

then (m, |W (Gσ)|) = 1 and L = R×M .
From the uniqueness of the maximal torus Tσ whose order is divisible by m, we 

conclude that L ≤ Tσ. So r divides ((q6 − q3 +1)(q+1), q− 1) ∈ {1, 2}. This contradicts 
the fact that r ≥ 5.

(7) G ∼= E8(q), q = pn; |Gσ| = q120(q2 − 1)(q8 − 1)(q12 − 1)(q14 − 1)(q18 − 1)(q20 −
1)(q24 − 1)(q30 − 1).

The Cartan subgroup Hσ
∼= Z8

q−1, and r divides q − 1. Gσ has a torus Tσ of order 
q8 +q7−q5−q4−q3 +q+1 by [15]. Lemma 2 implies that there is a prime m that divides 
q30−1, but does not divide qi−1 for all i ∈ {1, 2, . . . , 29}. By Lemma 3, m ≥ 31. Have the 
equality: q30−1 = (q15−1)(q5+1)(q2+q+1)(q8+q7−q5−q4−q3+q+1) which implies that 
m divides q8+q7−q5−q4−q3+q+1. Let M ∈ Sylm(Gσ) and M ≤ Tσ. Torsion primes for 
the root system of type E8 are 2, 3 and 5. Since |W (Gσ)| = 214 ·35 ·52 ·7, we have r ≥ 11. 
Denote L = M R. If L = [M ]R, then by Lemma 5, NGσ

(M)/CGσ
(M) ≤ W (G). Since 

|W (G)| = |W (Gσ)| and (r, |W (Gσ)|) = 1, we deduce that L = M×R. If L = [R]M , then 
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by Lemma 5, NGσ
(R)/CGσ

(R) ≤ W (G). Since |W (Gσ)| = 214 · 35 · 52 · 7 and m ≥ 31, 
we have (m, |W (Gσ)|) = 1 and L = R×M .

From the uniqueness of the maximal torus Tσ whose order is divisible by m, we 
conclude that L ≤ T σ. Therefore, r divides (q8 + q7 − q5 − q4 − q3 + q + 1, q − 1) = 1. 
A contradiction.

(8) G ∼= F4(q), q = pn; |Gσ| = q24(q2 − 1)(q6 − 1)(q8 − 1)(q12 − 1).

The Cartan subgroup Hσ
∼= Z4

q−1, and r divides q− 1. Gσ has a maximal torus Tσ of 
order q4 − q2 + 1 by [15]. By Lemma 2, there is a prime m that divides q12 − 1, but does 
not divide qi − 1 for all i ∈ {1, 2, . . . , 11}. By Lemma 3, m ≥ 13. The following equality 
holds: q12−1 = (q6−1)(q2 +1)(q4−q2 +1). So m divides q4−q2 +1. Consider the group 
M ≤ Sylm(Gσ) such that M ≤ Tσ. Let L = M R. Torsion primes for the root system 
of type F4 are 2 and 3. If L = [M ]R, then by Lemma 5, NGσ

(M)/CGσ
(M) ≤ W (G). 

Since |W (G)| = |W (Gσ)| and (r, |W (Gσ)|) = 1, we have L = M ×R. If L = [R]M , then 
by Lemma 5, NGσ

(R)/CGσ
(R) ≤ W (G). Since |W (Gσ)| = 27 · 32 and m ≥ 13, we have 

(m, |W (Gσ)|) = 1 and L = R×M .
From the uniqueness of the maximal torus Tσ whose order is divisible by m, we 

conclude that L ≤ Tσ. So r divides (q4 − q2 + 1, q − 1) = 1. This is a contradiction.

(9) G ∼= G2(q), q = pn; |Gσ| = q6(q2 − 1)(q6 − 1).

In this case, Hσ
∼= Z2

q−1 and r divides q − 1. Gσ has a maximal torus T σ of order 
q2 − q + 1 by [15]. Since q ≥ 11, the case q = 2 is impossible. By Lemma 2, there is 
a prime m that divides q6 − 1, but does not divide qi − 1 for all i ∈ {1, 2, . . . , 5}. By 
Lemma 3, m ≥ 13. Have the equality: q6 − 1 = (q3 − 1)(q + 1)(q2 − q + 1), so m divides 
q2 − q + 1. Consider the group L = M R. The torsion prime for the root system of type 
G2 is 2. As in the preceding paragraphs we show that L = M ×R.

From the uniqueness of the maximal torus Tσ whose order is divisible by m, we 
conclude that L ≤ Tσ. So r divides (q2 − q + 1, q − 1) = 1, it is impossible.

(10) G ∼= 2Al−1(q), l ≥ 3, q = pn.

