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1. Introduction

Let G be a finite group and let 7(G) be the set of prime divisors of the order of G.
Suppose that 7 C 7(G). A group G is said to have the E -property (G is a Er-group)
whenever G includes a Hall m-subgroup.

The structure of a finite group essentially depends on the existence of Hall subgroups
in it. In 1956, P. Hall in [1] advanced the hypothesis on solvability of a finite group that
contains biprimary Hall {p, ¢}-subgroups for all prime divisors p and ¢ of its order. The
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validity of this hypothesis was proven in 1982 by Z. Arad and M. Ward [2]. In [3], the
author has obtained that a finite group G is solvable if it possesses the E5 ;-property for
all t € 7(G)\{2}. In [4], composition factors of a finite group G with the Es ;,-property,
where ¢t € 7(G)\{3} were found. It is natural to establish the structure of a finite group
G with the Ey, ¢3-property for some fixed p € 7(G) and all t € 7(G)\{p}.

In the present paper we complete this direction of research. The following result is
proven.

Theorem 1. Let G be a finite group and let r € 7(G)\{2,3}. If G has the Ey, 4y -property
for all t € w(G)\{r}, then G is r-solvable.

Using Theorem 1 and taking papers [3] and [4] into account, we obtain the following
theorem.

Theorem 2. Let G be a finite group with r € w(G). Suppose that G has the Ey, 4y -property
for all t € w(G)\{r}. Then the following hold:

(1) if r #£ 3, then G is r-solvable;
(2) if r = 3, then all simple nonabelian composition factors of G belong to the list:
PSLy(7); PSU3(q) for a suitable value of the parameter q; Sz(22"+1).

From Theorem 1 and the paper [3], we immediately obtain the following criterion for
a finite group to be p-nilpotent.

Corollary. Let G be a finite group, r € n(G), r # 3, and R € Syl (G). If R normalizes
a Sylow t-subgroup for each t € m(G)\{r}, then G is r-nilpotent.

Remark. The example of the group G = PSU3(4) shows that there are simple nonabelian
groups having 3-nilpotent biprimary Hall {3, r}-subgroups for all r € 7(G)\{3}.

2. Auxiliary results

We give notation and auxiliary results that will be used to prove the theorem. We
use [A]B to denote the semidirect product of A and B, where A is a normal subgroup
of [A] B, while we use A x B to denote the direct product of A and B. We write A < -G to
denote a maximal subgroup A of a group G. The notation A' denotes the direct product
of I groups isomorphic to A. If a and b are positive integers, then (a,b) is the greatest
common divisor of a and b.

Lemma 1. (See [5], Lemma 3.) Let a, m, n be positive integers. Then (%, am™—1) =

((m"n) ,al™™) — 1), In particular, (a::ll,a -1)=(n,a—1).
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Definition. Let  and p be prime numbers, and let n be a positive integer not smaller
than 2. The number r is said to be primitive in relation to the pair {p,n} if r divides
p™ — 1, but does not divide p’ — 1 for all 1 < i < n.

Lemma 2. (See [6].) Let p be a prime number, and let n be a positive integer not smaller
than 2. Suppose that {p,n} # {2,6} or {p,n} # {2,2™ — 1}. Then there exists a prime
number r primitive in relation to the pair {p,n}.

Lemma 3. If r is a prime number primitive in relation to the pair {p,n}, then r > n+1.
Proof. Follows from Fermat’s little theorem.

We need the following results which can be found, for example, in [7]. Let ¥ be an
irreducible root system, and let a € ¥. Denote a* = 2a/(a, a). Then ¥* = {a*|a € X} is
a root system dual of X.

Definition. (See [7], Definition 4.1.) A prime p is called a torsion prime if L(X*)/L(31")
has a p-torsion for some closed subsystem ¥; C 3.

Lemma 4. (See [7], 4.8, 4.4, p. 173.) For an arbitrary root system, the torsion primes
are:

(1) for A;, C; — no;

(2) for Bl, Dl, G2 i 2,’
(3) fO?” Ee,, E7, F4 — 2, 3,’
(4) for Eg — 2, 3, 5.

