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SILTING AND COSILTING CLASSES IN DERIVED CATEGORIES

FREDERIK MARKS, JORGE VITÓRIA

ABSTRACT. An important result in tilting theory states that a class of modules over a ring is a tilting class if and

only if it is the Ext-orthogonal class to a set of compact modules of bounded projective dimension. Moreover,

cotilting classes are precisely the resolving and definable subcategories of the module category whose Ext-

orthogonal class has bounded injective dimension.

In this article, we prove a derived counterpart of the statements above in the context of silting theory. Silting

and cosilting complexes in the derived category of a ring generalise tilting and cotilting modules. They give

rise to subcategories of the derived category, called silting and cosilting classes, which are part of both a t-

structure and a co-t-structure. We characterise these subcategories: silting classes are precisely those which

are intermediate and Ext-orthogonal classes to a set of compact objects, and cosilting classes are precisely the

cosuspended, definable and co-intermediate subcategories of the derived category.

1. INTRODUCTION

Silting and cosilting complexes, as introduced in [6], [27] and [28], can be understood as derived ana-

logues of tilting and cotilting modules. This paper reinforces such a perspective through the torsion pairs

naturally associated to these complexes, namely t-structures and co-t-structures. To every silting or cosilting

complex we associate both a t-structure and a co-t-structure which turn out to be adjacent, that is, the torsion
class of one of the pairs turns out to be the torsionfree class of the other. Such triples of subcategories are

instances of so-called torsion-torsionfree (TTF) triples and the subcategory that links the two pairs will be

referred to as the corresponding silting, respectively cosilting, class. For silting complexes, these triples

were first observed in [21] in the bounded derived category of a finite-dimensional algebra of finite global

dimension, and they were further generalised in [6] to unbounded derived categories of rings. For cosilting

complexes, we will prove in this paper the existence of such triples, using results from [7], [16] and [28].

Our main aim is to describe silting and cosilting classes in the derived category of a ring from a recurrent

point of view in (classical) tilting theory. In a module category it is well known that a class of modules is:

• a tilting class if and only if it is the right Ext-orthogonal class to a set of compact modules of bounded

projective dimension (see [12] and the references therein);

• a cotilting class if and only if it is resolving, definable and such that the right Ext-orthogonal class

to it has bounded injective dimension (see [11, Theorem 6.1]).

The first statement is known as the finite-type characterisation of tilting classes and it can be restated by

saying that there is a bijection between resolving subcategories of compact modules of bounded projective

dimension and tilting modules up to equivalence (see also [4]). Note that cotilting modules are generally not

analogously determined by a set of compact modules. They are, however, always pure-injective ([9], [26]).

Our main theorem generalises the results above to (co)silting classes in the derived category of a ring.
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Theorem. Let A be a ring, D(A) the derived category of A-Mod and V a full subcategory of D(A).
(1) V is a silting class if and only if V is intermediate and V = S⊥>0 for a set S of compact objects.
(2) V is a cosilting class if and only if V is cosuspended, co-intermediate and definable.

Moreover, the first statement induces a bijection between co-intermediate and cosuspended subcategories of
Kb(A-proj) and silting complexes up to equivalence.

This statement summarises Theorems 3.6 and 3.14. For the terminology used, we refer to the relevant

sections. However, the parallel with the results concerning tilting and cotilting modules is evident.

The proof of our main theorem involves some module categories built from the category of complexes.

In fact, we reduce (co)silting problems in the derived category to (co)tilting problems in these module

categories. This allows us to use the finite-type characterisation of tilting classes to conclude the compact

generation of silting co-t-structures. Moreover, we use the fact that cotilting modules are pure-injective to

conclude that so are cosilting complexes, from which we deduce the definability of cosilting classes.

Finally, note that for the special case of two-term silting and cosilting complexes, the theorem above

specialises to certain classification results recently obtained in the context of silting and cosilting modules.

More precisely, part (1) translates to saying that a torsion class in the module category arises from a silting

module if and only if it is divisible with respect to a set of maps between finitely generated projective

modules (see [23, Theorem 6.3]). Part (2) of the theorem is, in this context, equivalent to stating that a

torsionfree class in the module category arises from a cosilting module if and only if it is definable (see [2,

Corollary 3.9] and the references therein).

The structure of the paper is as follows. In Section 2, we set up the aforementioned module categories

built from the category of complexes, and we show a useful correspondence between (co)silting complexes

in the derived category and certain (co)tilting modules over this new ring. In Section 3, which is subdivided

into two subsections on silting and cosilting classes, we prove the main theorem of the paper.

Notation. All subcategories considered are strict and full. Throughout, let A be a ring. The category of

left A-modules is denoted by A-Mod, its subcategory of projective modules by A-Proj, its subcategory of

finitely generated projective modules by A-proj and its subcategory of injective modules by A-Inj. We write

A+ for the injective cogenerator HomZ(A,Q/Z) of A-Mod. If C is subcategory of A-Mod, we denote by C⊥

(respectively, C⊥1 ) the subcategory of A-Mod formed by all objects M such that Ext
j
A(X ,M) = 0 for all X in

C and for all j > 0 (respectively, for j = 1). Similarly, one defines ⊥C (respectively, ⊥1C ).

For an additive category A , we denote by C(A) and K(A) the corresponding category of complexes and

the homotopy category, respectively. If A = A-Mod, we simply write C(A) and K(A). We also denote by

D(A) the derived category of A-Mod. When we consider bounded, left bounded or right bounded complexes,

we use the usual superscripts b,+ and −, respectively. If X is an object of an additive category A , we denote

by Add(X) (respectively, Prod(X)) the smallest subcategory of A containing X and closed under coproducts

(respectively, products) and summands.

