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Let K be an algebraically closed field. There has been much 
interest in characterizing multiple structures in Pn

K defined 
on a linear subspace of small codimension under additional 
assumptions (e.g. Cohen–Macaulay). We show that no such 
finite characterization of multiple structures is possible if 
one only assumes unmixedness. Specifically, we prove that 
for any positive integers h, e ≥ 2 with (h, e) �= (2, 2) and 
p ≥ 5 there is a homogeneous ideal I in a polynomial ring 
over K such that (1) the height of I is h, (2) the Hilbert–
Samuel multiplicity of R/I is e, (3) the projective dimension 
of R/I is at least p and (4) the ideal I is primary to a 
linear prime (x1, . . . , xh). This result is in stark contrast to 
Manolache’s characterization of Cohen–Macaulay multiple 
structures in codimension 2 and multiplicity at most 4
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and also to Engheta’s characterization of unmixed ideals of 
height 2 and multiplicity 2.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let K be an algebraically closed field. We consider projective multiple (i.e. gener-
ically nonreduced) schemes whose reduced subschemes are linear subspaces in Pn

K for 
some n. Multiple structures in general have been widely studied with connections to vec-
tor bundles [12,1,14], Hartshorne’s Conjecture [25], linkage theory [20] and set-theoretic 
complete intersections [24]. In our setting where the reduced subscheme is a smaller pro-
jective space, there are finite characterizations of multiple structures in codimension two 
in small degree and under certain hypotheses: Manolache gave structure theorems for 
scheme-theoretically Cohen–Macaulay multiple structures of degree at most 4 [15] and 
locally complete intersection multiple structures of degree at most 6 [16]. See [17] for a 
nice survey of these results.

The defining ideals of these schemes correspond to homogeneous ideals that are pri-
mary to a prime ideal generated by linear forms in a polynomial ring R over K. More 
broadly, we were interested in the homological structure of homogeneous unmixed ideals 
of any polynomial ring over K, that is, ideals whose associated primes all have the same 
height.

Engheta gave a complete characterization of unmixed ideals of height 2 and multi-
plicity 2:

Proposition 1.1. (Engheta [10, Prop. 11].) Let R be a polynomial ring over an alge-
braically closed field and let I ⊂ R be a height two unmixed ideal of multiplicity 2. Then 
pd(R/I) ≤ 3 and I is one of the following ideals.

1. A prime ideal generated by a linear form and an irreducible quadric.
2. (x, y) ∩ (x, z) = (x, yz) with independent linear forms x, y, z.
3. (w, x) ∩ (y, z) = (wy, wz, xy, xz) with independent linear forms w, x, y, z.
4. The (x, y)-primary ideal (x, y)2 + (ax + by) with independent linear forms x, y and 

forms a, b ∈ m such that x, y, a, b form a regular sequence.
5. (x, y2) with independent linear forms x, y.

The hypothesis that K is algebraically closed is essential. Take for instance R =
Q[w, x, y, z] and P = (w2 + x2, y2 + z2, wz − xy, wy + xz). Then P is a prime ideal of 
height 2 and multiplicity 2, but is not degenerate (i.e. does not contain a linear form) 
as in case (1) above. Note that over C, PC[w, x, y, z] is no longer prime but rather of 
type (3) since

PC[w, x, y, z] = (w + ix, y + iz) ∩ (w − ix, y − iz).



C. Huneke et al. / Journal of Algebra 447 (2016) 183–205 185
One might wonder if there is a finite list for other multiple structures of higher height 
or multiplicity. We show that this is hopeless is a very strong form. Specifically, we give an 
explicit construction of homogeneous primary ideals of any other height and multiplicity 
and arbitrarily high projective dimension. We state our main theorem here:

Theorem 1.2. Let K be an algebraically closed field. For any integers h, e ≥ 2 with 
(h, e) �= (2, 2) and for any integer p ≥ 5, there exists a primary ideal Ih,e,p of height h
and multiplicity e in a polynomial ring R over K with 

√
Ih,e,p a linear prime and such 

that pd(R/Ih,e,p) ≥ p.

We find this result surprising for two reasons. First, while it may not be surprising that 
for sufficiently large height and multiplicity, there are infinitely many multiple structures, 
we show that they can be taken to be arbitrarily pathological in terms of their resolutions. 
Second, Engheta asked if an analogous theorem to Proposition 1.1 might be true in the 
next simplest case, that of height 2 and multiplicity 3. Our result shows that even this 
is too much to ask.

Our strategy is to produce three primary ideals of height 2 and one of height 3 in 
low multiplicity whose canonical modules have arbitrarily high projective dimension. 
This construction relies on the Buchsbaum–Eisenbud acyclicity theorem [5] and on the 
existence of three-generated ideals with high projective dimension by Burch [6] and 
Kohn [13]. Indeed our result can be seen as closely related to the papers of Burch and 
Kohn but in a different direction. Finally, linkage arguments are used to produce the 
primary ideals in the main theorem.

Our original motivation stems from the following open question first posed by Still-
man:

Question 1.3. (Stillman [21, Problem 15.8].) Is there a bound, independent of n, on the 
projective dimension of ideals in R = K[x1, . . . , xn] which are generated by N homoge-
neous polynomials of given degrees d1, . . . , dN?

In light of Bruns’s Theorem [3], the most significant case is that of a three-generated 
ideal (f, g, h). The difficult case is when the height is 2 in which case we can assume that 
f , g form a regular sequence. In this case, we have a short exact sequence

0 → R

(f, g) : h
h−→ R

(f, g) → R

(f, g, h) → 0.