Lemma 5. (See [8/, Lemma 1.7.) Let G be a connected semisimple algebraic group over
the algebraic closure of the field F,, where ¢ = p™, and let o be a Frobenius endomorphism
of the group G. Then a direct product E = Y1 x Yo X - - x Yy, of cyclic semisimple groups
Y; of G, can be embedded into a mazimal torus T, of Gy, if the number of such |l7z|
not coprime to all torsion primes of G is at most two. In particular, Ng_(E)/Cq_(E) <
W(Q), where W(G) is a Weyl group of G.

Lemma 6. (See [9], Lemma 8.) Let G be a simple Chevalley group and let G ¢ {PSLs(2),
PSpg(2), PQJ (2), PSU4(2)}. Then there exists a prime divisor of |G| that does not divide
the order of any proper parabolic subgroup of G.

We consider the following situation. Let G € {PSU(l,q¢?), PSU(l + 1,¢%)}, where
qg=p",n >3, and [ is an odd number; let r be a prime number primitive in relation to
the pair {p,2nl} # {2,6}. In this notation, the following lemma holds.
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Lemma 7. (See [10], Lemma 18 (a), (b).) Let M be a maximal solvable subgroup of G.
Suppose that the order of M is divisible by r. Then the following assertions hold:

(a) |M| divides I(¢" +1)(¢+1)"" for G = PSU(l,¢*);
(b) |M| divides I(¢' + 1) for G = PSU(l +1,4?).

3. Proof of Theorem 1

To prove the theorem we use the technique of Chigira’s [11] and L.S. Kazarin’s [10]
works.

Show that there are no simple nonabelian groups satisfying the conditions of the
theorem. We consider separately the cases when G is alternating, sporadic and a group
of Lie type.

1. G= A, (n >5) is an alternating group.

Since m(A,) > 3, by hypothesis, A4,, has a biprimary Hall subgroup F of odd index.
Since |Sy, : Ap| = 2 for n # 6, while |Sg : Ag| = 4, it follows that F' is a Hall subgroup
of S,,. This contradicts Theorem A4 of [1].

2. @ is either a sporadic group or the Tits group 2Fy(2)’.

From Corollary 6.13 in [12] and Theorem 4.1 in [13], we obtain the list of groups
containing proper Hall subgroups. All these groups do not satisfy the conditions of The-
orem 1.

3. G is a simple group of Lie type over the field GF(q), where g = p™.

Suppose that r = p. It follows that for each ¢ € =w(G)\{r} there is a Hall
{r,t}-subgroup L = UT of G, where U € Syl,(G), T € Syl,(G). By Theorem 3.3
n [14], L is either parabolic or is contained in a Borel subgroup B = UH(U € Syl,,(G),
H is a Cartan subgroup of G). Suppose first that L > B. Since r = p > 5, it follows that
G % S2(22*1). So by Corollary 3.4 in [14], 7(¢ + 1) Un(q — 1) = {t}. Since r = p > 5,
we have ¢ —1 >4 and (¢+1,g—1) = 2. Hence t = 2, and ¢ — 1 = 28, ¢ + 1 = 22,
where 3 > 2. It follows that 2°%(2*=# — 1) = 2, this is impossible. Therefore, L is always
contained in a Borel subgroup.