If C is a subcategory of a triangulated category T , we denote by thick(C ) the smallest triangulated

subcategory of T closed under summands and containing C . Given a set of integers I (which is often

expressed by symbols such as > n, < n, ≥ n, ≤ n, �= n, or just n, with the obvious associated meaning) we

define the orthogonal classes ⊥I C and C⊥I as follows.

⊥I C := {Y ∈ T | HomT (Y,X [i]) = 0,∀X ∈ C ,∀i ∈ I} C⊥I := {Y ∈ T | HomT (X ,Y [i]) = 0,∀X ∈ C ,∀i ∈ I}
2. COMPLEXES SEEN AS MODULES

2.1. The category of complexes. We begin by reviewing some homological aspects of the category of

complexes of left A-modules. There are two natural exact structures on C(A):
• an abelian structure, where conflations are short exact sequences of complexes. The notation C(A)

will stand for the category endowed with this exact structure. The abelian category C(A) has enough

projective and enough injective objects. The projective objects in C(A) are precisely those which lie
2



in the additive closure of all complexes (Xi,di)i∈Z for which there is some n in Z such that Xi = 0

for all i �= n,n+1 and Xn = Xn+1, where Xn is a projective A-module and dn is an isomorphism. In

other words, a complex is projective if and only if it is a split exact complex of projective A-modules.

Dually, the injective objects in C(A) are the split exact complexes of injective A-modules (see also

[29, Exercise 2.2.1]).

• a semi-split exact structure, where conflations are semi-split short exact sequences of complexes,

i.e. exact sequences of complexes that split componentwise. We will write Cs(A) whenever the

category is endowed with this exact structure. Note that Cs(A) is a Frobenius exact category, whose

projective (and injective) objects are those in the additive closure of all complexes (Xi,di)i∈Z for

which there is some n in Z such that Xi = 0 for all i �= n,n+1, Xn = Xn+1 and dn is an isomorphism.

In other words, a complex is projective (and injective) in Cs(A) if and only if it is a split exact

complex of A-modules.

The following useful proposition regarding Ext-groups in C(A) is essentially a consequence of the fact

that the stable category of the Frobenius exact category Cs(A) is triangle equivalent to the homotopy category

K(A) (see [19, Subsection I.3.2]).

Proposition 2.1. Let X and Y be objects in C(A). If X lies in C−(A-Proj) or Y lies in C+(A-Inj), then

Ext
j
C(A)(X ,Y )∼= HomD(A)(X ,Y [ j]), ∀ j > 0.

Proof. Let X be in C−(A-Proj) and Y be in C(A) (the arguments for when Y lies in C+(A-Inj) and X is

any complex in C(A) are dual). Since the stable category of Cs(A) is triangle equivalent to the homotopy

category K(A), and since X lies in C−(A-Proj), we have a sequence of natural isomorphisms for all j > 0

Ext
j
Cs(A)

(X ,Y )∼= HomK(A)(X ,Y [ j])∼= HomD(A)(X ,Y [ j]).

We show by induction that the natural embedding of Ext
j
Cs(A)

(X ,Y ) into Ext
j
C(A)(X ,Y ) is an isomorphism.

For j = 1, any short exact sequence of complexes in Ext1C(A)(X ,Y ) splits componentwise and, hence, it lies

naturally in Ext1Cs(A)(X ,Y ). Suppose now that the statement holds for some j > 0. We use dimension shifting

to show the inductive step. Indeed, consider a projective object P of C(A) yielding a (semi-split) short exact

sequence of the form

0 �� ΩX �� P �� X �� 0.

It is then clear that Ext
j+1

C(A)(X ,Y ) is isomorphic to Ext
j
C(A)(ΩX ,Y ) with ΩX in C−(A-Proj). By induction,

this is further isomorphic to Ext
j
Cs(A)

(ΩX ,Y )∼= Ext
j+1

Cs(A)
(X ,Y ), as wanted. �

Remark 2.2. For two complexes X and Y , the group HomD(A)(X ,Y [ j]) is sometimes denoted by Ext
j
A(X ,Y ).

The motivation for this comes from the fact that if X and Y lie in A-Mod, then the group of Yoneda extensions

indeed coincides with the corresponding Hom-space in the derived category. The above proposition shows

that this motivation can be extended to complexes, provided that either X lies in C−(A-Proj) or Y lies in

C+(A-Inj). However, it is not true in general that Yoneda extension groups between complexes can be

computed in the derived category. Indeed, for example, extension groups between acyclic complexes (or

even between complexes homotopically equivalent to the zero complex) may be non-trivial while such

objects are isomorphic to zero in the derived category (respectively, in the homotopy category).

2.2. The categories Rep(AQn/I). Fix n > 0 and let Qn be the Dynkin quiver

−n+1
α−n+1 �� −n+2

α−n+2 �� · · · α−2 �� −1
α−1 �� 0 .