Since pd(R/(f, g)) = 2, it suffices to bound the projective dimension of the left-hand 
term. The ideal (f, g) :h is unmixed of height 2 and multiplicity at most deg(f) ·deg(g) −1. 
This argument reduces the problem to bounding the projective dimension of unmixed 
ideals in terms of their height and multiplicity. Theorem 1.2 shows that this is impossible 
in general, even in height 2. This answers Question 6.4 raised by two of the authors in 
[19] negatively.
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We also remark that Caviglia [7] showed that Question 1.3 is equivalent to the question 
in which we replace projective dimension with regularity. One could use a similar strategy 
and try to bound the regularity of unmixed ideals of a fixed height and multiplicity. 
Proposition 1.1 already shows this is fruitless. The ideals Jn = (x2, xy, y2, wnx + zny)
are unmixed of height 2 and multiplicity 2 and satisfy reg(R/Jn) = n.

The rest of this paper is structured as follows: Section 2 contains notation and basic 
results needed for the remainder of the paper. In Section 3 we prove the main theorem 
while relegating the technical details about the construction of the four specific ideals 
mentioned above to Section 4. This construction is summarized in Proposition 3.5. In 
the final Section 5 we construct a specific example from our family of primary ideals 
with large projective dimension and discuss some remaining questions.

2. Background

For the rest of this paper, R will denote a polynomial ring over an algebraically 
closed field K with graded maximal ideal m. We consider R as a standard graded ring. 
We write Ri for the K-vector space of homogeneous degree i polynomials of R. For 
a finitely generated graded R-module M , there exists a unique (up to isomorphism) 
minimal graded free resolution

F0
d1←−− F1

d2←−− · · · dp←−− Fp ← 0,

that is, an exact sequence of graded maps of finitely generated graded free modules 
Fi =

⊕
j R(−j)βi,j(M), where M ∼= Coker(d1) and Im(di) ⊆ mFi−1 for all i ≥ 1. Here 

R(−d) denotes a rank one free module with generator in degree d so that R(−d)i = Ri−d. 
The numbers βi,j(M) are invariants of M called the graded Betti numbers of M and can 
also be defined as βi,j(M) = TorRi (M, K)j . The length p of the minimal free resolution 
of M is called the projective dimension of M and is denote pd(M). By convention, we 
often write the Betti numbers of M as a matrix called the Betti table of M :

0 1 2 · · · i · · ·
0: β0,0(M) β1,1(M) β2,2(M) · · · βi,i(M) · · ·
1: β0,1(M) β1,2(M) β2,3(M) · · · βi,i+1(M) · · ·
2: β0,2(M) β1,3(M) β2,4(M) · · · βi,i+2(M) · · ·
...

...
...

...
...

j: β0,j(M) β1,j+1(M) β2,j+2(M) · · · βi,i+j(M) · · ·
...

...
...

...
...

The projective dimension of M is then the index of the last nonzero column in the 
Betti table of M .

The following lemma is useful when computing projective dimension.

Proposition 2.1. Let 0 → A → B → C → 0 be a short exact sequence of R-modules. 
Then
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1. pd(A) ≤ max{pd(B), pd(C) − 1},
2. pd(B) ≤ max{pd(A), pd(C)},
3. pd(C) ≤ max{pd(A) + 1, pd(B)}.

For an ideal I, the unmixed part of I is the intersection of primary components of I
corresponding to primes of minimal height:

Iun =
⋂

p∈Ass(I)
ht(p)=ht(I)

qp,

where qp is the p-primary component of I. An ideal I is unmixed if I = Iun. By way 
of the associativity formula, we have a way of characterizing many unmixed ideals. We 
denote by λ(−) the length of a module and by e(−) the Hilbert–Samuel multiplicity.

Theorem 2.2 (Associativity formula). (Cf. [23, Thm. 11.2.4].) Let I be an ideal of R. 
Then

e(R/I) =
∑

p∈Spec(R)
ht(p)=ht(I)

e(R/p)λ(Rp/Ip).

It follows that e(R/I) = e(R/Iun).
Let depth(M) denote the length of a maximal regular sequence on M . We say that 

M satisfies Serre’s condition (Sk) (or simply is (Sk)) if

depth(Mp) ≥ min
p∈Spec(R)

{k,dim(Mp)}.

A module M is unmixed if all primes p ∈ Ass(M) have the same height, so that S/I is 
unmixed as a module if and only if I is unmixed as an ideal. Note that if M is unmixed, 
then M is (S1), but the converse does not hold.

Let ϕ : F → G be a map between finite rank free module F and G. After choosing 
bases for F and G, we can represent ϕ be a matrix. For a positive integer j we denote 
by Ij(ϕ) the ideal of j × j minors of the entries in the matrix representing ϕ. Note that 
Ij(ϕ) does not depend on the choice of bases (cf. [8, p. 497]).

Theorem 2.3 (Buchsbaum–Eisenbud). (Cf. [8, Thm. 20.9].) Let F be a complex of free 
R-modules of finite rank

F : F0
d1←−− F1

d2←−− F2
d3←−− · · · dp←−− Fp ← 0.

Set rj =
∑p

i=j(−1)i−j rankFi (so that rj + rj+1 = rankFj for all j). Then F is a 
resolution of M := Coker(d1) if and only if

ht(Irj (dj)) ≥ j for all j = 1, . . . , p.



188 C. Huneke et al. / Journal of Algebra 447 (2016) 183–205
Note that in our setting where R is a polynomial ring, ht(I) = grade(I) for an ideal I. 
We prefer to work with height but the more general statement of the above theorem 
involves the grades of ideals of minors.

The following result seems to be well-known, but we sketch a proof for completeness.

