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Socle
Trivial Massey operation

1. Introduction

Let (R, m, k) be a local ring and M be a finitely generated R-module. The Poincaré 
series of M ,

PR
M (z) =

∞∑
i=0

bi(M)zi,

is the generating function for the sequence of Betti numbers of M :

bi(M) = the minimal number of generators of the ith syzygy of M

= dimk TorRi (M,k).

In the 1950’s Kaplansky and Serre [23, pg. 118] asked if the Poincaré series of a local 
ring is always a rational function. Considerable study was devoted to this question, (see, 
for example, the survey articles [20,8]), before Anick [1] showed that the answer is no.

Consideration of rational and transcendental Poincaré series has only intensified since 
the appearance of Anick’s example. The example has been simplified, reworked, and 
reformulated in the language of Algebraic Topology; see the discussion following Problem 
4.3.10 in [4] for more details, including references. Roos [21] calls a local ring R good if the 
Poincaré series of all finitely generated modules over R are rational, sharing a common 
denominator. A list of applications of the hypothesis that a local ring is good may be 
found in [3].

Nonetheless, at the Introductory Workshop for the special year in Commutative Al-
gebra at the Mathematical Sciences Research Institute in 2012 Irena Peeva observed [19]
that “We do not have a feel for which of the following cases holds.

(a) Most Poincaré series are rational, and irrational Poincaré series occur rarely in spe-
cially crafted examples.

(b) Most Poincaré series are irrational, and there are some nice classes of rings (for 
example, Golod rings, complete intersections) where we have rationality.

(c) Both rational and irrational Poincaré series occur widely.

One would like to have results showing whether the Poincaré series are rational generi-
cally, or are irrational generically.”

A first answer to Peeva’s problem is made in the paper by Rossi and Şega, [22], where 
it is shown that if R is a compressed Artinian Gorenstein local ring with top socle degree 
not equal to three, then the Poincaré series of all finitely generated modules over R are 
rational, sharing a common denominator. (In particular, these rings are good, in the sense 
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of Roos.) The Rossi–Şega theorem is a complete answer to the Peeva problem for generic 
Artinian Gorenstein rings because generic Artinian Gorenstein rings are automatically 
compressed. Furthermore, it is necessary to avoid top socle degree three because Bøgvad 
[9] has given examples of compressed Artinian Gorenstein rings with top socle degree 
three which have transcendental Poincaré series.

In the present paper we carry the Rossi–Şega program further. As in the Goren-
stein case, once the relevant parameters are fixed, the set of Artinian standard-graded 
k-algebras is parameterized (now by a non-empty open subset in a chain of relative 
Grassmannians) and (when k is infinite) the points on a non-empty open subset of this 
parameter space correspond to compressed algebras. As in [22], we ignore the param-
eter space and the cardinality of k; instead, we prove that compressed local Artinian 
rings, with odd top socle degree s are also good in the sense of Roos, provided 5 ≤ s

and socle(R) ∩ ms−1 = ms. Our result then applies in the “generic case” whenever the 
“generic case” makes sense. Bøgvad’s examples also apply in our situation, so we also 
are forced to exclude top socle degree equal to three.

Our argument is inspired by the proof in [22]. The key ingredient from local algebra 
in our proof is Lemma 4.7 which can be interpreted as a statement about the structure 
of the Koszul homology algebra

H•(R⊗Q K) = TorQ• (R,k),

where Q → R is a surjection of local rings of the same embedding dimension e, (Q, n, k)
is a regular local ring, (R, m, k) is a compressed local Artinian ring, and K is the Koszul 
complex which is a minimal resolution of k by free Q-modules. When the hypotheses of 
Lemma 4.7 are in effect, then the conclusion may be interpreted to say that there is an 
element ḡ in TorQ1 (R, k) with

ḡ · TorQe−1(R,k) = TorQe (R,k).

We use this conclusion to create a Golod homomorphism from a hypersurface ring ontoR.
Our reliance on Lemma 4.7 explains the hypotheses in the main theorem about the 

shape of the socle of R. In particular, when the top socle degree of R is even, it is 
possible for a non-Golod compressed Artinian standard-graded k-algebra R to have 
Tor1 · Tore−1 = 0. (We are writing Tori in place of TorQi (R, k).) For example, if e = 4
and socle(R) is isomorphic to k(−4)2, then according to [10, Conj. 3.13 and 4.1.2], the 
Betti table for the minimal homogeneous resolution of R by free Q-modules is

0 1 2 3 4
total : 1 12 19 10 2

0 : 1 . . . .
1 : . . . . .
2 : . 12 15 . .
3 : . . 4 10 .

or
(

12 15 0
0 4 10

)
,

4 : . . . . 2
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in the language of Macaulay2 [14] or Boij [10, Notation 3.4], respectively. The numerology 
alone shows that Tor1 · Tor3 = 0, but the numerology permits Tor2 · Tor2 to be non-zero, 
and this is precisely what happens. In a similar manner, if the top socle degree of R is 
three or if (socle(R) ∩ ms−1)/ms �= 0, then the Betti tables (in the homogeneous case) 
permit too many non-zero products in Tor. Consequently, if R is compressed and the 
top socle degree of R is 3, or the top socle degree of R is even, or (socle(R) ∩ms−1)/ms

is non-zero, then our techniques are not able to determine if the Poincaré series of R is 
rational. In these cases, the question of Peeva remains wide open.

We prove that the Poincaré series of R is rational by exhibiting a Golod surjection 
from a complete intersection onto R. It is worth observing that the existence of such a 
map is an important conclusion in its own right. For example, this hypothesis is used 
in [18] in the study of the rigidity of the two-step Tate complex, in [5] in study of the 
non-vanishing of TorRi (M, N) for infinitely many i, and in [6] in the study of the structure 
of the set of semi-dualizing modules of a ring R.

Theorem 7.1 is the main result of the paper. To prove this theorem we apply 
Lemma 5.2, which is established in [22]. Lemma 5.2 is a down-to-earth criteria for prov-
ing that a given surjection of local rings is a Golod homomorphism. Massey operations 
are replaced with calculations involving TorQ• (−, k), where Q is a regular local ring.

A compressed local Artinian ring R exhibits extremal behavior. Such a ring has maxi-
mal length among all local Artinian rings with the same embedding dimension and socle 
polynomial. Extremal objects exhibit special properties and deserve extra study. Indeed, 
there are many applications of compressed rings and these rings have received much 
study. However, for thirty years, 1984 – 2014, the notion of “compressed” ring was only 
defined for rings containing a field. Finally, in 2014, Rossi and Şega [22] proved that the 
notion of “compressed local Artinian Gorenstein ring” is meaningful, interesting, and 
works just as well in the non-equicharacteristic case. Furthermore, their theorem about 
rational Poincaré series is valid in the non-equicharacteristic case.

In sections 3 and 4 we embrace the philosophy of [22] and prove that the phrase 
“compressed local Artinian ring” is meaningful whether or not the ring contains a field 
and whether or not the ring is Gorenstein. Furthermore our main theorem, Theorem 7.1, 
is valid in the context of this enlarged notion of “compressed ring”. It is worth noting that 
although we adopt the philosophy of [22], the techniques about Gorenstein compressed 
rings in [22] are not relevant in our situation. Our technique is introduced in Section 3
and the proof that the phrase “compressed local Artinian ring” is meaningful is carried 
out in Section 4. This study of compressed local Artinian rings is an important feature 
of the present paper.

