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In [18], Henriques and Şega defined the pair of elements (a, b) in a commutative ring 
S to be an exact pair of zero divisors if (0 :S a) = (b) and (0 :S b) = (a). We take S
to be a standard graded Artinian algebra over a field and we identify constraints on the 
Hilbert function of S which are imposed by the hypothesis that S contains an exact pair 
(θ1, θ2) of homogeneous zero divisors. In Theorem 2.10 we prove that the main numerical 
constraint depends on the sum deg θ1 +deg θ2, but not on the individual numbers deg θ1

or deg θ2. In other words, the numerical constraint imposed on S by having an exact pair 
of homogeneous zero divisors of degrees d1 and d2 is the same as the constraint imposed 
by having an exact pair of homogeneous zero divisors of degrees 1 and d1 + d2 − 1. 
This result is especially curious because it is possible for S to have an exact pair of 
homogeneous zero divisors of degrees 2 and 2 without having any homogeneous exact 
zero divisors of degree 1; see Example 3.1. Our main result is Theorem 2.10.

Theorem 2.10. Let S be a standard graded Artinian k-algebra. Suppose that (θ1, θ2) is 
an exact pair of homogeneous zero divisors in S. If D = deg θ1 +deg θ2, then the Hilbert 
series of S is divisible by t

D−1
t−1 .

In the statement of Theorem 2.10, the algebra S is Artinian, so the Hilbert series, 
HSS(t), of S is a polynomial in Z[t], the expression tD−1

t−1 is equal to the polynomial 
1 + t + t2 + · · · + tD−1 of Z[t], and

“the Hilbert series of S is divisible by tD−1
t−1 ” means that the polynomial

1 + t + t2 + · · · + tD−1 divides the polynomial HSS(t)
in the polynomial ring Z[t]. (0.1)

We apply Theorem 2.10 in Section 3 to obtain a list of conditions on the standard 
graded k-algebra S, each of which leads to the conclusion that S does not have an 
exact pair of homogeneous zero divisors. These results are striking due to the connection 
between the existence of totally reflexive S-modules and the existence of exact zero 
divisors in S.

Definition 0.2. Let S be a commutative ring. A finitely generated S-module M is called to-
tally reflexive if there exists a doubly infinite sequence of finitely generated free S-modules
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F : · · · → F1 → F0 → F−1 → · · ·

such that M is isomorphic to the module Coker(F1 → F0), and such that both F and 
the dual sequence HomS(F, S) are exact. The complex F is called totally acyclic.

For example, if θ1 and θ2 are a pair of exact zero divisors in S, then the complex

F : · · · θ2−−→ S
θ1−−→ S

θ2−−→ S
θ1−−→ · · ·

is totally acyclic and the S-modules S/(θ1) and S/(θ2) are totally reflexive. Totally 
reflexive modules were first studied by Auslander and Bridger [2], who proved that 
S is Gorenstein if and only if every S-module has a totally reflexive syzygy. Over a 
Gorenstein ring, the totally reflexive modules are precisely the maximal Cohen–Macaulay 
modules, and these have been studied extensively. A main result of Christensen, Piep-
meyer, Striuli, and Takahashi [10, Thm. B], asserts that if S is not Gorenstein, then 
the existence of one non-free totally reflexive S-module implies the existence of infinitely 
many non-isomorphic indecomposable totally reflexive S-modules. The proof in [10] is 
not constructive; however many methods [31,22,9,4] have been found for constructing 
non-isomorphic indecomposable totally reflexive S-modules. Most of these methods, es-
pecially those in [22] and [9], have involved the use of a pair of exact zero divisors. Indeed, 
one result in [9] gives conditions on S for which the existence of a non-free totally re-
flexive S-module implies the existence of an exact zero divisor in S. Furthermore, [9, 
Section 8] reformulates results of Conca [11], Hochster and Laksov [21], and Yoshino [31]
to show that, under appropriate hypotheses, a generic standard graded algebra over an 
infinite field has an exact zero divisor.

All of our notation and conventions are explained in Section 1. Section 2 is dedicated 
to the proof of Theorem 2.10. Section 3 consists of examples and applications of Theo-
rem 2.10. In Proposition 3.11 we show that, in general, compressed level algebras do not 
have any homogeneous exact zero divisors. Assorted examples of compressed level alge-
bras are given. These examples include Gorenstein rings with linear resolutions, certain 
rings defined by Pfaffians, certain determinantal rings, and certain rings arising from 
sets of generic points in projective space. We also exhibit families of standard graded 
Artinian k-algebras, which are not compressed level algebras, but which nonetheless do 
not contain any homogeneous exact zero divisors. These families include rings which 
arise from Segre embeddings and more determinantal rings.

1. Terminology, notation, and preliminary results

We use gcd as an abbreviation for greatest common divisor, Z to represent the set of 
integers {. . . , −2, −1, 0, 1, 2, . . .}, N – the set of positive integers {1, 2, 3, . . .}, and Q is 
the field of rational numbers.
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If S is a ring, N ⊆ M are S-modules and X is a subset of M , then

N :S X = {s ∈ S | sx ∈ N for all x ∈ X}.

Conventions 1.1. Let k be a field. If V is a vector space over k, then dimk V is the vector 
space dimension of V .

(1) A standard graded k-algebra is a graded ring S =
⊕

i∈Z
[S]i, with [S]i = 0 for i < 0, 

[S]0 = k, dimk[S]1 < ∞, and S is generated as a k-algebra by [S]1.
(2) For each graded S-module M we use [M ]i to denote the homogeneous component of 

M of degree i.
(3) The Hilbert function of M is the function HFS(M, ), from the set Z to the set 

{0} ∪ N ∪ {∞}, with HFS(M, i) = dimk[M ]i. We abbreviate HFS(S, i) as HFS(i).
(4) The Hilbert series of a graded, finitely generated, S-module M is the formal gener-

ating function HSS(M, t) =
∑

i∈Z
HFS(M, i)ti. We abbreviate HSS(S, t) as HSS(t); 

this formal power series is called the Hilbert series of S. If S is Artinian, then the 
“Hilbert series” of S is actually a polynomial.

(5) If M is a graded S-module and a is an integer, then M(a) is the graded S-module 
with [M(a)]i = [M ]a+i for all integers i.

(6) If R is a standard graded k-algebra of dimension d, and �1, . . . , �d is a regular sequence 
of linear forms in R, then S = R/(�1, . . . , �d) is called an Artinian reduction of R.

Definition 1.2. A complex of modules

(F, f) : · · · f2−−→ F1
f1−−→ F0

f0−−→ F−1
f−1−−−→ · · ·

over the ring S is acyclic if the homology H(F) is equal to zero. The acyclic complex F
is totally acyclic if F∗ = HomS(F, S) is also acyclic.

Conventions 1.3. Let S be a standard graded algebra over a field k and ϕ : F → G

be a homomorphism of finitely generated free graded S-modules. The homomorphism ϕ
is called homogeneous of degree d if, whenever x is a homogeneous element of F , then 
ϕ(x) is a homogeneous element of G of degree d + deg x. If ϕ is called a homogeneous 
homomorphism and no degree is specified, then ϕ is a homogeneous homomorphism 
of degree 0. The homogeneous homomorphism ϕ : F → G is a minimal homogeneous 
homomorphism if ϕ(F ) ⊆ S+G, where S+ is the ideal 

∑
1≤i[S]i of S.

Proposition 1.4 is our tool for extracting numerical information about the Hilbert 
function of a standard graded Artinian algebra S from the twists in a minimal homoge-
neous totally acyclic complex of finitely generated free S-modules. The interesting part 
of the assertion is that the sum (1.5) is finite.
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Proposition 1.4. Let S be a standard graded Artinian algebra over the field k and (F, f)
be a minimal homogeneous totally acyclic complex of finitely generated free S-modules. 
Write F in the form

· · · fj+1−−−−→ Fj
fj−−→ Fj−1

fj−1−−−−→ · · · .