Proposition 2.4. Using the notation from the previous theorem, suppose F is a minimal 
free resolution of M . If

ht(Irj (dj)) ≥ j + 1 for all j = codim(M) + 1, . . . , p,

then M is unmixed.

Proof. Let p ∈ Ass(M). We must show that ht(p) = codim(M). Suppose not. Then 
h := ht(p) > codim(M). If h ≤ p, then by assumption we have ht(Irh(dh)) ≥ h +1. After 
localization at p, we have that Irh(dh⊗Rp) = Rp. By [8, Prop. 20.8], Coker(dh⊗Rp) is a 
free Rp-module. Thus dh⊗Rp admits a splitting, and hence pd(Mp) < ht(p) = dim(Rp). 
By the Auslander–Buchsbaum Theorem, depth(Mp) > 0, which implies that p /∈ Ass(M).

Similarly, if h > p, then pd(Mp) < ht(p) and again p /∈ Ass(M). Hence ht(p) =
codim(M) for all p ∈ Ass(M) and M is unmixed. �

Two unmixed ideals I, J are linked via the complete intersection (x), where x =
x1, . . . , xh ∈ I∩J , if I = (x) : J and J = (x) : I. Moreover, if x1, . . . , xh are homogeneous 
elements of degrees d1, . . . , dh, respectively, then e(R/I) +e(R/J) = e(R/(x)) =

∏h
i=1 di. 

If I and I ′ are linked to the same ideal J , then they share many properties. In particular, 
we will make use of the following well-known fact. (Cf. [9, Lemma 2.6].)

Proposition 2.5. Suppose I and I ′ are unmixed ideals of R linked to the same ideal J . 
Then

pd(R/I) = pd(R/I ′).

The following lemma will be useful in proving certain ideals have large projective 
dimension.

Lemma 2.6. Let M be a finitely generated R-module. Then

pd(M) ≥ max{ht(p) : p ∈ Ass(M)}.

Proof. We have

p ∈ AssR(M) ⇔ pRp ∈ AssRp
(Mp)

⇔ depthpRp
(Mp) = 0

⇔ pdRp
(Mp) = depthpRp

(Rp)

⇒ pdR(M) ≥ depthpR (Rp) = dim(Rp) = ht(p),

p
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where the third implication follows from the Auslander–Buchsbaum theorem, and the 
fourth implication follows from the flatness of Rp over R and the fact that Rp is regu-
lar. �

Note that we cannot use this lemma directly in our construction of primary ideals of 
large projective dimension since, by definition, they have no associated primes with large 
height.

There are now many constructions of three-generated ideals with large projective 
dimension [6,13,3,2]. We will use the following construction from [18] which gives ideals 
generated by three homogeneous elements of degree n and projective dimension n + 2.

Proposition 2.7. Let fn = an, gn = bn, hn = an−1c1 + an−2bc2 + · · · + bn−1cn ∈ R =
K[a, b, c1, . . . , cn]. Let m denote the graded maximal ideal. Then pd(R/(fn, gn, hn)) =
n + 2 and an−1bn−1 ∈ (I : m) \ I.

Proof. That s = an−1bn−1 /∈ I is clear since none of the terms of fn, gn, hn divide s. One 
checks that sa, sb, sci ∈ (fn, gn, hn) for all i = 1, . . . , n. Hence one has m ∈ Ass(R/I)
and, by the previous lemma, pd(R/I) = ht(m) = n + 2. �

Finally, we say that a finitely-generated A-module ωA is a canonical module for a 
graded ring A if ω̂A

∼= Hdim(A)
m (A)∨, where (−)∨ denotes the Matlis dual, ̂ denotes 

m-adic completion and Hi
m(−) denotes the ith local cohomology module with respect 

to the graded maximal ideal. When A = R/I, where R = K[x1, . . . , xn], then we can 
identify ωA = Extht(I)

R (R/I, R). Note that when A is not Cohen–Macaulay, some of the 
usual properties of the canonical module do not hold (e.g. the injective dimension of ωA

is not finite), but we only need the fact that ωR/I can be written in terms of an ideal J
linked to I (Lemma 3.1).

3. Main results

3.1. The method of proof

Let us briefly describe our construction of primary ideals of large projective dimension. 
The first step is to define four families of primary ideals with well-behaved resolutions 
and canonical modules with large projective dimension. We seem to need four such 
families, L2,5,p, L2,6,p, L2,20,p and L3,6,p, and relegate the details of those constructions 
to Section 4. We adopt the convention that Lh,e,p denotes an ideal in a polynomial ring 
R over K such that ht(Lh,e,p) = h, e(R/Lh,e,p) = e and pd(ωR/Lh,e,p

) ≥ p.
Linking via a complete intersection (sometimes more than once) from one of these base 

cases, we can produce primary and radical linear ideals of height 2 and any multiplicity 3
or larger, with arbitrarily high projective dimension. Appending extra linear generators 
gives us examples with arbitrary height. In addition to the three families of height 2
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ideals, we need one more construction for the height 3 multiplicity 2 case, since the 
height 2 multiplicity 2 case is finite. In general, the ideals we construct have many 
generators. Hence, we found that it is easier to work with the ideals to which they are 
linked. We work out in detail one example in Section 5.

3.2. Homological preliminaries

Here we collect a few results we use to connect the four families of ideals from Section 4
to the ones in the main theorem. First we recall that the canonical module of an unmixed 
ideal L can be written in terms of any ideal linked to it.

Lemma 3.1. If L is an ideal of height h in a polynomial ring, x is a regular sequence of 
length h contained in L, then ExthR(R/L, R) � ((x) : L)/(x).