Section 2 consists of preliminary matters. In Section 3 we introduce our duality 
technique for studying local Artinian rings. In Section 4 we prove that the notion of 
compressed ring is meaningful in the non-equicharacteristic case. Section 5 is concerned 
with Golod homomorphisms and the homological algebra that can be used to prove that 
a homomorphism is Golod. In Section 6 we explore the consequences of the hypothesis 
“compressed” on the homological algebra of Section 5. The proof of the main theorem 
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is given in Section 7. In Section 8 it is shown that in the situation of the main theo-
rem, R/ms is a Golod ring and the natural map R → R/ms is a Golod homomorphism; 
furthermore, the final statement continues to hold even if (socle(R) ∩ ms−1)/ms is not 
zero.

2. Notation, conventions, and preliminary results

In this paper k is always a field.

2.1. Let I be an ideal in a ring A, N be an A-module, and L and M be submodules of 
N . Then

L :I M = {x ∈ I | xM ⊆ L} and L :M I = {m ∈ M | Im ⊆ L}.

If L is the zero module, then we also use “annihilator notation” to describe these “colon 
modules”; that is,

annA M = 0 :A M and annN I = 0 :N I.

Any undecorated “:” or “ann” means :A or annA, respectively, where A is the ambient 
ring.

2.2. If I is an ideal in a ring A, N is an A-module, and L and M are submodules of N
with IL ⊆ M , then let

mult : I → HomA(L,M)

denote the homomorphism which sends the element θ of I to the homomorphism multθ
of HomA(L, M), where multθ(�) = θ� for all � in L.

2.3. “Let (R, m, k) be a local ring” identifies m as the unique maximal ideal of the com-
mutative Noetherian local ring R and k as the residue class field k = R/m.

(a) The embedding dimension of R is e = dimk(m/m2).
(b) The Hilbert function of R is the function

i 	→ hR(i) = dimk(mi/mi+1).

(c) If M is an R-module, then the socle of M is the vector space socle(M) = 0 :M m.
(d) If (R, m, k) is a local Artinian ring, then the top socle degree of R is the maximum 

integer s with ms �= 0 and the socle polynomial of R is the formal polynomial ∑s
i=0 ciz

i, where
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ci = dimk
socle(R) ∩mi

socle(R) ∩mi+1 .

Further comments about the phrase “top socle degree” may be found in Remark 2.10.
(e) If M is a finitely generated R-module, then μ(M) denotes the minimal number of 

generators of M .
(f) The parameter v(R) is defined by

v(R) = inf
{
i
∣∣∣dimk(mi/mi+1) <

((e−1)+i
i

)}
,

where e is the embedding dimension of R. (This notation is introduced in [22, 
(4.1.1)].) In particular, if (Q, n) is a regular local ring with the completion R̂ of 
R equal to Q/I with I ⊆ n2, then v(R) = max{i | I ⊆ ni}.

Remark. Let (R, m, k) be a local Artinian ring with top socle degree s and socle polyno-
mial equal to 

∑s
i=0 ciz

i. Part of the hypothesis of Theorem 7.1 is that socle(R) ∩ms−1 =
ms. This condition is equivalent to cs−1 = 0.

Observation 2.4, which follows quickly from the definition of v(R), gives an idea of 
the significance of this invariant, and is used in the proof of Lemma 4.5.

Observation 2.4. If (R, m, k) is a local Artinian ring, x1 is a minimal generator of m, 
and i is an integer with 0 ≤ i ≤ v(R) − 2, then the linear transformation

x1 : mi/mi+1 → mi+1/mi+2, (2.4.1)

which is given by multiplication by x1, is an injection. In particular,

(mj : m) = mj−1, for 1 ≤ j ≤ v(R),

and socle(R) ⊆ mv(R)−1.

Proof. Extend the set {x1} to be a minimal generating set x1, x2, . . . , xe for m. If d is 
an arbitrary non-negative integer, then the set of monomials in x1, . . . , xe of degree d
represents a generating set for md/md+1. If d < v(R), then the number of monomials 
in this set is equal to the dimension of the vector space md/md+1 and hence this set 
of monomials is a basis for the vector space. The index i satisfies i + 1 < v(R); conse-
quently, the linear transformation (2.4.1) carries a basis of mi/mi+1 to part of a basis of 
mi+1/mi+2; and therefore, this linear transformation is an injection. �
Definition 2.5. Let (R, m, k) be a local Artinian ring of embedding dimension e, top socle 
degree s, and socle polynomial 

∑s
i=0 ciz

i. If the Hilbert function of R is given by
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dimk(mi/mi+1) = min
{((e−1)+i

i

)
,

s∑
�=i

c�
((e−1)+(�−i)

�−i

)}
, for 0 ≤ i ≤ s,

then R is called a compressed local Artinian ring.

Alternate definitions of “compressed local Artinian ring” are given in Theorem 4.4
and Remark 4.4.2.

2.6. If S is a ring and M is an S-module, then let λS(M) denote the length of M as an 
S-module.

2.7. Let k be a field. A graded ring R =
⊕

0≤i Ri is called a standard-graded k-algebra, 
if R0 = k, R is generated as an R0-algebra by R1, and R1 is finitely generated as an 
R0-module.

2.8. If M is a module over a local ring (R, m, k), then

Mg =
∞⊕
i=0

miM/mi+1M and Rg =
∞⊕
i=0

mi/mi+1

are the associated graded objects with respect the maximal ideal: Rg is a standard graded 
k-algebra and Mg is a graded R-module.

2.9. If V is a graded vector space over the field k with Vi finite dimensional for all i and 
Vi = 0 for all sufficiently small i, then the formal Laurent series

HSV (z) =
∑
i

dimk(Vi) zi

is called the Hilbert series of V .

Remark 2.10. Let (R, m, k) be a local Artinian ring. There are various reasons that the 
expression “top socle degree”, which is introduced in 2.3.(d), is appropriate.

(a) This is the expression that Iarrobino used when he defined the notion of compressed 
algebra in [16, Def. 2.2].

(b) The top socle degree of R is the degree of the socle polynomial of R.
(c) The Hilbert series of the associated graded ring Rg of R is a polynomial of degree

equal to the top socle degree of R.
(d) The top socle degree of R is the top degree of the associated graded ring Rg.

The following calculation is used in the proof of Lemma 6.3.

Remark 2.11. If k is an infinite field, (Q, n, k) is a regular local ring of embedding di-
mension e, t is an integer, and h0 is an element of nt \ nt+1, then there exists a minimal 
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generating set X1, . . . , Xe for n such that h0 − uXt
1 is in the ideal (X2, . . . , Xe)nt−1, for 

some unit u in Q. In particular, there is a generator h for the ideal (h0) of Q such that 
h −Xt

1 ∈ (X2, . . . , Xe)nt−1.

Outline of proof. The ideal nt+1 is contained in (Xt+1
1 ) +(X2, . . . , Xe)nt−1; so, it suffices 

to show that h0 − uXt
1 is in the ideal (X2, . . . , Xe)nt−1 + nt+1. To that end, we pass to 

the associated graded ring Qg. If h0 is a non-zero homogeneous form of degree t in 
k[X1, . . . , Xe], where k is an infinite field, then, there exists a homogeneous change of 
variables

X1 	→ x1, and Xi 	→ aix1 + xi, for 2 ≤ i ≤ e,

such that, in the new variables, h0 = uxt
1 + g, where g is a homogeneous form of degree 

t in the ideal (x2, . . . , xe) and u is a unit. The proof is clear. Start with

h0 =
∑

j1+···+je=t

Aj1,...,jeX
j1
1 · · ·Xje

e .

