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1. Introduction

Topological full groups (abbreviated as TFGs) first appeared in the theory of crossed-
product C∗-algebras. A TFG can be defined as the group of automorphisms of a 
crossed product C∗-algebra preserving the maximal Abelian subalgebra modulo its center
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[16, Lemma 5.1 and Theorem 5.2], see also [17, Theorem 1]. The TFGs were proven to be 
complete invariants of the restricted isomorphism class of the crossed-product C∗-algebra 
[17, Theorem 2].

The topological full groups also play a major role in the classification theory of sym-
bolic dynamical systems. It turns out that two minimal dynamical systems are flip 
conjugate (recall that two dynamical systems are called flip conjugate if they are con-
jugate or if one is conjugate to the inverse of the other) if and only if the associated 
TFGs are isomorphic as abstract groups [9,3]. We note that the term “topological” in 
TFG has been historically used to refer to the fact that these groups are associated with 
topological dynamical systems. No group topology is assumed on TFGs.

Recently, the construction of topological full groups and the interplay between their 
algebraic properties and the dynamical properties of underlying symbolic systems were 
used to establish the existence of infinite finitely generated simple amenable groups. It 
turns out that the commutator subgroups of TFGs associated with minimal subshifts 
over finite alphabets have the desired characteristics [11]. The discussion of algebraic 
properties of full groups can be found in [2,9,10,12–14].

The goal of the paper is to find a presentation of topological full groups and relate it 
to properties of the underlying dynamical system. Theorem 1.1 is the main result of the 
paper. It describes the set of defining relations and identifies groups with solvable word 
problem. The result is established in Theorem 4.1, Theorem 4.6, and Theorem 4.7.

Let (Ω, T ) be a minimal subshift over a finite alphabet. Denote by GT the topological 
full group of (Ω, T ) and by G′

T the commutator subgroup of GT (Definition 2.1). Denote 
by Ln(Ω) the set of words of length n appearing in sequences of Ω, n ≥ 1. The language of 
the subshift is defined as L(Ω) =

⋃
n≥1 Ln(Ω). The base of the topology on Ω comprises 

cylinder sets (v, i) = {ω ∈ Ω : ω−i = v0, . . . , ω|v|−i = v|v|−1}, where v ∈ L(Ω), i ∈ Z, and 
|v| is the length of the word v. By a cylinder partition of (v, i), we mean a partition into 
cylinder sets, see Definition 3.2. In the following result, we use symbols x(v,i), (v, i) ∈
L(Ω) × Z, as a base for the free group.

Theorem 1.1. Let (Ω, T ) be a minimal subshift over a finite alphabet. (1) There exists 
n ≥ 3 such that the commutator subgroup of the topological full group G′

T is isomorphic 
to the group ΓΩ generated by

< x(w,k), w ∈ L(Ω), |w| ≥ n, k ∈ Z >,

subject to the following relations: for every w, v ∈ L(Ω), |w|, |v| ≥ n, i, j ∈ Z, and a 
cylinder partition C of (w, i),

(
x(w,i)

)3 = 1 (1)
(
x(w,i) · x(w,i+1)

)2 = 1 (2)

x(w,i+1) = x(w,i+2)x
−1 x−1 x(w,i) (3)
(w,i) (w,i+2)
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x(w,i) =
∏

(s,k)∈C

x(s,k) (4)

and

[x(w,i), x(v,j)] = 1, (5)

whenever the cylinder sets (w, i), (w, i + 1), (w, i + 2), (v, j), (v, j + 1), (v, j + 2) are 
mutually disjoint.

Furthermore, the group ΓΩ is generated by the elements < x(w,1), w ∈ Ln(Ω) >.
(2) The set of relations (1)–(5) is recursive if and only if the language L(Ω) is recur-

sive. If L(Ω) is recursive, then n is effectively computable.
(3) The group G′

T has decidable word problem if and only if L(Ω) is recursive.

In the proof of Theorem 4.1 we show that each minimal subshift (Ω, T ) over a finite 
alphabet can be topologically conjugated to a minimal subshift for which n = 3 (see the 
statement of Theorem 1.1). The presentation of G′

T , in the case n = 3, in terms of the 
finite generating set {x(w,1) : w ∈ L3(Ω)} is given in Theorem 4.6. We note that the 
fact that the commutator subgroup G′

T is finitely-generated was originally established 
by Matui in [12]. He also showed that the commutator subgroup could not be finitely 
presented, see also [10] for an alternative proof.

One way to better understand the relations in Theorem 1.1 is to compare them to 
those defining the alternating groups (Lemma 4.2). The proof of the theorem relies on 
the fact that the commutator subgroup of GT can be written as G′

T = G1 · G2, where 
G1 and G2 are certain subgroups of G′

T isomorphic to increasing unions of products of 
alternating groups. In the proof of Theorem 4.1 we show that combining the relations 
for G1 and G2 we obtain a complete set of relations needed to describe G′

T .
According to Theorem 1.1, to construct a TFG with decidable word problem one needs 

to take a system with recursive language L(Ω). Such systems can be found amongst sub-
stitution, Toeplitz, and Sturmian systems (see definitions in [8,6], and [1], respectively). 
The following result gives a dynamical reformulation of the isomorphism problem. The 
proof can be found in [2], see also [9].

Theorem 1.2. Let (Ω1, T1) and (Ω2, T2) be minimal subshifts. Then G′
T1

and G′
T2

are 
isomorphic as abstract groups if and only if the dynamical systems are flip-conjugate, 
i.e., there exists a homeomorphism f : Ω1 → Ω2 such that T2 = f ◦ T1 ◦ f−1 or T2 =
f ◦ T−1

1 ◦ f−1.
In particular, the decidability of isomorphism problem for TFGs is equivalent to the 

decidability of flip-conjugacy for minimal subshifts.

We note that the flip-conjugacy is decidable, for example, in the class of constant 
length primitive substitutions [5]. Fabien Durand recently announced that they solved 
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the decidability problem for the class of all primitive substitution systems [private com-
munication].

The structure of the paper is the following. In Section 2, we introduce notations, 
main definitions, and state the necessary results from the theory of dynamical systems. 
In Section 3 we describe a particular set of generators for commutator subgroups of 
topological full groups and establish several relations for these generators (Corollary 3.6). 
Section 4 is devoted to the proof of Theorem 1.1.

2. Preliminaries

In this section we introduce main notations and give necessary definitions from the 
theory of topological dynamical systems.

2.1. Subshifts

Fix a finite alphabet A. Let T : AZ → AZ be the left shift on the space of two-sided 
sequences over A, i.e., T (ω)n = ωn+1 for all n ∈ Z for every ω ∈ AZ. Let Ω be a closed 
T -invariant subset of AZ. The pair (Ω, T ) is called a subshift over a finite alphabet. The 
subshift is called minimal if every T -orbit is dense in Ω. Throughout this paper, (Ω, T )
will stand for a minimal subshift over a finite alphabet.

