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1. Introduction

In this paper we study local cohomology of valuation rings. Since such rings are 
usually non-Noetherian, some caution is required in what one means by local cohomology. 
We adopt Grothendieck’s definition [7] – the derived functors of sections of a sheaf 
of abelian groups on a space with support in a closed set are called local cohomology 
functors. The generality of this definition often necessitates Noetherian restrictions in 
applications of local cohomology to algebraic geometry and commutative algebra. Indeed, 
local cohomology has proved to be a potent tool for understanding Noetherian schemes, 
and hence also Noetherian rings (see [10] for a range of applications). Nonetheless, there 
have been efforts to clarify when Noetherian hypotheses are necessary, in order to be 
able to apply this machinery to arbitrary schemes (for instance, Gabber–Ramero [6] and 
Schenzel [16]).

In commutative algebra, local cohomology with respect to an ideal I of a ring A is 
usually defined as a limit of Ext functors (see [9,12,4]) – more precisely as the right 
derived functors of the I-torsion functor,1 ΓI , where for a A-module M

ΓI(M) = {x ∈ M : ∃n ∈ N such that Inx = 0}.

The derived functors of ΓI are also given the name ‘local cohomology’ because the sheaf 
theoretic and algebraic definitions give isomorphic cohomology modules on Noetherian 
affine schemes [8, Exercise III.3.3]. However, we show that such isomorphisms fail when 
the ring A is a valuation ring (Proposition 6.5), affirming the need for caution in what one 
means by local cohomology in a non-Noetherian setting. For this reason, we henceforth 
call the derived functors of ΓI I-torsion cohomology.

Results The main results of this paper are summarized, although, for simplicity, not al-
ways in complete generality. Most of the vanishing results are obtained for valuation rings 
of finite Krull dimension. Since any valuation ring of the function field of an algebraic 
variety over the ground field has finite Krull dimension, such rings already constitute a 
rich and interesting class.

In the remainder of the paper, V denotes a valuation ring with maximal ideal m. 
We first examine torsion cohomology of valuation rings. The behavior of the m-torsion 
cohomology functors is governed by whether m is principal:

1 This terminology is borrowed from [10, Chapter 7]. In [12], ΓI is more accurately called the ‘I-power 
torsion functor’.
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Theorem 3.2. Let M be a V -module.

(1) If m is principal, then RiΓm(M) = 0 for all i ≥ 2, and R1Γm(M) is the cokernel of 
the canonical map M → Mf , where f is a generator of m.

(2) If m is not principal, then RiΓm(M) ∼= ExtiV (V/m, M) for all i ≥ 0.

Since the functors ExtiV (V/m, _) are influenced by the projective dimension of the 
residue field V/m, we examine the latter in Section 4. We show that the projective 
dimension of V/m is at most 2 when V has finite Krull dimension (Theorem 4.2.5), which 
gives vanishing of m-torsion cohomology in degrees ≥ 3 even when m is not principal 
(Corollary 4.2.6).

The results of Section 4 generalize – for an arbitrary ideal I of a valuation ring V of 
finite Krull dimension, the projective dimension of V/I is at most 2. As a consequence, 
the following bound on global dimension is obtained:

Theorem 5.1. The global dimension of a valuation ring V of finite Krull dimension is 
≤ 2.

A simple consequence of the finiteness of global dimension is the vanishing of I-torsion 
cohomology in degrees ≥ 3 (see Theorem 5.2). Moreover, we show in Proposition 3.3 that 
3 is an optimal lower bound for triviality of torsion cohomology.

We next examine local cohomology of sheaves on Spec(V ), proving the following:

Theorem 6.1. Let X = Spec(V ), Z ⊆ X a closed set, and U = X − Z. For a sheaf of 
abelian groups F on X, let HiΓZ(F) denote the ith local cohomology of F with support 
in Z. Then

(1) HiΓZ(F) ∼= Hi−1(U, F|U ) for all i > 1, and H1ΓZ(F) = coker(resXU : F(X) →
F(U)).

(2) If V has finite Krull dimension, HiΓZ(F) = 0 for all i > 1.

Thus, local cohomology computations on the spectrum of a valuation ring re-
duce to computations of sheaf cohomology on open subschemes. Theorem 6.1 follows 
from the triviality of higher sheaf cohomology of abelian sheaves on the spectrum 
of any local ring (Lemma 6.4). Finiteness of Krull dimension plays an important 
role in Theorem 6.1(2), because in this case an open subscheme of Spec(V ) is al-
ways affine (Lemma 6.2). We end the paper with an example of a valuation ring of 
infinite Krull dimension for which the ‘affineness’ of open subschemes fails (Proposi-
tion 7.1). Consequently, one would expect Theorem 6.1(2) to also fail. Indeed, local 
cohomology no longer vanishes in degrees > 1 even for the structure sheaf (Proposi-
tion 7.1(4)).
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2. Preliminaries

All rings are assumed to be commutative, with an identity element. By a local ring we 
mean a commutative ring (which is not necessarily Noetherian) with a unique maximal 
ideal. We denote the residue field of a local ring by κ. The symbol N denotes the positive 
integers. The terminologies ‘limit’ and ‘colimit’ are preferred over ‘inverse/projective 
limit’ and ‘direct/injective limit’. We assume the reader is familiar with basic properties 
of valuations and valuation rings. Both these terms are used interchangeably in the 
paper. A great all round reference for valuation theory is [3, Chapter VI]. Valuations 
are sometimes defined in different ways in the literature (additive vs. multiplicative 
notation), so we fix the definition we use:

Definition 2.1. [3, VI.3.1, Definition 1] A valuation v on a field K with value group G (a 
totally ordered abelian group) is a surjective group homomorphism

v : K× � G

such that for all x, y ∈ K× with x + y 	= 0, v(x + y) ≥ min{v(x), x(y)}. For a field 
extension K/k, a valuation v on K/k is a valuation v on K such that v(k×) = {0}.

Given an ordered abelian group G, we use G+ to denote the set of elements of G that 
are strictly bigger than the identity element 0. For a ∈ G, we use G≥a to denote the set 
of elements of G that are ≥ a, and similarly for G≤a. For elements x, y in a ring R, we 
use x|y to denote x divides y.