It follows that L. < M < -G, where M is any maximal parabolic subgroup of G
up to conjugation. Therefore, ¢t divides the order of each own maximal parabolic
subgroup of G. Since t is an arbitrary prime divisor of |G|, by Lemma 6, we have
G € {PSLs(2), PSps(2), P2t (2), PSU4(2)}. These groups are defined over the field
of characteristic 2. This is a contradiction to the fact that r > 5.
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So r # p. Consider a biprimary Hall {r,p}-subgroup L = UR, where U € Syl,(G),
R € Syl,.(G). By Theorem 3.3 in [14], L is either parabolic or is contained in a Borel
subgroup B of G. Suppose that B < L. If G = §z(2?*+1), then L < B because the
Lie rank of Sz(22*1) is 1. Thus G % Sz(22"*1), and Corollary 3.4 in [14] implies that
g+ 1)Un(qg—1) ={r}. If ¢—1 > 2, then (¢+1,¢—1) = 2, and r = 2. This contradicts
the fact that » > 5. So¢g—1 =1, that is ¢ = 2. Thus ¢+1 = 3 = r > 5, this is impossible.
Therefore, L is contained in a Borel subgroup.

Lemma 1.4.3 in [12] implies that UR < B, R < H, where B and H are Borel and
Cartan subgroups respectively. In particular, R is an abelian group. Moreover, since
R € Syl.(G), we have (r,|W(G)|) = 1, where W(G) is a Weyl group of G.

We need the following facts about algebraic groups. Let G be a simple connected
algebraic group. Surjective endomorphism o of G is called the Frobenius map, if its
group of fixed points G, = Cz(0) is finite. There is a connected algebraic group G with
Frobenius map o such that G,/Z(G,) = G, where G is a finite simple group of Lie
type except the case when G = 2F,(2)". Denote by B, a Borel subgroup of G,. Then
B, =Uy,H,, where U, € S’ylp(ég)7 H, is a Cartan subgroup. Note that if G contains
a biprimary Hall w-subgroup for m C 7 (G), then G, also contains a biprimary Hall
m-subgroup and vice versa, if G, contains a biprimary Hall m-subgroup for 7 C 7(G,),
then G contains a biprimary Hall 7-subgroup. At the same time for R € Syl,.(G,) we
see that R C H,, R is an abelian group, (r, [W(G,)|) = 1.

Consider consecutively all cases.

(1) G=Alq), 1> 1, g=p" |Go| = V2T E (¢ — 1).

In this case, H, = Zfrl and R < H,. Wherein r divides ¢ — 1, and (r,|W(G,)|) = 1.
Since r > 5, we have ¢ > 11. G,, has a maximal tor T, of order (¢!**—1)/(qg—1) by [15].
If G = A5(2), then ¢ — 1 = 1. This is a contradiction to the fact that r divides ¢ — 1. Let
G = Ay(q), where ¢ = p" = 2¥ — 1. By Dixon’s theorem (I1.8.27 [16]), we obtain that
G does not have the Eyj . -property. So by Lemma 2, there is a prime m such that m
divides ¢!t — 1, but does not divide ¢ — 1 for all i € {1,...,1}. By Lemma 3, we get
that m > 1+ 2. Let M < T, for some abelian m-subgroup M € Syl,,(G,). Consider
the Hall subgroup L = M R of G,. Since M and R are abelian, we deduce that either
L =[M]Ror L = [RIM. Let L = [M]R. By Lemma 5, Ng_ (M)/Cq (M) < W(G).
Since |W(G)| = |[W(G,)| and (r,|W(G,)|) = 1, we have L = M x R. If L = [R]M, then
by Lemma 5, Ng_(R)/Cg_(R) < W(G). Since [W(G,)| = (I +1)!, and m > [ + 2, then
we again get that L = M x R.

The group G, has the only maximal torus T, such that |T,| is divisible by m, so
L < T,. It follows that r € ﬂ(ql;ifl,q —1). By Lemma 1, (%,q -1)=(1+1,
q — 1), hence r divides | + 1. But |[W(G,)| = (I + 1)!. This contradicts the fact that
(r, [W(G))) = 1.
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(2) G=Bi(q),1>2,q=p" |Gol = q" [Ti(¢* — 1),