Definition 2.1. Let (Ω, T ) be a minimal subshift. Denote by GT the set of homeomor-
phisms S : Ω → Ω such that S(x) = T fS(x)(x) for every x ∈ X, where fS : Ω → Z is a 
continuous function. We will refer to fS as the orbit cocycle of S. The cocycle identity 
fS1S2(x) = fS1(S2(x)) + fS2(x) shows that the family GT is a group, termed the topo-
logical full group of the system (Ω, T ). It will be abbreviated TFG. When T is a minimal 
subshift over a finite alphabet, the group GT is countable, its commutator subgroup G′

T

is simple and finitely-generated [2] and [12]. All groups appearing in the paper will be 
assumed to be acting on the left on Ω.

Denote by A∗ the set of all non-empty words over the alphabet A. For a subshift 
(Ω, T ), denote by Ln(Ω) the set of words of length n appearing in sequences of Ω. The 
set L(Ω) =

⋃
n≥1 Ln(X) is called the language of the subshift Ω. The length of each 

word u ∈ A∗ will be denoted by |u|.
For any pair of words u, v ∈ L(Ω) such that uw ∈ L(Ω), denote by [u.v] the set of 

sequences ω ∈ Ω such that ω−i = u|u|−i for i = 1, . . . , |u| and ωi = vi for i = 0, . . . , |v| −1. 
We note that the cylinder sets [u.v], u, v ∈ L(Ω), generate the topology of Ω. It will be 
sometimes convenient to use [u|v] for [u.v]. For v ∈ L(Ω) and i ∈ Z, set (v, i) = T i[.v], 
as defined in the introduction.

Standing Assumption. Throughout the paper we will assume that no word of length five 
in L(Ω) has repeated letters, i.e. if w = w0 · · ·w4 ∈ L5(Ω), then wi �= wj whenever i �= j. 
The systems satisfying this assumption will be referred to as satisfying the condition (†).
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This assumption will lead to a simpler description of defining relations in GT , The-
orem 4.1. The following proposition shows that any minimal subshift can be made to 
satisfy the condition (†). Furthermore, the transition to the conjugate system will not 
affect the recursiveness of the language, which will be important in solving word problem 
in full groups, Theorem 4.7.

Definition 2.2. (i) Let S be a finite set. A set R ⊂ S∗ is called recursively enumerable if 
there is an algorithm which on input w ∈ S∗ has output “Yes” iff w ∈ R. For w /∈ R the 
algorithm may or may not stop. Equivalently, there is an algorithm that enumerates the 
members of S.

(ii) A set R ⊂ S∗ is called recursive if both R and S∗ \R are recursively enumerable. 
Equivalently, there is an algorithm which on input w ∈ S∗ has output “Yes” if w ∈ R

and “No” if w /∈ R.

Proposition 2.3. Let (X, T ) be a minimal subshift. There exists a minimal subshift (Y, S)
topologically conjugate to (X, T ) such that every word w ∈ L5(Y ) has no repeated letters. 
Furthermore, L(X) is recursive if and only if L(Y ) is recursive.

Proof. Choose the least n0 ≥ 1 such that

T i[.w] ∩ [.w] = ∅ for i = 1, . . . , 4, w ∈ Ln0(X). (6)

Such a number n0 can be found effectively by inductively testing words in Ln(X) for 
increasing n ≥ 1. The minimality of (X, T ) ensures that such an n0 exists. We will treat 
the words in Ln0(X) as a new alphabet B. Define π : X → BZ as follows

π({xn}) = · · · (x−n0x−n0+1 · · ·x−1).(x0x1 · · ·xn0−1)(x1x2 · · ·xn0) · · · .

Set Y = π(X). Denote by S the left shift on Y . It is straightforward to check that (X, T )
and (Y, S) are topologically conjugate. So (Y, S) is a minimal subshift. Equation (6)
guarantees us that (Y, S) satisfies the desired property.

If L(X) is recursive, taking the π-preimages, we can decide whether w ∈ B∗ lies in 
L(Y ). Conversely, suppose L(Y ) is recursive. Any word w = w0 . . . wn−1 ∈ An, n ≥ n0, 
can be uniquely represented as

(w0w1 · · ·wn0−1)(w1w2 · · ·wn0) · · · (wn−n0wn−n0+1 · · ·wn−1).

Therefore, w ∈ L(X) iff the representation of w lies in L(Y ). If w ∈ An, n < n0, consider 
all words in An0 containing w as a subword. Then w ∈ L(X) iff w is a subword of a word 
from Ln0(X). �
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2.2. Kakutani–Rokhlin partitions

In this section we explain the concept of Kakutani–Rokhlin partitions of minimal 
systems.

Definition 2.4. A family ξ of disjoint clopen sets of the form

ξ = {B, TB, . . . , Tn−1B}

is called a T -tower with base B and height n. A clopen partition of Ω of the form

Ξ = {T iBv : 0 ≤ i ≤ hv − 1, v = 1, . . . , q}

is called a Kakutani–Rokhlin partition. The sets {T iBv} are called atoms of the parti-
tion Ξ.

Fix an arbitrary clopen set B ⊂ Ω. Define a function tB : B → N by setting

tB(ω) = min{k ≥ 1 : T kω ∈ B}.

Using the minimality of T , one can show that the function tB is well-defined, bounded, 
and continuous. Denote by K the set of all integers k ∈ N such that the set Bk = {ω ∈
B : tB(ω) = k} is non-empty. It follows from the continuity of tB that the set K is finite 
and B = �k∈K Bk is a clopen partition. Using the definition of tB, one can check that 
the family

{T iBk : 0 ≤ i ≤ k − 1, k ∈ K}

consists of disjoint sets and that

Ω = �
k∈K

k−1�
i=0

T iBk.

Thus, Ξ is a Kakutani–Rokhlin partition of Ω.

Definition 2.5. The union of the sets B(Ξ) = �k∈K Bk is called the base of the partition 
Ξ and the union of the top levels H(Ξ) = �k∈K T k−1Bk is called the top or roof of the 
partition.

In the case of symbolic systems, Kakutani–Rokhlin partitions can be given purely 
combinatorial interpretation through the concept of return words. The technique of re-
turn words was developed by F. Durand and his coauthors [8,7]. The return words play 
the same role as the sets Bk in the definition of the first-return map above.
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Fig. 1. Return word to u.v.

Definition 2.6. Let u, v ∈ L(Ω) be such that uv ∈ L(Ω). A word w ∈ L(Ω) is called a 
return word to u.v if it satisfies the following properties:

(i) uwv ∈ L(Ω);
(ii) v is a prefix of wv and u is a suffix of uw;
(iii) the word uwv contains only two occurrences of uv.

In other words, we find two consecutive occurrences of the pair u.v in a sequence 
from Ω, then the word spanning the first occurrence of v to the second occurrence of 
u is called a return word. Fig. 1 illustrates this concept. Note that, in general, the two 
occurrences of uv can overlap.

The minimality of the system (Ω, T ) implies that every word appears in every sequence 
of Ω with bounded gaps, see, for example, [7]. Thus, the set of return words Ru.v to u.v
is non-empty and finite.