To avoid confusion, we denote the I-torsion cohomology functors by RiΓI , and the 
local cohomology functors with support in a closed set Z by HiΓZ .

3. Torsion cohomology with respect to the maximal ideal

Recall that given a commutative ring A and an ideal I ⊂ A, we get a covariant functor

ΓI : ModA → ModA

called the I-torsion functor, where for an A-module M ,

ΓI(M) = {m ∈ M : ∃n ∈ N such that Inm = 0}.

It is easy to see that ΓI is left-exact, and its right-derived functors, denoted RiΓI for 
i ≥ 0, will be called the I-torsion cohomology functors.2 One can also verify that

ΓI(M) ∼= colimt∈NHomA(A/It,M),

2 This non-standard terminology is used for reasons mentioned in the Introduction.
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and using the fact that cohomology commutes with filtered direct limits, it follows that 
for any i ≥ 0,

RiΓI(M) ∼= colimt∈NExtiA(A/It,M).

In this section, we will examine the functors RiΓI when A is a valuation ring V and 
I is the maximal ideal m of V . The following Lemma will be useful:

Lemma 3.1. Let v be a non-trivial valuation on a field K with value group G. Let V
be the corresponding valuation ring, and m its maximal ideal. Then the following are 
equivalent:

(1) m2 	= m.
(2) G+ := {g ∈ G : g > 0} has a smallest element.
(3) m is principal.

Proof. The equivalence of (2) and (3) follows from the fact that the set of principal 
ideals of V is linearly ordered by inclusion. Since v is a non-trivial valuation, m is a 
non-zero ideal, and so (3) ⇒ (1) follows from Nakayama’s lemma. Thus, it suffices to 
show (1) ⇒ (2). We prove the contrapositive of (1) ⇒ (2). Suppose that G+ does not 
have a smallest element. Let x ∈ m be a non-zero element. Let

α := v(x).

By our assumption on G, there exists β ∈ G such that 0 < β < α. Similarly, there exists 
γ ∈ G such that

0 < γ < min{β, α− β}.

Then 0 < 2γ < β + (α− β) = α. Choose y ∈ V such that v(y) = γ. Then y ∈ m, and

v(y2) = 2γ < α = v(x).

Hence y2|x, and so x ∈ (y2) ⊂ m2. This proves m ⊆ m2, from which it follows that 
m = m2. �

The Lemma can be used to give a quick characterization of the modules RiΓm(M), 
for a module M over a valuation ring (V, m).

Theorem 3.2. Let V be a valuation ring with non-zero maximal ideal m and residue 
field κ. Let M be a V -module.

(1) If m is principal, then RiΓm(M) = 0 for all i ≥ 2, and R1Γm(M) is the cokernel of 
the natural map M → Mf , where f is a generator of m.
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(2) If m is not principal, then RiΓm(M) ∼= ExtiV (κ, M) for all i ≥ 0. In particular, 
Γm(M) = {x ∈ M : mx = 0}, i.e., Γm(M) is the socle of M .

Proof. We prove (2) first. Note that if m is not principal, then using Lemma 3.1(1) and 
induction, one can show that for all n ∈ N, m = mn. Then for all i ≥ 0,

RiΓm(M) ∼= colimt∈NExtiV (V/mt,M) = colimt∈NExtiV (κ,M) = ExtiV (κ,M).

Now suppose that m is principal. Let m = (f), for some f 	= 0. Note that for all t ∈ N, 
f t is a non-zerodivisor on V , giving us a short exact sequence of V -modules

0 → V
ft·−−→ V → V/mt → 0,

where the first map is left multiplication by f t. For a V -module M , we then get a long 
exact sequence of Ext-modules

0 → HomV (V/mt,M) → HomV (V,M) ft·−−→ HomV (V,M) → Ext1V (V/mt,M) → . . .

(3.2.0.1)

The projectivity of V gives us ExtiV (V, M) = 0 for all i ≥ 1. As a result, for all i ≥ 2, 
ExtiV (V/mt, M) = 0, and so

RiΓm(M) ∼= colimt∈NExtiV (V/mt,M) = 0.

Since HomV (V, M) ∼= M , looking at the first few terms of (3.2.0.1) we get the exact 
sequence

0 → HomV (V/mt,M) → M
ft·−−→ M → Ext1V (V/mt,M) → 0.

We then get a natural map of exact sequences

0 HomV (V/mt,M) M M Ext1V (V/mt,M) 0

0 HomV (V/mt+1,M) M M Ext1V (V/mt+1,M) 0

ft·

idM f ·

ft+1·

where the left and right-most vertical maps are induced by the canonical map V/mt+1 �
V/mt.

Taking the colimit of these exact sequences over t ∈ N and using the fact that the 
colimit of

M
f ·−→ M

f ·−→ M
f ·−→ . . .
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is Mf , we get an exact sequence

0 → Γm(M) ↪→ M → Mf → colimt∈NExt1V (V/mt,M) → 0,

where the map M → Mf is the canonical one. Then R1Γm(M) ∼= colimt∈NExt1V (V/mt, M)
= coker(M → Mf ), completing the proof of (1). �

We now mount an attack on understanding RiΓm, when m is not finitely generated. 
Somewhat surprisingly, we will see in Section 4 that for all valuation rings of finite Krull 
dimension, RiΓm(_) vanishes for all i ≥ 3. Here we deal with the cases i = 1, 2.

Proposition 3.3. If V is a valuation ring with maximal ideal m that is not finitely gen-
erated (equivalently not principal), then

(1) R1Γm(m) 	= 0.
(2) There exists a V -module M for which R2Γm(M) 	= 0.

Proof. Let κ be the residue field of V . For a V -module M , the modules RiΓm(M) are 
just the modules ExtiV (κ, M) by Theorem 3.2(2). The short exact sequence

0 → m → V → κ → 0

gives us a long exact sequence of Ext-modules

· · · → ExtiV (κ,M) → ExtiV (V,M) → ExtiV (m,M) → Exti+1
V (κ,M) → . . . .

(1) For i = 0 and M = m, this gives us an exact sequence

0 → HomV (κ,m) → HomV (V,m) → HomV (m,m) → Ext1V (κ,m).