Proof. By [4, Lemma 1.2.4], ExthR(R/L, R) � Hom(R/L, R/(x)). The latter module is 
isomorphic to ((x) : L)/(x). �
Proposition 3.2. Let L be an ideal of height h, let (x) be a complete intersection ideal of 
height h contained in L and let I = (x) : L. If pd(ExthR(R/L, R)) ≥ h + 1, then

pd(R/I) = pd(ExthR(R/L,R)) + 1.

Proof. We have the short exact sequence

0 → ((x) : L)/(x) → R/(x) → R/((x) : L) → 0.

By Proposition 2.1, pd(R/((x) : L)) = pd(((x) : L)/(x)) + 1, as long as pd(((x) : L)/
(x)) ≥ pd(R/(x)) + 1 = h + 1. By Lemma 3.1, ((x) : L)/(x) � ExthR(R/L, R), so the 
above statement reads pd(R/I) = pd(ExthR(R/L, R)) +1 as long as pd(ExthR(R/L, R)) ≥
h + 1. �

In order to compute the projective dimension of ExthR(R/L, R), we begin by analyzing 
hth boundaries of a dualized free resolution of R/L.

Lemma 3.3. Let R be a polynomial ring over K. Let L be an ideal of R of height h and 
let

F0
d1←−− F1

d2←−− · · · dp←−− Fp ← 0

be the minimal free resolution of R/L. Let (−)∗ denote the functor HomR(−, R). Then

pd(Im(d∗h)) = h− 1.
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Proof. Applying Hom(−, R) to the resolution of R/L gives us the complex

0 → F ∗
0

d∗
1→ F ∗

1
d∗
2→ . . .

d∗
h−2→ F ∗

h−2
d∗
h−1→ F ∗

h−1 → Coker(d∗h−1) → 0.

Since ht(L) = h, ExtiR(R/L, R) = 0 for 0 ≤ i ≤ h −1. Hence the above complex is exact. 
Moreover, since Exth−1

R (R/L, R) = 0,

Coker(d∗h−1) = F ∗
h−1/ Im(d∗h−1) = F ∗

h−1/Ker(d∗h) ∼= Im(d∗h).

Hence pd(Im(d∗h)) = h − 1. �
Proposition 3.4. Let L be an ideal of height h and let (x) be a complete intersection ideal 
of height h contained in L. Let dh+1 denote the (h + 1)th differential in the minimal 
resolution of R/L. If pd(Ker(d∗h+1)) ≥ h, then pd(ExthR(R/L, R)) = pd(Ker(d∗h+1)).

Proof. We write

F0
d1←−− F1

d2←−− · · · dp←−− Fp ← 0

for the minimal free resolution of R/L and we consider the short exact sequence defining 
ExthR(R/L, R):

0 → B → Z → ExthR(R/L,R) → 0,

where B = Im(d∗h) and Z = Ker(d∗h+1).
By Lemma 3.3, pd(B) = h − 1. By Proposition 2.1, pd(ExthR(R/L, R)) = pd(Z), 

whenever pd(Z) ≥ pd(B) + 1 = h. �
3.3. The base cases

Here we list only those properties of the four families of ideals that we need to complete 
the proof of the main theorem. Refer to Section 4 for details.

Proposition 3.5. For every integer p ≥ 4, there exist ideals L2,6,p, L2,5,p, L2,20,p, L3,6,p, 
each homogeneous in a polynomial ring R over K such that

1. L2,5,p is primary to (x, y) for independent linear forms x, y, e(R/L2,5,p) = 5, x3, y3 ∈
L2,5,p, and pd(Ext2R(R/L2,5,p, R)) ≥ p.

2. L2,6,p is primary to (x, y) for independent linear forms x, y, e(R/L2,6,p) = 6, x3, y3 ∈
L2,6,p, and pd(Ext2R(R/L2,6,p, R)) ≥ p.

3. L2,20,p is primary to (x, y) for independent linear forms x, y, e(R/L2,20,p) = 20, 
x5, y5 ∈ L2,20,p, and pd(Ext2R(R/L2,20,p, R)) ≥ p.
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4. L3,6,p is primary to (x, y, z) for independent linear forms x, y, z, e(R/L3,6,p) = 6, 
x2, y2, z2 ∈ L3,6,p, and pd(Ext3R(R/L3,6,p, R)) ≥ p.

Proof. Let L = L2,5,p from Section 4.1 for a fixed integer p ≥ 4. By Proposition 4.1, 
L has height 2, multiplicity 5 and pd(Ker(d∗3)) ≥ p, where d3 is the third differential in 
the resolution of R/L. By Proposition 3.4, pd(Ext2R(R/L, R)) ≥ p.

The other three cases are identical. See Section 4. �
3.4. Proof of the main theorem

Using the base families in Proposition 3.5, we can now finish off the proof of the main 
theorem.

Proof of Theorem 1.2. We first construct I2,e,p for e ≥ 3 and p ≥ 5. We make the 
following assignments:

I2,3,p := (x3, y3) : L2,6,p−1,

I2,4,p := (x3, y3) : L2,5,p−1,

I2,5,p := (x5, y5) : L2,20,p−1,

I2,6,p := (x4, y3) : L2,6,p−1,

L2,8,p−1 := (x4, y3) : I2,4,p,

L2,11,p−1 := (x5, y3) : I2,4,p,

L2,14,p−1 := (x6, y3) : I2,4,p,

and for integers n ≥ 0, we set

I2,7+4n,p := (x4, y3+n) : L2,5,p−1,

I2,8+4n,p := (x4+n, y4) : L2,8,p−1,

I2,9+4n,p := (x5+n, y4) : L2,11,p−1,

I2,10+4n,p := (x6+n, y4) : L2,14,p−1.