We are interested in the ring AQn/I defined to be the quotient of the path algebra AQn by the ideal I generated

by all paths of length two. Alternatively, we can think of AQn/I as the quotient of the lower triangular matrix

ring Tn(A) by the two-sided ideal generated by all the elementary matrices Ei j with i− j ≥ 2.
3



By Rep(AQn/I) we denote the category of representations of Qn in A-Mod that are bound by the relations

defining I. An object M in Rep(AQn/I) is a sequence of left A-modules M(i) together with homomorphisms

M(αi) : M(i)→ M(i+1) such that M(αi+1)M(αi) = 0. A morphism f : M → N in Rep(AQn/I) is a family

( fi)−n+1≤i≤0 of homomorphisms of left A-modules fi : M(i) → N(i) such that N(αi) fi = fi+1M(αi). By

RepP(AQn/I) and RepI (AQn/I) we denote the full subcategories of Rep(AQn/I) consisting of objects M
such that all M(i) lie in A-Proj or in A-Inj, respectively. Note that the category Rep(AQn/I) is equivalent to

the module category AQn/I-Mod. We can also think of Rep(AQn/I) as the category of covariant functors

from the small category defined by Qn (with zero relations on the morphisms induced by I) to A-Mod.

Example 2.3. In case n = 2, the category Rep(AQ2/I) = Rep(AQ2) is naturally equivalent to the morphism

category of A, whose objects are maps of A-modules and whose morphisms are commutative squares relating

them. We provide an explicit example. Let K be a field and choose A to be KQ2. The structure of the

category A-Mod∼= Rep(KQ2) is represented by the following Auslander-Reiten quiver

Q = (K
1→K)

π

��
P = (0 →K)

i
��

S = (K→ 0)

The algebra AQ2 turns out to be isomorphic to the quotient of the path algebra over K of the quiver

·

��·

��

��

·

·

��

by the ideal generated by the commutativity relation. The structure of the category AQ2-Mod ∼= Rep(AQ2)
is represented by the following Auslander-Reiten quiver

(0 → Q)

��

(P → 0)

��

(S 1→ S)

��
(0 → P)

��

��

(P i→ Q)

��

��

��

(Q 1→ Q) �� (Q π→ S)

��

��

(S → 0)

(P 1→ P)

��

(0 → S)

��

(Q → 0)

��

This example may help to visualise the more technical statements obtained later in this section.

In what follows, we relate representations in Rep(AQn/I) to complexes of A-modules. Note that the

category Rep(AQn/I) can naturally be identified with a full subcategory of C(A). Indeed, consider the

fully faithful functor Θ : Rep(AQn/I) −→ C(A) that maps M in Rep(AQn/I) to the complex (Xi,di) with

Xi = M(i) for all i ∈ {−n+ 1, ...,0}, di = M(αi) for all i ∈ {−n+ 1, ...,−1} and Xi = 0 otherwise. We

will also be interested in the functor Ψ : Rep(AQn/I)−→ D(A) defined to be the composition of Θ with the

canonical functor C(A)−→ D(A).

Lemma 2.4. For all objects M and N in Rep(AQn/I) and all j ≥ 0, the functor Θ induces an isomorphism

Ext
j
AQn/I(M,N)∼= Ext

j
C(A)(Θ(M),Θ(N)).
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If, moreover, M lies in RepP(AQn/I) or N lies in RepI (AQn/I), then

Ext
j
AQn/I(M,N)∼= HomD(A)(Ψ(M),Ψ(N)[ j]).

Proof. Clearly, Θ is fully faithful. It is, furthermore, exact and, for any j > 0 and any M,N in Rep(AQn/I),
it induces an injective map Ext

j
AQn/I(M,N)−→ Ext

j
C(A)(Θ(M),Θ(N)). We show that this map is also surjec-

tive. Given a Yoneda extension η of the form

0 �� Θ(N) �� E1
�� ... �� E j �� Θ(M) �� 0

it is enough to show that, up to equivalence in Ext
j
C(A)(Θ(M),Θ(N)), we can choose the complexes Ei for

i ∈ {1, ..., j} to only have non-zero components in degrees −n+1 to 0. Define η∗ to be the exact sequence

of complexes we obtain from η by setting (Ei)
k = 0 for all k > 0 and η∗∗ to be the exact sequence we obtain

from η∗ by setting (Ei)
k = 0 for all k < −n+ 1. Now it is not hard to check that there are maps from the

exact sequences η and η∗∗ to the exact sequence η∗, thus showing that η and η∗∗ represent the same element

in Ext
j
C(A)(Θ(M),Θ(N)). Finally, the last statement follows from Proposition 2.1. �

We often identify an object M in Rep(AQn/I) with its image under Θ or Ψ. Using the lemma above,

we can compute the projective or injective dimension of certain objects in Rep(AQn/I) and, in particular,

identify the projective and injective objects there. Given j ∈ {−n+1, ...,0} and X in A-Mod, we define the

following representations Xj and X j in Rep(AQn/I).

• If j �= 0 (respectively, j �= −n+ 1) we define Xj (respectively, X j) to correspond under Θ to the

following complex concentrated in degrees j and j+1 (respectively, in degrees j and j−1):

· · · �� 0 �� X 1 �� X �� 0 �� · · ·
Note that Xj =X j+1 for all j ∈{−n+1, ...,−1}. Direct sums of such objects are called contractible.

• If j = 0 (respectively, j =−n+1) we define Xj (respectively, X j) to correspond to the stalk complex

· · · �� 0 �� 0 �� X �� 0 �� 0 �� · · ·
concentrated in degree 0 only (respectively, in degree −n+1).

Lemma 2.5. The following statements hold.
(1) The full subcategories RepP(AQn/I) and RepI (AQn/I) are extension-closed in Rep(AQn/I) and,

thus, they are exact subcategories for the inherited exact structure.
(2) The projective objects of Rep(AQn/I) lie in RepP(AQn/I). More precisely, AQn/I-Proj identifies

with the additive closure of the representations Pj where P is a projective A-module. A direct sum
of objects of the form Pj with j �= 0 is said to be contractible projective.