Suppose first that l is odd. The order of a Cartan subgroup is |H| = 1
(l,q+1) (q −

1)(l−1)/2(q + 1)(l−1)/2. Since 1
(l,q+1) (q + 1)l−1 divides |G| and r ≥ 5, it follows that r

divides q − 1. The group 2Al−1(q) ∼= PSU (l, q). The equality {2, 6} = {p, 2nl} holds 
if p = 2 and l = 3. Since PSU (3, 2) is solvable, this case is impossible. By Lemma 2, 
there exists a prime s primitive in relation to the pair {p, 2nl}. Consider a biprimary 
Hall {r, s}-subgroup M of G. By Lemma 7, |M | divides l(ql + 1)(q + 1)−1. Since |M | =
s · r(l−1)/2 · f , where f is an integer, we see that l(ql+1)

(l−1)/2 is an integer. Since 
(q+1)·s·r ·f
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(ql + 1, q + 1) ∈ {1, 2}, and r divides q − 1, we conclude that l
r(l−1)/2 is an integer. But 

since r ≥ 5, it is impossible.
Let l be an even number, and let l ≥ 4. The order of a Cartan subgroup |H| =
1

(l,q+1) (q − 1)l/2(q + 1)(l−1)/2. Since 1
(l,q+1) (q + 1)l−1 divides |G|, we see that r divides 

q−1. By Lemma 2, there is a prime s primitive in relation to the pair {p, 2nl}. Consider a 
Hall {r, s}-subgroup M of G. By Lemma 7, |M | divides l(ql + 1). Since |M | = s · rl/2 · f , 
where f is an integer, we obtain that l(ql+1)

s·rl/2·f is an integer. It follows that l
rl/2 is an 

integer. But since r ≥ 5 and l ≥ 4, it is impossible.

(11) G ∼= 2Dl(q), l ≥ 4, q = pn; |Gσ| = ql(l−1)(ql + 1) 
∏l−1

i=1(q2i − 1).

In the group Gσ, the order of a Cartan subgroup |Hσ| = (q − 1)l−1(q + 1), and r
divides q − 1. The group Gσ has a maximal torus Tσ of order ql + 1. Cases 2l = 2, 
q = 2a − 1 and 2l = 6, q = 2 obviously are not fulfilled. Therefore, by Lemma 2, there is 
a prime m, which divides q2l − 1, but does not divide qi − 1 for all i ∈ {1, 2, . . . , 2l− 1}. 
By Lemma 3, we obtain that m ≥ 2l + 1 ≥ 11. Let M ≤ Tσ for an abelian m-subgroup 
M ∈ Sylm(Gσ). Consider a biprimary Hall {r, m}-subgroup L of Gσ. Assume first that 
L = [M ]R. Note that W (Gσ) �= W (G). Since l ≥ 4, there is a pair of commuting elements 
x ∈ M and y ∈ R. Denote z = x y. By Lemma 5, there is maximal torus T containing z. 
Since there is the only type of maximal tori whose order is divisible by m, then T = Tσ. 
Thus r divides (ql + 1, q − 1) ∈ {1, 2}. This contradicts the fact that r ≥ 5.

Let L = [R]M . By Lemma 5, NGσ
(R)/CGσ

(R) ≤ W (G). Since the algebraic group G
corresponding to Gσ is of type Dl, we have |W (G)| = 2l−1 · l!. Since m ≥ 2l+1, it follows 
that (m, |W (G)|) = 1 and L = R×M . In the group Gσ, there is the only maximal torus 
Tσ whose order is divisible by m, so L ≤ Tσ. It follows that r divides (ql + 1, q − 1), 
which is 1 or 2. Since r ≥ 5, it is impossible.

(12) G ∼= 2E6(q), q = pn; |Gσ| = q36(q2 − 1)(q5 + 1)(q6 − 1)(q8 − 1)(q9 + 1)(q12 − 1).

In the group Gσ, the Cartan subgroup has order |Hσ| = (q−1)4(q+1)2, and r divides 
q− 1. There is a maximal torus Tσ of order (q4 − q2 +1)(q2 − q+1). By Lemma 2, there 
is a prime m, which divides q12 − 1, but does not divide qi − 1 for all i ∈ {1, 2, . . . , 11}. 
By Lemma 3, m ≥ 13. The decomposition q12 − 1 = (q6 − 1)(q2 + 1)(q4 − q2 + 1) implies 
that m divides q4 − q2 + 1. Let M ≤ Tσ for a m-subgroup M ∈ Sylm(Gσ). Denote by 
L a Hall {r, m}-subgroup of Gσ. Let L = [M ]R. There are x ∈ M and y ∈ R such that 
[x, y] = 1. By Lemma 5, there exists a maximal torus T containing z = x y. Since there 
is the only type of maximal tori whose order is divisible by m, we see that T = Tσ, and 
r divides ((q4 − q2 +1)(q2 − q+1), q− 1) ∈ {1, 2, 4}. Since r ≥ 5, we get a contradiction.