That Ih,e,p is (x, y)-primary and has the claimed multiplicity follows from the definitions 
and Proposition 3.5. That pd(R/I2,e,p) ≥ p follows from Proposition 3.2 and Proposi-
tion 2.5.

We also define

I3,2,p := (x2, y2, z2) : L3,6,p−1

For h ≥ 3 and e ≥ 3, we set Ih,e,p = I2,e,p +(z1, . . . , zh−2), where z1, . . . , zh−2 are new 
variables added to the ambient ring of I2,e,p. We note that pd(Ih,e,p) = pd(I2,e,p) +h −2
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since the variables of the two defining ideals are disjoint (i.e. the resolution of R/Ih,e,p
is just the tensor product of the resolutions of R/I2,e,p and R/(z1, . . . , zh−2)). Note that 
Ih,e,p is now primary to (x, y, z1, . . . , zh−2) and hence unmixed of the proper height and 
multiplicity.

Similarly, for h ≥ 4, we set Ih,2,p = I3,2,p+(z1, . . . , zh−3) for new variables z1, . . . , zh−3. 
This completes the proof. �

The linkage structure of the definitions from the previous proof is pictured in the 
diagram below. The ideals in bold face are the four base cases from Section 4.
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4. Four families of primary ideals and their resolutions

In this section we construct the four families of ideals listed in Proposition 3.5. The 
technique is the same in each case. We construct a primary ideal L of height c whose 
generators are defined in terms of forms f , g, h of a fixed degree and with some height 
restrictions. We show that the resolution of R/L does not depend on the choice of f , 
g, h, appealing to Theorem 2.3 and Proposition 2.4. We then connect the projective 
dimension of the canonical module ωR/L = ExthR(R/L, R) with the projective dimension 
of the ideal (f, g, h) by studying the maps in the resolution of R/L.

We note that these ideals were originally found using Macaulay2 [11]. While we were 
able to reduce the number of constructions to just the following four ideals, it seems 
unlikely that a simpler set of ideals can be constructed.

4.1. Construction of L2,5,p

Proposition 4.1. Let R be a polynomial ring over K and let x, y be independent linear 
forms in R. Suppose f, g, h ∈ Rd for some d ≥ 1 such that ht(x, y, f, g, h) ≥ 4. Let

L = (x, y)3 + (y2f + xyg + x2h).

Then R/L has the following free resolution:

R
d1←−− R5 d2←−− R5 d3←−− R ← 0,

where

d1 =
(
x3 x2y xy2 y3 y2f + xyg + x2h

)
,

d2 =

⎛⎜⎜⎜⎝
−y 0 0 −h 0
x −y 0 −g −h
0 x −y −f −g
0 0 x 0 −f
0 0 0 x y

⎞⎟⎟⎟⎠ ,

and d3 =

⎛⎜⎜⎜⎝
h
g
f
−y
x

⎞⎟⎟⎟⎠ .

Moreover,

1. L is (x, y)-primary,
2. e(R/L) = 5, and
3. pd(Ker(d∗3)) = pd(R/(x, y, f, g, h)) − 2.
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Proof. It is easy to check the above sequence is a complex and that x3, y3 ∈ I1(d1), 
x4, y4 ∈ I4(d2) and I1(d3) = (x, y, f, g, h). By Theorem 2.3, this is a resolution of R/L, 
and by Proposition 2.4, L is unmixed.

Since 
√
L = (x, y), (x, y) is the unique minimal prime of L. Localizing at p = (x, y)

we see that λ(Rp/Lp) = 5. Hence e(R/L) = 5 by the associativity formula.
Clearly Im(d∗3) = (x, y, f, g, h). So pd(Ker(d∗3)) = pd(R/(x, y, f, g, h)) − 2. �
We can now define L2,5,p to be any ideal in the polynomial ring by taking f , g, h in 

the previous proposition to be forms of a fixed degree in variables disjoint from x and y
with ht(f, g, h) = 2 and pd(R/(f, g, h)) = p. The forms fp, gp, hp in Proposition 2.7 are 
one such choice. It follows that pd(Ker(d∗3)) = p.

4.2. Construction of L3,6,p

Proposition 4.2. Let R be a polynomial ring over K and let x, y, z be independent linear 
forms in R. Let f, g, h ∈ Rd such that ht(x, y, z, f, g, h) ≥ 5. Let

L = (x2, y2, z2, xyz, xyh + xzg + yzf).

Then R/L has the following free resolution

R
d1←−− R5 d2←−− R9 d3←−− R6 d4←−− R ← 0,

where

d1 =
(
x2 y2 z2 xyz yzf + xzg + xyh

)
,

d2 =

⎛⎜⎜⎜⎝
−y2 −yz 0 −z2 0 0 −zg − yh 0 0
x2 0 −xz 0 0 −z2 0 −zf − xh 0
0 0 0 x2 −xy y2 0 0 −yf − xg
0 x y 0 z 0 −f −g −h
0 0 0 0 0 0 x y z

⎞⎟⎟⎟⎠ ,

d3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z 0 0 h 0 0
−y −z 0 g h 0
x 0 −z −f 0 h
0 y 0 0 g 0
0 x y 0 −f −g
0 0 x 0 0 f
0 0 0 −y −z 0
0 0 0 x 0 −z
0 0 0 0 x y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and d4 =

⎛⎜⎜⎜⎜⎝
−h
g
−f
z
−y

⎞⎟⎟⎟⎟⎠ .
x
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Moreover,

1. L is (x, y, z)-primary,
2. e(R/L) = 6, and
3. pd (Ker(d∗4)) = pd (R/(x, y, z, f, g, h)) − 2.

Proof. It is easy to check that the sequence above forms a complex. Further, one sees 
that x2, y2, z2 ∈ I1(d1), x6, y6, z6 ∈ I4(d2), x5, y5, z6 ∈ I5(d3) and I1(d4) = (x, y, z, f,
g, h). Again by Theorem 2.3, the above complex is exact and resolves R/L. Since 
ht(I1(d4)) ≥ 5, L is unmixed by Proposition 2.4.