(3) The injective objects of Rep(AQn/I) lie in RepI (AQn/I). More precisely, AQn/I-Inj identifies with
the closure under products of the representations E j where E denotes an injective A-module. A
product of objects of the form E j with j �=−n+1 is said to be contractible injective.

(4) The projective objects of RepP(AQn/I) are precisely the projective representations of Rep(AQn/I).
The injective objects of RepP(AQn/I) are given by the contractible projectives and the representa-
tions P−n+1 for P projective in A-Mod.

(5) The injective objects of RepI (AQn/I) are precisely the injective representations of Rep(AQn/I).
The projective objects of RepI (AQn/I) are given by the contractible injectives and the representa-
tions E0 for E injective in A-Mod.

(6) For M in RepP(AQn/I) without projective summands, the projective dimension of M in Rep(AQn/I)
equals − j, where j is the smallest integer in {−n+1, ...,−1} such that M( j) �= 0.

(7) For M in RepI (AQn/I) without injective summands, the injective dimension of X in Rep(AQn/I)
equals n−1+ j, where j is the largest integer in {−n+2, ...,0} such that M( j) �= 0.
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Proof. The first statement is immediate. We will prove statements (2), (4) and (6). Statements (3), (5) and

(7) can be shown dually.

(2): It is clear that the projective objects of Rep(AQn/I) must lie in RepP(AQn/I). By Lemma 2.4,

contractible projective objects are indeed projective in Rep(AQn/I) given that they are projective when

seen as complexes in C(A). Moreover, for any projective P in A-Mod, also the representation P0 is projec-

tive in Rep(AQn/I), since Ext1AQn/I(P0,−) ∼= HomD(A)(Ψ(P0),Ψ(−)[1]) = 0. Now let M be projective in

Rep(AQn/I) without contractible summands. We show that M is of the form P0 for some P in A-Proj. Sup-

pose that M( j) �= 0 for some j ∈ {−n+1, ...,−1} and let M′ be the representation in RepP(AQn/I) given

by M′(i) = M(i−1) and M′(αi) = M(αi−1) for all i ∈ {−n+2, ...,0} and M′(−n+1) = 0. By assumption

on M, it follows that Ψ(M) and Ψ(M′) are non-zero objects in the derived category D(A). Furthermore,

by construction of M′ there is a non-zero morphism in HomD(A)(Ψ(M),Ψ(M′)[1]) given by identity maps

in each component different from zero. This contradicts our assumption of M being projective. Thus, the

projectives in Rep(AQn/I) with no contractible summands are those of the form P0.

(4): Clearly, all projectives in Rep(AQn/I) are projective in RepP(AQn/I) and it follows from the same

argument as in (2) that these are the only projective objects of RepP(AQn/I). Using Lemma 2.4, it is easy to

see that the contractible projective objects are also injective in RepP(AQn/I). Indeed, for any contractible

projective Y and any X in RepP(AQn/I), we have that Ext1AQn/I(X ,Y ) ∼= HomD(A)(Ψ(X),Ψ(Y )[1]) = 0,

since Ψ(Y ) = 0. Moreover, a dual argument to the one used in (2) allows us to see that an injective object of

RepP(AQn/I) without contractible summands must be of the form P−n+1 for some projective A-module P.

(6): This follows from Lemma 2.4 by observing that for M in RepP(AQn/I) and j the smallest integer in

{−n+1, ...,−1} such that M( j) �= 0, we have

Ext
− j+1
AQn/I(M,N)∼= HomD(A)(Ψ(M),Ψ(N)[− j+1]) = 0

for all N in Rep(AQn/I). Moreover, since M has no projective summands, the identity map on M( j) yields

a non-zero extension in Ext
− j
AQn/I(M,(M( j))0). �

We encourage the reader to revisit Example 2.3 to test the lemma above in a concrete setting. The

following statement is an immediate consequence regarding global dimension.

Corollary 2.6. If the ring A has left global dimension d, then AQn/I has left global dimension d + n− 1.
Moreover, if A is of infinite left global dimension, then so is AQn/I.

Proof. Take an object N in Rep(AQn/I) and choose a projective resolution of minimal length for every

A-module N( j) with j ∈ {−n+1, ...,0}. These resolutions give rise to a long exact sequence in Rep(AQn/I)

0 �� Nd �� Nd−1
�� ... �� N0

�� N �� 0.

By construction, all the Ni lie in RepP(AQn/I) for i ∈ {0, ...,d} and, thus, by Lemma 2.5(6), they have

projective dimension at most n− 1. Consequently, the projective dimension of N is bounded by d + n− 1.

Finally, it is easy to check that for any A-module X of projective dimension d, the representation X−n+1 has

projective dimension d +n−1 in Rep(AQn/I). �
Remark 2.7. We define the infinite quiver Q∞

∞ as

· · · �� −n
α−n �� −n+1

α−n+1 �� · · · α−1 �� 0
α0 �� 1 �� · · ·

with its two full subquivers Q∞ and Q∞ having a sink (respectively, a source) at vertex 0. As before, we

can consider associated categories of representations where Rep(AQ∞
∞/I) is naturally equivalent to C(A).

The category Rep(AQ∞/I) can be used to translate the parts of Lemma 2.5 concerning RepP(AQn/I) to

an infinite context, while the category Rep(AQ∞/I) serves to generalise the observations in Lemma 2.5

on RepI (AQn/I). Moreover, note that the categories of representations induced by Q∞
∞, Q∞ and Q∞ are

Grothendieck abelian categories with enough projectives, but they are no longer module categories of a

unital ring. Therefore, we will restrict ourselves in the forthcoming sections to the finite case of Rep(AQn/I).
6



2.3. (Co)Silting complexes and (co)tilting modules. Let us fix n > 0. We recall the following definitions.