Assume for contradiction that Ext1V (κ, m) = 0. Then the natural map HomV (V, m) →
HomV (m, m) induced by the inclusion m ↪→ V is surjective. This means that m is a direct 
summand of V , and so m is projective. Kaplansky showed that any projective module 
over a local ring is free [11]. But m cannot be free because if an ideal of a ring is a 
free module then it has to be principal, whereas we picked our valuation ring so that its 
maximal ideal is not principal. This shows that R1Γm(m) = Ext1V (κ, m) 	= 0.

(2) It suffices to show that there exists some V -module M for which Ext2V (κ, M) 	= 0. 
Using the long exact sequence of Ext modules obtained in the beginning of the proof, 
and the fact that ExtiV (V, M) = 0 for all i ≥ 1, we get

Ext2V (κ,M) ∼= Ext1V (m,M),
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for all V -modules M . If Ext2V (κ, M) = 0 for all V -modules M , then Ext1V (m, M) = 0
for all V -modules M . This again implies m is projective [17, Lemma 4.1.6], which, as we 
saw while proving (1), is impossible. �
Remark 3.4. For an ideal I in a Noetherian ring, the functors ΓI and Γ√

I coincide (
√
I

denotes the radical of I). However, this property no longer holds for ideals in valuation 
rings. Intuition suggests this is because the radical of a finitely generated ideal of a 
valuation ring need not be finitely generated. Here is a specific example. Let V be a 
valuation ring of finite Krull dimension d ≥ 1 such that the maximal ideal m is not finitely 
generated. For instance, V could be a non-Noetherian valuation ring of dimension 1. Then 
Spec(V ) is a single chain of prime ideals

(0) = P0 � P1 � P2 � . . . Pd−1 � Pd = m.

Pick f ∈ m such that f /∈ Pd−1. The radical of the ideal (f) is clearly m, giving us a 
principal ideal whose radical is not finitely generated. Now consider the V -module V/(f). 
Let x denote the class of 1 in V/(f). Then x ∈ Γ(f)

(
V/(f)

)
since the annihilator of x

in V is (f). Because Γm

(
V/(f)

)
consists of elements of V/(f) that are annihilated by m

(Theorem 3.2(2)), we have x /∈ Γ√
(f)

(
V/(f)

)
= Γm

(
V/(f)

)
, proving that Γ(f)

(
V/(f)

)
	=

Γ√
(f)

(
V/(f)

)
. This example will reappear in Proposition 6.5 where we show that torsion 

and local cohomologies do not give isomorphic modules, even in degree 0.

4. Projective dimension of the residue field

With an eye toward understanding the higher m-torsion cohomology modules of a val-
uation ring V when m is not principal, we turn to computing the projective dimension of 
the residue field κ. The projective dimension of a V -module M will be denoted pdV (M). 
The main result is:

Theorem. (Cf. 4.2.5) Let V be a valuation ring of finite Krull dimension with residue 
field κ. Then pdV (κ) ≤ 2. Moreover, pdV (κ) = 1 if and only if m is principal.

The proof of this theorem will take some work, and is given in 4.2.5. The theorem 
immediately gives us a vanishing result on m-torsion cohomology when m is not finitely 
generated (Corollary 4.2.6).

It turns out that the maximal ideal of any valuation ring of finite Krull dimension 
can be generated by countably many elements, and we will prove more generally that 
pdV (κ) is bounded above by 2 whenever the maximal ideal is countably generated (see 
Theorem 4.1.4).
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4.1. Countably exhaustive ordered abelian groups

As a first step, we translate the property of countable generation of the maximal 
ideal of a valuation ring into a statement about the value group. This translation is more 
illuminating and will help us identify valuation rings whose maximal ideals are countably 
generated. Thus, we introduce the following terminology:

Definition 4.1.1. Let G be an ordered abelian group. Let G+ = {g ∈ G : g > 0}. Then 
G is countably exhaustive if there exists a sequence (gn)n∈N in G+ satisfying

(i) g1 ≥ g2 ≥ g3 ≥ . . . .
(ii) G+ =

⋃
n∈N

G≥gn .

Remark 4.1.2. If G+ has a smallest element, then G is clearly countably exhaustive. If 
G+ does not have a least element, and G is countably exhaustive, then one can find a
strictly decreasing sequence (gn)n∈N in G+ satisfying axiom (ii) in the above definition.

We next show that the notion of a countably exhaustive ordered abelian group cap-
tures the notion of countable generation of the maximal ideal of a valuation ring.

Proposition 4.1.3. Let v be a valuation on a field K with value group G. Then the maximal 
ideal m of the valuation ring V is countably generated if and only if G is countably 
exhaustive.

Proof. For the backward implication, suppose we have a sequence (gn)n∈N in G+ such 
that G+ =

⋃
n G

≥gn . Let an ∈ m such that v(an) = gn. Then m = (a1, a2, a3, . . . ). 
For the forward implication, we may suppose m is not principal as otherwise G+ has 
a smallest element and so is countably exhaustive. Choose a countable generating set 
{xn : n ∈ N} of m. Define a subsequence (xnk

)k∈N of this generating set inductively as 
follows: Let xn1 = x1. Given xnk

, pick xnk+1 to be the first xi such that i > nk and 
v(xi) < v(xnk

). Since m is not principal, such an xi has to exist as otherwise m would 
equal the ideal (xnk

). Clearly, (xnk
)k∈N is also a generating set for m. If gk := v(xnk

), 
then g1 ≥ g2 ≥ g3 ≥ . . . and G+ =

⋃
k∈N

G≥gk . So G is countably exhaustive. �
We will give examples of countably exhaustive ordered abelian groups in the next 

subsection (Proposition 4.2.1). We end this one by proving that one can bound the 
projective dimension of the residue field of any valuation ring whose value group is 
countably exhaustive:

Theorem 4.1.4. Let v be a valuation on a field K with value group G. Let V be the 
corresponding valuation ring with maximal ideal m, and residue field κ.
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(1) pdV (κ) = 1 if and only if G+ has a smallest element.
(2) If G is countably exhaustive, then pdV (κ) ≤ 2.