Then, for each integer λ, the expression

∑
p∈Z

(
HFS(F2p, λ) − HFS(F2p−1, λ)

)
(1.5)

is a finite sum and is equal to zero.

Proof. The free S-module Fj occupies the homological position j in the complex F, 
where j varies over all of Z. For each integer λ, the homogeneous component [F]λ of F of 
degree λ is 

⊕
j∈Z

[Fj ]λ; this component is an exact sequence of finite dimensional vector 
spaces

· · · → [Fj+1]λ → [Fj ]λ → [Fj−1]λ → · · · .

We show below that

once λ is fixed, then [Fj ]λ is non-zero for only a finite number of j. (1.6)

Vector space dimension is additive on finite exact sequences; thus, for each integer λ,

0 =
∑
j∈Z

(−1)j dimk[Fj ]λ =
∑
p∈Z

(dimk[F2p]λ − dimk[F2p−1]λ)

=
∑
p∈Z

(HFS(F2p, λ) − HFS(F2p−1, λ)) .

We complete the argument by establishing (1.6). The graded ring S is Artinian; so [S]i
is zero for all large i. Define e to be the largest integer with [S]e �= 0. Fix an integer j. 
The free S-module Fj is graded and finitely generated. Let rj be the rank of Fj and 
mj,1 ≤ · · · ≤ mj,rj be the degrees of the elements in a homogeneous minimal generating 
set for Fj . We are particularly interested in �j = mj,1 and hj = mj,rj . Notice that

[Fj ]λ = 0 for all λ with either λ < �j or hj + e < λ. (1.7)

The key to establishing (1.6) is contained in the inequalities

�j + 1 ≤ �j+1 and hj−1 ≤ hj − 1. (1.8)
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Roughly speaking, the inequality on the left says that “no column of fj+1 can consist 
entirely of zeros” and the inequality on right says that “no row of fj−1 can consist entirely 
of zeros”. To show the equality on the left side of (1.8), we consider a homogeneous 
minimal generator ξ of Fj+1. The complex F is minimal, homogeneous, and acyclic; 
thus, fj+1(ξ) is not zero and is not a minimal generator of Fj. Apply (1.7) to conclude, 
in the first place, that �j ≤ deg fj+1(ξ). Every homogeneous element in Fj of degree �j
is a minimal generator of Fj; so, we also conclude that �j �= deg fj+1(ξ); therefore, we 
have shown that �j + 1 ≤ deg fj+1(ξ). The elements ξ and fj+1(ξ) of F have the same 
degree and the equality on the left side of (1.8) is established. To prove the inequality 
on the right side of (1.8), we consider the dual complex

F∗ : · · · f∗
j−1−−−→ F∗

j−1
f∗
j−−→ F∗

j

f∗
j+1−−−→ · · · ,

which is also homogeneous, minimal, and acyclic. The elements of a minimal homoge-
neous generating set for F∗

j have degrees

−hj = −mj,rj ≤ · · · ≤ −mj,1 ≤ −�j .

Apply the inequality on the left side of (1.8) to see that −hj + 1 ≤ −hj−1, which is the 
inequality on the right side of (1.8).

Suppose that [Fj ]λ �= 0. It follows from (1.7) that �j ≤ λ ≤ hj + e. In particular, the 
integers λ − �j and hj + e − λ are non-negative. If b is an integer with λ − �j < b, then 
(1.8) gives λ < �j + b ≤ �j+b; hence, (1.7) yields [Fj+b]λ = 0. Similarly, if hj + e − λ < b, 
then (1.8) gives hj−b + e ≤ hj − b + e < λ and (1.7) yields [Fj−b]λ = 0. �
2. The proof of the main theorem

Theorem 2.10 is the main theorem of the paper; we describe its proof. Let di = deg θi
and for integer i, define

σi =
∑

j≡i mod D

HFS(j),

where HFS( ) is the Hilbert function of S. The indexed list {σi} is periodic of period at 
most D. To prove the result we must show that {σi} has period 1. The proof is carried 
out as follows. The existence of (θ1, θ2) allows us to construct a totally acyclic complex F. 
Each homogeneous strand of F is a finite exact sequence of vector spaces. The observation 
that vector space dimension is additive on finite exact sequences leads to the conclusion 
that {σi} has period at most d1; and hence, {σi} has period at most the gcd{d1, d2}. 
Henceforth, we assume that d1 and d2 have a non-unit factor in common.

One naive approach to proving Theorem 2.10 would involve looking for a homogeneous 
factorization θ1 = θ · θ̌, with deg θ = 1, and then considering the resulting exact pair 
of zero divisors (θ, θ̌ · θ2). This approach is doomed to fail. However, if one looks for a 
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matrix factorization of θ1, instead of a factorization of θ1 in S, then this naive approach 
does indeed work. In Lemma 2.1, we use the idea of the Tate resolution of the residue 
field of a hypersurface ring to create a matrix factorization (M, M̌) of θ1 · id. At this 
point, we have a totally acyclic complex, periodic of period two, whose maps are MM̌

and θ2 · id. We prove in Lemma 2.5 that the maps M̌ and θ2 · M also give rise to a 
totally acyclic complex, periodic of period two. In Lemma 2.6 we combine Lemmas 2.1
and 2.5 and give a recipe for using an exact pair of zero divisors to build a numerically 
interesting totally acyclic complex G. By looking at graded strands of G, we obtain the 
equations

s1∑
�=0

(−1)�
(
s1

�

)
σN−� = 0

for all integers N , where s1 = HSS(1). The coefficient matrix for this system of linear 
equations is a circulant matrix; in Lemma 2.7 we show that {σi} has period one is the 
only solution.

The details in the proof of Theorem 2.10 are given immediately after the statement at 
the end of the present section. We first produce a matrix factorization of an essentially 
arbitrary element of a ring. Our technique is inspired by the Tate resolution of the residue 
field of a hypersurface ring; see, for example, [30, Section 2] or [16, Section 1.2].

Lemma 2.1. Let be S a standard graded algebra over a field k and θ be a homogeneous 
element of S of degree d ≥ 2. Then there exist finitely generated, free, graded S-modules 
F and G and minimal homogeneous S-module homomorphisms M : F → G and M̌ :
G → F (d) such that the compositions M̌ ◦M : F → F (d) and M ◦ M̌ : G → G(d) both 
are multiplication by θ.

Proof. Let x1, . . . , xs1 be a basis for the vector space [S]1. Identify elements y1, . . . , ys1
in [S]d−1 with θ =

∑s1
i=1 xiyi. Let V be the graded free S-module 

⊕s1
i=1 Sεi, where 

each εi has degree 1, Θ be a divided power variable of degree 2, and T be the Graded 
Divided-power Algebra T = (

∧•
S V )<Θ>. Define a map t : T → T as follows: t(εi) = xi ∈

S, the restriction of t to 
∧•

S V is the usual Koszul complex map associated to t : V → S, 
and if κ is in 

∧i
S V and 1 ≤ �, then

t(κ⊗ Θ(�)) = t(κ) ⊗ Θ(�) + (−1)iκ ∧ (
∑

jyjεj) ⊗ Θ(�−1).