Fix an arbitrary sequence ω ∈ Ω. Denote by Rn the set of return words to 
ω[−n, −1].ω[0, n]. Set u = ω[−n, −1] and v = ω[0, n]. By definition of return words, 
the cylinder sets [u.rv], r ∈ Rn, are contained in [u.v]. Furthermore, {[u.rv] : r ∈ Rn}
form a clopen partition of [u.v], which, in particular, implies that Rn is finite for all n. 
Notice that if y ∈ [u.rv], r ∈ Rn, then the smallest k > 0 (termed the first return time) 
such that of T ky ∈ [u.v] is |r|, by the property (iii) of return words. This implies that

Ξn = {T i[u.rv] : r ∈ Rn, i = 0, . . . , |r| − 1}

is a clopen Kakutani–Rokhlin partition of Ω with base [u.v].
We note that for every r ∈ Rn+1 there is a unique decomposition r = r1 · · · rk with 

ri ∈ Rn, see the proof in [7, Proposition 2.6] and [8, Corollary 18]. This implies that the 
partition Ξn+1 refines Ξn and that the family {Ξn}n≥1 generates the topology of Ω. Since 
[un.vn] is the base () of the partition Ξn, denoted by B(Ξn), we get that 

⋂
n≥1 B(Ξn) =

{ω}. We summarize the properties of the KR partitions {Ξn} in the following result.

Proposition 2.7. Let (Ω, T ) be a minimal subshift and ω ∈ Ω be an arbitrary point. Let 
Rn be the set of return words to ω[−n, −1].ω[0, n]. Then for every n ≥ 1 the family 
Ξn = {T i[ω[−n, −1].rω[0, n]] : r ∈ Rn, i = 0, . . . , |r| − 1} is a clopen Kakutani–Rokhlin 
partition of Ω. Furthermore,

1. the partitions {Ξn}n≥1 generate the topology of Ω;
2. the partition Ξn+1 refines Ξn for every n ≥ 1;
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3.
⋂

n≥1 B(Ξn) = {ω} and B(Ξn+1) ⊂ B(Ξn) for every n ≥ 1;
4. the height of the shortest tower in Ξn goes to infinity as n → ∞;
5. sup−n≤i≤n diam(T i(B(Ξn))) → 0 as n → ∞.

2.3. Permutations

In this section we define a special kind of elements of GT termed permutations. 
Simplest examples of permutations arise from the canonical embeddings of symmet-
ric groups into GT defined as follows. Consider a clopen set U such that the sets 
{U, TU, . . . , Tn−1U} are mutually disjoint. Consider elements si ∈ GT such that s(x) =
T (x) for x ∈ T iU , s(x) = T−1(x) for x ∈ T i+1U , and s(x) = x elsewhere. Then the 
elements < s0, . . . , sn−2 > generate the symmetric group Sym(n).

The KR partitions provide a natural framework for embedding direct products of 
copies of symmetric groups into the full group. Using sequences of partitions as in Propo-
sition 2.7, we will be able to embed inductive limits of direct symmetric groups.

Let {Ξn}n≥1 be a sequence of KR partitions as in Proposition 2.7. Assume that for 
each Ξn the minimum height of its towers is at least three. Set un = ω[−n, −1] and 
vn = ω[0, n]. Then for every n ≥ 1, we have that

Ξn = {T i[un.rvn] : r ∈ Rn, i = 0, . . . , |r| − 1}.

Definition 2.8. Fix an integer n ≥ 1. We say that a homeomorphism P ∈ GT is an 
permutation associated with the KR partition Ξn if (1) its orbit cocycle fP is compatible 
(constant on atoms) with the partition Ξn and (2) for any point x ∈ T i[un.rvn] (0 ≤ i ≤
|r| − 1, r ∈ Rn) we have that 0 ≤ fP (x) + i|r| − 1. The latter condition means that P
permutes atoms only within each tower without moving points over the top or the base 
of the tower. We will call P just a permutation when the partition Ξn is clear from the 
context.

Note that each permutation P can be uniquely factored into a product of permutations 
P1, . . . , P|Rn| such that Pr acts only within the tower

ξ(n)
r = {T i[un.rvn] : i = 0, . . . , |r| − 1}, r ∈ Rn.

Fig. 2 illustrates a KR-partition consisting of three T -towers. The leftmost ellipses 
represent the bases of the T -towers. The arrows give the directions in which points are 
headed under the action of T . Note that the points from the top of the towers (the 
rightmost ellipses) are sent back to one of the bases (it is not necessarily the base it 
originally came from).

Denote by G(n)
T,ω the group of permutations built upon Ξn. It has a structure of the 

direct product of symmetric groups 
∏

r∈Rn
Sym(|r|). For example, for the KR-partition 

shown in the figure the group G(n)
T,ω is isomorphic to Sym(5) × Sym(3) × Sym(4).
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Fig. 2. A KR-partition with three T -towers.

Since Ξn+1 refines Ξn, we get that G(n)
T,ω ⊂ G

(n+1)
T,ω . Denote by GT,ω =

⋃
n≥1 G

(n)
T,ω the 

group of all permutations associated with the sequence of KR partitions {Ξn}n≥1. For 
r ∈ Rn and 0 ≤ i ≤ |r| −1, denote by (un.rvn, i) the set T i[un.rvn]. Denote by σ(un.rvn,i)
the homeomorphism such that

σ(un.rvn,i)(x) = Tx for x ∈ (un.rvn, i) ∪ (un.rvn, i + 1)

and

σ(un.rvn,i)(x) = T−2x for x ∈ (un.rvn, i + 2).

See Section 3 for a detailed discussion of properties of σ(un.rvn,i).

Proposition 2.9. Let {Ξn}n≥1 be a sequence of Kakutani–Rokhlin partitions corresponding 
to ω ∈ Ω as in Proposition 2.7.

(i) Then the group GT,ω coincides with the group of elements in GT preserving the 
positive half-orbit of ω under T .

(ii) The commutator subgroup G′
T,ω is simple.

(iii) The group G′
T,ω is the increasing union of subgroups 

(
G

(n)
T,ω

)′
, n ≥ 1.

(iv) The commutator subgroup 
(
G

(n)
T,ω

)′
is generated by {σ(un.rvn,i)}, r ∈ Rn, i =

0, . . . , |r| − 3, and isomorphic to the group 
∏

r∈Rn
Alt(|r|).

(v) For each n ≥ 1, the embedding 
(
G

(n)
T,ω

)′
⊂

(
G

(n+1)
T,ω

)′
is given by the rule: for r ∈ Rn

and 0 ≤ i ≤ |r| − 3,

σ(un.rvn,i) =
∏

r′∈Rn+1

∏
0≤j≤|r′|−3

(un+1.r
′vn+1,j)⊂(un.rvn,i)

σ(un+1.r′vn+1,j).

Proof. The first statement was established in [9], see also the discussion before Propo-
sition 5.2 in [10]. The proof of the second statement is due to Matui [12, Lemma 3.4]. 
The remaining conclusions of the proposition follow directly from the construction of the 
KR-partitions {Ξn}. �
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The following result shows that permutations from GT,ω almost completely deter-
mine the structure of TFGs. The proof can be found in [10, Theorem 5.4], see also [12, 
Lemma 4.1].

Theorem 2.10. Let (Ω, T ) be a Cantor minimal system. Let ω, ω′ ∈ ω be from distinct 
T -orbits. Then G′

T = G′
T,ω ·G′

T,ω′ .