Proof. If G is the trivial group, then V is the field K, and κ = V . Hence, pdV (κ) = 0. 
Suppose G is non-trivial. Then V is not a field, and in particular pdV (κ) ≥ 1 (κ cannot 
be projective because κ is not free). From the exact sequence

m → V → κ → 0,

we get that pdV (κ) = 1 if and only if m is projective, and the latter happens if and only 
if m is free (again using Kaplansky’s characterization of projectives over local rings), 
hence principal since m is an ideal of V . But principality of m is equivalent to G+ having 
a smallest element by Lemma 3.1. This proves (1).

Now assume G+ does not have a smallest element. By (1), pdV (κ) > 1. By Re-
mark 4.1.2 we have a sequence (an)n∈N of elements of G+ such that

a1 > a2 > a3 > a4 > . . . ,

and

G+ =
⋃
n

G≥an .

Let xn ∈ m such that v(xn) = an. Our choice of (an)n∈N shows that

m = (x1, x2, x3, . . . ),

and v(x1) > v(x2) > v(x3) > . . . . Pick the obvious surjection⊕
i∈N

V � m.

If fi denotes the ith standard basis vector of 
⊕

i∈N
V , then the above surjection maps 

fi 
→ xi. We will show that the kernel of 
⊕

n∈N
V � m is generated by the set

S :=
{
fi −

xi

xi+1
fi+1 : i ∈ N

}
.

Clearly S is linearly independent over V , and S ⊆ ker(
⊕

n∈N
V � m). Hence the sub-

module, 〈S〉, generated by S is contained in the kernel. Observe that for all i, n ∈ N, the 
element

fi −
xi

fi+n (4.1.4.1)

xi+n
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is an element of 〈S〉. This is easily seen by induction on n. As an illustration, for n = 2,

fi −
xi

xi+2
fi+2 =

(
fi −

xi

xi+1
fi+1

)
+ xi

xi+1

(
fi+1 −

xi+1

xi+2
fi+2

)
∈ 〈S〉.

Now suppose a1f1 + a2f2 + · · · + anfn is some element in ker(
⊕

n∈N
V � m), where 

ai ∈ V . This means that a1x1 + a2x2 + · · · + anxn = 0. Then

xn

(
a1

x1

xn
+ a2

x2

xn
+ · · · + an−1

xn−1

xn
+ an

)
= 0.

Since m is torsion-free, solving for an we get

an = −a1
x1

xn
− a2

x2

xn
− · · · − an−1

xn−1

xn
,

and so,

a1f1 + a2f2 + · · · + anfn

= a1

(
f1 −

x1

xn
fn

)
+ a2

(
f2 −

x2

xn
fn

)
+ · · · + an−1

(
fn−1 −

xn−1

xn
fn

)
.

However, by (4.1.4.1),

f1 −
x1

xn
fn, f2 −

x2

xn
fn, . . . , fn−1 −

xn−1

xn
fn ∈ 〈S〉,

and so, a1f1 + a2f2 + · · · + anfn ∈ 〈S〉, showing that

〈S〉 = ker
(⊕
n∈N

V � m
)
.

Therefore, ker(
⊕

n∈N
V � m) is a free V -module, and κ has a projective resolution

0 → ker(
⊕
n∈N

V � m) →
⊕
n∈N

V → V → 0,

proving that its projective dimension is 2. �
Remark 4.1.5. The projective dimension of ideals of a valuation ring was the subject of 
investigation of a paper by B. Osofsky [15] in which the following result was established:
Let V be a valuation ring. Let I be an ideal of V . Then pdV (I) = n + 1 if and only if I
can be generated by set of cardinality ℵn, but not by a set of smaller cardinality for all 
n ≥ −1.
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Theorem 4.1.4 is a special case of Osofsky’s result when the maximal ideal m is generated 
by set of cardinality at most ℵ0. Osofsky’s proof requires set theoretic considerations that 
were avoided in our proof of the ℵ0 case. We will soon see that this case is already very 
rich, and includes all valuation rings of finite Krull dimension (Proposition 4.2.2).

4.2. Examples of countably exhaustive groups

Proposition 4.2.1. For n ∈ N, consider R⊕n with lexicographical ordering. If G is an 
ordered subgroup of R⊕n, then G is countably exhaustive.

Proof. For i = 1, . . . , n, we let πi : R⊕n → R denote projection onto the ith-coordinate. 
The proof follows a recursive procedure, and uses the greatest lower bound property 
of the real numbers. In particular, we use the convention that if a subset of R is not 
bounded below, then its infimum is −∞.

Let α1 be the greatest lower bound of π1(G+). We note that α1 ≥ 0. If α1 /∈ π1(G+), 
choose a sequence (sn)n ⊂ G+ such that π1(s1) ≥ π1(s2) ≥ π1(s3) ≥ . . . , and

lim
n→∞

π1(sn) = α1.

Then s1 ≥ s2 ≥ s3 ≥ . . . (by definition of lexicographical order), and G+ =
⋃

n∈N
G≥sn , 

proving countable exhaustivity.
If α1 ∈ π1(G+), choose ω1 ∈ G+ such that π1(ω1) = α1, and let α2 be the greatest 

lower bound of π2(Λ1), where

Λ1 := G+ ∩G≤ω1 .

If α2 /∈ π2(Λ1), then repeat the procedure in the previous paragraph, for Λ1 instead of 
G+, to get countable exhaustivity of G. In other words, pick t1, t2, t3, · · · ∈ Λ1 such that 
π2(t1) ≥ π2(t2) ≥ π2(t3) ≥ . . . , and

lim
n→∞

π2(tn) = α2.

Note π1(tn) = α1, for all n, by definition of α1, and since 0 < tn ≤ ω1 by choice. Thus, 
t1 ≥ t2 ≥ t3 ≥ . . . , and G+ =

⋃
n G

≥tn .
If α2 ∈ π2(Λ1), choose ω2 ∈ Λ1 such that

π2(ω2) = α2.