Notice that t(t(Θ)) = θ. Fix an integer p with s1 + 2 ≤ 2p, then

T2p =
� s1

2 �⊕
i=0

∧2i
S V ⊗S SΘ(p−i), T2p−1 =

� s1−1
2 �⊕

i=0

∧2i+1
S V ⊗S SΘ(p−1−i), and

(t ◦ t)(κ⊗ Θ(�)) = θ · (κ⊗ Θ(�−1)) for all κ⊗ Θ(�) in T2p or T2p−1.
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We see, from the definition of t, that t : V → S may be written as S(−1)s1 → S and 
t : SΘ → V may be written as S(−d)1 → S(−1)s1 . Thus,

T2p =
� s1

2 �⊕
i=0

S(−2i− (p− i)d)
(s1
2i
)

=
� s1

2 �⊕
i=0

S(i(d− 2) − pd)
(s1
2i
)

and

T2p−1 =
� s1−1

2 �⊕
i=0

S(−2i− 1 − (p− 1 − i)d)
( s1
2i+1

)

=
� s1−1

2 �⊕
i=0

S(i(d− 2) + d− 1 − pd)
( s1
2i+1

)
. (2.2)

Notice that, in the language of (2.2), T2p−2 = T2p(d), T2p−3 = T2p−1(d), and t : T2p−2 →
T2p−3 is a shift of t : T2p → T2p−1. Define

F = T2p(pd), G = T2p−1(pd),

M to be t : F → G, and M̌ to be t : G → F (d). �
Remark 2.3. For future reference we record the fact that the modules F and G of 
Lemma 2.1 are

F =
� s1

2 �⊕
i=0

S(i(d− 2))
(s1
2i
)

and G =
� s1−1

2 �⊕
i=0

S(i(d− 2) + d− 1)
( s1
2i+1

)
. (2.4)

Suppose that M , M̌ , and M2 are three maps, which satisfy sufficient commuting 
relations, and for which there is a totally acyclic complex, periodic of period two, whose 
maps are MM̌ and M2. We prove in Lemma 2.5 that the maps M̌ and M2M also give 
rise to a totally acyclic complex, periodic of period two.

Lemma 2.5. Let be S a standard graded algebra over a field k, d1 and d2 be positive 
integers, F and G be finitely generated, graded, free S-modules, and M : F → G, M̌ :
G → F (d1) be homogeneous S-module homomorphisms. Suppose further that M2 is a 
matrix with entries from S such that M2 : F → F (d2) and M2 : G → G(d2) both are 
homogeneous S-module homomorphisms. Assume that the diagram
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F
M

M2

G
M̌

M2

F (d1)

M2

F (d2)
M

G(d2)
M̌

F (d1 + d2)

commutes and that the homomorphisms

F : · · · M̌M−−−−→ F (−d2) M2−−−→ F M̌M−−−−→ F (d1) M2−−−→ F (d1 + d2)
M̌M−−−−→ F (2d1 + d2) M2−−−→ · · · and

F̌ : · · · MM̌−−−−→ G(−d2) M2−−−→ G MM̌−−−−→ G(d1) M2−−−→ G(d1 + d2)
MM̌−−−−→ G(2d1 + d2) M2−−−→ · · ·

form acyclic complexes. Then the homomorphisms

G : · · · MM2−−−−→ G(−d1) M̌−−→ F
MM2−−−−→ G(d2) M̌−−→ F (d1 + d2)

MM2−−−−→ G(d1 + 2d2) M̌−−→ · · · and

Ǧ : · · · M̌M2−−−−→ F M−−→ G
M̌M2−−−−→ F (d1 + d2) M−−→ G(d1 + d2)

M̌M2−−−−→ F (2d1 + 2d2) M−−→ · · ·

form acyclic complexes. Furthermore, if F and F̌ are totally acyclic complexes, then G
and Ǧ also are totally acyclic complexes.

Proof.

Claim 1. KerM = Im(M̌M2).

The inclusion ⊇ is obvious. We show ⊆. Take x ∈ F (a), for some integer a, with 
M(x) = 0. It follows that x is in Ker(M̌M) = ImM2. Thus, there is an element x1 of 
F (a − d2), with x = M2x1. The hypothesis x ∈ KerM now gives

0 = Mx = MM2x1.

The maps M and M2 commute; so Mx1 ∈ KerM2 = Im(MM̌); and

Mx1 = MM̌x2

for some x2 in G(a − d1 − d2). We see that x1 = M̌x2 + x3, where x3 is the element 
x1 − M̌x2 of KerM . We have

x = M2x1 = M2(M̌x2 + x3) ∈ Im(M2M̌) + M2(KerM).
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In other words, KerM ⊆ Im(M2M̌) + M2 Ker(M). Iterate the above argument to see 
that KerM ⊆ Im(M2M̌) + Mr

2 Ker(M) for all positive integers r. On the other hand, 
the maps all are homogeneous; so, for each fixed i,

[KerM ]i ⊆ [Im(M2M̌)]i + Mr
2 ([Ker(M)]i−rd2).

The module F is finitely generated; thus, when r is sufficiently large, [F ]i−rd2 = 0. 
It follows that [KerM ]i ⊆ [Im(M2M̌)]i, for all i; hence, KerM ⊆ Im(M2M̌) and this 
completes the proof of Claim 1.

Claim 2. Ker M̌ = Im(MM2).

One repeats the proof of Claim 1 after reversing the roles of M and M̌ .

Claim 3. Ker M̌M2 = Im(M).

The inclusion ⊇ is obvious. We show ⊆. Take x ∈ G(a), for some integer a, with 
x ∈ Ker M̌M2. The hypothesis ensures that M2M̌x = M̌M2x = 0. It follows that M̌x

is in KerM2 = Im(M̌M) and M̌x = M̌Mx1 for some x1 ∈ F (a). Therefore, x −Mx1 ∈
Ker M̌ which we saw in Claim 2 is equal to Im(MM2). We have x −Mx1 = MM2x2 for 
some x2 ∈ F (a − d2) and x ∈ Im(M).

The equality KerMM2 = Im(M̌) follows from the symmetry of the situation the same 
way that Claim 2 followed from Claim 1. We conclude that G and Ǧ both are acyclic 
complexes.

Suppose now that F and F̌ are totally acyclic complexes. In this case, F∗ and F̌∗ are 
acyclic complexes, the maps M∗ and M∗

2 commute, and the maps M̌∗ and M∗
2 commute. 

One may apply what we have already shown to conclude that the complexes G∗ and Ǧ∗

are acyclic; and therefore, G and Ǧ both are totally acyclic complexes. �
In Lemma 2.6 we combine Lemmas 2.1 and 2.5 and give a recipe for using an exact 

pair of zero divisors to build a numerically interesting totally acyclic complex G.

Lemma 2.6. Let S be a standard graded Artinian algebra over the field k. Suppose that 
(θ1, θ2) is an exact pair of homogeneous zero divisors in S, with d1 = deg θ1 ≥ 2 and 
d2 = deg θ2. Let D = d1 + d2 and s1 = HFS(1). Then there is a homogeneous totally 
acyclic complex G of free S-modules of the form

· · · ϕ−−→ G2p+1
ψ−−→ G2p

ϕ−−→ G2p−1
ψ−−→ · · · , with

G2p =
� s1

2 �⊕
i=0

S(i(d1 − 2) − pD)
(s1
2i
)

and

G2p−1 =
� s1−1

2 �⊕
i=0

S(i(d1 − 2) + d1 − 1 − pD)
( s1
2i+1

)
,

for all integers p. The matrices ϕ and ψ are square with 2s1−1 rows and columns.
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Proof. Apply Lemma 2.1 to the homogeneous element θ1 ∈ S of degree d1 ≥ 2 to 
obtain finitely generated, free, graded S-modules F and G and minimal homogeneous 
S-module homomorphisms M : F → G and M̌ : G → F (d1) such that the compositions 
M̌ ◦M : F → F (d1) and M ◦ M̌ : G → G(d1) both are multiplication by θ1. Let M2 be 
the S-module homomorphism “multiplication by θ2”. Notice that M2 is a legitimate map 
from F to F (d2) and M2 is also a legitimate map from G to G(d2). The hypotheses of 
Lemma 2.5 all are satisfied because (θ1, θ2) is an exact pair of zero divisors in S and the 
composition of M and M̌ , in either order, is multiplication by θ1. We record the acyclic 
complex G, from the conclusion of Lemma 2.5, with