Since 
√
L = (x, y, z), (x, y, z) is the unique minimal prime of I and L. Localizing at 

p = (x, y, z) we see that λ(Rp/Lp) = 6. Hence e(R/L) = 6 by the associativity formula.
Clearly Im(d∗4) =(x, y, z, f, g, h). So pd (Ker(d∗4)) = pd (Im(d∗4))−1 = pd (Coker(d∗4))−

2 = pd (R/(x, y, z, f, g, h)) − 2. �
We can now define L3,6,p to be any ideal in the polynomial ring by taking f , g, h in 

the previous definition to be any forms that generate a height 2 ideal in variables disjoint 
from x, y and z with pd(R/(f, g, h)) = p − 1.

4.3. Construction of L2,6,p

For the last two families of ideals, the resolutions are a bit more complicated. It takes 
more work to prove that the canonical modules have large projective dimension. We 
also make a specific choice of the forms f , g, h that appear generically at first. While 
these constructions likely work for any choice of forms f , g, h that generate an ideal of 
large projective dimension, it seems more straightforward to prove what we need with a 
specific choice, such as that from Proposition 2.7.

Proposition 4.3. Let R be a polynomial ring over K and let x, y, t be independent linear 
forms in R. Let f, g, h ∈ Rd for some d ≥ 1 such that ht(x, y, f, g) = 4. Let

L = (y3, x3, x2y2, x2yf + xy2g, x2f2 + xyfg + y2g2 + x2ytd−1h).

Then R/L has the following minimal free resolution:

R
d1←−− R5 d2←−− R6 d3←−− R2 ← 0

where

d1 =
(
x3 y3 x2y2 x2yf + xy2g x2f2 + xyfg + y2g2 + x2ytd−1h

)
,
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d2 =

⎛⎜⎜⎜⎝
−y2 0 −yf 0 −f2 − ytd−1h 0
0 −x2 0 −xg 0 −g2

x y −g −f 0 −td−1h
0 0 x y −g −f
0 0 0 0 x y

⎞⎟⎟⎟⎠ ,

and

d3 =

⎛⎜⎜⎜⎜⎜⎝
f td−1h
−g 0
−y f
x −g
0 −y
0 x

⎞⎟⎟⎟⎟⎟⎠
Moreover,

1. L is (x, y)-primary, and
2. e(R/L) = 6.

Proof. As in the previous case, we check that we have a complex and that the ideals 
of minors have the appropriate height. We have x3, y3 ∈ I1(d1), x5, y5 ∈ I4(d2) and 
x2, y2, g2, f2+ytd−1h ∈ I2(d3). By Theorem 2.3 and Proposition 2.4, we have a resolution 
of R/L and L is unmixed. Since 

√
L = (x, y), L is (x, y)-primary.

Localizing at p = (x, y), we see that e(R/L) = λ(Rp/Lp) = 6. �
Lemma 4.4. Using the notation from the previous proposition, let π : Im(d∗3) → R be the 
projection map onto the first coordinate. Then pd(Im(π)) = 3 and

Ker(π) ∼= (x, y, g2, fg, f2, td−1gh).

Proof. Since ht(f, −g, −y, x) = 4, we may resolve Im(π) ∼= (f, −g, −y, x) generically by 
the Koszul complex on f , −g − y, x. We then get the following commutative diagram 
with exact rows and columns:

R6

∂2

R6

d∗
3

R4ι

∂1

0 Ker(π) Im(d∗3)
π Im(π) 0.

0 0
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Here we can represent

d∗3 =
(

f −g −y x 0 0
td−1h 0 f −g −y x

)
,

π = (1 0) ,

ι =

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

∂1 = (f −g −y x) ,

∂2 =

⎛⎜⎝g y 0 −x 0 0
f 0 y 0 −x 0
0 f −g 0 0 −x
0 0 0 f −g −y

⎞⎟⎠ .

Since the diagram commutes, it follows that

Ker(π) = Im(d∗3 ◦ ι ◦ ∂2) + Im
(

0 0
−y x

)
= Im

(
0 0 0 0 0 0 0 0

td−1gh ytd−1h + f2 −fg −xtd−1h− fg g2 −xf + yg −y x

)
∼= (x, y, g2, fg, f2, td−1gh)

as claimed. �
Proposition 4.5. Let p ≥ 3. As before, let fp = ap, gp = bp and hp = hp = ap−1c1 +
ap−2bc2 + · · · + bp−1cp. Set

L2,6,p = (y3, x3, x2y2, x2yfp + xy2gp, x
2f2

p + xyfpgp + y2g2
p + x2ytp−1hp).

Let d3 be the third map in the minimal free resolution of R/L2,6,p. Then

pd(Ker(d∗3)) ≥ p.

Proof. Set

J = (x, y, g2
p, fpgp, f

2
p , t

p−1gphp).