Then ω2 also satisfies π1(ω2) = α1, for the same reason as the elements tn do. Continuing 
as above, define Λ2 := G+ ∩ G≤ω2 , and α3 := inf π3(Λ2). Depending on whether α3 ∈
π3(Λ2), we repeat the above argument.
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This process terminates after at most n steps, and one of two possibilities occur –
(1) There exists a smallest j ∈ {1, . . . , n} such that the infimum αj of πj(Λj−1) is not an 
element of the set. Then repeating the argument in the second paragraph of this proof 
for Λj−1 instead of G+, one gets countable exhaustivity of G.
(2) For all j ∈ {1, . . . , n}, αj ∈ πj(Λj−1), allowing us to pick ω ∈ G+ such that

ω = (α1, α2, . . . , αn).

But ω is then the smallest element of G+, and so G is trivially countably exhaustive. �
A consequence of Proposition 4.2.1 is that the maximal ideal of a valuation ring of 

finite Krull dimension is countably generated.

Proposition 4.2.2. Let v be a valuation on a field K such that the corresponding valuation 
ring V has finite Krull dimension d. Then the value group G of v is order-isomorphic to 
a subgroup of R⊕d, with induced lexicographical ordering. In particular, G is countably 
exhaustive.

Proof. One has the notion of an isolated subgroup of an ordered abelian group in val-
uation theory [3, VI.4.2, Definition 1], and there is a well-known inclusion reversing 
bijection

{prime ideal of V } ←→ {isolated subgroup of G}.

For details we refer the reader to [3, VI §4.1 and VI §4.3]. Under this bijection, the 
maximal ideal m corresponds to the trivial subgroup, and the zero ideal corresponds 
to G. Thus, the number of non-trivial isolated subgroups of G, denoted ρ(G), equals the 
number of non-maximal prime ideals of V . Since a valuation ring of dimension d has d
non-maximal primes ideals,

ρ(G) = d.

Applying [2, Chapter 2, Proposition 2.10] we get that G is order isomorphic to a subgroup 
of R⊕d, and so also countably exhaustive by Proposition 4.2.1. �
Remark 4.2.3. Isolated subgroups are also called convex subgroups in the literature. The 
number ρ(G) is called the height/rank of the ordered abelian group G. Following [2], 
we have defined ρ(G) (at least for valuation rings of finite Krull dimension) to be the 
number of non-trivial convex subgroups of G. However, other sources such as [3, VI §4.5, 
Definition 2] define ρ(G) to be the number of proper convex subgroups of G.

As a corollary, we obtain that most valuations arising in algebraic geometry have value 
groups that are countably exhaustive.
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Corollary 4.2.4. Fix a ground field k. Let K be a finitely generated field extension of k
(such as the function field of a variety over k). If v is a valuation on K/k with value 
group G, then G is countably exhaustive.

Proof. Let d be the dimension of the corresponding valuation ring (at this point d could 
be infinite), and κ the residue field. We have the following fundamental inequality due 
to Abhyankar [1, Corollary 1]:

d + tr.deg κ/k ≤ tr.deg K/k.

Then d is finite since tr.deg K/k is finite, and so we are done by Proposition 4.2.2. �
The proof the theorem stated at the very beginning of this section is now a matter of 

putting together all the results we have obtained so far:

Theorem 4.2.5. Let V be a valuation ring of finite Krull dimension with residue field κ, 
and assume V is not a field. Then pdV (κ) ≤ 2. Moreover, pdV (κ) = 1 if and only if m
is principal.

Proof. If we consider V as the valuation ring associated to a valuation on the fraction 
field of V with value group G, then G is countably exhaustive by Proposition 4.2.2. The 
result now follows Theorem 4.1.4. �

The bound on the projective dimension of the residue field yields:

Corollary 4.2.6. Let V be a valuation ring of finite Krull dimension. Suppose that the 
maximal ideal m of V is not principal. Then for all V -modules M , RiΓm(M) = 0 for all 
i ≥ 3.

Proof. Let κ be the residue field. Since m is not principal, and RiΓm(M) ∼= ExtiV (κ, M)
for all i (Theorem 3.2(2)), the result follows from the bound on the projective dimension 
of the residue field obtained in Theorem 4.2.5 above. �
Remark 4.2.7. Theorem 4.1.4 tells us more generally that RiΓm vanishes for all i ≥ 3
when m is countably generated (equivalently the value group is countably exhaustive). 
In Section 7 we give an example of a valuation ring of infinite Krull dimension with 
non-finitely generated maximal ideal whose value group is countably exhaustive. Thus, 
countably exhaustive ordered abelian groups also include cases where the valuation ring 
has infinite Krull dimension.

5. Global dimension of valuation rings and torsion cohomology

Recall that the global dimension of a ring R, denoted gldim(R), is the supremum of 
the injective dimensions of all R-modules. One also has
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gldim(R) = sup{pdR(R/J) : J is an ideal of R} [17, Theorem 4.1.2].

Surprisingly, valuation rings of finite Krull dimension have finite global dimension:

Theorem 5.1. Let V be a valuation ring of finite Krull dimension. Then gldim(V ) ≤ 2. 
Moreover, gldim(V ) = 1 if and only if V is a discrete valuation ring.

Before giving the proof, note that Theorem 5.1 immediately implies the following 
vanishing result on torsion cohomology with respect to arbitrary ideals, generalizing 
Corollary 4.2.6:

Theorem 5.2. Let I be an ideal of a valuation ring V of finite Krull dimension, and ΓI

be the I-torsion functor. Then for all V -modules M and i ≥ 3, RiΓI(M) = 0.

Proof. Since gldim(V ) ≤ 2 (Theorem 5.1), the injective dimension of any V -module M
is also bounded above by 2. The vanishing of RiΓI(M), for i ≥ 3, follows. �

For the proof of Theorem 5.1, the following Lemma will be useful. It generalizes 
Proposition 4.2.2. The strategy of proof is similar to Proposition 4.2.1.

Lemma 5.3. Let v be a valuation on a field K with value group G. Suppose the corre-
sponding valuation ring V has finite Krull dimension. If J is a non-zero ideal of V , there 
exists a sequence (xn)n ∈ J such that v(x1) ≥ v(x2) ≥ . . . , and J = (x1, x2, x3, . . . ).

Proof. We may assume G is a subgroup of R⊕n, the latter being ordered lexicographically 
(Proposition 4.2.2). We may also assume J 	= V . Consider the set

S := v(J − {0}).