Let L = [R]M . By Lemma 5, NGσ
(R)/CGσ

(R) ≤ W (G). The algebraic group G, 
corresponding to the group Gσ is of type E6, so |W (G)| = 27 · 34 · 5. Since m ≥ 13, we 
have (m, |W (G)|) = 1 and L = R×M . From the uniqueness of the maximal torus whose 
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order is divisible by m, we conclude that r divides ((q4−q2+1)(q2−q+1), q−1) ∈ {1, 2, 4}, 
a contradiction.

(13) G ∼= 2F4(q), q = 22n+1 > 2; |Gσ| = q12(q − 1)(q3 + 1)(q4 − 1)(q6 + 1).

The Cartan subgroup of Gσ has the order |Hσ| = (q − 1)2, so r divides q − 1. By 
Lemma 2, there is a prime m that divides q12 − 1, but does not divide qi − 1 for all 
i ∈ {1, 2, . . . , 11}. By Lemma 3, m ≥ 13. Have the equality: q12−1 = (q6−1)(q2+1)(q2+
q
√

2q+q+
√

2q+1)(q2−q
√

2q+q−√
2q+1). Therefore, m divides the order of one of the 

maximal tori: T 1 of order q2 +q
√

2q+q+
√

2q+1 or T 2 of order q2−q
√

2q+q−√
2q+1. 

Suppose that m divides |T 1|. Let M ≤ T 1 for a m-subgroup M ∈ Sylm(Gσ). Since 
r ≥ 5, m ≥ 13 and |W (G)| = 27 · 32, it follows by Lemma 5, that the group Gσ has 
a Hall {m, r}-subgroup L = M × R. T 1 is the only maximal torus of Gσ whose order 
is divisible by m. So r divides (q2 + q

√
2q + q +

√
2q + 1, q − 1), and hence r divides 

(q4 − q2 + 1, q − 1) = 1, that is impossible. The case when m divides |T 2| considered 
similarly.

(14) G ∼= 3D4(q), q = pn; |Gσ| = q12(q8 + q4 + 1)(q2 − 1)(q6 − 1).

The Cartan subgroup of Gσ has the order |Hσ| = (q3 − 1)(q− 1), and r divides q− 1. 
The group Gσ has a maximal torus Tσ of order q4 − q2 + 1. By Lemma 2, there exists 
a prime m that divides q12 − 1, but does not divide qi − 1 for all i ∈ {1, 2, . . . , 11}. By 
Lemma 3, m ≥ 13. The decomposition q12 − 1 = (q6 − 1)(q2 + 1)(q4 − q2 + 1) implies 
that m divides |T σ|. Suppose that a Sylow m-subgroup M of Gσ is contained in Tσ. 
Since r ≥ 5, m ≥ 13 and |W (G)| = 26 · 3, it follows by Lemma 5, that Gσ has a Hall 
{r, m}-subgroup L = R×M . From the uniqueness of the maximal torus Tσ whose order 
is divisible by m, we conclude that r divides (q4 − q2 + 1, q − 1) = 1, a contradiction.

(15) G ∼= 2B2(q), q = 22n+1; |2B2(q)| = q2(q2 + 1)(q − 1).

The order of the Cartan subgroup of 2B2(q) is q−1, and r divides q−1. By Lemma 2, 
there is a prime m that divides q4 − 1, but does not divide qi − 1 for all i ∈ {1, 2, 3}. By 
Lemma 3, m ≥ 5. From [17] we deduce that every subgroup of odd order of 2B2(q) is 
contained in one of maximal tori which have pairwise coprime orders q− 1, q +

√
2q + 1

and q −√
2q + 1. Then m divides either q +

√
2q + 1 or q −√

2q + 1. In both cases we 
obtain a contradiction to the fact that G has a Hall {r, m}-subgroup.

(16) G ∼= 2G2(q), q = 32n+1; |2G2(q)| = q3(q3 + 1)(q − 1).

The order of the Cartan group of 2G2(q) is q2 − 1, and r divides q2 − 1. By Lemma 2, 
there exists a prime m that divides q6−1, but does not divide qi−1 for all i ∈ {1, 2, . . . 5}. 
By Lemma 3, m ≥ 7. Using [18], we conclude that any subgroup of odd order of 2G2(q), 



440 V.N. Tyutyanov, V.N. Kniahina / Journal of Algebra 443 (2015) 430–440
which is not divisible by 3, is contained in one of maximal tori with pairwise coprime 
orders q2 − 1, q +

√
3q + 1 and q − √

3q + 1. Arguments from the end of the previous 
paragraph leads to a contradiction.

Thus, there is no simple nonabelian group satisfying the conditions of Theorem 1.
Let G be a minimal counterexample to Theorem 1, and let M be a proper normal 

subgroup of G. Show that M is r-solvable. If M is either a r-group or a r′-group, then 
it is r-solvable. Therefore, r ∈ π(M) and |π(M)| ≥ 2. So M has the E{r,t}-property for 
all t ∈ π(M)\{r}. Since G is a minimal counterexample to the theorem, it follows that 
M is r-solvable.

Similarly it is shown that G/M is r-solvable. It follows that the group G is r-solvable. 
The theorem is proved.
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