Corollary 2.11. (1) Every element of the commutator subgroup G′
T is the product of at 

most two commutators in GT .
(2) Every element of G′

T is the product of at most four involutions.

Proof. (1) It immediately follows from the previous theorem and the fact that any even 
permutation in Sym(n) is a commutator [15].

(2) Notice that every permutation in Sym(n) is a product of two involutions. The 
result follows from Theorem 2.10. �
3. Generators

In [12] showed that the commutator subgroup G′
T is finitely generated if and only 

if the system (Ω, T ) is topologically conjugate to a subshift. In the proof he explicitly 
described a set of generators. In this section we reestablish Matui’s result and spell out 
some of the relations satisfied by the generators.

Consider a clopen set U such that {U, TU, T 2U} are mutually disjoint. Define σU ∈ GT

as follows:

σU (ω) =

⎧⎪⎨
⎪⎩

Tω if ω ∈ U ∪ TU

T−2ω if ω ∈ T 2U

ω if otherwise.

Note that σU = [ηU , T ] ∈ G′
T , where ηU (x) = Tx if x ∈ U , ηU (x) = T−1U if 

x ∈ TU , and ηU (x) = x elsewhere. Elements σU can be viewed as cycles of length three 
(i, i + 1, i + 2) with set U corresponding to i.

By definition, σ∅ is the group identity. In particular, w /∈ L(Ω) if and only if σ[.w] = 1, 
the identity map. Recall that for w ∈ L(Ω) and i ∈ Z, (w, i) = T i[.w] and, hence,

σ(w,i) = σT i[.w].

The following lemma is due to Matui [12, Lemma 5.3]. Matui used it to show that 
every element of the form σU , where U is a clopen set, can be generated by elements 
σ[a.bc], abc ∈ L3(Ω). He then used the simplicity of the group G′

T to show that the group 
G′

T is generated by σU , when U runs over all clopen sets, and, as a result, that G′
T is 

finitely generated, see Theorem 3.8.



JID:YJABR AID:15961 /FLA [m1L; v1.194; Prn:12/12/2016; 16:32] P.11 (1-23)
R. Grigorchuk, K. Medynets / Journal of Algebra ••• (••••) •••–••• 11
Fig. 3. Relative positions of sets U and V .

It will be convenient to use the following modified version of the commutator opera-
tion

r ∗ s := sr−1s−1r for r, s ∈ GT . (7)

Observe that the operation “∗” is not associative. Recall that we assume that all minimal 
systems satisfy the condition (†), that is, that no word in L5(Ω) has repeated letters.

Lemma 3.1. Let U , V be clopen subsets of Ω such that U , T (U), T 2(U) ∪ V , T (V ), and 
T 2(V ) are mutually disjoint. Then σU ∗ σV = σT (U)∩T−1(V ).

Fig. 3 illustrates the assumptions of Lemma 3.1. The shaded region represents the 
orbit of σT (U)∩T−1(V ).

Definition 3.2. (1) Let (w, i) be a cylinder set. By a cylinder partition of (w, i) we mean 
a partition of it into cylinder sets of the form (v, j).

(2) We will say that two clopen sets U and V are 3-disjoint if (U ∪ TU ∪ T 2U) ∩
(V ∪ TV ∪ T 2V ) = ∅. Equivalently, U and V are 3-disjoint if σU and σV have disjoint 
supports.

Remark 3.3. (1) Let U ⊂ Ω be a clopen set such that {U, TU, T 2U} are pairwise disjoint. 
Suppose that C and D are disjoint subsets of U . Then C and D are 3-disjoint.

(2) Let u, v ∈ L(Ω) and Ξ be the Kakutani–Rokhlin partition associated to the set of 
return words Ru.v, see Section 2.2 for details. By construction, Ξ consists of the disjoint 
sets

{T i[u.rv] : r ∈ Ru.v, 0 ≤ i ≤ |r| − 1}.

Suppose that the height of each tower in Ξ is at least three. Then for distinct r, r′ ∈ Rn

and arbitrary 0 ≤ i ≤ |r| − 3 and 0 ≤ i′ ≤ |r′| − 3, the sets

i+2⋃
j=i

T i[u.rv] and
i′+2⋃
j=i′

T i′ [u.r′v]

are disjoint. Hence, T i[u.rv] and T i′ [u.r′v] are 3-disjoint.
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Proposition 3.4. Suppose that the language L(Ω) of the subshift (Ω, T ) is recursive. Let 
(w, i) and (v, j) be cylinder sets. Then

(1) The inclusion (v, j) ⊂ (w, i) is algorithmically verifiable.
(2) The 3-disjointness of (w, i) and (v, j) is algorithmically verifiable.
(3) The set of cylinder partitions of (w, i) is a recursive subset of FS(A∗ × Z), where 

FS(A∗ × Z) is the set of all finite subsets of A∗ × Z.

Proof. (1) Note that (v, j) ⊂ (w, i) if and only if (v, 0) ⊂ (w, i − j). To verify the latter 
inclusion, we use the recursiveness of the language L(Ω) to iterate over words in L(Ω) of 
the form lr, l, r ∈ L(Ω) such that |l| = |r| = max{|w|, |v|} + |i − j| and v is a prefix of r. 
If every such word lr contains w as a subword at the position |l| − (i − j), then (v, 0) is 
a subset of (w, i − j). For otherwise, it is not.

(2) The 3-disjointness of (w, i) and (v, j) is equivalent to the 3-disjointness of (w, i −j)
and (v, 0). The cylinder sets (w, i − j) and (v, 0) are not 3-disjoint if and only if there is 
a word lr ∈ L(Ω) such that |l| = |r| = max{|v|, |w|} + |j − i| + 3; w appears in lr at the 
position |l| − (i − j) and v occurs at the position |l| + k for some −3 ≤ k ≤ 2. Iterate 
over all such words lr to verify these conditions.

(3) Note that partitions of (w, i) are obtained from partitions of (w, 0) by shifting them 
by i. Thus we need to build an algorithm that decides whether a set S ∈ FS(A∗ × Z)
forms a partition of (w, 0). First, we use the recursiveness of the language to verify that 
v ∈ L(Ω), for (v, j) ∈ S. Then we use the algorithm from (1) above to check whether 
every element of S is a subset of (w, 0).

Finally, we need to check that the elements of S are disjoint and cover all of (w, 0). 
Set M = max(v,j)∈S{|v| + |j| + |w|}. Using (1) above and recursiveness of the language, 
generate all words E in Ω of length 2M with (v, M) ⊂ (w, 0) for v ∈ E . Then S is 
a partition of (w, j) iff for every v ∈ E there is exactly one element (r, k) ∈ S with 
(v, M) ⊂ (r, k). Thus, the family S is a cylinder partition of (w, 0) iff we get “yes” at 
every step of the algorithm. �

The following result shows how one can use elements σ[a.bc], abc ∈ L3(Ω), to generate 
arbitrary elements of the form σU , where U is a clopen set.

Proposition 3.5. (1) For any cylinder set (v, i), the sets (v, i), (v, i + 1), (v, i + 2) are 
pairwise disjoint. In particular, the element σ(v,i) is well-defined.