The Cartan subgroup H, = q 1, and r divides ¢ — 1. In particular, ¢ > 11. G, has
a maximal torus T, of order ¢' 4+ 1 by [15]. The case 2] = 2, ¢ = 2% — 1 is not fulfilled
since [ > 2, the case 2] = 6, ¢ = 2 also is not fulfilled since ¢ > 11. Thus there is a prime
m such that m divides ¢?' — 1, but does not divide ¢ — 1 for all i € {1,2,...,2] — 1}.
By Lemma 3, we obtain that m > 2 + 1. Since ¢* — 1 = (¢ — 1)(¢" + 1), we see
that m divides ¢! + 1. Denote by M, < T, some abelian m-subgroup M € Syl,,,(G,).
Consider the Hall subgroup L = M R of G,. Since M and R are abelian, then either
L = [M]R or L = [R]M. Suppose first that L = [M]R. For the root system Bj, the
torsion prime is 2. Then by Lemma 5, Ng (M)/Cq (M) < W(G). Since |[W(G)| =
[W(G,)|, and (r,|W(G,)|) = 1 we have L = M x R. If L = [R|M, then by Lemma 5

Ng. (R)/Cg (R) < W(G). Since [W(G,)| = 271! and m > 20 + 1, we conclude that
(m,|W(G,)|)=1,and L = R x M.

Since G, has the only maximal torus T, such that |TU| is divisible by m, we have
L <T,. It follows that r € 7(¢' + 1,¢ — 1) C 7(¢' +1,¢' — 1) C {1,2}. This contradicts
the fact that r > 5.

(B) G=Ci(g),122,q=p".
This case is considered exactly the same as (2).
(4) G=Dy(q), 1 >4, q¢=p"; |Go| = """ V(¢' =) L,Z1(¢* — 1),

The Cartan subgroup H, =2 Zq 1, and 7 divides ¢ — 1. In particular, ¢ > 11. G, has a
maximal torus T, of order (¢'~!+1)(¢+ 1) by [15]. Since ¢ > 11 and | > 4, we see that
the cases 2(I —1) =6, ¢ =2, and 2(I — 1) = 2, ¢ = 2¥ — 1 are not fulfilled. By Lemma 2,
there is a prime m which divides ¢~ — 1, but does not divide ¢’ — 1 for all i such that
1 <4 <20 —3. By Lemma 2, we get that m > 2] — 1. Let M < T, be an abelian Sylow
m-subgroup of G,. Since m > 21 — 1, we have m # 2. By Lemma 4, the torsion prime for
type Dy is 2. Consider the Hall subgroup L = M R of G,,. Since M and R are abelian, then
cither L = [M]R or L = [R]M. Let L = [M]R. By Lemma 5, Ng_(M)/Cq (M) < W(G).
Since |W(G,)| = [W(G)| and (r, [W(G,)|) = 1, we have L M x R. If L = [R]M, then
by Lemma 5, Ng_(R)/Cg_ (R) < W(G). Since |[W(G,)| =21 -1l and m > 2l — 1, we
have L = M x R.

The group G, has the only maximal torus T, such that |T,| is divisible by m, so
L <T,. Tt follows that r divides ((¢ ="' +1)(¢+1),¢—1). Since r > 5 and (¢+1,9—1) €
{1,2}, we conclude that r divides (¢'~! +1,¢q — 1), and thus r divides (% ¢ U Lg—1).
By Lemma 1, r divides I — 1. Since (|W(Gy)|,r) = 1 and |[W (G, )| = 2!~1 l' we deduce
that r does not divide [ — 1. We have a contradiction.
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(5) G = Eo(q), ¢ =p" |Gol = ¢*(¢* = D(¢° = )(¢° - 1)(¢* — 1)(¢” = )(¢"* = D).