After the change of variables h0 = h0(1, a2, . . . , ae)xt
1 + g, where g is a homogeneous 

form of degree t in the ideal (x2, . . . , xe). The field k is infinite; so, there exists a point 
(a2, . . . , ae) in affine e − 1 space with h0(1, a2, . . . , ae) �= 0. �
2.12. If P =

⊕
i Pi is a graded ring, and A =

⊕
i Ai and B =

⊕
i Bi are graded 

P -modules, then the module TorP• (A, B) is a bi-graded P -module. Indeed, if

Y : · · · → Y1 → Y0 → A

is a resolution of A by free P -modules, homogeneous of degree zero, then

TorPp,q(A,B) = ker[(Yp ⊗B)q → (Yp−1 ⊗B)q]
im[(Yp+1 ⊗B)q → (Yp ⊗B)q]

.

2.13. If Y is a complex, then we use Zi(Y), Bi(Y), and Hi(Y) to represent the modules 
of i-cycles, i-boundaries, and ith-homology of Y, respectively. So, in particular, Hi(Y) =
Zi(Y)/Bi(Y).

2.14. Let (R, m, k) be a local ring of embedding dimension e. The ring R is Golod if

PR
k (z) = (1 + z)e

1 −
∑e

j=1 dimk Hj(KR)zj+1 ,

where KR is the Koszul complex on a minimal set of generators of m.
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3. Homomorphisms from a power of the maximal ideal to the socle

In order to study compressed rings, one must have an appropriate duality theory. 
Partial derivatives provide the duality for Iarrobino [16]. Fröberg and Laksov [13] and 
Boij and Laksov [11] pick a vector space V in the polynomial ring k[x1, . . . , xe] and 
use colon ideals to define an ideal I in the polynomial ring with the property that the 
corresponding quotient ring has socle V . The colon ideals provide the duality in these 
cases. Rossi and Şega [22] work in a Gorenstein ring and use Gorenstein duality directly. 
Duality for us is supplied by homomorphisms from a power of the maximum ideal to the 
socle.

Let (R, m, k) be a local Artinian ring with top socle degree s. If j and k are integers 
with 0 ≤ j, 1 ≤ k, and j + k ≤ s + 1, then the R-module homomorphism

mult : mj ∩ (0 : mk) → HomR

(
mk−1, socle(R) ∩mj+k−1)

of 2.2 induces an injective R-module homomorphism

mj ∩ (0 : mk)
mj ∩ (0 : mk−1) → HomR

(
mk−1

mk
, socle(R) ∩mj+k−1

)
, (3.0.1)

which we also call mult. The injections of (3.0.1) are our main tool for studying com-
pressed rings. The remarkable feature of these injections is that if one of them is a 
surjection, and all other conditions are favorable, then a whole family of these injections 
are surjections. Recall the invariant v(R) from 2.3.(f).

Lemma 3.1. Let (R, m, k) be a local Artinian ring with embedding dimension e and top 
socle degree s, and let A and B be non-negative integers with 0 ≤ A + B ≤ s. Assume 
that

(a) B ≤ v(R) − 1, and
(b) mult : mA ∩ (0 : mB+1) → HomR(mB , socle(R) ∩mA+B) is surjective.

Then

mult : mA+ε ∩ (0 : mB+1−ε) → HomR(mB−ε, socle(R) ∩mA+B) (3.1.1)

is surjective for all integers ε with 0 ≤ ε ≤ min{B, s −A}.

Proof. The proof may be iterated; consequently, it suffices to prove the result for ε
equal to 1. Let x1, . . . , xe be a minimal generating set for m. For each integer i, let (
x1,...,xe

i

)
be the set of monomials of degree i in x1, . . . , xe. View 

(
x1,...,xe

i

)
as a subset of 

R. Hypothesis (a) guarantees that 
(
x1,...,xe

i

)
represents a basis for mi/mi+1 for all i with 

0 ≤ i ≤ B. Let c = dimk(socle(R) ∩mA+B) and σ1, . . . , σc be a basis for socle(R) ∩mA+B. 
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If i ∈ {B − 1, B}, m ∈
(
x1,...,xe

B

)
, and γ is an integer with 1 ≤ γ ≤ c, then the R-module 

homomorphism φm,γ , which is defined by

φm,γ(m′) = δm,m′ · σγ , for m′ ∈
(
x1,...,xe

i

)
,

is an element of

HomR(mi, socle(R) ∩mA+B) ∼= HomR(mi/mi+1, socle(R) ∩mA+B);

furthermore,

{φm,γ | m ∈
(
x1,...,xe

i

)
and 1 ≤ γ ≤ c}

is a basis for the vector space HomR(mi, socle(R) ∩mA+B). In this discussion, “δ” is the 
Kronecker delta; that is,

δm,m′ =
{

1, if m = m′,
0, otherwise.

Fix a monomial m0 ∈
(
x1,...,xe

B−1
)

and an index γ with 1 ≤ γ ≤ c. We complete the 
proof by showing that the basis element φm0,γ of HomR(mB−1, socle(R) ∩ mA+B) is 
in the image of (3.1.1) when ε = 1. Observe that x1m0 ∈

(
x1,...,xe

B

)
and φx1m0,γ is 

in HomR(mB , socle(R) ∩ mA+B). The hypothesis guarantees that there is an element 
θ ∈ mA ∩ (0 : mB+1), with multθ = φx1m0,γ . Observe that

x1θ ∈ mA+1 ∩ (0 : mB) and multx1θ ∈ HomR(mB−1, socle(R) ∩mA+B)

with multx1θ = φm0,γ . Indeed,

multx1θ(m) = mx1θ = δmx1,m0x1 · σγ = δm,m0 · σγ = φm0,γ(m)

for all m ∈
(
x1,...,xe

B−1
)
. �

4. Compressed local Artinian rings

A compressed local Artinian ring has maximal length among all local Artinian rings 
with the same embedding dimension and socle polynomial. Compressed algebras were 
introduced by Iarrobino [16]. Fröberg and Laksov [13] offer an alternate discussion, es-
sentially from the dual point of view. Traditionally, the concept “compressed” was only 
defined for equicharacteristic rings. However, the equicharacteristic hypothesis is irrele-
vant and the proof of our main theorem (Theorem 7.1) holds for arbitrary compressed 
local Artinian rings.
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There are two themes in this section. In Theorem 4.1 and Remark 4.2 we explain the 
sense in which generic standard-graded Artinian algebras over a field are compressed. A 
short, self-contained, and direct proof of Theorem 4.1 may be found in [11].

In Theorem 4.4 and Corollary 4.5 we justify the first sentence of the present section 
and we describe the annihilator of each large power of the maximal ideal of R when R
is a compressed local Artinian ring. This information is used heavily in the proofs of 
Corollary 4.6 and Lemma 4.7. Lemma 4.7 is the key result from local algebra that is 
used in the second half of the paper about Poincaré series.

Theorem 4.1. [11, 3.4] Let k be an infinite field, (e, s, c) be integers with 2 ≤ e and

1 ≤ c <
(
e+s−1

s

)
,

Q be a standard-graded polynomial ring over k of embedding dimension e, G be the 
Grassmannian of subspaces of Qs of codimension c, and L be the set of homogeneous 
ideals I of Q such that Q/I is a standard-graded Artinian k-algebra with socle polynomial 
czs. Then the following statements hold.

(a) The set G parameterizes L.
(b) If V is in G, then the corresponding ideal I in L is generated by

s∑
i=1

(V :Qi
Qs−i).

(c) If I is in L, then the corresponding element of G is Is.
(d) There is a non-empty open subset of G for which the corresponding quotient Q/I is 

compressed.