(2) Let U be a clopen set such that the sets {U, TU, T 2U} are pairwise disjoint. Then 
for any clopen partition C of U , we have that

σU =
∏
D∈C

σD

and the elements in this product commute. In particular, for a, b, c ∈ A, we have that
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σ[a.] =
∏

b,c∈A

σ[a.bc] and σ[.bc] =
∏
a∈A

σ[a.bc].

(3) For w ∈ An, n ≥ 4, we have that

σ[w0|w1···wn−1] = σ[.w0w1] ∗ (σ[.w1w2] ∗ · · · ∗ (σ[.wn−4wn−3]) ∗ σ[wn−3|wn−2wn−1 ]) · · · ). (8)

(4) For w ∈ An, n ≥ 4, and 2 ≤ k ≤ n − 1, we have that

σ[w0···wk−1|wk···wn−1] = (· · · ((σ[w0|w1···wn−1] ∗ σ[w2.]) ∗ σ[w3.]) ∗ · · · ∗ σ[wk.]). (9)

Proof. (1) The assumption that no word of length five has repeated letters implies that 
for every a ∈ A, the cylinder sets {(a, 0), (a, 1), (a, 2)} are pairwise disjoint. For other-
wise, the language L(Ω) would contain a word of the form a�a or a��a, where � is 
a placeholder for an arbitrary letter of A, which is a contradiction. Thus, σ(a,i) is well-
defined. Noticing that every cylinder set is a subset of (a, i) for some a ∈ A and i ∈ Z, 
we get the proof of the first statement.

(2) The second statement immediately follows from the definition of σU and the 
statement (1) above.

(3) Consider a word abcd ∈ L4(Ω). We claim that the sets U = [b|cd] and V = [.ab]
satisfy the assumptions of Lemma 3.1. Indeed, suppose that (U ∪ TU ∪ T 2U) ∩ V �= ∅. 
Then at least one of the sets [b|cd] ∩ [.ab], [bc|d] ∩ [.ab], and [bcd.] ∩ [.ab] is non-empty. Now 
if (V ∪TV ∪T 2V ) ∩U �= ∅, then one of the sets [.ab] ∩ [b|cd], [.�ab] ∩ [b|cd], [.��ab] ∩ [b|cd]
is non-empty. In either case, there is a word of length five with at least two occurrences 
of the letter b, which contradicts the assumptions.

Thus, by Lemma 3.1 for any word abcd ∈ L4(Ω), we have that

σ[.ab] ∗ σ[b|cd] = σ[a|bcd].

Equation (8) for w ∈ L(Ω) is established by the induction on the length of w.
To complete the proof, we need to show that both sides of Equation (8) are trivial 

whenever w /∈ L(Ω). Fix a word w /∈ L(Ω). Write it out as w = w0 · · ·wn−1, wi ∈
A, i = 0, . . . , n − 1. Choose the largest k ≤ n − 1 so that wk · · ·wn−1 ∈ L(Ω). If 
wn−3wn−2wn−1 /∈ L(Ω), then σ[wn−3|wn−2wn−1 ]) = 1 and both sides of Equation (8)
become trivial. Thus, we can assume that k ≤ n − 3.

Set U = [.wk−1wk] and V = [wk|wk+1 · · ·wn−1]. It follows from the assumption that no 
word of length five in L(Ω) has repeated letters that the sets U and V satisfy Lemma 3.1. 
Applying Equation (8) to σ[wk|wk+1···wn−1] we get that

σ[wk−1|wk···wn−1] = σ[.wk−1wk] ∗ σ[wk|wk+1···wn−1]

= σ[.wk−1wk] ∗ (· · · ∗ (σ[.wn−4wn−3]) ∗ σ[wn−3|wn−2wn−1 ]) · · ·).

Since σ[wk−1|wk···wn−1] = 1, Equation (8) holds trivially for σ[w0|w1···wn−1].
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(4) We note that it suffices to verify Equation (9) only for w ∈ L(Ω). Set U =
[w0|w1 · · ·wn−1] and V = [.w2]. The sets U and V satisfy the assumptions of Lemma 3.1. 
Hence

σ[w0w1|w2···wn−1] = σ[w0|w1···wn−1] ∗ σ[.w2].

The proof follows by induction. �
The following result summarizes the properties of σU ’s and lists some of the relations 

they satisfy. It will be shown in Theorem 4.1 that this list of relations is, in fact, complete.

Corollary 3.6. Let (Ω, T ) be a minimal subshift satisfying the condition (†). Then the 
elements {σ(w,i)} satisfy the following relations: for every w, v ∈ L(Ω), i, j ∈ Z, and a 
cylinder partition C of (w, i),

(
σ(w,i)

)3 = 1
(
σ(w,i) · σ(w,i+1)

)2 = 1

σ(w,i+1) = σ(w,i) ∗ σ(w,i+2)

σ(w,i) =
∏

(s,k)∈C

σ(s,k)

and

[σ(w,i), σ(v,j)] = 1, whenever (w, i), (v, j) are 3-disjoint.

The following result follows from Proposition 3.5 and allows us to relate the word 
problem in full groups to the decidability of the language L(Ω).

Corollary 3.7. Suppose that (Ω, T ) is a minimal subshift over a finite alphabet A satisfying 
the condition (†). Let w = w0 · · ·wn−1 ∈ An, n ≥ 4. Then w ∈ L(Ω) iff

σ[.w0w1] ∗ (σ[.w1w2] ∗ · · · ∗ (σ[.wn−4wn−3] ∗ σ[wn−3.wn−2wn−1 ]) · · · ) = 1 in G′
T .

We now present an alternate proof of Theorem 5.4 in [12] that does not rely on the 
simplicity of the commutator subgroup G′

T .

Theorem 3.8 ([12]). Suppose that (Ω, T ) is a minimal subshift satisfying the condition (†). 
Then the commutator subgroup G′

T is generated by σ[a.bc], abc ∈ L3(Ω).

Proof. Consider an arbitrary element Q ∈ G′
T . Fix two points w, w′ ∈ Ω taken from 

distinct T -orbits. It follows from [10, Theorem 5.4], see also Theorem 2.10, that there 
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exist P ∈ G′
T,ω and P ′ ∈ G′

T,ω′ such that Q = PP ′. To establish the result, it suffices to 
prove that both P and P ′ are generated by σ[a.bc], abc ∈ L3(Ω).

By definition of P , there exists a Kakutani–Rokhlin partition Ξ = {ξv} such that 
P =

∏
v Pv, where Pv is an even permutation acting within the T -tower ξv = {Uv,

TUv, · · · , Thv−1Uv}. Here hv is the height of ξv and Uv is its base. Proposition 3.5
implies that the elements σ[a.bc] can be used to generate elements of the form σT iUv

. 
Since P is even, it is generated by 3-cycles of the form σT iUv

. This shows that P is 
generated by σ[a.bc], abc ∈ L3(Ω). The proof for P ′ is analogous. �
Corollary 3.9. Let (Ω, T ) be an arbitrary minimal subshift. The commutator subgroup G′

T

is generated by σ(w,1), w ∈ Ln(Ω), for some n ≥ 3. If the language L(Ω) is recursive, 
then n is effectively computable.