· · · ϕ−→ G1 = G(−d1)
ψ−→ F = G0

ϕ−→ G(d2) = G−1
ψ−→ · · · ,

ψ = M̌ , ϕ = MM2, and, according to (2.4),

G2p = F (−pD) =
� s1

2 �⊕
i=0

S(i(d1 − 2) − pD)
(s1
2i
)

and

G2p−1 = G(−pD) =
� s1−1

2 �⊕
i=0

S(i(d1 − 2) + d1 − 1 − pD)
( s1
2i+1

)
. �

Lemma 2.7 is a straightforward numerical calculation. The assertions about circulant 
matrices are easy to verify and we verified them. (We learned about these tricks on 
Wikipedia.) It is gratifying to solve a system of linear equations without making any 
unpleasant calculations.

Lemma 2.7. Assume that

(1) σi is an integer defined for all i ∈ Z,
(2) a is a fixed positive integer with σi = σi+a for all i ∈ Z, and

(3) b is a fixed positive integer with 
b∑

i=0
(−1)i

(
b
i

)
σN−i = 0 for all N ∈ Z.

Then σi = σj for all integers i and j.

Proof. Pick an integer B such that b + 1 ≤ B and B is a multiple of a. Hypothesis (2) 
gives

σi+B = σi for all i ∈ Z. (2.8)

Define integers c0, . . . , cB−1 by

ci =
{

(−1)i
(
b
i

)
if 0 ≤ i ≤ b
0 if b + 1 ≤ i ≤ B − 1,
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and let C be the B ×B circulant matrix

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c0 c1 c2 . . . cB−2 cB−1
cB−1 c0 c1 . . . cB−3 cB−2
cB−2 cB−1 c0 . . . cB−4 cB−3

. . . . . . . . .
c2 c3 c4 . . . c0 c1
c1 c2 c3 . . . cB−1 c0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and for each integer N , let ΣN be the column vector

ΣN =

⎡
⎢⎣ σN

...
σN−B+1

⎤
⎥⎦

in ZB . We may read hypothesis (3) to say

(row 1 of C)ΣN = 0, for all N ∈ Z. (2.9)

Equation (2.9) holds when N is replaced by N +1 and formula (2.8) yields that σN+1 =
σN−B+1; so (row 2 of C) ΣN is also zero. One may iterate this procedure to see that 
CΣN=0. We complete the proof by showing that the kernel of C is generated by the 
B × 1 column vector with every entry equal to 1.

It is well known that C is a diagonalizable matrix over the complex numbers. Let ω
be a primitive Bth root of 1, p(x) be the polynomial p(x) =

∑B−1
i=0 cix

i ∈ Z[x], V be the 
Vandermonde matrix

V =

⎡
⎢⎢⎣

1 1 1 . . . 1
1 ω ω2 . . . ωB−1
...
1 ωB−1 ω2(B−1) . . . ω(B−1)(B−1)

⎤
⎥⎥⎦ ,

and D be the diagonal matrix with diagonal entries p(1), p(ω), . . . , p(ωB−1). It is clear 
that CV = VD and V is invertible; so, the matrices C and D have the same rank. On 
the other hand, our choice of the coefficients ci gives p(x) = (1 − x)b. It follows that 
exactly one of the diagonal entries of D is zero and the corresponding eigenvector is the 
first column of V , as we desired. �

Theorem 2.10 is the main result of this paper.

Theorem 2.10. Let S be a standard graded Artinian algebra over a field k. If (θ1, θ2) is an 
exact pair of homogeneous zero divisors in S and D = deg θ1 + deg θ2, then the Hilbert 
series of S is divisible by t

D−1
t−1 in the sense of (0.1).
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Remark 2.11. The set of polynomials in Z[t] which are divisible by

tD − 1
t− 1 =

D−1∑
i=0

ti

forms an ideal J and the polynomial p(t) =
∑

cit
i in Z[t] is in J if and only if

∑
�∈Z

c0+�D =
∑
�∈Z

c1+�D = · · · =
∑
�∈Z

cD−1+�D. (2.12)

View ci to be zero if i is negative or greater than the degree of p(t). The equations (2.12)
often are the easiest way to test if the Hilbert series of a given Artinian algebra satisfy 
the conditions of Theorem 2.10. When we apply (2.12), we let σi denote

σi =
∑
�∈Z

ci+�D.

Proof of Theorem 2.10. Let d1 = deg θ1 and d2 = deg θ2. For each integer i, let si =
HFS(i). (The Hilbert function HFS and the Hilbert series HSS are both defined in 
Conventions 1.1.) Define

σi =
∑
�∈Z

si+�D, (2.13)

for all integers i. The ring S is Artinian; so, each σi is a finite integer. The definition of 
σi shows that σi = σi+D for all integers i. In light of Remark 2.11, it suffices to prove 
that

σi = σj for all integers i and j. (2.14)

The hypothesis that (θ1, θ2) is an exact pair of homogeneous zero divisors in S ensures 
that there is a homogeneous totally acyclic complex F of free S-modules of the form

· · · θ1−−→ F2p+1
θ2−−→ F2p

θ1−−→ F2p−1
θ2−−→ · · · ,

with

F2p = S(−pD) and F2p−1 = S(−pD + d1).

Apply Proposition 1.4 to see that

0 =
∑
p∈Z

(HFS(F2p, N) − HFS(F2p−1, N)) =
∑
p∈Z

(sN−pD − sN−pD+d1)

= σN − σN+d1 ,
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for each integer N . It follows by symmetry that σN+d2 = σN+d2−D = σN−d1 = σN ; 
hence,

σN+d2 = σN = σN+d1 for all N. (2.15)

If the greatest common divisor of d1 and d2 is 1, then there is nothing more to prove. 
Henceforth, we may assume that d1 and d2 have a non-unit factor in common. In partic-
ular, we may assume that d1 ≥ 2. The fact that S contains an exact pair of homogeneous 
zero divisors of degrees d1 and d2, with d1 ≥ 2, allows us to create the homogeneous 
totally acyclic complex G of Lemma 2.6. Apply Proposition 1.4, together with (2.13) and 
(2.15), to see that

0 =
∑
p∈Z

(HFS(G2p, N) − HFS(G2p−1, N))

=
∑
p∈Z

⎛
⎝� s1

2 �∑
i=0

(
s1

2i

)
sN+i(d1−2)−pD −

� s1−1
2 �∑

i=0

(
s1

2i + 1

)
sN+i(d1−2)+d1−1−pD

⎞
⎠

=
� s1

2 �∑
i=0

(
s1

2i

)⎛⎝∑
p∈Z

sN+i(d1−2)−pD

⎞
⎠−

� s1−1
2 �∑

i=0

(
s1

2i + 1

)⎛⎝∑
p∈Z

sN+i(d1−2)+d1−1−pD

⎞
⎠

=
� s1

2 �∑
i=0

(
s1

2i

)
σN+i(d1−2) −

� s1−1
2 �∑

i=0

(
s1

2i + 1

)
σN+i(d1−2)+d1−1

=
� s1

2 �∑
i=0

(
s1

2i

)
σN−2i −

� s1−1
2 �∑

i=0

(
s1

2i + 1

)
σN−2i−1

=
s1∑
�=0

(−1)�
(
s1

�

)
σN−�,

for each integer N . Apply Lemma 2.7 to conclude that σi = σj for all integers i and j. 
Now that (2.14) has been established, the proof is complete. �
3. Examples

In Example 3.1 we exhibit a standard graded Artinian k-algebra S which has an exact 
pair of homogeneous zero divisors (θ1, θ2) of degrees 2 and 2 without having any homo-
geneous exact zero divisors of degree 1. This example is striking because the numerical 
result of Theorem 2.10 depends on the sum deg θ1 + deg θ2 = 2 + 2; but not on the 
particular summands deg θ1 and deg θ2.