Remark 4.2. Let k be an infinite field. It is shown in Section 7 of [13], especially Theorem 
14, that generic standard-graded Artinian k-algebras are compressed for all legal socle 
polynomials. (Theorem 4.1 deals only with socle polynomials of the form czs.) The exact 
details of the result in [13] are similar to, but more complicated than, the details of 
Theorem 4.1. There is no need to record the details of the statement of [13] in the 
present paper. The extra complication arises because

(a) the set of legal socle polynomials is more complicated than

{czs | 1 ≤ c <
(
e+s−1

s

)
},

and
(b) the parameterization space for the set of all Artinian k-algebras with a given embed-

ding dimension and socle polynomial is more complicated than the Grassmannian 
of all subspaces of codimension c in a vector space of dimension 

(
e+s−1).
s
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We turn to the second theme in this section which is the notion of compressed local 
Artinian rings which are not necessarily equicharacteristic. Proposition 4.3 is a very im-
portant step in the proof of Theorem 4.4. Ultimately, we use Proposition 4.3 to connect 
the numerical information given in the definition of compressed rings to the homomor-
phisms “mult” of Section 3.

Proposition 4.3. Let (R, m, k) be an Artinian local ring with embedding dimension e, top 
socle degree s, and socle polynomial 

∑s
i=0 ciz

i. If j is an arbitrary integer, with 0 ≤ j ≤ s, 
then

λR(mj) ≤
s∑

�=j

c�

(
e + �− j

�− j

)
.

Proof. Observe that

0 =
(
mj ∩ (0 : m0)

)
⊆

(
mj ∩ (0 : m1)

)
⊆

(
mj ∩ (0 : m2)

)
⊆ · · · (4.3.1)

· · · ⊆
(
mj ∩ (0 : ms−j−1)

)
⊆

(
mj ∩ (0 : ms−j)

)
⊆

(
mj ∩ (0 : ms−j+1)

)
= mj

is a filtration of mj . The proof is obtained by exhibiting an injection from each factor of 
filtration (4.3.1) into a vector space whose dimension is easy to approximate.

If k is an integer with 1 ≤ k ≤ s + 1 − j, then the R-module injection mult of (3.0.1)
yields

λR

(
mj ∩ (0 : mk)

mj ∩ (0 : mk−1)

)
≤

(
dimk

(
mk−1

mk

))(
dimk(socle(R) ∩mj+k−1)

)
.

Recall that

dimk

(
mk−1

mk

)
≤

(
(e− 1) + (k − 1)

k − 1

)
, (4.3.2)

because mk−1 is generated by the set of monomials of degree k − 1 in any minimal 
generating set of m, and

dimk(socle(R) ∩mj+k−1) =
s∑

�=j+k−1

c�,

by the definition of socle polynomial. Thus,

λR

(
mj ∩ (0 : mk)

mj ∩ (0 : mk−1)

)
≤

s∑
�=j+k−1

c�

(
(e− 1) + (k − 1)

k − 1

)
, (4.3.3)



A.R. Kustin et al. / Journal of Algebra 505 (2018) 383–419 395
for 0 ≤ j ≤ s and 1 ≤ k ≤ s − j + 1. Combine (4.3.1) and (4.3.3) to obtain

λR(mj) ≤
s−j+1∑
k=1

s∑
�=j+k−1

c�

(
(e− 1) + (k − 1)

k − 1

)
.

Let K = k + j − 1; reverse the order of summation; let α = K − j; and recall the 
relationship between the number of monomials of degree at most � − j in e variables and 
the number of monomials of degree equal to � − j in e + 1 variables to conclude

λR(mj) ≤
s∑

K=j

s∑
�=K

c�

(
(e− 1) + (K − j)

K − j

)
(4.3.4)

=
s∑

�=j

c�

�∑
K=j

(
(e− 1) + (K − j)

K − j

)

=
s∑

�=j

c�

�−j∑
α=0

(
(e− 1) + α

α

)
=

s∑
�=j

c�

(
e + �− j

�− j

)
. �

In Theorem 4.4 we justify the claim that a compressed local Artinian ring has maximal 
length among all local Artinian rings with the same embedding dimension and socle 
polynomial. The proof of Theorem 4.4 contains a wealth of information. We mine this 
information throughout the rest of the section.

Theorem 4.4. Let (R, m, k) be a local Artinian ring with embedding dimension e, top 
socle degree s, and socle polynomial 

∑s
i=0 ciz

i. Then the following statements hold.

(a) The length of R satisfies

λR(R) ≤
s∑

i=0
min

{((e−1)+i
i

)
,

s∑
�=i

c�
((e−1)+(�−i)

�−i

)}
. (4.4.1)

(b) Equality holds in (4.4.1) if and only if R is a compressed local Artinian ring in the 
sense of Definition 2.5.

(c) If R is a compressed local Artinian ring, then the parameter v(R) from 2.3.(f) sat-
isfies s ≤ 2v(R) − 1.

Remark 4.4.2. Equation (4.4.6), the proof of assertion (c), and the identity

v(R)−1∑
i=0

((e−1)+i
i

)
=

(
e+v(R)−1
v(R)−1

)

show that an alternate version of (4.4.1) is given by
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λR(R) ≤
(
e + v(R) − 1
v(R) − 1

)
+

s∑
�=v(R)

c�

(
e + �− v(R)
�− v(R)

)
. (4.4.3)

Once the proof of Theorem 4.4 is complete, then we know that a local Artinian ring R is 
compressed if and only if equality holds in (4.4.3). This observation provides an effective 
method for testing if a ring is compressed.

Proof. Define t to be the integer

t = min
{
i
∣∣∣ s∑
�=i

c�
((e−1)+(�−i)

�−i

)
<

((e−1)+i
i

)}
. (4.4.4)

Observe that

((e−1)+i
i

)
≤

s∑
�=i

c�
((e−1)+(�−i)

�−i

)
, for 0 ≤ i ≤ t− 1, and

s∑
�=i

c�
((e−1)+(�−i)

�−i

)
<

((e−1)+i
i

)
, for t ≤ i ≤ s; (4.4.5)

hence, the inequality (4.4.1) may be re-written as

λR(R) ≤
t−1∑
i=0

((e−1)+i
i

)
+

s∑
i=t

s∑
�=i

c�
((e−1)+(�−i)

�−i

)
.

Reverse the order of summation, let α = � − i, and count the number of monomials of 
degree at most � − t in e variables to see that

s∑
i=t

s∑
�=i

c�

(
(e− 1) + (�− i)

�− i

)
=

s∑
�=t

c�

�∑
i=t

(
(e− 1) + (�− i)

�− i

)

=
s∑

�=t

c�

�−t∑
α=0

(
(e− 1) + α

α

)
=

s∑
�=t

c�

(
e + �− t

�− t

)
;

and therefore, the inequality (4.4.1) is equivalent to

λR(R) ≤
t−1∑
i=0

((e−1)+i
i

)
+

s∑
�=t

c�
(
e+�−t
�−t

)
. (4.4.6)

On the other hand, the inequality (4.4.6) does indeed hold, because

λR(R) =
t−1∑
i=0

λR(mi/mi+1) + λR(mt);

λR(mi/mi+1) ≤
(

(e− 1) + i
)
, (4.4.7)
i



A.R. Kustin et al. / Journal of Algebra 505 (2018) 383–419 397
as described at (4.3.2); and Proposition 4.3 guarantees that

λR(mt) ≤
s∑

�=t

c�

(
e + �− t

�− t

)
. (4.4.8)

This completes the proof of (a).

The parameter cs is at least 1; so, one consequence of the inequality (4.4.5), when 
i = t, is

((e−1)+s−t
s−t

)
≤ cs

((e−1)+s−t
s−t

)
≤

s∑
�=t

c�
((e−1)+(�−t)

�−t

)
<

((e−1)+t
t

)
.