The Cartan subgroup H, = Z6 1, and 7 divides ¢ — 1. G, has a maximal torus T,
of order (¢* — ¢* + 1)(¢®> +q + 1) by [15]. By Lemma 2, there exists a prime m that
divides ¢'2 — 1 but does not divide ¢* — 1 for all i € {1,2,...,11}. By Lemma 3, m > 13.
Have the equality: ¢*2 — 1 = (¢° — 1)(¢® + 1)(¢* — ¢®> + 1). Hence it is easy to deduce
that m divides ¢* — ¢? + 1. Consider a group M € Syl,,(G,) such that M < T,. Let
L = M R. Torsion primes for the root system of type Fg are 2 and 3. If L = [M]R, then by
Lemma 5, Ng (M)/Cq_ (M) < W(G). Since |W(G)| = [W(G,)| and (r,|W(Go)|) = 1,
we have L = M x R. If L = [R]M, then by Lemma 5, Ng_(R)/Cg_(R) < W(G). Since
|W(Gy,)| =27-3%.5and m > 13, we have (m,|W(G,)|) =1 and L = R x M.

From the uniqueness of the maximal torus T, whose order is divisible by m, we
conclude that L < T,. It follows that » divides ((¢* —¢*> + 1)(¢* +q¢+1),q— 1) =
((¢*(g— 1?2 +1)((g — 1)%> + 3q),q — 1) € {1,3}. This contradicts the fact that r > 5.

(6) G = Er(q), a=p" |Go| = ¢%(¢* = 1)(¢° = 1)(¢"° = 1)(¢"* = 1)(¢"* = 1)(¢"® — 1).

The Cartan subgroup H, = and 7 divides ¢ — 1. G, has a torus T4 of order

q I
(¢®*—¢3+1)(g+1) by [15]. By Lemma 2, there is a prime m which divides ¢'® —1, but does
not divide ¢* — 1 for all € {1,2,...,17}. By Lemma 3, m > 19. The following equality
holds: ¢'8—1 = (¢° —1)(¢3+1)(¢° —¢>+1). It is easy to see that m divides ¢° —¢>+1. Let

M € Syl,,,(G,) and M < T,. Torsion primes for the root system of type E; are 2 and 3.

Denote L = M R. If L = [M]R, then by Lemma 5, we have N (M)/Cg_ (M) < W(G).
Since |W(G)| = [W(Gy)|, and (r,[W(G,)|) =1, we get L = M x R. If L = [R]M, then
by Lemma 5, Ng (R)/Cg_ (R) < W(G). Since |[W(G,)| = 2*-3%-5% -7 and m > 19,

then (m,|W(G,)|) =1and L =R x M.

From the uniqueness of the maximal torus T, whose order is divisible by m, we
conclude that L < T,. So r divides ((¢° —¢*+1)(g+1),q—1) € {1,2}. This contradicts
the fact that » > 5.

(7) G = Es(q), ¢ = p™; |Gol = ¢"2°(¢* = 1)(¢® — 1)(¢"* = 1)(¢™ = 1)(¢"® = 1)(¢*° —
1)(g** —1)(¢* —1).

The Cartan subgroup H, = and 7 divides ¢ — 1. G, has a torus T, of order

15
@®+q" — ¢ —q*—¢*+q+1by [15)] .qLemma 2 implies that there is a prime m that divides

—1, but does not divide ¢°—1 for all i € {1,2,...,29}. By Lemma 3, m > 31. Have the
equality: ¢*°—1 = (¢'5—1)(¢°+1)(¢®>+q+1)(¢®+¢" —¢° —¢* —¢*>+q+1) which implies that
m divides ¢®+¢" —¢° —¢*—¢*>+q+1. Let M € Syl,,(G,) and M < T,. Torsion primes for
the root system of type Eg are 2, 3 and 5. Since |W (G )| =214.35.52.7 we have r > 11.
Denote L = M R. If L = [M]R, then by Lemma 5, Ng_(M)/Cg_ (M) < W(G). Since

W(G)| = |[W(G,)| and (r, [W(G,)|) = 1, we deduce that L=MxR.If L = [R]M, then
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by Lemma 5, Ng_(R)/Cg_(R) < W(G). Since |W(Go)| = 2'*-35.5% -7 and m > 31,
we have (m,|W(G,)|) =1and L = R x M.

From the uniqueness of the maximal torus T, whose order is divisible by m, we
conclude that L < T,. Therefore, r divides (¢® +¢" —¢°* —¢* —¢®* +q¢+1,¢—1) = 1.
A contradiction.