The majority of the section consists of a list of standard graded Artinian k-algebras 
which do not contain any homogeneous exact zero divisors. To obtain these rings, we 
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apply Theorem 2.10 in combination with a result from [25] (see Proposition 3.2 below). 
The combined result is called Corollary 3.3. Examples 3.4 and 3.5 are very explicit. In 
Proposition 3.11 we show that, in general, compressed level algebras do not have any 
homogeneous exact zero divisors. Assorted examples of compressed level algebras are 
given in Examples 3.17 (Gorenstein rings with linear resolutions), 3.18 (rings defined by 
Pfaffians), 3.20 (determinantal rings), and 3.22 (rings corresponding to generic points in 
projective space). In Proposition 3.23 and Example 3.30, we exhibit families of standard 
graded Artinian k-algebras, which are not compressed level algebras, which nonetheless 
do not contain any homogeneous exact zero divisors. These families arise from Segre 
embeddings and more determinantal rings.

Example 3.1. If

S = Q[x, y, z, w, t]/(x4, y4, z4, w4, x2y2, z2w2, y2w2, xt, zt, wt, t2),

then S has an exact pair of homogeneous zero divisors, both of degree two, but S does 
not have any exact zero divisors of degree one. One may check, using, for example, 
Macaulay2, that θ1 = x2 + y2 − z2 − w2 and θ2 = x2 + y2 + z2 + w2 is an exact pair of 
zero divisors. One may also check that the ideal 0 :S � is not principal for any � of the 
form � = a1x + b2y + a3z + a4w + a5t, with ai ∈ {0, 1}. If L is an arbitrary linear form 
from S, then there is a Q-algebra automorphism of S which carries L to one of the �’s 
that have already been tested. The ideal 0 :S � is not principal; hence the ideal 0 :S L is 
also not principal. The Hilbert function of S is

i 0 1 2 3 4 5 6 7 8 9
HFS(i) 1 5 11 21 29 28 22 12 3 0.

Notice that σ0 = σ1 = σ2 = σ3 = 33, as promised by Theorem 2.10 and Remark 2.11.

Retain the notation of Example 3.1 and let

Θ1 = x2 + y2 − z2 − w2 and Θ2 = x2 + y2 + z2 + w2

be pre-images, in P = Q[x, y, z, w, t], of the exact zero divisors θ1 and θ2. Observe that 
the product Θ1Θ2 = x4 + y4 − z4 − w4 + 2x2y2 − 2z2w2 is a minimal generator of the 
defining ideal of S. It is shown in [25] that this is a general property of exact zero divisors.

Proposition 3.2. Let P be a standard graded polynomial ring over the field k, I be a 
homogeneous ideal of P which is primary to the maximal homogeneous ideal of P , and 
Θ1 and Θ2 be homogeneous elements of P whose images in S = P/I form an exact pair 
of homogeneous zero divisors. Then Θ1 · Θ2 is a minimal generator of I.
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Throughout the rest of this section we apply Proposition 3.2 in conjunction with 
Theorem 2.10 in order to prove that various standard graded Artinian k-algebras do not 
contain any homogeneous exact zero divisors. The combined result is the following.

Corollary 3.3. Let P be a standard graded polynomial ring over the field k and I be 
a homogeneous ideal of P which is primary to the maximal homogeneous ideal of P . 
Assume that [I]1 = 0, 2 ≤ dimk[P ]1, and S = P/I contains at least one homogeneous 
exact zero divisor. Then the following statements hold.

(1) If I is minimally generated by homogeneous forms of degree n, then t
n−1
t−1 divides the 

Hilbert series HSS(t) of S in the sense of (0.1).
(2) If n and e are integers with [I]i = 0, for all i with i < n, and [I]i = [P ]i, for all i

with e < i, then there is an integer D with n ≤ D ≤ e such that tD−1
t−1 divides the 

Hilbert series HSS(t) of S in the sense of (0.1).

A comment about the proof. In the situation of (2), the minimal homogeneous generators 
of I have degree between n and e +1; so a direct application of Theorem 2.10, combined 
with Proposition 3.2, yields that t

D−1
t−1 divides HSS(t) for some D with n ≤ D ≤ e + 1. 

However, the ambient hypotheses guarantee that dimk[S]0 �= dimk[S]1 and therefore 
te+1−1
t−1 cannot possibly divide HSS(t). �
Examples 3.4 and 3.5 involve determinantal rings. We use Corollary 1 in [12] to de-

termine the Hilbert functions of these rings.

Example 3.4. Let k be a field, X be a 4 × 5 matrix of indeterminates, and I3(X) be the 
ideal generated by the 3 × 3 minors of X. Let

S = k[X]
I3(X) + (�1, . . . , �14)

where �1, . . . , �14 ∈ k[X] are linear forms such that their images in k[X]/I3(X) form a 
system of parameters. Then the Hilbert function of S is

i 0 1 2 3 4 5
HFS(i) 1 6 21 16 6 0.

If S has an exact pair of homogeneous zero divisors, then the degrees of the exact zero 
divisors would have to add up to three according to Proposition 3.2. But note that 
when D = 3, we have σ0 = 17, σ1 = 12, σ2 = 21. Therefore, Theorem 2.10, by way of 
Remark 2.11, yields that S does not have an exact pair of homogeneous zero divisors.

Example 3.5. Let k be a field, X be a 5 × 5 matrix of indeterminates, and I4(X) be the 
ideal generated by the 4 × 4 minors of X. Let
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S = k[X]
I4(X) + (�1, . . . , �d)

where �1, . . . , �d ∈ k[X] are linear forms such that their images in k[X]/I4(X) form a 
system of parameters. Then the Hilbert function of S is

i 0 1 2 3 4 5 6 7
HFS(i) 1 4 10 20 10 4 1 0.

If S has an exact pair of homogeneous zero divisors, then the degrees of the exact zero 
divisors would have to add up to four by Proposition 3.2. But note that when D = 4, 
we have σ0 = 11, σ1 = 8, σ2 = 11, and σ3 = 20. Therefore S does not have an exact pair 
of homogeneous zero divisors. (This example is a special case of Proposition 3.11; see 
Example 3.20.) In the language of Conventions 1.1, S an Artinian reduction of k[X]

I4(X) .

Example 3.6. Let S be a standard graded Artinian algebra such that [S]e+1 = 0. Let 
i be such that HFS(i) �= HFS(i + 1) and let D > max{i + 1, e − i}. Then S cannot 
have any exact pair of homogeneous zero divisors with degrees adding up to D, since the 
inequality satisfied by D implies that σi = HFS(i) and σi+1 = HFS(i + 1).

In Propositions 3.11 and 3.23 and Example 3.30 we give families of standard graded 
Artinian k-algebras which do not contain any homogeneous exact zero divisors. The 
algebras of Proposition 3.11 are compressed level algebras. One introduction to this 
topic may be found in [6]. The following data is in effect.