The binomial coefficient 
(
e−1+i

i

)
counts the number of monomials of degree i in a poly-

nomial ring with e variables; therefore, the most recent inequality forces s − t < t; and 
therefore,

s ≤ 2t− 1. (4.4.9)

(b) It is clear that if R is a compressed local Artinian ring in the sense of Definition 2.5, 
then equality holds in (4.4.1).

Henceforth, in this proof, we assume that equality holds in (4.4.1). We first prove that 
R is a compressed local Artinian ring in the sense of Definition 2.5; that is, we prove 
that

dimk(mi/mi+1) =

⎧⎨
⎩
(
e−1+i

i

)
, if 0 ≤ i ≤ t− 1, and

s∑
�=i

c�
((e−1)+(�−i)

�−i

)
, if t ≤ i ≤ s.

(4.4.10)

The inequality (4.4.6) is equivalent to (4.4.1); hence equality holds in (4.4.6) and in 
all of the intermediary inequalities that lead to (4.4.6). In particular,

λR(R) =
t−1∑
i=0

((e−1)+i
i

)
+

s∑
�=t

c�
(
e+�−t
�−t

)
and (4.4.11)

dimk(mi/mi+1) =
(
e−1+i

i

)
, for 0 ≤ i ≤ t− 1, (4.4.12)

follow from (4.4.7), and

λR(mt) =
s∑

�=t

c�

(
e + �− t

�− t

)
(4.4.13)

follows from (4.4.8). The equality (4.4.13) forces equality to hold in (4.3.4) when j = t; 
hence equality holds in (4.3.3) when j = t; and therefore, the injections of (3.0.1) are 
isomorphisms when j = t and 1 ≤ k ≤ s + 1 − t.
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We apply Lemma 3.1 to each pair (A, B) with A = t and 0 ≤ B ≤ s − t. Recall from 
(4.4.9) that s − t ≤ t − 1; hence (4.4.12) ensures that hypothesis (a) of Lemma 3.1 is 
in effect. The isomorphisms of (3.0.1), for j = t, ensure that hypothesis (b) is in effect. 
Conclude that

mult : mj ∩ (0 : mk) → HomR(mk−1, socle(R) ∩mj+k−1) (4.4.14)

is surjective for all j, k with

t ≤ j ≤ s and 1 ≤ k ≤ s− j + 1. (4.4.15)

Therefore, the injections of (3.0.1) are isomorphisms and equality holds in (4.3.3) when 
j and k satisfy (4.4.15); that is,

mult : mj ∩ (0 : mk)
mj ∩ (0 : mk−1)

∼=−−→ HomR

(
mk−1

mk
, socle(R) ∩mj+k−1

)
(4.4.16)

for t ≤ j ≤ s and 1 ≤ k ≤ s− j + 1.

Furthermore, equality holds in (4.3.4) for t ≤ j ≤ s. In particular,

dimk m
j/mj+1 =

s∑
�=j

c�

(
e + �− j

�− j

)
−

s∑
�=j+1

c�

(
e + �− j − 1
�− j − 1

)

=
s∑

�=j

c�

(
e + �− j − 1

�− j

)
, (4.4.17)

for t ≤ j ≤ s. Combine (4.4.12) and (4.4.17) to see that (4.4.10) holds. This completes 
the proof of (b).

(c) The inequalities of (4.4.5) and (4.4.9) hold because of the definition of t which is 
given in (4.4.4). We assume equality holds in (4.4.1); so (4.4.10) holds. We conclude that 
t = v(R) and s ≤ 2v(R) − 1. �

In Corollary 4.5 we describe the annihilator of each large power of the maximal ideal 
of R, when R is a compressed local Artinian ring. This information is used heavily in 
the proofs of Corollary 4.6 and Lemma 4.7.

Corollary 4.5. If (R, m, k) is a compressed local Artinian ring with top socle degree s, 
then the following statements hold.

(a) If v(R) ≤ j ≤ s, then (0 : mj) = ms−j+1.
(b) If 1 ≤ j ≤ s + 1, then mj : m = mj−1 + socle(R).
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(c) If R is also a level ring (that is, if socle(R) = ms), then

(0 : mj) = ms−j+1 for 0 ≤ j ≤ s + 1.

Proof. The ring R is compressed, local, and Artinian; consequently, R satisfies all of the 
statements in the proof of Theorem 4.4 and, according to Theorem 4.4.(c), the parameter 
v(R) is equal to the “t” of (4.4.4).

(a) Apply (4.4.14) with t ≤ j ≤ s and k = s − j + 1 to see that

mult : mj → HomR

(
ms−j

ms−j+1 ,m
s

)

is a surjection. It follows that

ms−j ∩ (0 : mj)
ms−j+1 ⊆

⋂
ker f = 0,

as f roams over HomR

(
m

s−j

ms−j+1 ,m
s
)
. The final equality is a statement about homomor-

phisms of vector spaces. Thus,

ms−j ∩ (0 : mj) ⊆ ms−j+1;

hence,

ms−j+1 ⊆ ms−j ∩ (0 : mj) ⊆ ms−j+1 and

t ≤ j ≤ s =⇒ ms−j ∩ (0 : mj) = ms−j+1. (4.5.1)

Apply descending induction on j to see that

t ≤ j ≤ s =⇒ (0 : mj) = ms−j+1. (4.5.2)

Indeed, (4.5.2) holds when j = s. Assume that (4.5.2) holds when j + 1. We prove that 
(4.5.2) holds when j. Observe that

(0 : mj) ⊆ (0 : mj+1) = ms−j . (4.5.3)

(The final equality is due to the induction hypothesis.) Thus,

(0 : mj) = (0 : mj) ∩ms−j = ms−j+1.

The equality on the left is due to (4.5.3) and the equality on the right is due to (4.5.1).
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(b) We saw in Observation 2.4 that

(mj : m) = mj−1 = mj−1 + socle(R),

for 1 ≤ j ≤ v(R). Also, the assertion of (b) is obvious at j = s + 1. The parameter v(R)
continues to equal to the “t” of (4.4.4). We prove that if t + 1 ≤ j ≤ s, then

mj : m = mj−1 + socle(R).

It suffices to prove the inclusion “⊆”. To do this, it suffices to prove the following claim.

Claim. If 2 ≤ a ≤ s − j + 2 and θ ∈ (mj : m) ∩ (0 : ma), then there exists an element θ′
in mj−1 ∩ (0 : ma) with θ − θ′ ∈ (0 : ma−1).

We prove the claim. Observe that multiplication by θ is an element of

HomR(ma−1/ma, socle(R) ∩ma+j−2).

Of course, we know from (4.4.16), that there is an element θ′ ∈ mj−1 ∩ (0 : ma) with 
multiplication by θ′ equal to multiplication by θ on ma−1.

(c) One direction of assertion (c) is obvious. We prove the other direction. The special 
hypothesis socle(R) = ms of (c) guarantees that socle(R) ⊆ ma for 0 ≤ a ≤ s; and 
therefore, under this special hypothesis, assertion (b) becomes

1 ≤ j ≤ s + 1 =⇒ mj : m = mj−1. (4.5.4)

Fix an element x in R and an integer i with 0 ≤ i ≤ s and xmi = 0. We use descending 
induction to prove that

0 ≤ a ≤ i =⇒ xma ⊆ ms+a+1−i. (4.5.5)

It is clear that (4.5.5) holds at a = i. Suppose 1 ≤ a ≤ i and (4.5.5) holds at a. Then

xma−1 ⊆ (ms+a+1−i : m) = ms+a−i.