Note S has the property that if x ∈ S, then G≥x ⊆ S. Replacing G+ by S everywhere in 
the proof of Proposition 4.2.1, we see that one can choose elements s1 ≥ s2 ≥ s3 ≥ . . .

in S such that

S =
⋃
n

G≥sn .

Picking xn ∈ J satisfying v(xn) = sn, we get v(x1) ≥ v(x2) ≥ v(x3) ≥ . . . and J =
(x1, x2, x3, . . . ). �
Remark 5.4. In [5, Corollary 36], Lemma 5.3 is proved, more generally, for valuation 
rings V such that Spec(V ) is countable. But we hope our simple proof will be of some 
benefit.

Proof of Theorem 5.1. We may assume V is not a field (fields have global dimension 0). 
If the global dimension of V equals 1, then pdV (V/J) ≤ 1, for all ideals J in V . The 
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latter is equivalent to the projectivity of J , which happens only when J is free of rank 
≤ 1 (any ideal of a ring which is free as a module must have rank ≤ 1). But a free ideal 
of rank ≤ 1 is principal, which shows that V must be a Noetherian valuation ring, that is 
it is discrete. On the other hand, a discrete valuation ring is a dimension 1 regular local 
ring, and so has global dimension 1. This proves the second assertion of the theorem.

Now assume that gldim(V ) > 1. Then there exists an ideal J of V which is not 
finitely generated. By Lemma 5.3 one can pick a sequence (xn)n ∈ J such that v(x1) >
v(x2) > . . . and J = (x1, x2, x3, . . . ). The argument in the proof Theorem 4.1.4(2) can be 
repeated verbatim for J instead of the maximal ideal m to see that pdV (V/J) = 2. Since 
every ideal of V is countably generated (Lemma 5.3), V has global dimension 2. �
Remark 5.5. Theorem 5.1 implies that modules over valuation rings of finite Krull dimen-
sion have finite injective dimension. Injective modules over valuation rings share many 
common traits with injective modules over Noetherian rings. We refer the reader to [14].

6. Sheaf and local cohomology of valuation rings

Let X be a topological space. Let Z ⊆ X be a closed subset, and U = X−Z. Let AbX
denote the category of sheaves of abelian groups on X, and Ab the category of abelian 
groups. We have a covariant functor

ΓZ : AbX → Ab,

where for a sheaf F ,

ΓZ(F) := ker(resXU : F(X) → F(U)).

In other words, ΓZ(F) is the set of global sections of F whose support is contained in Z. 
The functor ΓZ is clearly left-exact, and the right derived functors of ΓZ , denoted HiΓZ , 
are the local cohomology functors with support in Z.

We now specialize to the case where X = Spec(V ), for a valuation ring V . The goal 
will be to prove the following result:

Theorem 6.1. Let Z be a closed subset of X = Spec(V ), for a valuation ring V , and 
U = X − Z. For a sheaf of abelian groups F on X, we have the following:

(1) HiΓZ(F) ∼= Hi−1(U, F|U ) for all i > 1, and H1ΓZ(F) ∼= coker
(
F(X) resXU−−−→ F(U)

)
.

(2) If V has finite Krull dimension or if U is quasi-compact, then HiΓZ(F) = 0 for all 
i > 1.

Theorem 6.1 will follow from vanishing of higher sheaf cohomology of abelian sheaves 
on the spectrum of any local ring (Lemma 6.4), and some peculiarities of the Zariski 
topology of the spectrum of a valuation ring.
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The relevant properties of the Zariski topology are recorded first:

Lemma 6.2. Let V be a valuation ring.

(1) Any non-empty closed subset of Spec(V ) is irreducible.
(2) An open subset U ⊆ Spec(V ) is quasi-compact if and only if there exists f ∈ V such 

that U = D(f). In particular, any affine open subscheme of Spec(V ) is of the form 
D(f), and all quasicompact opens of Spec(V ) are affine.

(3) If V has finite Krull dimension, then any open subscheme of Spec(V ) is affine.

Proof. (1) follows from the fact that in a valuation ring, any radical ideal is a prime 
ideal or the whole ring. That a proper radical ideal I � V is a prime ideal follows easily 
from the fact that the prime ideals that contain I are totally ordered by inclusion.

For (2), the ‘if’ part is clear. On the other hand, if U is a quasi-compact open sub-
scheme of Spec(V ), then there exist f1, . . . , fn ∈ V such that U = D(f1) ∪ · · · ∪D(fn). 
Since the open subsets of Spec(V ) are totally ordered by inclusion, U must equal D(fi)
for some i. Quasi-compactness of affine opens now gives us the second statement of (2).

(3) is a consequence of (2). If V has finite Krull dimension, the underlying set of 
Spec(V ) is finite. Hence any open subscheme of Spec(V ) is quasi-compact, thus affine 
by (2). �
Remark 6.3. Lemma 6.2(3) is false without the hypothesis that V has finite Krull di-
mension. We construct a counter-example in Section 7.

We now show the triviality of higher sheaf cohomology on the spectrum of any local 
ring.

Lemma 6.4. Let R be a local ring, X = Spec(R). Then the global sections functor on 
the category of sheaves of abelian groups on X is exact. In particular, for any sheaf of 
abelian groups F on X, Hi(X, F) = 0 for all i > 0.

Proof. Let Γ be the global sections functor. Since the only open set of X that contains 
the unique closed point is X itself, the stalk of any sheaf at the closed point is the global 
sections of that sheaf. Since taking stalks preserves exactness, Γ is an exact functor, and 
all higher sheaf cohomology groups vanish. �

We can now derive Theorem 6.1.