Data 3.7. Let S = P/I be a standard graded Artinian algebra over the field k, where 
P is a standard graded polynomial ring, with c variables, over k, and I is generated by 
homogeneous forms of degree at least two. The parameter c is the codimension of S in 
the sense that c is equal to the Krull dimension of P minus the Krull dimension of S.

Language 3.8. Retain Data 3.7. Recall that the socle of S is the vector space 0 :S S+ and 
the type of S is dimk socleS. The algebra S is called Gorenstein if it has type 1 and S is 
called level if its socle is concentrated in one degree. (Notice that a Gorenstein algebra 
is automatically a level algebra.) Let

F : 0 → Fc
fc−−→ Fc−1

fc−1−−−→ · · · f2−−→ F1
f1−−→ F0 (3.9)

be a minimal homogeneous resolution of S by free P -modules. If the ring S is not 
Gorenstein, then the resolution F is called linear if the entries of fi are linear forms for 
2 ≤ i and the entries of f1 are homogeneous forms of the same degree n ≥ 2. If S is a 
Gorenstein ring, then the resolution F must be symmetric; and therefore, F is called a 
linear resolution if the entries of fi are linear forms for 2 ≤ i ≤ c − 1 and the entries of 
f1 and fc are homogeneous forms of the same degree n ≥ 2.
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Definition 3.10. Retain Data 3.7 with S a level algebra of socle degree e and type r. If 
the Hilbert function is given by

HFS(i) = min{dimk[P ]i, r · dimk[P ]e−i}, for 0 ≤ i ≤ e,

then S is called a compressed level algebra.

Notice that once the codimension, socle degree, and type of a level algebra are fixed, 
then the Hilbert function of a compressed level algebra is as large as possible in each 
degree. Compressed algebras were first defined (in a more general context than level alge-
bras) by Iarrobino [23]; where he proved that for all pairs (e, r) there exists a non-empty 
open set of parameters which correspond to a compressed level algebra of socle degree 
e and type r. Fröberg and Laksov [14] offer alternate proofs some of Iarrobino’s results. 
Zanello [32,33] has generalized the concept to arbitrary Artinian algebras.

Proposition 3.11. Adopt Data 3.7 with S a compressed level algebra with socle degree e, 
type r, and codimension c. If either one the following conditions hold

r = 1, 2 ≤ e with e �= 3, and 3 ≤ c, or (3.12)

c, e, and r are all at least 2 and (c, e, r) �= (c, 2, c− 1), (3.13)

then S does not have any homogeneous exact zero divisors.

Remarks 3.14. (1) The condition e �= 3 is necessary (3.12) because S = k[x,y,z]
(x2,y2,z2) is a 

compressed Gorenstein algebra with Hilbert function

i 0 1 2 3 4
HFS(i) 1 3 3 1 0

and socle degree e = 3. The element x of S is a homogeneous exact zero divisor.
(2) The condition 3 ≤ c is necessary in (3.12) because

S =

⎧⎪⎪⎨
⎪⎪⎩

k[x, y]
(x e

2+1, y
e
2+1)

if e is even

k[x, y]
(x e+1

2 , y
e+3
2 )

if e is odd

is a compressed Gorenstein algebra of socle degree e. The element x of S is a homogeneous 
exact zero divisor.

(3) The condition (c, e, r) �= (c, 2, c − 1) is necessary in (3.13) because

S = k[x1, . . . , xc]
2 2
(x1, . . . , xc−1) + (xc)
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is a compressed level algebra with Hilbert function

i 0 1 2 3
HFS(i) 1 c c− 1 0,

codimension c, socle degree e = 2, and type c −1. The element xc of S is a homogeneous 
exact zero divisor.

Proof of Proposition 3.11. Let n be the minimal generator degree of I. We apply Corol-
lary 3.3. It suffices to show that t

D−1
t−1 does not divide HSS(t), in the sense of (0.1), for 

any integer D with n ≤ D ≤ e. For each relevant D, we will exhibit two subscripts a
and b with σa �= σb for σ as defined in (2.13).

Observe that � e+1
2 � ≤ n. Indeed, if i < � e+1

2 �, then i ≤ e − i and

dimk[S]i = HFS(i) = min{dimk[P ]i, r · dimk[P ]e−i} = dimk[P ]i.

If the hypotheses of (3.13) are in effect with e = 2, then n = D = e = 2, the Hilbert 
function of S is

i 0 1 2 3
HFS(i) 1 c r 0,

with σ0 = 1 + r �= c = σ1 and there is nothing more to prove. Henceforth, when the 
hypotheses of (3.13) are in effect we will assume that 3 ≤ e.

We separate the proof into four cases. In every calculation we consider all D with

� e+1
2 � ≤ n ≤ D ≤ e.

Case 1. Take 2 ≤ r, 2 ≤ dimk[P ]1, and 4 ≤ e, with e even. If e2 + 1 < D, then

σ e
2−1 = HFS( e2 − 1) = dimk[P ] e

2−1 < dimk[P ] e
2

= HFS( e2 ) = σ e
2
,

and if e2 + 1 = n = D, then

σ e
2−1 = HFS(e) + HFS( e2 − 1) = r + dimk[P ] e

2−1 < 1 + r dimk[P ] e
2−1

= HFS(0) + HFS( e2 + 1) = σ e
2+1.

The critical inequality holds because 2 ≤ r and 2 ≤ dimk[P ] e
2−1; hence

0 < (r − 1)(dimk[P ] e
2−1 − 1).

Case 2. Take 2 ≤ r, 2 ≤ dimk[P ]1, and 3 ≤ e, with e odd. If e+1
2 < D, then

σ e−1
2

= HFS( e−1
2 ) = dimk[P ] e−1

2
< min{dimk[P ] e+1

2
, r · dimk[P ] e−1

2
}

= HFS( e+1 ) = σ e+1 ,
2 2
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and if e+1
2 = n = D, then

σ e−1
2

= HFS( e−1
2 ) + HFS(e) = dimk[P ] e−1

2
+ r < 1 + r · dimk[P ] e−1

2

= HFS(0) + HFS( e+1
2 ) = σ e+1

2
.

Case 3. Take r = 1, 3 ≤ dimk[P ]1, and 2 ≤ e, with e even. If e2 + 1 < D ≤ e, then

σ e
2+1 = HFS( e2 + 1) = dimk[P ] e

2−1 < dimk[P ] e
2

= HFS( e2 ) = σ e
2
,

and if e2 + 1 = D, then

σ e
2+1 = HFS(0) + HFS( e2 + 1) = 1 + dimk[P ] e

2−1 < dimk[P ] e
2

= HFS( e2 ) = σ e
2
.

Case 4. Take r = 1, 3 ≤ dimk[P ]1, and 5 ≤ e, with e odd. Observe first that if A and B
are integers with 1 ≤ A and 2 ≤ B,

(
A+1

1
)
≤
(
A+B
B

)
(3.15)

because

A + 1 < A+1
1 · A+2

2 · · · A+B
B =

(
A+B
B

)
.

The polynomial ring P has c variables with 3 ≤ c. It follows that

dimk[P ]1 + dimk[P ]B−1 < dimk[P ]0 + dimk[P ]B for all integers B with 2 ≤ B.

(3.16)

Indeed,

(3.16) holds ⇐⇒ dimk[P ]1 − dimk[P ]0 < dimk[P ]B − dimk[P ]B−1

⇐⇒ c− 1 <
(
c−1+B

B

)
−
(
c−2+B
B−1

)
⇐⇒

((c−2)+1
1

)
<
((c−2)+B

B

)
,

and this follows from (3.15). If e+1
2 ≤ D ≤ e − 2, then apply (3.16) to see that

σ1 = HFS(1) + HFS(D + 1)

= dimk[P ]1 + dimk[P ]e−D−1 < dimk[P ]0 + dimk[P ]e−D

= HFS(0) + HFS(D) = σ0.