(Use the induction hypothesis (4.5.5) for the inclusion and (4.5.4) for the equality.) Thus 
(4.5.5) holds at a = i − 1 and the induction is complete. Apply (4.5.5) at a = 0 to see 
that x ∈ ms+1−i. �

Associated graded objects are discussed in 2.8. The following result is shown by Iar-
robino [16, Cor. 3.8] in the equicharacteristic case. This result is confirmation that 
Definition 2.5 (or equivalently, equality in (4.4.1), or equivalently, equality in (4.4.3)) 
is the correct intrinsic definition of a compressed local Artinian ring.
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Corollary 4.6. Let (R, m, k) be a local Artinian ring. Then R is a compressed ring if and 
only if the associated graded ring Rg is a compressed ring and R and Rg have the same 
socle polynomial.

Proof. (⇐) This direction is obvious. Indeed, the Hilbert function of R is always equal 
to the Hilbert function of Rg and the hypothesis asserts that the relationship of Defini-
tion 2.5 holds between hRg and the socle polynomial of Rg.

(⇒) As described above, it suffices to show R and Rg have the same socle polynomial. 
The isomorphism theorem I/(I ∩ J) ∼= (I + J)/J ensures that

socle(R) ∩mi

socle(R) ∩mi+1
∼= (socle(R) ∩mi) + mi+1

mi+1 ;

hence the socle polynomial R, defined in 2.3.(d), is also equal to

s∑
i=0

dimk
(socle(R) ∩mi) + mi+1

mi+1 zi,

where s is the top socle degree of R. On the other hand, the socle polynomial of the 
graded local ring Rg is

s∑
i=0

dimk
mi ∩ (mi+2 : m)

mi+1 zi.

The ring R is compressed; hence Corollary 4.5.(b) guarantees that

mj : m = mj−1 + socle(R) for 1 ≤ j ≤ s

and the two socle polynomials are equal. �
The statement of the main result, Theorem 7.1, depends on the relationship between 

s and the invariant v(R). Recall from Theorem 4.4.(c) that s ≤ 2v(R) − 1. We show 
in Observation 5.6 that the critical situation is s = 2v(R) − 1. The first step in the 
critical situation is taken in Lemma 4.7. This step is the main ingredient in the proof of 
Lemma 6.3.

Lemma 4.7. Let (R, m, k) be a compressed local Artinian ring with embedding dimension 
e and top socle degree s. Assume that s is odd and that s = 2v(R) − 1. Decompose the 
maximal ideal m as the sum of two subideals m = (x1) +m′ with x1 a minimal generator 
of m and μ(m′) = e − 1. Then

x
s−1
2

1 [annR(m′) ∩m
s+1
2 ] = ms.
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Proof. Let t denote v(R), which by hypothesis is equal to (s + 1)/2. It is clear that

xt−1
1 [annR(m′) ∩mt] ⊆ ms.

For the other direction, let σ be an element of ms. We will construct an element Θ of 
annR(m′) ∩mt such that xt−1

1 Θ = σ. We build Θ as θ0 + · · · + θt−2, where, for each i,

⎧⎪⎪⎨
⎪⎪⎩
θi ∈ mt ∩ (0 : mt−i),
(θ0 + · · · + θi)xt−1

1 = σ, and
(θ0 + · · · + θi)m′mt−i−2 = 0.

(4.7.1)

We first build θ0. Consider the homomorphism

φ0 ∈ HomR(mt−1/mt, socle(R) ∩ms),

which is given by

φ0(m′mt−2) = 0 and φ0(xt−1
1 ) = σ.

(Keep in mind that mt−1/mt and m′mt−2 ⊕ kxt−1
1 are isomorphic as R-modules. At 

this point ¯ means mod mt.) Apply (4.4.16), with j = k = t to obtain an element 
θ0 ∈ mt ∩ ann(mt) with xt−1

1 θ0 = σ and θ0m
′mt−2 = 0.

Suppose 0 ≤ i ≤ t −3 and elements θ0, . . . θi, which satisfy (4.7.1), have been identified. 
We now build θi+1. Consider the homomorphism

φi+1 ∈ HomR(mt−i−2/mt−i−1, socle(R) ∩ms−i−1),

which is given by

φi+1(ū) = −(θ0 + · · · + θi)u, for u ∈ m′mt−i−3, and φi+1(xt−i−2
1 ) = 0.

(At this point ¯ means mod mt−i−1. We have taken advantage of a direct sum decompo-
sition of mt−i−2/mt−i−1 to define φi+1. The image of φi+1 is contained in the socle of R
because of the properties of the earlier θ’s as described in (4.7.1).) Apply (4.4.16), with 
j = t and k = t − i − 1 to obtain an element

⎧⎪⎪⎨
⎪⎪⎩
θi+1 ∈ mt ∩ annmt−i−1 with
(θ0 + · · · + θi+1)xt−1

1 = σ and
(θ0 + · · · + θi+1)(m′mt−i−3) = 0.

Iterate this procedure to find θt−2 and thereby complete the proof. �
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5. Golod homomorphisms

In this paper we exhibit a Golod homomorphism from a complete intersection onto 
a compressed local Artinian ring R and then use facts about Golod homomorphisms to 
draw conclusions about the Poincaré series of R-modules. The present section is mainly 
concerned with techniques from homological algebra that can be used to prove that 
a homomorphism is Golod. The hypothesis “compressed” is not used anywhere in the 
present section.

There are numerous definitions of Golod homomorphism (see for example [2]); we give 
the version involving trivial Massey operations, found, for example, in [15]. In Lemma 5.2
we record a result from [22] which shows how to use homological algebra to prove that 
trivial Massey operations exist. Most of the section is about homological algebra. Indeed, 
in Lemmas 5.4 and 5.5 we prove that various maps of Tor are zero. Lemma 5.5 is used 
in Observation 5.6 to show that if the top socle degree of a local Artinian ring R is 
small compared to the invariant v(R) of 2.3.(f), then R is a Golod ring. Lemmas 5.8 and 
5.9 are a short study of the effect on Tor associated to taking a hypersurface section. 
The section concludes with Theorem 5.10 which is a well-known result that exhibits the 
common denominator for all Poincaré series PR

M (z) when there is a Golod homomorphism 
from a local hypersurface ring onto R and M roams over all finitely generated R-modules.

Definition 5.1. [15] (see also, [22, 1.1]) Let κ : (P, p, k) → (R, m, k) be a surjective ho-
momorphism of local rings and D be an associative, graded-commutative, Differential 
Graded (DG) algebra with divided powers, which is also a homogeneous minimal resolu-
tion of k by free P -modules. Let (A, ∂) denote D ⊗P R. If x is a homogeneous element in 
A�, then let |x| denote the degree � of x and x̄ denote (−1)|x|+1x. Let h = {hi}i≥1 be a 
homogeneous basis of the graded k-vector space H≥1(A). The homomorphism κ : P → R

is Golod if there is a function μ : �∞
n=1 hn → A which satisfies:

(a) μ(h) is a cycle in the homology class of h for each h ∈ h,
(b) ∂μ(h1, . . . , hn) =

∑n−1
i=1 μ(h1, . . . , hi)μ(hi+1, . . . , hn) for each n with 2 ≤ n, and

(c) μ(hn) ⊆ mA for each positive n.

Lemma 5.2 is our main tool for proving that a homomorphism is Golod.