Proof. Using Proposition 2.3, we can find a minimal subshift (Ω′, T ′) satisfying the condi-
tion (†) that is conjugate to (Ω, T ). Let π and n0 > 0 be as in the proof of Proposition 2.3. 
The homeomorphism π gives rise to an isomorphism of the commutator subgroups G′

T

and G′
T ′ . Note that by definition of π,

π((w, i)) = (ρ(w), i) for every w ∈ Ln0+2(Ω),

where ρ(w) = (w0 · · ·wn0−1)(w1 · · ·wn0)(w1 · · ·wn0+1) for w = w0w1 · · ·wn0+1 ∈
Ln0+2(Ω). Therefore,

π ◦ σ(w,1) ◦ π−1 = σ(ρ(w),1) for every w ∈ Ln0+2(Ω).

Applying Theorem 3.8, we conclude that the elements σ(w,1), w ∈ Ln0+2(Ω), generate 
the group G′

T . �
4. Defining relations

In this section we describe the set of defining relations for the commutator subgroups 
of topological full groups. In the following theorem we use the symbols x(w,i) indexed by 
cylinder sets (w, i) as a basis for the free group.

Theorem 4.1. Let (Ω, T ) be a minimal subshift over a finite alphabet. (1) There exists 
n ≥ 3 such that the commutator subgroup G′

T is isomorphic to the group ΓΩ generated 
by

< x(w,k), w ∈ L(Ω), |w| ≥ n, k ∈ Z >,

subject to the following relations: for every w, v ∈ L(Ω), |w|, |v| ≥ n, i, j ∈ Z, and a 
cylinder partition C of (w, i),



JID:YJABR AID:15961 /FLA [m1L; v1.194; Prn:12/12/2016; 16:32] P.16 (1-23)
16 R. Grigorchuk, K. Medynets / Journal of Algebra ••• (••••) •••–•••
(
x(w,i)

)3 = 1 (10)
(
x(w,i) · x(w,i+1)

)2 = 1 (11)

x(w,i+1) = x(w,i) ∗ x(w,i+2) (12)

x(w,i) =
∏

(s,k)∈C

x(s,k) (13)

and

[x(w,i), x(v,j)] = 1, whenever (w, i), (v, j) are 3-disjoint. (14)

(2) The isomorphism ψ : ΓΩ → G′
T is implemented by the rule ψ(x(w,k)) = σ(w,k) for 

all w ∈ L(Ω), k ∈ Z, |w| ≥ n. In particular, the group ΓΩ is generated by the elements 
< x(w,1), w ∈ Ln(Ω) >.

(3) If the system (Ω, T ) satisfies the condition (†), then n = 3.

Proof. Let n be as in the proof of Corollary 3.9. Then (Ω, T ) is isomorphic to an n-fold 
minimal subshift satisfying (†). Thus, without loss of generality, we can assume that 
the system (Ω, T ) satisfies the condition (†) and the group G′

T is generated by σ(abc,1), 
abc ∈ L3(Ω). Hence, it suffices to establish the theorem for n = 3.

Denote by N the normal closure of the relations (10)–(14) in the free group F (S) with 
basis S = < x(w,k), w ∈ L(Ω), |w| ≥ 3, k ∈ Z >. Denote the quotient group F (S)/N
by Γ. To simplify the notation we will be skipping the bar in x̄(w,k) ∈ Γ.

Consider the map ψ : Γ → G′
T such that ψ(x(w,k)) = σ(w,k) for every (w, k) ∈ L(Ω) ×Z. 

Extend ψ to any element of Γ by juxtaposition. The fact that the generators {σ(w,k)}
of G′

T satisfy the relations (10)–(14) (see Corollary 3.6) implies that ψ is a well-defined 
homomorphism of the groups. Note that this, in particular, means that the group Γ is 
non-trivial.

Fix a sequence ω ∈ Ω. For each n set un = ω[−n, −1] and vn = ω[0, n]. Denote by 
Rn the set of return words to un.vn. Denote by Γω the subgroup of Γ generated by the 
elements

〈
x(un.rvn,i) : r ∈ Rn, 0 ≤ i ≤ |r| − 3, n ≥ 1

〉
, (15)

where (u.rv, i) = T i[u.rv], cf. Section 2.3. Note that ψ(Γω) = G′
T,ω (Proposition 2.9). 

Hence Γω is non-trivial. In the following three lemmas we will prove that Γω and G′
T,ω

are isomorphic.

Lemma 4.2 ([18]). For n ≥ 5, the group Alt(n) is isomorphic to the group generated by 
y0,..,yn−3 satisfying the relations

y3
i = 1, 0 = 1, . . . , n− 3,
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(yi · yi+1)2 = 1, i = 0, . . . , n− 4,

[yi, yj ] = 1, i, j = 0, . . . , n− 3, |i− j| > 2,

yi+1 = yi ∗ yi+2, i = 0, . . . , n− 5.

The isomorphism is given by the mapping yi �→ (i, i + 1, i + 2), i = 0, . . . , n − 3.

Lemma 4.3. The group G′
T,ω is completely determined by the generators

〈
σ(un.rvn,i) : r ∈ Rn, 0 ≤ i ≤ |r| − 3, n ≥ 1

〉

and the relations: for each n ≥ 1 and r ∈ Rn,

(σ(un.rvn,i))
3 = 1, 0 = 1, . . . , n− 3, (16)

(σ(un.rvn,i) · σ(un.rvn,i+1))2 = 1, i = 0, . . . , |r| − 4, (17)

[σ(un.rvn,i), σ(un.rvn,j)] = 1, i, j = 0, . . . , |r| − 3, |i− j| > 2, (18)

σ(un.rvn,i+1) = σ(un.rvn,i) ∗ σ(un.rvn,i+2), i = 0, . . . , |r| − 5, (19)

for each n ≥ 1 and distinct r, r′ ∈ Rn,

[σ(un.rvn,i), σ(un.r′vn,j)] = 1, 0 ≤ i ≤ |r| − 3, 0 ≤ j ≤ |r′| − 3, (20)

and for each n ≥ 1, r ∈ Rn, and 0 ≤ i ≤ |r| − 3,

σ(un.rvn,i) =
∏

r′∈Rn+1

∏
0≤j≤|r′|−3

(un+1.r
′vn+1,j)⊂(un.rvn,i)

σ(un+1.r′vn+1,j). (21)

Proof. Denote by Q the group with presentation <
⋃

n Sn, R >, where Sn =
〈
σ(un.rvn,i) :

r ∈ Rn, 0 ≤ i ≤ |r| − 3
〉

and R is the set of relations (16)–(21). Note that the group 
(GT,ω)′ satisfies the relations (16)–(21) (Proposition 2.9 and Corollary 3.6). Hence, 
Q maps onto GT,ω and Q is non-trivial. Denote by Qn the subgroup of Q generated 
by Sn. Note that 

⋃
Qn = Q.