Definition 2.8. A complex X in D(A) is said to be

• silting if HomD(A)(X ,X (J)[i]) = 0 for all i > 0 and all sets J, and thick(Add(X)) = Kb(A-Proj); it is

moreover said to be n-silting if X lies in Ψ(RepP(AQn/I)).
• cosilting if HomD(A)(XJ,X [i]) = 0 for all i > 0 and all sets J, and thick(Prod(X)) = Kb(A-Inj); it is

moreover said to be n-cosilting if X lies in Ψ(RepI (AQn/I)).
An A-module M is said to be

• (n− 1)-tilting if it has projective dimension at most n− 1, ExtiA(M,M(J)) = 0 for all i > 0 and all

sets J, and there is an exact sequence of A-modules with all Mi in Add(M)

0 �� A �� M0
�� M1

�� ... �� Mn−1
�� 0.

• (n− 1)-cotilting if it has injective dimension at most n− 1, ExtiA(M
J,M) = 0 for all i > 0 and all

sets J, and there is an exact sequence of A-modules with all Mi in Prod(M)

0 �� Mn−1
�� ... �� M1

�� M0
�� A+ �� 0.

We say that two silting (respectively, cosilting) complexes X and X ′ are equivalent if Add(X) = Add(X ′)
(respectively, Prod(X) = Prod(X ′)). Similarly, two tilting (respectively, cotilting) modules M and M′ are

equivalent if Add(M) = Add(M′) (respectively, Prod(M) = Prod(M′)).

It can be checked that an A-module is (n − 1)-tilting if and only if the corresponding stalk complex

concentrated in degree 0 is n-silting. Indeed, the only non-trivial step is to check that any given n-silting

complex with cohomology concentrated in degree 0 gives rise to an exact sequence as in the definition of

an (n−1)-tilting module. This follows from [27, Proposition 3.9]. Dually, an A-module is (n−1)-cotilting

if and only if the corresponding stalk complex concentrated in degree −n+ 1 is n-cosilting, and the dual

obstacle for the proof of this fact is surpassed in [28, Proposition 2.8].

Example 2.9. Consider the ring AQn/I and the injective cogenerator T of RepP(AQn/I) given by the direct

sum of all A j for j ∈ {−n+ 1, ...,0}. It follows from Lemma 2.5 that T is an (n− 1)-tilting module over

AQn/I. There is an associated tilting cotorsion pair in Rep(AQn/I) given by (⊥(T⊥),T⊥) = (⊥1(S⊥1),S⊥1)
where S denotes a set of syzygies of T , namely S = {Ωm(T ) | m ≥ 0} with Ω0(T ) = T . Thus, S contains

precisely the contractible projectives of the form A j and the representations of Rep(AQn/I) which have the

regular A-module in one vertex and zero in all others. Using [18, Corollary 3.2.4], it follows that the left

hand side of the above cotorsion pair ⊥1(S⊥1) is given by all the representations in Rep(AQn/I) that are

direct summands of S -filtered objects. Therefore, we get that ⊥1(S⊥1) = RepP(AQn/I).
Dually, consider the (n− 1)-cotilting module C in Rep(AQn/I) given by the direct sum of all (A+) j

for j ∈ {−n + 1, ...,0}. The associated cotorsion pair in Rep(AQn/I) is of the form (⊥C,(⊥C)⊥) with

(⊥C)⊥ = RepI (AQn/I). First observe that the class ⊥C =⊥(A+)0 consists precisely of all representa-

tions M in Rep(AQn/I) for which the cohomologies of Θ(M) vanish in all negative degrees. Thus, we get

RepI (AQn/I) ⊆ (⊥C)⊥. For the converse, consider M in (⊥C)⊥ and suppose that M(0) is a non-injective

A-module. Then we can use the injective envelope E of M(0) in A-Mod to construct a non-trivial extension

in Ext1AQn/I((E/M(0))0,M) where (E/M(0))0 clearly lies in ⊥C. Hence, M(0) must be injective. Now we

proceed inductively to prove the claim.

The next theorem identifies (co)silting complexes in D(A) with certain (co)tilting modules over AQn/I.

Theorem 2.10. The functor Ψ : Rep(AQn/I) −→ D(A) induces a bijection between tilting modules over
AQn/I that lie in RepP(AQn/I) and n-silting complexes in D(A), up to equivalence. Dually, Ψ induces a
bijection between cotilting modules over AQn/I that lie in RepI (AQn/I) and n-cosilting complexes in D(A),
up to equivalence.
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Proof. We prove the silting case; the cosilting case is dual. First observe that the assignment is well-defined.

Let T be a tilting module of Rep(AQn/I) lying in RepP(AQn/I). We show that Ψ(T ) is a silting complex in

D(A). It follows from Lemma 2.4 that HomD(A)(Ψ(T ),Ψ(T )(J)[i]) = 0 for all i > 0 and all sets J. Moreover,

the coresolution of AQn/I by Add(T ) in Rep(AQn/I) shows that Ψ(AQn/I) (which is isomorphic to A in

D(A)) lies in thick(Add(Ψ(T ))) and, thus, thick(Add(Ψ(T ))) = Kb(A-Proj).
We show that the assignment is injective. Indeed, let T and V be tilting modules in Rep(AQn/I) lying

in RepP(AQn/I) such that Ψ(T ) is equivalent to Ψ(V ). Suppose, without loss of generality, that there

is an object X in Add(T ) that does not lie in Add(V ). It is then clear that Ψ(X) = 0 and, thus, X is

a contractible projective object in RepP(AQn/I). However, it follows from Lemma 2.5 that every such

contractible projective, being both injective and projective in RepP(AQn/I), must lie in Add(V ), yielding a

contradiction.