Lemma 5.2. [22, Lem. 1.2] Let κ : (P, p, k) → (R, m, k) be a surjective homomorphism 
of local rings. If there exists a positive integer a such that:

(a) the map TorPi (R, k) → TorPi (R/ma, k), induced by the canonical quotient map R →
R/ma, is zero for all positive i, and

(b) the map TorPi (m2a, k) → TorPi (ma, k), induced by the inclusion m2a ⊆ ma, is zero 
for all non-negative integers i,

then κ is a Golod homomorphism.
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It is convenient to name the following family of maps of Tor.

Definition 5.3. [22, 1.3.1] If M is a module over the local ring (R, m, k), then let νRi (M)
represent the R-module homomorphism

νRi (M) : TorRi (mM,k) → TorRi (M,k),

which is induced by the inclusion mM ⊆ M .

We use Lemma 5.4 to calculate νi. Associated graded objects are discussed in 2.8.

Lemma 5.4. Let (Q, n, k) be a regular local ring, (R, m, k) be the local ring R = Q/I

for some ideal I of Q, and i and � be two integers. If TorQ
g

i,j (Rg, k) = 0 for all j with 
� + 1 + i ≤ j, then the map

νQi (m�) : TorQi (m�+1,k) → TorQi (m�,k)

is identically zero.

Proof. Let KR denote the Koszul complex over R on a minimal generating set x1, . . . ,
xe of m. We identify νQi (m�) with the map Hi(m�+1KR) → Hi(m�KR) induced by the 
inclusion

m�+1KR ⊆ m�KR.

Let Z denote the module of cycles in degree i of m�+1KR and B denote the module of 
boundaries of degree i in m�KR. Note that B ⊆ Z. To show that νQi (m�) is zero, we need 
to show that Z ⊆ B. We will show that Z ⊆ B + mjKR

i for all j with � + 2 ≤ j.
For each j, let x∗

j denote the image the element xj in m/m2 = (Rg)1. Let L denote 
the graded Koszul complex over Rg on x∗

1, . . . , x
∗
e. When writing Lp,q, the index p stands 

for the homological degree and the index q for the internal degree. Note that L can be 
thought of as the associated graded complex of KR, with respect to the standard m-adic 
filtration of KR. In particular, Lp = ((KR

p )g)(−p) for each p, and the differential dL of 
L is induced from the differential dKR of KR as follows: If y ∈ mqKR

p and y∗ is the 
image of y in mqKR

p /mq+1KR
p = Lp,p+q, then dL(y∗) is equal to the image of dKR(y) in 

mq+1KR
p−1/m

q+2KR
p−1 = Lp−1,p+q. We identify TorQ

g
(Rg, k) with the homology of the 

complex L.
Fix an integer p with � + 1 ≤ p and let z ∈ Z ∩mpKR

i . In particular, dKR(z) = 0. We 
consider z∗ to be the image of z in mpKR

i /mp+1KR
i = Li,p+i and note that dL(z∗) = 0

because dKR(z) = 0. The hypothesis that TorQ
g

i,p+i(Rg, k) = 0 implies that z∗ = dL(y∗)
where y∗ ∈ mp−1KR

i+1/m
pKR

i+1 = Li+1,p+i is the image of an element y ∈ mp−1KR
i+1. It 

follows that z − dKR(y) ∈ mp+1KR
i , and we conclude that z ∈ B + mp+1KR

i . It follows 
that
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Z ∩mpKR
i ⊆ Z ∩ (B + mp+1KR

i ) = B + Z ∩mp+1KR
i . (5.4.1)

Since Z = Z ∩m�+1KR
i , we conclude inductively, using (5.4.1), that Z ⊆ B +mjKR

i for 
all j with � + 2 ≤ j, hence Z ⊆ B by the Krull intersection Theorem. �

Lemma 5.5 is a straightforward consequence of Lemma 5.4 and also appears as [22, 
1.4]. This result is used in the proof of Observation 5.6; furthermore, a consequence of 
Lemma 5.5 is restated as 7.2.1.

Lemma 5.5. [22, 1.4] Let (Q, n, k) be a regular local ring and (R, m, k) be the local ring 
R = Q/I for some ideal I of Q. Then the maps

TorQi (R/m�+1,k) → TorQi (R/m�,k) (5.5.1)

and

TorQi (R,k) → TorQi (R/m�,k), (5.5.2)

are each the zero map for all (i, �) with 1 ≤ i and 1 ≤ � ≤ v(R) −1. The map of (5.5.1) is 
induced by the natural quotient map R/m�+1 → R/m� and the map of (5.5.2) is induced 
by the natural quotient map R → R/m�.

Observation 5.6 takes care of the “easy case” in the proof of the main theorem, which 
is Theorem 7.1.

Observation 5.6. Let (R, m, k) be a local Artinian ring with top socle degree s. If s ≤
2v(R) − 3, then R is a Golod ring.

Proof. Let t denote v(R). The ring R is complete and local; so the Cohen structure 
theorem guarantees that there is a regular local ring (Q, n, k) with R = Q/I and I ⊆ n2. 
We apply Lemma 5.2, with a = t − 1, to show that the canonical quotient map Q →
Q/I = R is a Golod homomorphism. It follows that R is a Golod ring. It suffices to show 
that

(i) the map

TorQi (R,k) → TorQi (R/mt−1,k),

induced by the quotient map R → R/mt−1, is zero for all positive i, and
(ii) the map

TorQi (m2t−2,k) → TorQi (mt−1,k),

induced by the inclusion m2t−2 → mt−1 is zero for all non-negative i.
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Condition (i) is established in Lemma 5.5 and (ii) obviously holds. Indeed, by hypothesis, 
the top socle degree s of R satisfies s ≤ 2t − 3. It follows that m2t−2 = 0. �

The following two results are proven in [22]; but in each case the statement given in 
[22] is slightly different than the statement given here.

Set up 5.7. Let (Q, n, k) and (P, p, k) be local rings with P = Q/(h) for some element 
h in nt with h not a zerodivisor on Q and 2 ≤ t. Let N ⊆ M be finitely generated 
P -modules, incl : N → M represent the inclusion map, and ϕ : Q → P represent the 
natural quotient map. For any P -module X, let ϕX

i : TorQi (X, k) → TorPi (X, k) be the 
map on Tor induced by the change of rings ϕ : Q → P . For either ring A = P or A = Q, 
let inclAi : TorAi (N, k) → TorAi (M, k) be the map on Tor induced by the A-module 
homomorphism incl : N → M .

Lemma 5.8. [22, Lem. 2.4] Adopt the notation of 5.7. If nt−1(M/N) is zero, then

ker
(
ϕM
i : TorQi (M,k) → TorPi (M,k)

)
⊆ im

(
inclQi : TorQi (N,k) → TorQi (M,k)

)
for all i.

Lemma 5.9. [22, Lem. 2.3] Adopt the notation of 5.7. If the modules nt−1N and 
nt−1(M/N) are both zero, then the following statements are equivalent:

(a) the map TorPi (N, k) inclPi−−−→ TorPi (M, k) is identically zero for all i, and

(b) the composition TorQi (N, k) inclQi−−−→ TorQi (M, k) ϕM
i−−→ TorPi (M, k) is identically zero 

for all i.

Remark. To prove these results, in each case start with the short exact sequence

0 → N → M → M/N → 0

and follow the argument given in [22]. Keep in mind that the hypothesis that nt−1(M/N)
is zero ensures that

ϕ
M/N
i : TorQi (M/N,k) −→ TorPi (M/N,k)

is injective for all i, see [22, line 3 on page 427]. In particular, the conclusion we have 
drawn in Lemma 5.8 does not require inclQi : TorQi (N, k) → TorQi (M, k) to be the zero 
map; that is, Lemma 5.8 follows from the proof, but not the statement, of [22, Lem.24].