By the previous lemma, we have pd(Ker(d∗3)) = pd(Im(d∗3)) − 1 = pd(J) − 1 =
pd(R/J) − 2, as long as pd(J) ≥ 3. It is clear that s = tp−1ap−1b2p−1 /∈ J since none 
of the terms of the generators of J divide s. Let p = (a, b, c1, . . . , cp). Since ap−1bp−1 ∈
(fp, gp, hp) : p, it is easy to check that s ∈ J : p. Hence R/J has an associated prime with 
height at least p +2, and by Lemma 2.6, pd(R/J) ≥ p +2. Therefore, pd(Ker(d∗3)) ≥ p. �
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4.4. Construction of L2,20,p

Proposition 4.6. Let R be a polynomial ring over K and let x, y, t be independent linear 
forms in R. Let f, g, h ∈ Rd for some d ≥ 1 such that ht(x, y, f, g) = 4. Let

L = (x5, y5, x4y4, x4y3f + x3y4g, x4y2f2 + x3y3fg + x2y4g2,

x4yf3 + x3y2f2g + x2y3fg2 + xy4g3,

x4f4 + x3yf3g + x2y2f2g2 + xy3fg3 + y4g4 + x4y3t3d−3h).

Then R/L has the following minimal free resolution:

R
d1←−− R7 d2←−− R10 d3←−− R4 ← 0

d1 =
(
x5 y5 x4y4 x4y3f + x3y4g x4y2f2 + x3y3fg + x2y4g2 . . .

)

d2 =

⎛⎜⎜⎜⎜⎜⎜⎝
−y4 0 −y3f 0 −y2f2 0 −yf3 0 −f4 − y3t3d−3h 0
0 −x4 0 −x3g 0 −x2g2 0 −xg3 0 −g4

x y −g −f 0 0 0 0 0 −t3d−3h
0 0 x y −g −f 0 0 0 0
0 0 0 0 x y −g −f 0 0
0 0 0 0 0 0 x y −g −f
0 0 0 0 0 0 0 0 x y

⎞⎟⎟⎟⎟⎟⎟⎠,

d3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f 0 0 t3d−3h
−g 0 0 0
−y f 0 0
x −g 0 0
0 −y f 0
0 x −g 0
0 0 −y f
0 0 x −g
0 0 0 −y
0 0 0 x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Moreover

1. L is (x, y)-primary, and
2. e(R/L) = 20.

Proof. One checks that x5, y5 ∈ I1(d1), x10, y10 ∈ I2(d2) and x4, y4, g4, f4 − y3t3d−3h ∈
I4(d3). So the above is a resolution of R/L and L is unmixed. Since 

√
L = (x, y), L is 

(x, y)-primary. Localizing at p = (x, y) we get e(R/L) = λ(Rp/Lp) = 20. �
Lemma 4.7. Let L be as in Proposition 4.6. Let π : Im(d∗3) → R3 be projection onto the 
first 3 rows. Then pd(Im(π)) = 3 and

Ker(π) ∼= (x, y, ght3d−3, g4, fg3, f2g2, f3g, f4).
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Proof. The proof is the exactly the same as Lemma 4.4. Since ht(x, y, f, g) = 4, we can 
resolve Im(π) generically. The relevant commutative diagram and matrices are listed 
below.

0

R3

∂3

R8

∂2

R10

∂1

R10

d∗
3

R8ι

∂0

0 Ker(π) Im(d∗3)
π Im(π) 0

0 0

where

d∗3 =

⎛⎜⎝ f −g −y x 0 0 0 0 0 0
0 0 f −g −y x 0 0 0 0
0 0 0 0 f −g −y x 0 0

ht3d−3 0 0 0 0 0 f −g −y x

⎞⎟⎠ ,

π =
(1 0 0 0

0 1 0 0
0 0 1 0

)
,

ι =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

0 0 0 0 0 0 0 0



C. Huneke et al. / Journal of Algebra 447 (2016) 183–205 201
∂0 =
(
f −g −y x 0 0 0 0
0 0 f −g −y x 0 0
0 0 0 0 f −g −y x

)
,

∂1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −x g y3 0 0 0 0
0 0 0 −y f 0 −y3 −xy2 −x2y x3

0 0 −x g 0 y2f y2g 0 0 0
0 0 −y f 0 0 0 −y2g −xyg x2g
0 −x g 0 0 yf2 yfg yg2 0 0
0 −y f 0 0 0 0 0 −yg2 xg2

x g 0 0 0 f3 f2g fg2 g3 0
y f 0 0 0 0 0 0 0 g3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

∂2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−f3 −f2g 0 −fg2 0 −g3 0 0
yf2 yfg 0 yg2 0 0 0 −g3

y2f y2g 0 0 0 0 yg2 −xg2

y3 0 0 0 y2g 0 xyg −x2g
0 0 y3 0 xy2 0 x2y −x3

x 0 −g 0 0 0 0 0
−y x f 0 −g 0 0 0
0 −y 0 x f 0 −g 0
0 0 0 −y 0 x f g
0 0 0 0 0 y 0 f

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

∂3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

g 0 0
−f g 0
x 0 0
0 −f g
−y x 0
0 0 −f
0 −y x
0 0 y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The proof is finished by computing Ker(π) = Im(d∗3 ◦ ι ◦ ∂1) + Im

⎛⎜⎝ 0 0
0 0
0 0
−y x

⎞⎟⎠. �

Proposition 4.8. Let p ≥ 3. As before, let fp = ap, gp = bp and hp = hp = ap−1c1 +
ap−2bc2 + · · · + bp−1cp. Set

L2,20,p = (x5, y5, x4y4, x4y2f2
p + x3y3fpgp + x2y4g2

p,

x4yf3
p + x3y2f2

p gp + x2y3fpg
2
p + xy4g3

p,

x4y3f + x3y4g, x4f4
p + x3yf3

p gp + x2y2f2
p g

2
p + xy3fpg

3
p + y4g4

p + x4y3t3p−3hp).