By Proposition 2.9, the group G′
T,ω is the increasing union of finite subgroups (G(n)

T,ω)′
isomorphic to the direct product of alternating groups {Alt(|r|)}, r ∈ Rn. Each subgroup 
(G(n)

T,ω)′ is generated by {σ(un.rvn,i)}, r ∈ Rn, i = 0, . . . , |r| − 3 (Proposition 2.9).
Note that for each r ∈ Rn the element σ(un.rvn,i) corresponds to the permutation 

(i, i + 1, i + 2) acting within the tower associated with the return word r. Thus, in view 
of Lemma 4.2 the relations (16)–(19) give a presentation for the copy of Alt(|r|) in 
(G(n)

T,ω)′.
For distinct r, r′ ∈ Rn (distinct T -towers) and 0 ≤ i ≤ |r| − 3, 0 ≤ i′ ≤ |r′| − 3, 

the clopen sets (un.rvn, i) and (un.r
′vn, i′) are 3-disjoint (Remark 3.3). This shows that 

the relation (20) holds in (G(n)
T,ω)′. Observe that this relation is responsible for the direct 
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product structure in (G(n)
T,ω)′. Thus, we conclude that (G(n)

T,ω)′ is completely determined 
by the generators

〈
σ(un.rvn,i) : r ∈ Rn, 0 ≤ i ≤ |r| − 3

〉

and the relations (16)–(20). It follows that there exists a natural epimorphism ψn :
(G(n)

T,ω)′ → Qn.
The relation (21) allows us to express the generators of (G(n)

T,ω)′ through the generators 
of (G(n+1)

T,ω )′. Note that

ψn+1|(G(n)
T,ω)′ = ψn.

Hence the sequence of homomorphisms {ψn} naturally extends to an epimorphism ψ :
G′

T,ω → Q. Since G′
T,ω is simple (Proposition 2.9), we conclude that ψ must be a group 

isomorphism. �
Lemma 4.4. The group G′

T,ω is isomorphic to the group Γω. The isomorphism is imple-
mented by the map φω sending σ(un.rvn,i) to x(un.rvn,i). In particular, if σ(w,i) ∈ G′

T,ω, 
then φω(σ(w,i)) = x(w,i).

Proof. Note that the relations (16), (17), (19) are analogous to the relations (10), (11), 
and (12). The cylinder sets appearing in the relations (18) and (20) are 3-disjoint (Re-
mark 3.3). Hence, these relations are consequences of the relation (14). The relation (21)
follows from (13). Thus, the relations defining the group G′

T,ω (see Lemma 4.3) are a 
subset of the relations in the group Γω. It follows that the mapping φω : G′

T,ω → Γω

given by φω(σ(un.rvn,i)) = x(un.rvn,i) gives rise to a group homomorphism.
Since Γω �= {1} and the group G′

T,ω is simple (Proposition 2.9), we obtain that φω is 
a group isomorphism. This completes the proof of the lemma. �

Fix ω, ω′ ∈ Ω lying in distinct T -orbits. By construction of φω (Lemma 4.4), if r ∈
G′

T,ω ∩G′
T,ω′ , then φω(r) = φω′(r).

Since G′
T = GT,ω ·G′

T,ω′ (Theorem 2.10), we can extend the map φω from Lemma 4.4
to φ : G′

T → Γ as follows. For each g ∈ G′
T , find elements gω ∈ G′

T,ω and gω′ ∈ G′
T,ω′

such that g = gωgω′ . Set φ(g) = φω(gω)φω′(gω′). The definition is independent of the 
choice of gω and gω′ . Indeed, if g = hωhω′ is another factorization with hω ∈ G′

T,ω and 
hω′ ∈ G′

T,ω′ , then we can find r ∈ G′
T,ω ∩ G′

T,ω′ such that hω = gωr and hω′ = r−1gω′ . 
Since the map φ restricted to Gω (Gω′) equals the homomorphism φω (φω′), we obtain 
that

φ(g) = φω(hω)φω′(hω′) = φω(gωr)φω′(r−1gω′) = φω(gω)φω(gω′).

Lemma 4.5. (1) The mapping φ : G′
T → Γ is an epimorphism.

(2) φ(σ(w,k)) = x(w,k) for every w ∈ L(Ω) and k ∈ Z, i.e., φ = ψ−1.
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Proof. Let Q =
∏k

m=1 σ(wm,dm), where (wm, dm) ∈ L(Ω) × Z, m = 1, . . . , k. To prove 
that φ is an onto homomorphism, it suffices to show that φ(Q) =

∏k
m=1 x(wm,dm).

Fix ω, ω′ ∈ Ω lying in distinct T -orbits. The idea of the proof is the following. We 
will explicitly show how to rewrite Q in the form Q = QωQω′ , where Qω ∈ G′

T,ω and 
Qω′ ∈ G′

T,ω′ , whereby getting that φ(Q) = φ(Qω)φ(Qω′). The rewriting process will only 
rely on the relations presented in Corollary 3.6, i.e., the relations that have their direct 
counterparts in the group Γ. This will imply that repeating the same rewriting process 
for x =

∏k
i=1 x(wi,di) we will obtain that x = φ(Qω)φ(Qω′).

Using Proposition 2.7 choose n so big that for u = ω[−n, −1] and v = ω[0, n] (i) the 
sets (u.v, i) := T i[u.v], −3k ≤ i ≤ 3k + 2, are disjoint; (ii) the Kakutani–Rokhlin 
partition Ξ associated with the family of return words Ru.v refines the cylinder sets 
(wm, dm), m = 1, . . . , k; (iii) for each m = 1, . . . , k and −3k ≤ i ≤ 3k, the cylinder set 
(u.v, i) is either contained in (wm, dm) or disjoint from it. Since ω and ω′ lie in distinct 
T -orbits, we can further ensure that n is chosen so big that ω′ /∈ B :=

⋃3k+2
i=−3k T

i[u.v]. 
Note that the union is disjoint.

Since the partition Ξn refines the cylinder set (wm, dm), m = 1, . . . , k, the element 
σ(wm,dm) can be factored out as

σ(wm,dm) =
∏

r∈Ru.v

∏
0≤i≤|r|−1

(u.rv,i)⊂(wm,dm)

σ(u.rv,i). (22)

Note that the cylinder sets (u.rv, i) appearing in Equation (22) are 3-disjoint as dis-
joint subsets of (wm, dm) (Remark 3.3). Thus, the elements σ(u.rv,i) in (22) commute.

For each m = 1, . . . , k, set

Pm =
∏

r∈Ru.v

∏
3m≤i≤|r|−1−3m
(u.rv,i)⊂(wm,dm)

σ(u.rv,i) (23)

and

Qm =
∏

r∈Ru.v

∏
0≤i<3m

|r|−1−3m<i≤|r|−1
(u.rv,i)⊂(wm,dm)

σ(u.rv,i). (24)

It follows that

σ(wm,dm) = PmQm. (25)

Observe that Qm and Pl, l > m, have disjoint supports, and, thus, they commute. It 
follows that

Q = P1Q1 · · ·PkQk = (P1 · · ·Pk)(Q1 · · ·Qk). (26)

By Proposition 2.9, we have that Pm ∈ G′
T,ω, m = 1, . . . , k.
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Now we will show that Qm ∈ G′
T,ω′ for each m = 1, . . . , k. Since for each return word 

r ∈ Ru.v, v is a prefix of rv and u is a suffix of ur, we obtain that

σ(u.v,i) =
∏

r∈Ru.v

σ(u.rv,i).