Proof of Theorem 6.1. We have a well-known long exact sequence involving sheaf and 
local cohomology [7, Corollary 1.9]:

0 → ΓZ(F) → F(X) resXU−−−→ F(U) → H1ΓZ(F) → H1(X,F) → H1(U,F|U )

→ H2ΓZ(F) → . . .
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Here Hi(X, F) and Hi(U, F|U ) stand for sheaf cohomology. Since Hi(X, F) = 0 for all 
i ≥ 1 by Lemma 6.4, we get

HiΓZ(F) ∼= Hi−1(U,F|U )

for all i > 1. The exactness of

0 → ΓZ(F) → F(X) resXU−−−→ F(U) → H1ΓZ(F) → 0

shows that H1ΓZ(F) is the cokernel of F(X) resXU−−−→ F(U). This proves (1).
For (2), if V has finite Krull dimension or if U is quasi-compact, then U is a dis-

tinguished affine open subscheme D(f) of X by Lemma 6.2. In particular, Vf is also 
a valuation ring, and so U is also the spectrum of a valuation ring. Thus, Lemma 6.4
implies Hi(U, F|U ) = 0 for i ≥ 1. So from (1) we get HiΓZ(F) = 0 for i > 1. �

Let X = Spec(A) for a Noetherian ring A, M an A-module with associated sheaf M̃ , I
an ideal, and Z = V(I). Then the A-modules RiΓI(M) are isomorphic to the A-modules 
HiΓZ(M̃) for all i ≥ 0 [8, Exercise III.3.3]. However, we show that the functors ΓI and 
ΓV(I) give non-isomorphic A-modules when A is a valuation ring:

Proposition 6.5. Let V be any valuation ring with maximal ideal m that is not finitely 
generated, and Z be the closed point of Spec(V ). Suppose that the punctured spectrum 
Spec(V ) −Z is quasi-compact (for instance if V has finite Krull dimension). Then there 
exists a V -module M such that Γm(M) and ΓZ(M̃) are not isomorphic V -modules.

Proof. Since Spec(V ) −Z is quasi-compact, by Lemma 6.2 there exists f ∈ V such that

Spec(V ) − Z = D(f).

Then f ∈ m, but it is not contained in any prime ideal of Spec(V ) that is not maximal. 
Let M be the V -module V/(f), and let x ∈ M denote the class of 1 ∈ V . The annihilator 
of x is (f), and since m is not finitely generated, (f) � m. Thus, x is not an element of 
Γm(M), because Γm(M) = {y ∈ M : my = 0} (Theorem 3.2(2)). However, for all prime 
ideals p of Spec(V ) that are not maximal, we have Mp = 0. Considering x as a global 
section of the associated sheaf M̃ , it follows that its support is contained in Z, that is 
x ∈ ΓZ(M̃). Then Γm(M) and ΓZ(M̃) cannot be isomorphic V -modules because every 
element of Γm(M) is annihilated by m, whereas x is not. �
Remark 6.6. Let V be a valuation ring of finite Krull dimension with non-zero principal 
(equivalently finitely generated) maximal ideal m. Then Γm(M) = ΓV(m)(M̃), and The-
orem 6.1, combined with Theorem 3.2(1) implies that RiΓm(M) and HiΓV(m)(M̃) are 
isomorphic for all i ≥ 0.
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7. A valuation ring of infinite Krull dimension

We construct a valuation ring V of infinite Krull dimension such that

(a) Spec(V ) has an open subscheme that is not affine (i.e. Lemma 6.2(3) fails if Krull 
dimension is not finite).

(b) There exists a sheaf of abelian groups F on Spec(V ) for which HiΓZ(F) does not 
vanish for some i ≥ 2, and the closed point Z (i.e. Theorem 6.1(2) fails if Krull 
dimension is not finite).

In fact, in (b) we can even choose F to be the structure sheaf. Another interesting feature 
of this example is that the m-torsion cohomology functors RiΓm associated to this ring 
vanish for i ≥ 3. Our construction is inspired by [13, Exercises 3.3.26 and 3.3.27].

For the remainder of this section, K will denote the field C(X1, X2, X3, . . . , Xn, . . . ), 
where the Xn are indeterminates for all n ∈ N. Let G :=

⊕
n∈N

Z, ordered lexicographi-
cally. The ith standard Z-basis element of G will be denoted ei. So in the lexicographical 
ordering, ei > ej if and only if i < j. There exists a unique valuation v on K/C with 
value group G such that v(Xi) = ei. Let V be the corresponding valuation ring, and m
the maximal ideal of V .

Proposition 7.1. The valuation ring V constructed above satisfies the following proper-
ties:

(1) V has infinite Krull dimension.
(2) The maximal ideal m is not finitely generated. In particular, m = (X1, X2, X3, . . . ).
(3) The punctured spectrum Spec(V ) − {m} is not quasi-compact, hence is not affine.
(4) If Z is the closed point of Spec(V ), then H2ΓZ(OSpec(V )) 	= 0.
(5) As a V -module, the residue field κ has projective dimension 2.
(6) For all V -modules M , RiΓm(M) = 0 for all i ≥ 3, where RiΓm is the ith m-torsion 

cohomology functor (cf. Section 3).

Proof. For the rest of the proof let

Y := Spec(V ); Z = {m}; U := Spec(V ) − {m}.

(1) We have

v(X1) > v(X2) > v(X3) > . . . ,

which gives us a chain of ideals

(X1) � (X2) � (X3) � . . . . (7.1.0.1)
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Define

Pn := radical of the ideal (Xn). (7.1.0.2)

Then Pn is a prime ideal because the radical of a proper ideal of a valuation ring is prime 
(see proof of Lemma 6.2(1) for an explanation). Since every power of Xn+1 has value 
strictly less that the value of Xn, it follows that Xn+1 is an element of Pn+1, but not 
of Pn. So we get an infinite chain of prime ideals

P1 � P2 � P3 � . . . , (7.1.0.3)

which shows that V has infinite Krull dimension, proving (1).
Using the lex ordering on G, it is easy to see that

m = (X1, X2, X3, . . . ).

Hence the maximal ideal m cannot be finitely generated, because then m would equal 
(Xi) for some Xi, which is impossible since Xi+1 would not be in m. This proves (2).

As a consequence of (2), we see that U = Spec(V ) −V(m) =
⋃

n∈N
D(Xi). Now from 

(7.1.0.1) we get

D(X1) ⊆ D(X2) ⊆ D(X3) ⊆ . . . .

Since the prime ideal Pn defined in (7.1.0.2) is an element of D(Xn+1) but not of D(Xn), 
the inclusions D(Xn) ⊆ D(Xn+1) are strict, that is we actually have a chain of open sets

D(X1) � D(X2) � D(X3) � . . . .

Thus, the punctured spectrum U cannot be quasi-compact, because the open cover 
{D(Xn) : n ∈ N} cannot have a finite sub-cover, proving (3).