Finally, it remains to see that the assignment is surjective. By definition, any given n-silting complex

lies in Ψ(RepP(AQn/I)). Let T be an object in RepP(AQn/I) representing it and assume, without loss of

generality, that all the contractible projective objects lie in Add(T ). We show that T is an (n− 1)-tilting

module in Rep(AQn/I). It is clear from Lemma 2.5 that T has projective dimension at most n− 1 and

using Lemma 2.4 it follows that ExtiAQn/I(T,T
(J)) = 0 for all i > 0 and all sets J. It only remains to show

the existence of an Add(T )-coresolution for AQn/I. But this follows from [27, Theorem 3.5]. Indeed,

the coresolution of A by Add(Ψ(T )) in the derived category induces a coresolution of A0 by Add(T ) in

Rep(AQn/I), since such triangles in K(A-Proj) induce short exact sequences in RepP(AQn/I) once we add

suitable contractible projective objects. It then remains to observe that the further summands of AQn/I are

contractible projective objects that already lie in Add(T ). �

Remark 2.11. If the ring A has finitistic dimension zero, then every tilting (respectively, cotilting) module in

Rep(AQn/I) must already belong to RepP(AQn/I) (respectively, to RepI (AQn/I)). In this case, Ψ induces

a bijection between all tilting (respectively, cotilting) modules over AQn/I and all n-silting (respectively,

n-cosilting) complexes in D(A), up to equivalence.

The theorem above introduces the possibility of using results from tilting theory to prove statements about

silting complexes. An easy application is to show that any partial n-(co)silting complex (suitably defined)

admits a complement and can be completed to an n-(co)silting complex. This uses the well-known theory

of complements for partial (co)tilting modules developed in [3]. In a more general setting, the existence of

complements for partial silting objects will be discussed in [8]. In the next section, however, we focus on

using the theorem above towards our aim of characterising silting and cosilting classes.

3. SILTING AND COSILTING CLASSES

3.1. Torsion pairs in derived categories. We begin with a quick recollection of the necessary concepts.

Definition 3.1. A pair of subcategories (U,V ) in D(A) is said to be a torsion pair if

(1) U and V are closed under summands;

(2) HomD(A)(U,V ) = 0;

(3) For every object X of D(A), there are U in U, V in V and a triangle

U −→ X −→V −→U [1].

In a torsion pair (U,V ), the class U is said to be the aisle, the class V the coaisle, and (U,V ) is called

• a t-structure if U[1]⊆ U;

• a co-t-structure if U[−1]⊆ U;

• generated by a set of objects S if (U,V ) = (⊥0(S⊥0),S⊥0);
• compactly generated if (U,V ) is generated by a set of compact objects.
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Finally, we say that a triple (U,V ,W ) is a torsion-torsionfree triple (TTF triple for short) if both (U,V )
and (V ,W ) are torsion pairs. In that case we say that V is a TTF class, (U,V ) is left adjacent to (V ,W )
and (V ,W ) is right adjacent to (U,V ).

There is a well-known standard t-structure in D(A) that we denote by (D≤0,D≥1) and, as it is com-

mon in the literature, we write D≤n := D≤0[−n] and D≥n := D≥1[−n+ 1]. The class D≤0 (respectively,

D≥1) consists of all objects with cohomologies vanishing in positive (respectively, in non-positive) degrees.

Moreover, this t-structure has both a left and a right adjacent co-t-structure, turning both D≤0 and D≥1 into

TTF classes. For example, the class K≥1 := ⊥0(D≤0) consists of all complexes of projective A-modules

whose non-positive components are zero. The co-t-structure (K≥1,D
≤0) will be referred to as the standard

co-t-structure (see [6, Example 2.9] and [7, Example 2.4(1)] for further details).

Definition 3.2. We say that a subcategory V of D(A) is suspended (respectively, cosuspended) if V is

closed under extensions and V [1]⊆ V (respectively, V [−1]⊆ V ). Given a suspended (respectively, cosus-

pended) subcategory V , we say that V is intermediate (respectively, co-intermediate) if there are integers

n ≤ m such that D≤n ⊆ V ⊆ D≤m (respectively, D≥m ⊆ V ⊆ D≥n).

Example 3.3. Given a set S of compact objects in D(A), the pair (⊥0(S⊥0),S⊥0) is always a torsion pair

(see [1, Theorem 4.3]) and, in fact, it follows from [25, Theorem 3.11] that S⊥0 is a TTF class. In particular,

subcategories of the form S⊥>0 = {S[n] | S ∈ S ,n < 0}⊥0 are examples of suspended TTF classes.

In this section, we aim to extend the characterisation of tilting and cotilting classes in module categories,

as recalled in the introduction, to the context of silting and cosilting classes in derived categories. The latter

are defined as follows.

Definition 3.4. If T is a silting complex in D(A), then we say that T⊥>0 is a silting class. If C is a cosilting

complex in D(A), then we say that ⊥>0C is a cosilting class.

It is well known that a silting (respectively, cosilting) class determines a unique silting (respectively,

cosilting) complex up to equivalence (see [27, Theorem 5.3] and [28, Theorem 2.17] for details).

3.2. The silting case. Recall from [6] that every silting class is the aisle of a t-structure and the coaisle of

a co-t-structure or, in other words, that silting classes are suspended TTF classes.