Therefore, for each m = 1, . . . , k,

Qm =
∏

−3m≤i<3m
(u.v,i)⊂(wm,dm)

σ(u.v,i).

Since each element σ(u.v,i), i = −3k, . . . , 3k, is supported by B, we conclude that σ(u.v,i)
preserves the forward orbit of ω′ and, in view of Proposition 2.9, σ(u.v,i) ∈ G′

T,ω′ . There-
fore, Qm ∈ G′

T,ω′ .
Consider x(wm,dm), m = 1, . . . , k. Define elements pm, qm ∈ Γ as in Equations (23)

and (24), but using x(u.rv,i) for σ(u.rv,i). Note that Equation (25) relied exclusively on 
relations from Corollary 3.6. Hence, we can repeat the same argument to check that

x(wm,dm) = pmqm.

Since the mapping φ restricted to G′
T,ω (G′

T,ω′) is an isomorphism, we get that pm =
φ(Pm) and qm = φ(Qm). It follows that

x(wm,dm) = pmqm = φ(Pm)φ(Qm) = φ(σ(wm,dm)).

In particular, this equation establishes the second statement of the lemma. Note that 
in view of the relation (14), the elements qm and pl, l > m, commute. Hence, by Equa-
tion (26), we get that

φ(Q) = (p1 · · · pk)(q1 · · · qk) =
k∏

m=1
x(wm,dm).

This completes the proof of the lemma. �
Since the group G′

T is simple, we obtain that φ : G′
T → Γ is an isomorphism. Theo-

rem 3.8 says that the group G′
T is generated by {σ(abc,1)}, abc ∈ L3(Ω). As φ(σ(abc,1)) =

x(abc,1), we conclude that the group Γ is generated by {x(abc,1)}, abc ∈ L3(Ω). This 
completes the proof of the theorem. �

The following version of Theorem 4.1 presents a set of Tietze transformations needed 
to switch between the two sets of generators. Let F (S) be the free group with basis

S = < x(w,1) : w ∈ L3(Ω) > .
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If w /∈ L3(Ω), we assume that x(w,1) = ε, the empty word. For a, b, c ∈ A, let

x[a.] =
∏

b,c∈A

x(abc,1) and x[.bc] =
∏
a∈A

x(abc,1) (27)

and for each (w, k) with w = w0 · · ·wn−1 ∈ Ln(Ω), n ≥ 4, and 2 ≤ k ≤ n − 1, let

x(w,1) = x[.w0w1] ∗ (x[.w1w2] ∗ · · · ∗ (x[.wn−4wn−3]) ∗ x(wn−3wn−2wn−1,1)) · · · ) (28)

and

x(w,k) = (· · · ((x(w,1) ∗ x[w2.]) ∗ x[w3.]) ∗ · · · ∗ x[wk.]). (29)

Theorem 4.6. Let (Ω, T ) be a minimal subshift satisfying the condition (†). The group 
G′

T has the presentation < S|R >, where R is the following set of relations: for every 
w, v ∈ L(Ω), 1 ≤ i ≤ |w| − 1, 1 ≤ j ≤ |v| − 1, and a partition C of (w, i) into cylinder 
sets of the form (s, k), 1 ≤ k ≤ |s| − 1,

(
x(w,i)

)3 = 1 (30)
(
x(w,i) · x(w,i+1)

)2 = 1 (31)

x(w,i+1) = x(w,i) ∗ x(w,i+2) (32)

x(w,i) =
∏

(s,k)∈C

x(s,k) (33)

and

[x(w,i), x(v,j)] = 1, whenever (w, i), (v, j) are 3-disjoint. (34)

Proof. Denote by Γ the quotient group F (S)/N , where N is the normal closure of R
in F (S). Consider an arbitrary cylinder set (w, i), w ∈ L(Ω), i ∈ Z. Observe that 
cylinder sets in Equation (33) are 3-disjoint (Remark 3.3). Hence the corresponding 
factors commute (see the relation (34)). Find a partition C of (w, i) into cylinder sets of 
the form (s, k), 1 ≤ k ≤ |s| − 1. Define

x(w,i) =
∏

(s,k)∈C

x(s,k).

We claim that the definition of x(w,k) does not depend on a particular choice of the 
partition. Indeed, if C ′ is another partition of (w, i), then we can take a cylinder partition 
Q that refines both C and C ′. Then the relation (33) implies that x(w,i) =

∏
(s,k)∈Q x(s,k). 

Furthermore, this shows that the relation (33) holds for arbitrary clopen sets (w, i) and 
arbitrary cylinder partition C.
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Let (w, i) and (v, j) be arbitrary 3-disjoint cylinder sets. Consider clopen partitions 
Cw and Cv of (w, i) and (v, j), respectively. Assume that each cylinder atom (s, k) of Cw

(of Cv) is of the form 1 ≤ k ≤ |w| − 1 (1 ≤ k ≤ |v| − 1). Note that atoms of Cw and Cv

are 3-disjoint. It follows from the relation (34) and the commutator identities that

[x(w,i), x(v,j)] = [
∏

(s,k)∈Cw

x(s,k),
∏

(q,r)∈Cw

x(q,r)] = 1.

This shows that the relation (34) holds for arbitrary 3-disjoint cylinder sets.
Using the relations (33), (34), and the commutator identities, one can also check that 

the scope of the relations (30)–(32) extends to arbitrary cylinder sets. We leave the 
details to the reader. Thus, the set of relations that define Γ include those defining the 
group ΓΩ in Theorem 4.1. On the other hand, since ΓΩ is isomorphic to G′

T , it follows 
from Proposition 3.5 that the relations (27)–(29) also hold in ΓΩ.

Denote the generators of ΓΩ by y(w,i). Since Γ and ΓΩ are defined by the same set 
of relations, the map ψ : Γ → ΓΩ given by ψ(x(w,i) = y(w,i)) implements the group 
isomorphism. �

The following result describes TFGs with solvable word problem. We mention that an 
alternative proof of the “only if” part of the following theorem has been earlier established 
by the authors [10, Theorem 2.15].

Theorem 4.7. The language of the system (Ω, T ) is recursive if and only if the group G′
T

has solvable word problem.

Proof. In view of Proposition 2.3, switching to a topologically conjugate subshift, if 
needed, we can assume that none of the word of length five has repeated letters. We note 
that such a conjugation will not affect the recursiveness of the language.

Suppose that the language L(Ω) of (Ω, T ) is recursive. Theorem 4.1 and Proposi-
tion 3.4 imply that the set of defining relations is recursively enumerable. Since the 
group G′

T is simple, by Kuznetsov’s theorem [4, Proposition 13 on p. 259] we conclude 
that G′

T has solvable word problem.
Now assume that the group G′

T has solvable word problem. Consider the generators 
for G′

T from Theorem 3.8. Fix an algorithm M that solves the word problem for G′
T . 

For a word w ∈ A∗, |w| > 3, consider the group element σ(w,1). In view of Corollary 3.7, 
σ(w,1) �= 1 in G′

T if and only if w belongs to the language of Ω. To decide if a word of 
length two or one belongs to L(Ω), check if it is a subword of a word in L3(Ω). Then w
belongs to L(Ω) if and only if the algorithm M on input σ(w,1) has output “No”. �
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