(8) G=Fu(q), a=p" |Go| = ¢**(¢* = 1)(¢° = 1)(¢° — 1)(¢"* = 1).

The Cartan subgroup H, = and r divides ¢ — 1. G, has a maximal torus T, of

4
1
order ¢* — ¢®> +1 by [15]. By Lemina, 2, there is a prime m that divides ¢'2 — 1, but does
not divide ¢* — 1 for all i € {1,2,...,11}. By Lemma 3, m > 13. The following equality
holds: ¢'?2 —1 = (¢® —1)(¢*> +1)(¢* —¢*> +1). So m divides ¢* — ¢> + 1. Consider the group
M < Syl (G,) such that M < T,. Let L = M R. Torsion primes for the root system
of type Fy are 2 and 3. If L = [M]R, then by Lemma 5, Ng_(M)/Cg_ (M) < W(G).
Since |W(G)| = |W(_U)\ and (r, [W(Gy)|) =1, we have L = M x R. If L = [R]M, then
by Lemma 5, Ng (R)/Cg_(R) < W(G). Since |[W(G,)| = 27 - 32 and m > 13, we have
(m, |W(C_¥U)D = 1 and L =R x M.

From the uniqueness of the maximal torus T, whose order is divisible by m, we
conclude that L < T,. So r divides (¢* — ¢> +1,¢ — 1) = 1. This is a contradiction.

(9) G=Ga(q), =" 1Gol = ¢°(¢* — 1)(¢° — 1).

In this case, H, = Z2 , and 7 divides ¢ — 1. G, has a maximal torus T, of order
¢ —q+1 by [15]. Slnce q > 11, the case ¢ = 2 is impossible. By Lemma 2, there is
a prime m that divides ¢% — 1, but does not divide ¢* — 1 for all i € {1,2,...,5}. By
Lemma 3, m > 13. Have the equality: ¢° — 1 = (¢> — 1)(¢ + 1)(¢*> — ¢ + 1), so m divides
q*> — ¢ + 1. Consider the group L = M R. The torsion prime for the root system of type
G is 2. As in the preceding paragraphs we show that L = M x R.

From the uniqueness of the maximal torus T, whose order is divisible by m, we
conclude that L < T,. So r divides (¢> — ¢+ 1,¢ — 1) = 1, it is impossible.

(10) G=241_1(q), 1 = 3, g =p".

Suppose first that [ is odd. The order of a Cartan subgroup is |H| = qu) (¢ —
DE=D/2(g + 1)¢-1/2 Since (l’qﬂ)(q + 1)!=! divides |G| and r > 5, it follows that r
divides ¢ — 1. The group 2A4;_1(q) = PSU(l,q). The equality {2,6} = {p,2ni} holds
if p=2and ! = 3. Since PSU(3,2) is solvable, this case is impossible. By Lemma 2,
there exists a prime s primitive in relation to the pair {p,2nl}. Consider a biprimary

Hall {r, s}-subgroup M of G. By Lemma 7, |M| divides I(¢' + 1)(¢ + 1)~!. Since |[M| =

FU=1)/2 . I(g"'+1)

W 1S an lnteger. Since

S - f, where f is an integer, we see that
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(¢ +1,qg+1) € {1,2}, and r divides ¢ — 1, we conclude that W is an integer. But
since r > 5, it is impossible.

Let [ be an even number, and let [ > 4. The order of a Cartan subgroup |H| =
m(q — 1)Y2(q+ 1)=D/2, Since m(q + 1)1 divides |G|, we see that r divides
g—1. By Lemma 2, there is a prime s primitive in relation to the pair {p, 2nl}. Consider a
Hall {r, s}-subgroup M of G. By Lemma 7, |M| divides I(¢' + 1). Since |[M| = s-7!/2 . f,

Ug'+1) 1

where f is an integer, we obtain that v En is an integer. It follows that —= is an

integer. But since r > 5 and [ > 4, it is impossible.