Theorem 3.5. [6, Theorem 4.6] The assignment sending a silting complex T in D(A) to its silting class T⊥>0

yields a bijection between silting complexes up to equivalence and intermediate suspended TTF classes.

The following result shows that the co-t-structures in D(A) associated to silting complexes are precisely

those which are compactly generated and have an intermediate coaisle. This constitutes the first half of our

main theorem and it generalises the finite-type characterisation of tilting classes in module categories.

Theorem 3.6. A subcategory V of D(A) is a silting class if and only if V is intermediate and V = S⊥>0

for a set S of compact objects. Moreover, the assignment T 
→ ⊥0(T⊥>0)∩Kb(A-proj) yields a bijection
between silting complexes up to equivalence and cosuspended subcategories R of Kb(A-proj) which are co-
intermediate in the sense that there are integers n ≤ m such that K≥m∩Kb(A-proj)⊆ R ⊆K≥n∩Kb(A-proj).

Proof. Suppose that V is intermediate and that V = S⊥>0 for a set S of compact objects. It then follows

from Example 3.3 that V is a suspended TTF class and, therefore, by the theorem above, V is a silting class.

Conversely, suppose that V is a silting class. Without loss of generality, we assume that the associated

silting complex is n-silting, i.e. it lies in Ψ(RepP(AQn/I)). From the proof of Theorem 3.5, it then follows

that the class V is intermediate with D≤−n+1 ⊆ V ⊆ D≤0. Moreover, by Theorem 2.10, there is a tilting

AQn/I-module T in RepP(AQn/I) representing our silting complex. From the main theorem in [12] we

infer that the tilting class T⊥ in Rep(AQn/I) is of finite type, that is, there is a set S of compact modules

over AQn/I (i.e. modules admitting a finite resolution by finitely generated projective AQn/I-modules) such

that S ⊥ = T⊥. In fact, we can choose S to contain all compact modules from ⊥(T⊥). Since T lies in
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RepP(AQn/I), by Example 2.9, it follows that also S lies in RepP(AQn/I). Therefore, we can define

the set S := Ψ(S ) of compact objects in D(A) for which S⊥>0 = Ψ(T )⊥>0 = V , by Lemma 2.4. Indeed,

by construction, the stalk complex with the regular module A in degree 0 belongs to S , guaranteeing that

S⊥>0 is contained in D≤0, and that S⊥>0 is intermediate as a consequence. Hence, computing the orthogonal

classes S⊥>0 and Ψ(T )⊥>0 in D(A) boils down to computing the corresponding Ext-orthogonal classes S ⊥
and T⊥ in Rep(AQn/I), which coincide by construction.

The final statement follows from the fact that a compactly generated co-t-structure is determined by the

intersection of its aisle with the compact objects (see [25, Theorem 4.5(ii)]). �
Remark 3.7. (1) The last statement of Theorem 3.6 generalises the correspondence in module cate-

gories between tilting modules up to equivalence and resolving subcategories of compact modules

of bounded projective dimension (see [4, Theorem 2.2]). Moreover, the proof above identifies the

tilting cotorsion pair in Rep(AQn/I) generated by such a resolving subcategory with the silting co-

t-structure in the derived category.

(2) Note that Theorem 3.6 (together with Theorem 3.5) can be interpreted as a variant of the telescope

conjecture (see [25, Question 3.12] for an explanation of the unstable telescope conjecture). More

concretely, it is shown that a co-t-structure in D(A) with an intermediate coaisle admits a right

adjacent t-structure if and only if it is compactly generated.

3.3. The cosilting case. We begin by recalling from [13] and [22] some ideas concerning purity in derived

categories. Recall that a morphism f : X →Y in D(A) is said to be a pure monomorphism if HomD(A)(K, f )
is a monomorphism for any compact object K. An object C is said to be pure-injective if any pure monomor-

phism C → Y splits. The following theorem provides a useful description of pure-injective objects.

Theorem 3.8. [22, Theorem 1.8] The following statements are equivalent for an object C in D(A).
(1) C is pure-injective;
(2) For every set J, the summation map C(J) →C factors through the canonical map C(J) →CJ.

There is an analogous notion of pure-injectivity for categories of modules, and the theorem above also

holds in this context (see [20, Chapter 7]). Pure-injective objects are intimately related with definable

subcategories. We recall the relevant definition.

Definition 3.9. A subcategory V of D(A) is said to be definable if there is a set of maps (φ j : Xj −→Yj) j∈J

in Kb(A-proj) such that an object V lies in V if and only if HomD(A)(φ j,V ) is surjective for all j in J.

Definable subcategories of D(A) were shown to be preenveloping in [7] and they are well known to

satisfy several closure properties, among which the closure under products and coproducts. We will see that

cosilting classes are always definable and that they give rise to t-structures with nice homological properties.

Proposition 3.10. Let C be a cosilting complex in D(A). Then C is pure-injective and the cosilting class
⊥>0C is definable. Moreover, the pair (⊥≤0C,⊥>0C) is a t-structure and its heart H := ⊥≤0C[−1]∩⊥>0C is a
Grothendieck abelian category.

Proof. Let C be a cosilting complex in D(A). We show that it is pure-injective by using Theorem 3.8.