If D = e − 1, then

σ0 = HFS(0) + HFS(e− 1) = dimk[P ]0 + dimk[P ]1 = c + 1 <
(
c+1
2
)

= dimk[P ]2 = HFS(2) = σ2,
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and if D = e, then

σ0 = HFS(0) + HFS(e) = 2 < c = HFS(1) = σ1. �
Example 3.17. Adopt Data 3.7. If S is Gorenstein and the minimal homogeneous resolu-
tion of S by free P -modules is linear, then S is a compressed level algebra. In particular, 
if (c, e, r) satisfy (3.12), then S does not have any homogeneous exact zero divisors.

Proof. The entries in the matrices fj from (3.9) are homogeneous forms of degree

{
1 for 2 ≤ j ≤ c− 1
n for j = 1 and j = c,

for some fixed integer n, with 2 ≤ n. In particular,

Fj =

⎧⎨
⎩

P for j = 0
P (−n− j + 1)βj for 1 ≤ j ≤ c− 1
P (−2n− c + 2) for j = c.

One can use the Herzog–Kühl formulas [19] to produce the Betti numbers βj , although 
the present argument will not use these betti numbers. One can read the socle degree 
e = 2n −2 of S from the back twist in F; see, for example [26, Cor. 1.7]. At this point the 
Hilbert function of S is known. The hypothesis that the generators of I have degree n
means that HFS(i) = dimk[P ]i, for 0 ≤ i ≤ n −1. The Hilbert function of S is symmetric 
(because S is Gorenstein) and we have already described half of the Hilbert function; 
therefore, the other half is known by symmetry:

HFS(i) =
{

dimk[P ]i, for 0 ≤ i ≤ n− 1
dimk[P ]2n−2−i, for n ≤ i ≤ 2n− 2,

and S is a compressed level algebra as described in Definition 3.10. �
Example 3.18. Let n be an integer, X be a 2n + 1 × 2n + 1 alternating matrix whose 
entries are linear forms from P = k[x, y, z], and I be the ideal in P generated by the 
maximal order Pfaffians of X. If I is primary to the maximal homogeneous ideal (x, y, z)
of P , then S = P/I is a compressed level algebra. In particular, if 2 ≤ n, then S does 
not have any homogeneous exact zero divisors.

Proof. The resolution of S by free P -modules is known [8] to be linear. Apply Exam-
ple 3.17. �
Remark 3.19. There are plenty of compressed Gorenstein algebras which do not have 
linear resolutions. For example, if S is described in Data 3.7 with P = k[x, y, z] and (3.9)
given by
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0 → P (−8) →
P (−4)

⊕
P (−5)4

→
P (−3)4

⊕
P (−4)

→ P,

then the Hilbert function of S is

i 0 1 2 3 4 5 6
HFS(i) 1 3 6 6 3 1 0;

hence S is a compressed Gorenstein algebra which does not contain any homogeneous 
exact zero divisors; but the resolution of S is not linear. One such algebra S = P/I is 
defined by I = (x2y, x2z, y3, z3, x4 + y2z2); this ideal plays an important role in [6].

The ring of Example 3.5 is an excellent representative of a family of compressed 
Gorenstein algebras which do not contain any homogeneous exact zero divisors.

Example 3.20. Let n ≥ 3 be a positive integer, X be a (n + 1) × (n + 1) matrix whose 
entries are linear forms from P = k[x, y, z, w], and I be the ideal in P generated by the 
n × n minors of X. If I is primary to the maximal homogeneous ideal (x, y, z, w) of P , 
then S = P/I is a compressed Gorenstein algebra, of socle degree 2n − 2, which does 
not contain any homogeneous exact zero divisors.

Proof. The resolution of S by free P -modules is known [17] to be linear. Apply Exam-
ple 3.17. �

We have drawn many consequences from Proposition 3.11 when the type is one. 
Remark 3.21, and Example 3.22, are analogous to Example 3.17, and Remark 3.19, 
respectively, when the type is greater than 1.

Remark 3.21. Adopt Data 3.7. If S is not Gorenstein and the minimal resolution of S by 
free P -modules is linear, then S is a compressed level algebra. Indeed, the free modules 
of (3.9) have the form

Fj =
{
P if j = 0
P (−n− j + 1)βj if 1 ≤ j ≤ c,

where the generators of I are homogeneous forms of degree n. The Herzog–Kühl formulas 
[19] give β1 =

(
n+c−1
c−1

)
= dimk[P ]n. It follows that I = ([P ]n), S has socle degree e = n −1

and type r = dimk[P ]n−1, and

HSS(i) = dimk[P ]i = min{dimk[P ]i, r · dimk[P ]n−1−i}, for 0 ≤ i ≤ n− 1.

Thus, S is a compressed level algebra. One could conclude that S = k[x1,...,xc]
(x1,...,xc)n does not 

contain any homogeneous exact zero divisors when c and n are at least two. Of course, 
one could also employ a direct argument to reach the same conclusion. Furthermore, 
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S is a Golod ring [13, Prop. 1.9], of minimal multiplicity; so all of the totally reflexive 
S-modules are free; see, [3, (3.5)] or [31, Cor. 2.5]. (This provides a third argument that 
S does not contain any homogeneous exact zero divisors.)

Example 3.22. Let (c, e, r) be a triple of positive integers which satisfy

1
c

(
c+e−2
c−1

)
≤ r ≤

(
c+e−1
c−1

)
.

If n =
(
c+e−1

c

)
+ r and S = P/I, as described in Data 3.7, is the Artinian reduction 

of the coordinate ring of n generic points in Pc, then, according to [5, Cor. 3.22], S is 
a compressed level algebra of codimension c, socle degree e, and type r; in particular, 
if (c, e, r) also satisfy (3.12) or (3.13), then S does not contain any homogeneous exact 
zero divisors.

In Proposition 3.23 and Example 3.30 we again apply Corollary 3.3 to produce families 
of standard graded Artinian k-algebras which do not contain any homogeneous exact zero 
divisors. These families have nothing to do with compressed algebras.

Proposition 3.23. Let s ≥ 3 be an odd integer and let S be the homogeneous coordinate 
ring of the Segre embedding of s copies of P1 into projective space. If � is a linear system 
of parameters in S and S = S/(�), then S is a standard graded Artinian Gorenstein 
k-algebra and S does not have any homogeneous exact zero divisors.

Proof. The Segre embedding takes (P1)s = P1 × · · · × P1︸ ︷︷ ︸
s

into P2s−1. We take

P = k[{W(j1,...,js) | ji ∈ {0, 1}}] and T = k[{Xi,j | 1 ≤ i ≤ s and j ∈ {0, 1}}]

to be the coordinate rings of P2s−1 and (P1)s, respectively. The ring S is equal to P/I for 
I equal to the kernel of the ring homomorphism ϕ : P → T with ϕ(Wj1,...,js) =

s∏
i=1

Xi,ji .

The following properties of S are well-known; we refer to [27], and this reference uses 
results from [28] and [20]:

The ideal I is generated by quadratic polynomials. (3.24)

The ring S is Gorenstein of dimension s + 1. (3.25)

The Hilbert series of S is HSS(t) =
∑
i≥0

(i + 1)sti. (3.26)

Assertion (3.24) holds because I is the “cut ideal of a tree”; see [28, Ex. 2.3]. The cut 
ideal of a graph is defined in [28]. Furthermore, in [28], the defining equations of the 
cut ideal of a graph are described in terms of the defining equations of the cut ideals of 
smaller graphs provided the graph G may be decomposed in an appropriate manner as 
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the “clique sum” of smaller graphs. Trees have the appropriate decomposition. Assertion 
(3.26) is an immediate consequence of the fact that the Hilbert function of a Segre 
product is the product of the Hilbert functions. Assertion (3.25) is established in [15, 
Thms. 4.2.3, 4.4.4, 4.3.3]. In particular, S is Gorenstein because it is the Segre product 
of rings with the same a-invariant.