(11) G =2Dy(q), 1 >4, ¢ =p"; |Go| = ¢ V(¢ + 1) TILZ1 (6% — 1).

In the group G,, the order of a Cartan subgroup |H,| = (¢ — 1)!~!(¢ + 1), and r
divides ¢ — 1. The group G, has a maximal torus T, of order ¢! + 1. Cases 2] = 2,
qg=2%—1and 2l = 6, ¢ = 2 obviously are not fulfilled. Therefore, by Lemma 2, there is
a prime m, which divides ¢? — 1, but does not divide ¢* — 1 for all i € {1,2,...,2] —1}.
By Lemma 3, we obtain that m > 2] +1 > 11. Let M < T, for an abelian m-subgroup
M € Syl,,(G,). Consider a biprimary Hall {r, m}-subgroup L of G,. Assume first that
L = [M]R. Note that W(G,) # W(G). Since [ > 4, there is a pair of commuting elements
Z € M and § € R. Denote Z = 7. By Lemma 5, there is maximal torus 7 containing Z.
Since there is the only type of maximal tori whose order is divisible by m, then T' = T',.
Thus 7 divides (¢' + 1,¢ — 1) € {1,2}. This contradicts the fact that r > 5.

Let L = [R]M. By Lemma 5, Ng_(R)/Cg._ (R) < W(G). Since the algebraic group G
corresponding to G, is of type D;, we have |[W(G)| = 2=1-1!. Since m > 2[+1, it follows
that (m, |W(G)|) =1 and L = R x M. In the group G, there is the only maximal torus
T, whose order is divisible by m, so L < T,. It follows that » divides (¢! +1,¢q — 1),
which is 1 or 2. Since r > 5, it is impossible.

(12) G =2Es(q), ¢ =p"; |Gol = ¢*°(¢* = (" + 1)(¢° = 1)(¢® — 1)(¢° + 1)(¢"* — 1).

In the group G,, the Cartan subgroup has order |H,| = (¢—1)*(g+1)2, and r divides
q — 1. There is a maximal torus T, of order (¢* —¢®>+1)(¢*> —q¢+1). By Lemma 2, there
is a prime m, which divides ¢'? — 1, but does not divide ¢ — 1 for all i € {1,2,...,11}.
By Lemma 3, m > 13. The decomposition ¢*2 —1 = (¢° — 1)(¢®> +1)(¢* — ¢* + 1) implies
that m divides ¢* — ¢®> + 1. Let M < T, for a m-subgroup M € Syl,,(G,). Denote by
L a Hall {r,m}-subgroup of G,. Let L = [M]R. There are T € M and 3 € R such that
[Z,7] = 1. By Lemma 5, there exists a maximal torus 7' containing zZ = Z . Since there
is the only type of maximal tori whose order is divisible by m, we see that T = T, and
r divides ((¢* —¢®>+1)(¢> —q+1),q—1) € {1,2,4}. Since r > 5, we get a contradiction.

Let L = [R]M. By Lemma 5, Ng (R)/Cg_ (R) < W(G). The algebraic group G,
corresponding to the group G, is of type Eg, so |[W(G)| = 27 -3* - 5. Since m > 13, we
have (m, |W(G)|) =1 and L = Rx M. From the uniqueness of the maximal torus whose
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order is divisible by m, we conclude that r divides ((¢*—¢*+1)(¢*—q+1),q—1) € {1,2,4},
a contradiction.

(13) G=2Fy(q), ¢ =2"""" > 2; |Go| = ¢"*(¢ — 1)(¢* + 1)(¢* — 1)(¢® + 1).