Without loss of generality, by Theorem 2.10, there is an integer n > 0 and an (n− 1)-cotilting module

M over AQn/I such that Ψ(M) = C. For each set J, let fJ : M(J) → M be the summation map, and let

gJ : M(J) → MJ be the canonical map from the coproduct to the product in Rep(AQn/I). Recall that the

maps fJ and gJ are uniquely determined by the universal properties of the product MJ and the coproduct

M(J). Since Ψ preserves products and coproducts, and since both are exact and defined componentwise, it

follows from the universality of these maps that Ψ( fJ) is the summation map C(J) → C and Ψ(gJ) is the

canonical map C(J) → CJ in D(A). Since M is a cotilting module, it is pure-injective in Rep(AQn/I) by

[26] and it yields a factorisation of fJ through gJ . The image of this factorisation under Ψ shows that C
is pure-injective in D(A). Moreover, using that ⊥>0C is closed under products ([28, Proposition 2.12]), it
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follows from [7, Lemma 4.8] that the subcategory ⊥>0C is definable and that the pair (⊥0(⊥>0C),⊥>0C) is a

t-structure in D(A). Now, the same arguments as in the proof of (1) ⇒ (2) in [7, Theorem 4.9] show that
⊥0(⊥>0C) = ⊥≤0C. Finally, it only remains to refer to [7, Theorem 3.6] to conclude that the heart H of this

t-structure is a Grothendieck abelian category. �
Remark 3.11. (1) In [14, page 56], cotilting objects in a compactly generated triangulated category

are required by definition to be pure-injective. The proposition above shows that for any cotilting

complex in D(A) such an assumption is superfluous.

(2) The approximation triangles for the t-structure (⊥≤0C,⊥>0C) coming from a cosilting complex C can

be constructed explicitly. Indeed, considering successive left approximations to suitable shifts of

Prod(C), we can build an inverse system, the Milnor limit of which is an object of ⊥≤0C. Moreover,

the cone of the resulting map lies in the smallest cosuspended and product-closed subcategory of

D(A) containing C, which turns out to be ⊥>0C. This argument was explained to us by Jan Št’oviček,

and it is analogous (albeit, dual) to that in the proof of [24, Theorem 1.3].

It is a well-known fact from tilting theory that cotilting classes in a module category are not always of

cofinite type, i.e. they are generally not determined by a set of compact modules (see [10]). The follow-

ing example shows that cosilting t-structures in the derived category of a ring are not always compactly

generated. Note that this example provides an answer to [17, Question 3.5].

Example 3.12. We build on [5, Example 5.4]. Let A be a commutative local ring whose maximal ideal m is

non-zero and idempotent. Then A/m is a cosilting A-module yielding a torsion pair (T ,F :=Add(A/m)) in

A-Mod. Let C be the 2-cosilting complex corresponding to the cosilting module A/m, that is, C is obtained

from A/m by passing to a suitable injective copresentation, as discussed in [5]. The associated cosilting

t-structure (⊥≤0C,⊥>0C) in D(A) arises as an HRS-tilt of the torsion pair (T ,F ). By [17, Theorem 2.3], it

follows that this t-structure is compactly generated if and only if F is the Hom-orthogonal class to a set of

finitely presented A-modules. But the latter would imply, following [5, Lemma 3.7 and Lemma 4.2], that

(T ,F ) is a hereditary torsion pair, which clearly is not the case (F is not closed under injective envelopes).

The following result is the expected dual statement of Theorem 3.5 for cosilting complexes. It can now

be obtained from Proposition 3.10 together with recent results in [16] and [28].

Theorem 3.13. The assignment sending a cosilting complex C in D(A) to its cosilting class ⊥>0C yields a
bijection between cosilting complexes up to equivalence and co-intermediate cosuspended TTF classes.

Proof. First, observe that the assignment is well-defined. Indeed, the cosilting class ⊥>0C depends only

on the equivalence class of C, since we have ⊥>0C = ⊥>0Prod(C). Moreover, it is clear that, since C is

a bounded complex of injective A-modules, there is an integer m such that D≥m ⊆ ⊥>0C. It then follows

from [28, Proposition 2.10] that cosilting classes are co-intermediate. We need to check that the t-structure

(⊥≤0C,⊥>0C) admits a right adjacent co-t-structure. For this purpose, we use [16, Corollary 3.2.6]. Recall

that every object X in D(A) can be built as a Milnor limit of its standard truncations (see [15, Remark

2.3]). Hence, it follows that the smallest colocalising subcategory of D(A) containing ⊥>0C is D(A) itself,

which is well known to satisfy Brown representability. This condition, together with the fact that the heart of

(⊥≤0C,⊥>0C) has enough injectives by Proposition 3.10, yields the existence of a right adjacent co-t-structure

by [16, Corollary 3.2.6].

Now, since every co-intermediate cosuspended TTF class satisfies the characterisation of cosilting classes

in [28, Theorem 2.17], it follows that the assignment is surjective (the arguments are dual to those in the

proof of [6, Theorem 4.6]). Finally, note that the assignment is injective, since the cosilting class determines

the cosilting complex up to equivalence. �
Finally, we can now prove the second half of our main theorem, as stated in the introduction.

Theorem 3.14. A subcategory V of D(A) is a cosilting class if and only if V is cosuspended, co-intermediate
and definable.
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Proof. By combining Proposition 3.10 with Theorem 3.13, it only remains to show that if V is cosuspended,

co-intermediate and definable, then it is a TTF class. First, it follows from [7, Proposition 4.5] that (⊥0V ,V )
is a t-structure. Moreover, since V is co-intermediate, it contains some shift of the standard coaisle (i.e.

there is some integer m such that D≥m ⊆ V ). Hence, it follows again from [16, Corollary 3.2.6], as argued

in Theorem 3.13, that (V ,V ⊥0) is a co-t-structure. �
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