The proof of (4) will require some work. Using Theorem 6.1, we get H2ΓZ(OY ) ∼=
H1(U, OY |U ). Hence to prove (2), it suffices to show that H1(U, OY |U ) 	= 0.

Let K̃ denote the constant sheaf of rational functions on Y . Note that OY may be 
identified as a subsheaf of K̃, and we make this identification. We get a short exact 
sequence of quasi-coherent sheaves of OY -modules

0 → OY → K̃ → K̃/OY → 0.

Restricting to the punctured spectrum U gives us a corresponding short exact sequence 
of quasi-coherent sheaves on U

0 → OY |U → K̃|U → (K̃/OY )|U → 0.

This gives a corresponding long-exact sequence in cohomology whose initial terms are
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0 → OY (U) → K → K̃/OY (U) → H1(U,OY |U ) → H1(U, K̃|U ) → . . . . (7.1.0.4)

To prove that H1(U, OY |U ) 	= 0, it suffices to show that the map K → (K̃/OY )(U) is 
not surjective. For this we need to develop a better understanding of the OY (U)-module 
(K̃/OY )(U).

Claim 7.2. (K̃/OY )(U) is the limit (a.k.a. inverse limit) of the diagram

· · · � K

VX3

� K

VX2

� K

VX1

.

The claim is not difficult to prove, but to prevent breaking the flow we postpone it 
until after the proof of this proposition. Note that

K/VXn
= (K̃/OY )(D(Xn)).

It is easy to check that

K → (K̃/OY )(U)

is the unique map such that for all n ∈ N,

K → (K̃/OY )(U)
resUD(Xn)−−−−−−→ K/VXn

= K � K/VXn
,

where K � K/VXn
is the usual projection. We now explicitly construct an element of 

the limit of

· · · � K

VX3

� K

VX2

� K

VX1

which cannot be in the image of K, completing the proof that H2ΓZ(OY ) 	= 0.
For n ≥ 2,

X−1
1 , . . . , X−1

n−1 /∈ VXn
,

as otherwise some power of Xn would be divisible by Xi, for some i < n. At the same 
time X−1

i is an element of VXn
, for all i ≥ n. Define

α1 := 0,

and

αn := class of X−1
1 + · · · + X−1

n−1 in K/VXn
,

for all n ≥ 2. Then
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(α1, α2, α3, . . . ) ∈ limn∈NK/VXn
.

Assume for contradiction that (α1, α2, α3, . . . ) is the image of some α ∈ K. There exists 
n >> 0 such that

α ∈ C(X1, . . . , Xn),

and by our assumption,

α− αn+2 = α− (X−1
1 + · · · + X−1

n+1) ∈ VXn+2 .

Note α − X−1
1 − · · · − X−1

n is also an element of field C(X1, . . . , Xn), and either α −
X−1

1 − · · · −X−1
n = 0 or v(α −X−1

1 − · · · −X−1
n ) 	= v(X−1

n+1). Because X−1
n+1 is not an 

element of VXn+2 , α−X−1
1 − · · · −X−1

n cannot equal 0. Thus,

v(α−X−1
1 − · · · −X−1

n ) 	= v(X−1
n+1).

Since v is a valuation, this tells us that

v
(
α− (X−1

1 + · · · + X−1
n+1)

)
= min{v(α−X−1

1 − · · · −X−1
n ), v(X−1

n+1)}.

In particular, v(α− (X−1
1 + · · ·+X−1

n+1)) ≤ v(X−1
n+1), and so for all m ∈ N ∪{0} we must 

have

v

(
Xm

n+2
(
α− (X−1

1 + · · · + X−1
n+1)

))
≤ v(Xm

n+2X
−1
n+1) < 0.

This contradicts

α− (X−1
1 + · · · + X−1

n+1)

being an element of VXn+2 , completing the proof of (4).
We can, for this example, give a nice characterization of H2ΓZ(OY ). Recall that 

H2ΓZ(OY ) ∼= H1(U, OY |U ), and since H1(U, K̃|U ) = 0 on account of K̃|U being a 
flabby sheaf on U , from the exactness of (7.1.0.4) it follows that H1(U, OY |U ) is the 
cokernel of the map

K → (K̃/OY )(U).

Thus, H2ΓZ(OY ) ∼= coker(K → (K̃/OY )(U)).
It remains to show (5) and (6). Note that G =

⊕
n∈N

Z with the lex order is countably 
exhaustive (cf. Definition 4.1.1), because the sequence formed by the basis vectors (ei)i∈N

satisfies
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e1 > e2 > e3 > . . . and G+ =
⋃
i∈N

G≥ei .

Also, G+ clearly does not have a least element. Then (5) follows from Theorem 4.1.4. 
For (6) one can apply the proof of Theorem 4.2.6 verbatim, so we omit it. �

To complete the proof of the above proposition, it remains to establish Claim 7.2.

Proof of Claim 7.2. Let A be the partially ordered set whose elements are open subsets 
of the form D(f) contained in the punctured spectrum U , and where the order relation 
is given by inclusion. In fact, A is totally ordered by this relation, hence in particular 
also a directed set. If D(g) ⊆ D(f) ⊂ U , then we have a natural map

K

OY (D(f)) � K

OY (D(g)) ,

induced by the restriction map OY (D(f)) ↪→ OY (D(g)). This is the data of an inverse 
system on A. It is well-known that

(K̃/OY )(U) = limA(K̃/OY )(D(f)) = limAK/
(
OY (D(f))

)
.

Let I be the subset of A consisting of the open sets D(Xn) for n ∈ N. Recall it 
was shown in Proposition 7.1 that U =

⋃
n∈N

D(Xn). Then I is cofinal in A. This is 
because if D(f) is any open set contained in U , there has to exist an Xi such that 
D(f) ⊆ D(Xi). Otherwise, D(Xn) ⊆ D(f) for all n since any two open subsets of 
Spec(V ) are comparable, and so, D(f) = U , which contradicts the non-quasicompactness 
of U (Proposition 7.1(2)). From the cofinality of I it follows that

limAK/(OY (D(f))) = limIK/(OY (D(Xn))).

But the latter is precisely the limit of

· · · � K

VX3

� K

VX2

� K

VX1

. �
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