The Cartan subgroup of G, has the order |H,| = (¢ — 1)?, so r divides ¢ — 1. By
Lemma 2, there is a prime m that divides ¢'?> — 1, but does not divide ¢* — 1 for all
i€{1,2,...,11}. By Lemma 3, m > 13. Have the equality: ¢*>—1 = (¢ —1)(¢®+1)(¢*+
a/2q+q++/2q+1)(¢* —q/2¢+q—+/2q+1). Therefore, m divides the order of one of the
maximal tori: Ty of order ¢% +qv/2q+q++/2q+1 or Ty of order ¢% — q/2q+q—+/2q+1.
Suppose that m divides |T1|. Let M < Ty for a m-subgroup M € Syl,,(G,). Since
r>5 m > 13 and |W(G)| = 27 - 32, it follows by Lemma 5, that the group G, has
a Hall {m,r}-subgroup L = M x R. T is the only maximal torus of G, whose order
is divisible by m. So r divides (¢* + ¢v/2¢ + ¢ + v/2¢ + 1,q — 1), and hence r divides
(¢* —¢®>+1,g—1) = 1, that is impossible. The case when m divides |T3| considered
similarly.

(14) G =3D4(q), ¢ =p" |Gol = ¢"*(¢® + ¢* + 1)(¢* — 1)(¢° - 1).

The Cartan subgroup of G, has the order |H,| = (¢* —1)(¢— 1), and r divides ¢ — 1.
The group G, has a maximal torus T, of order ¢* — ¢®> + 1. By Lemma 2, there exists
a prime m that divides ¢*2 — 1, but does not divide ¢* — 1 for all i € {1,2,...,11}. By
Lemma 3, m > 13. The decomposition ¢*> — 1 = (¢° — 1)(¢*> + 1)(¢* — ¢*> + 1) implies
that m divides |T,|. Suppose that a Sylow m-subgroup M of G, is contained in T',.
Since r > 5, m > 13 and |[W(G)| = 2% - 3, it follows by Lemma 5, that G, has a Hall
{r,m}-subgroup L = R x M. From the uniqueness of the maximal torus T, whose order
is divisible by m, we conclude that r divides (¢* — ¢*> +1,¢ — 1) = 1, a contradiction.

(15) G = 2Bs(q), ¢ = 2°"%; 2Bs(q)| = ¢*(¢* + 1) (g — 1).

The order of the Cartan subgroup of ?By(q) is ¢ — 1, and r divides ¢ — 1. By Lemma 2,
there is a prime m that divides ¢* — 1, but does not divide ¢* — 1 for all i € {1,2,3}. By
Lemma 3, m > 5. From [17] we deduce that every subgroup of odd order of ?By(q) is
contained in one of maximal tori which have pairwise coprime orders ¢ — 1, ¢ + 1/2¢ + 1
and g — v/2¢ + 1. Then m divides either ¢ + +/2¢ + 1 or ¢ — v/2¢ + 1. In both cases we
obtain a contradiction to the fact that G has a Hall {r, m}-subgroup.

(16) G =2Ga(q), ¢ = 3" PGa(q)| = ¢*(¢* + 1)(g — 1)
The order of the Cartan group of 2G5(q) is ¢> — 1, and r divides ¢> — 1. By Lemma 2,

there exists a prime m that divides ¢®—1, but does not divide ¢'—1 for alli € {1,2,...5}.
By Lemma 3, m > 7. Using [18], we conclude that any subgroup of odd order of 2G3(q),
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which is not divisible by 3, is contained in one of maximal tori with pairwise coprime
orders ¢> — 1, ¢ + /3¢ + 1 and ¢ — /3¢ + 1. Arguments from the end of the previous
paragraph leads to a contradiction.

Thus, there is no simple nonabelian group satisfying the conditions of Theorem 1.

Let G be a minimal counterexample to Theorem 1, and let M be a proper normal
subgroup of G. Show that M is r-solvable. If M is either a r-group or a 7’-group, then
it is 7-solvable. Therefore, r € 7(M) and |7(M)| > 2. So M has the Ey,. ;,-property for
all ¢t € m(M)\{r}. Since G is a minimal counterexample to the theorem, it follows that
M is r-solvable.

Similarly it is shown that G/M is r-solvable. It follows that the group G is r-solvable.
The theorem is proved.
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