Let d3 be the third map in the minimal free resolution of R/L2,20,p. Then

pd(Ker(d∗3)) ≥ p.
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Proof. By the previous lemma, we have pd(Ker(d∗3)) = pd(Im(d∗3)) − 1 = pd(J) − 1, 
where

J = (x, y, gphpt
3p−3, g4, fpg

3
p, f

2
pg

2
p, f

3
p gp, f

4
p ).

One again checks that s = t3p−3ap−1b4p−1 ∈ J : (a, b, c1, . . . , cp) \ J . It follows from 
Lemma 2.6 that pd(Ker(d∗3)) ≥ p. �
5. Examples and questions

In this section, we first explicitly construct one of the primary ideals from the main 
theorem. We also discuss the problem of classifying ideals satisfying Serre’s (S2) property.

In general we do not write down the primary ideals with large projective dimension 
as they have a large number of generators. For instance, if one takes f , g, h to be the 
forms from Proposition 2.7, the minimal number of generators of I2,4,p were computed 
using Macaulay2 [11] and are listed in the following table.

p: 5 6 7 8 9 10 11 12 13 14 15
μ(I2,4,p): 9 12 17 25 38 59 93 148 237 381 614

We explicitly compute I2,4,6 in the following example.

Example 5.1. Here we give a homogeneous (x, y)-primary ideal I in a polynomial ring R
with e(R/I) = 4 and pd(R/I) = 6. Let R = K[a, b, c, d, e, x, y]. First set

f = a3, g = b3, h = a2c + abd + b2e.

Then pd(R/(f, g, h)) = 5, ht(f, g, h) = 2 and pd(R/(x, y, f, g, h)) = 7. By the above 
construction, if we set

L = (x3, x2y, xy2, y3, fx2 + gxy + hy2) and I = (x3, y3) : L,

then

pd(R/I) = pd(R/(x, y, f, g, h)) − 1 = 7 − 1 = 6,

by Proposition 4.1. In this case, I has the following 12 minimal generators:

x3, x2y, xy2, y3

a2cxy + abdxy + b2exy − b3y2

acdx2 + bd2x2 − bcex2 − ae2xy − a2dy2 + abey2

bc2x2 − ad2xy + acexy − bdexy − abcy2 + b2dy2

ac2x2 + bcdx2 − adexy − be2xy − a2cy2 + b2ey2

b2cx2 + a2dxy + abexy − ab2y2

abcx2 + b2dx2 + a2exy − a2by2

a2cx2 + abdx2 + b2ex2 − a3y2
3 2 3
b x − a xy



C. Huneke et al. / Journal of Algebra 447 (2016) 183–205 203
and Betti table

0 1 2 3 4 5 6
0: 1 – – – – – –
1: – – – – – – –
2: – 4 3 – – – –
3: – – – – – – –
4: – 8 26 33 21 7 1

Finally, we remark that while all of the ideals we construct satisfy Serre’s (S1) condi-
tion, almost none of the ideals we construct are (S2), even on the punctured spectrum. 
Let I be unmixed of height h and suppose x = x1, . . . , xh ∈ I is a regular sequence with 
I �= (x). Set L = (x) : I. By [22, Theorem 4.1], S/I is (S2) if and only if Hd−1

m (R/L) = 0, 
where d = dim(R/I) and m is the graded maximal ideal of R. By local duality, this is 
equivalent to Exth+1

R (R/L, R) = 0. As each of the four ideals from Section 4 satisfy 
pd(R/L) = ht(L) + 1, Extht(L)+1

R (R/L, R) is the cokernel of a nonsurjective map and 
hence nonzero itself. So none of the ideals we construct are (S2).

We could weaken the question to ask which ideals are (S2) on the punctured spectrum, 
i.e. (S2) scheme theoretically in projective space. Such ideals I satisfy

depth(Rp/Ip) ≥ min
p∈Spec(R)

p�=m

{2, dim(Rp/Ip)}.

One checks that R/I is (S2) on the punctured spectrum if and only if λ(Exth+1
R (R/L,

R)) < ∞. In the construction of L = L2,5,p, if we take the forms f , g, h to be variables 
and work in the ring R = K[x, y, f, g, h], then the third differential in the resolution of L
is d3 = (x y f g h)T. Then Ext3R(R/L, R) = Coker(d∗3) ∼= R/(x, y, f, g, h), which 
is finite length by construction. Hence the linked ideal

I = (x3, y3) : L = (x3, x2y, xy2, y3, x2g − xyh, xyf − y2g, x2f − y2h)

is (S2) on the punctured spectrum. Since pd(R/L) = 3, it follows that R/I is actu-
ally Cohen–Macaulay on the punctured spectrum. This ideal appears as one case in 
the Manolache’s characterization of Cohen–Macaulay structures [15, Theorem 1]. How-
ever, if we take f , g, h to be forms that generate an ideal of projective dimension at 
least 4, then Ext3R(R/L, R) will no longer be finite length and I will no longer be scheme-
theoretically (S2). So we pose the following question:

Question 5.2. Is there a finite classification of homogeneous unmixed or primary ideals of 
a given height and multiplicity that satisfy Serre’s (S2) condition? Is there a classification 
for such ideals that are (S2) on the punctured spectrum?

Three of the ideals in Proposition 1.1 (cases (1), (2) and (5)) are Cohen–Macaulay, 
while the other two are not even (S2) globally. For instance, if R = K[a, b, x, y] and 
I = (x, y)2 + (ax + by), then Rp/Ip is (S2) for all nonmaximal primes p. Note that (S2)
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on the punctured spectrum does not imply (S1), so the latter question above remains 
unclear even in height 2 and multiplicity 2. The case of ideals of height 2 and multiplicity 3
appears to be completely open.
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