On the other hand, the generating function 
∑

i≥0(i +1)sti for HSS(t), given in (3.26), 
is a formal power series of historical interest in Combinatorics. Indeed, if As(t) is the 
polynomial defined by

∑
i≥0

isti = As(t)
(1 − t)s+1 , (3.27)

then As(t) is called the sth Eulerian polynomial and, if s is positive, then

As(t) =
s∑

k=1

A(s, k)tk,

for positive integers A(s, k), which are called Eulerian numbers; see Proposition 1.4.4 
and display (1.36) in [29]. The first few Eulerian polynomials are also given in [29]:

A0(t) = 1

A1(t) = t

A2(t) = t + t2

A3(t) = t + 4t2 + t3

A4(t) = t + 11t2 + 11t3 + t4

A5(t) = t + 26t2 + 66t3 + 26t4 + t5.

The value

As(−1) =
{

(−1)(s+1)/2Es, if s is odd
0, if sis even and positive

may be found in Exercise 135, at the end of Chapter 1 of [29], where Es is the sth Euler 
number as defined in section 1.6.1 of [29]. The Euler numbers are positive; they satisfy 
the recurrence relation

2Es+1 =
s∑

k=0

(
s

k

)
EkEs−k for 1 ≤ s, and E0 = E1 = 1;

and they are related to the coefficients in the Maclaurin series for secx + tan x in the 
sense that
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secx + tan x =
∑
s≥0

Es
xs

s! .

We apply Corollary 3.3 to prove that S does not have any homogeneous exact zero 
divisors when s ≥ 3 is an odd integer. The ideal I, which defines S, is generated by 
forms of degree 2 according to (3.24); so it suffices to show that t

2−1
t−1 = t + 1 does not 

divide the Hilbert series HSS(t), in the sense of (0.1); that is, it suffices to show that 
HSS(−1) �= 0. On the other hand, S is a Cohen–Macaulay ring of dimension s + 1 and 
S = S/(�), where � is a linear system of parameters in S. It follows that

HSS(t) = HSS(t)
(1 − t)dim S

= HSS(t)
(1 − t)s+1 . (3.28)

Combine (3.28), (3.26), and (3.27) to see that

HSS(t)
(1 − t)s+1 = HSS(t) =

∑
i≥0

(i + 1)sti =

∑
i≥0

isti

t
=

As(t)
t

(1 − t)s+1 ;

thus, HSS(t) = As(t)
t and HSS(−1) = −As(−1) = (−1)(s−1)/2Es �= 0. �

Observation 3.29. If s = 3, then the ring S of Proposition 3.23 is also studied in Propo-
sition 3.11; however, if s ≥ 5, then the ring S of Proposition 3.23 is not studied in 
Proposition 3.11.

Proof. If s = 3, then the ring S of Proposition 3.23 is defined by the 2 × 2 minors of the 
unit cube with Wi0,i1,i2 placed on the vertex (i0, i1, i2), with ij ∈ {0, 1}. The defining 
ideal of S has nine minimal generators: one for each of the six faces of the unit cube and 
one for the intersection of the unit cube with each of the planes x = y, x = z, and y = z. 
The resolution of the Gorenstein ring S over P = k[{Wi0,i1,i2}] is linear:

0 → P (−6) → P (−4)9 → P (−3)16 → P (−2)9 → P → S,

and S is studied in Example 3.17; hence also in Proposition 3.11. (One can use Macaulay2 
for this calculation.)

If S = P/I, as described in Data 3.7, is a compressed Gorenstein algebra with the 
minimal generator degree of I equal to 2 and socle degree equal to e, then

min{dimk[P ]2, dimk[P ]e−2} = HFS(2) < dimk[P ]2;

and therefore, e ≤ 3. The algebras S of Theorem 3.23 are defined by ideals generated in 
degree 2 and have socle degree s − 1 because

∑
dim[S]iti = HSS(t) = As(t)

t
=

s−1∑
A(s, i + 1)ti,
i≥0 i=0
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with A(s, s) = 1. (The number A(s, k) counts the permutations of {1, . . . , s} with exactly 
k−1 descents; see [29, (1.36)]; in particular, A(s, s) = 1.) If 5 ≤ s, then 3 < s −1; hence, 
the socle degree of S is more than 3 and S is not a compressed Gorenstein algebra. �
Example 3.30. Let k be a field, r and c be integers with 2 ≤ r ≤ c, X be a r × c matrix 
of indeterminates, I2(X) be the ideal of k[X] generated by the 2 × 2 minors of X, and S
be an Artinian reduction of k[X]/I2(X), as described in Conventions 1.1. If any of the 
following conditions hold:

(1) r = c and this common number is odd, or
(2) r < c ≤ r + 3, or
(3) c − 1 does not divide (r − 1)!,

then S does not have any homogeneous exact zero divisors.

Remark. The constraint c ≤ r + 3 in condition (2) has been artificially imposed. We do 
not know any real upper constraint on c; indeed condition (3) applies to all large c, once 
r is fixed.

Proof. Let R be the ring k[X]/I2(X) and d be the Krull dimension of R. It is well-known; 
see, for example, [7, Cor. 4], [12, Cor. 1], [24], or [1], that

HSR(t) =

r−1∑
i=0

(
r−1
i

)(
c−1
i

)
ti

(1 − t)d .

The ring S is equal to R/(�), where � is a regular sequence �1, . . . , �d of homogeneous 

linear forms on R. It follows that HSS(t) =
r−1∑
i=0

(
r−1
i

)(
c−1
i

)
ti. We apply Corollary 3.3. 

The defining ideal for S is generated by homogeneous forms of degree 2. It suffices to 
show that t

2−1
t−1 = t + 1 does not divide HSS(t), in the sense of (0.1). In other words, it 

suffices to show that HSS(−1) �= 0.
For positive integers a ≤ b, define Na,b to be the integer

Na,b =

∣∣∣∣∣
a∑

i=0
(−1)i

(
a

i

)(
b

i

)∣∣∣∣∣ .
We see that | HSS(−1)| = Nr−1,c−1. Note that Na,b is equal (up to sign) to the coefficient 
of xa in (x − 1)a(x + 1)b, since the latter can be found as

∑
(−1)a−i

(
a

i

)(
b

j

)
=

a∑
(−1)j

(
a

a− j

)(
b

j

)
.

i+j=a j=0
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It follows from (x − 1)a(x + 1)b = (x2 − 1)a(x + 1)b−a that

Na,a =
{ 0 when a is odd(

a
a
2

)
when a is even,

Na,a+1 =
{(

a
a−1
2

)
when a is odd(

a
a
2

)
when a is even,

Na,a+2 =
{

2
(

a
a−1
2

)
when a is odd(

a
a
2

)
−
(

a
a−2
2

)
when a is even, and

Na,a+3 =
{

3
(

a
a−1
2

)
−
(

a
a−3
2

)
when a is odd

|
(
a
a
2

)
− 3
(

a
a−2
2

)
| when ais even.

Note that in all of the above cases (with the exception of a = b = odd) we have Na,b �= 0.
Also note that if Na,b = 0, then b must divide a!. In order to see this, we view Na,b as 

a polynomial of degree a with rational coefficients in the variable b. After clearing the 
denominators, the constant term is a! and the coefficient of ba is (−1)a. �
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