It is worth noting that the change of rings involved in constructing

ϕM
i : TorQi (M,k) → TorPi (M,k)



A.R. Kustin et al. / Journal of Algebra 505 (2018) 383–419 407
is fairly subtle; see [4, Thm. 3.1.3] for details. The original construction was due to 
Shamash [24]; this construction planted a seed that evolved into the Eisenbud operators.

We conclude this section with a result which exhibits the common denominator for all 
Poincaré series PR

M (z) when there is a Golod homomorphism from a local hypersurface 
ring onto R and M roams over all finitely generated R-modules.

Theorem 5.10. Let (Q, n, k) be a regular local ring of embedding dimension e, (P, p, k) be 
a local ring with P = Q/(h) for some h ∈ n2, (R, m, k) be a local ring, κ : P → R be a 
surjective Golod homomorphism, ϕR

• : TorQ(R, k) → TorP• (R, k) be the map induced by 
the natural quotient map Q → P , and dR(z) be the polynomial

dR(z) = 1 − z(PQ
R (z) − 1) + (z + z2) ·

(
HSker ϕR

•
(z) − z

)
∈ Z[z].

Then, for every finitely generated R-module M , there exists a polynomial pM(z) in Z[z]
with

PR
M (z)dR(z) = pM (z).

In particular, pk(z) = (1 + z)e.

Proof. Results of Levin, see for example [7, Prop. 5.18], give all of the conclusions, except 
for the formula for dR(z). The denominator dR(z) is calculated in [22]; although the exact 
form given above is not explicitly identified there. Most of the steps are well known. One 
starts with the equation

dR(z) = (1 + z)e

PR
k (z)

;

so it suffices to calculate PR
k(z). The homomorphism κ is Golod; hence the equation

PR
k (z) = PP

k (z)
1 − z(PP

R (z) − 1)

holds; see [15, Prop. 1]. The key new step is taken in [22, 2.2.1] where it is shown that

PP
X (z) =

PQ
X (z) − (1 + z) · HSker ϕX

•
(z)

1 − z2 , (5.10.1)

for all finitely generated P -modules X. (The calculation (5.10.1) is valid whenever the 
hypotheses of 5.7 are satisfied.) In the present calculation, one takes X to be R. The 
ring P is a hypersurface; consequently, the Poincaré series

PP
k (z) = (1 + z)e

2
1 − z
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is well known. (Indeed the resolution of k by free P -modules is known.) Combine every-
thing to obtain the formula for dR(z). �
6. Homological consequences of the hypothesis that R is compressed

We deduce three homological consequences of the hypothesis that local Artinian ring 
R is compressed. These Lemmas (6.1, 6.3, and 6.4) play a major role in the proof of the 
main result, Theorem 7.1.

Lemma 6.1. Let (Q, n, k) be a regular local ring and (R, m, k) be the local ring R = Q/I

for some ideal I of Q. Assume that R is a compressed local Artinian ring of embedding 
dimension e. If v(R) ≤ �, then the map νQi (m�) of Definition 5.3 is zero for i < e.

Proof. Apply Corollary 4.6 to see that Rg is a standard-graded compressed Artinian 
k-algebra with the top socle degree of Rg equal to the top socle degree of R and v(Rg)
equal to v(R); and therefore, [13, Prop. 16] guarantees that TorQ

g

i (Rg, k) is concentrated 

in degrees v(R) + i − 1 and v(R) + i, for 1 ≤ i ≤ e − 1. Of course, TorQ
g

0 (Rg, k) is 
concentrated in degree 0. Lemma 5.4 ensures that νQi (m�) is identically zero for all pairs 
(i, �) with i < e and v(R) ≤ �. �

Let (R, m, k) be a local Artinian ring. This ring is complete and local; hence the Cohen 
structure theorem guarantees that R is the quotient of a regular local ring. We often use 
information from Data 6.2. This information all automatically exists as soon as the local 
Artinian ring (R, m, k) is chosen. Observe that the parameter t of Data 6.2 is equal to 
the invariant v(R) of 2.3.(f).

Data 6.2. Let (Q, n, k) be a regular local ring and (R, m, k) be the local Artinian ring 
R = Q/I, where I is an ideal of Q with I ⊆ n2. Define t to be the largest integer with 
I ⊆ nt. Let (P, p, k) be the local hypersurface ring P = Q/L, where L is the principal 
ideal of Q generated by a non-zero element of I which is not in nt+1, (K, ∂) be the 
Koszul complex which is a minimal resolution of k by free Q-modules, and π : Q → R

and κ : P → R be the natural quotient homomorphisms.

Lemma 6.3. Let (R, m, k) be a compressed local Artinian ring of embedding dimension 
e and top socle degree s. Adopt Data 6.2. Assume that the field k is infinite and that 
s = 2t − 1. Then there exists G ∈ nt−1K1 such that ∂(G) generates L and

Ze(ms ⊗Q K) ⊆ ḡZe−1(mt ⊗Q K) ,

where g denotes the image of G in P ⊗Q K and ḡ is the image of G in R⊗Q K.

Proof. The field k is infinite; therefore we may apply Remark 2.11 and decompose n into 
subideals (X1) + n′ with X1 a minimal generator of n, μ(n′) = e − 1, and h −Xt

1 in the 
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ideal n′nt−1 of Q, for some generator h of L. The decomposition n = X1Q + n′ induces 
a decomposition m = x1R + m′ with x1 equal to the image of X1 and m′ equal to the 
image of n′. Let q be the ideal annR(m′) ∩mt of R. We proved in Lemma 4.7 that

xt−1
1 q = ms. (6.3.1)

Let X2, . . . , Xe be a minimal generating set for n′ and T1, . . . , Te be a basis for K1 with 
∂(Ti) = Xi. Recall that h has the property that h −Xt

1 ∈ (X2, . . . , Xe)nt−1. It follows 
that there is an element G in K1 of the form

G = Xt−1
1 T1 +

e∑
i=2

αiTi, (6.3.2)

for some αi ∈ nt−1, with ∂(G) = h. The image of G in R⊗Q K, denoted by ḡ, is a cycle 
in Z1(mt−1 ⊗Q K). Observe that

Ze(ms ⊗Q K) = ms · T1 · · ·Te

= (xt−1
1 q) · T1 · · ·Te by (6.3.1)

= q(xt−1
1 T1) · · ·Te

= q

(
ḡ −

e∑
i=2

αiTi

)
T2 · · ·Te by (6.3.2)

= qḡT2 · · ·Te

= ḡqT2 · · ·Te

⊆ ḡZe−1(q⊗Q K) since ∂(Ti)q = 0 for i ≤ 2 ≤ e.

⊆ ḡZe−1(mt ⊗Q K) since q ⊆ mt. �
Lemma 6.4 is the third of three Lemmas in the section. These Lemmas are used in 

the proof of the main result. The proof of Lemma 6.4 is a continuation of the proof of 
Lemma 6.3.

Lemma 6.4. Let (R, m, k) be a compressed local Artinian ring of embedding dimension e
and top socle degree s. Adopt Data 6.2 with s = 2t − 1. The following statements hold.

(a) If j is an integer which satisfies

t + 1 ≤ j ≤ s and socle(R) ∩mj = ms,

then the maps

νPi : TorPi (mj ,k) → TorPi (mt,k),
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induced by the inclusion mj ⊆ mt, are zero for all i.
(b) The maps TorRi (ms, k) → TorRi (mt, k), induced by the inclusion ms ⊆ mt, are zero 

for all i.

Proof. Without loss of generality, we may assume that k is infinite. Indeed, if k′ = k(y), 
Q′ = Q[y]nQ[y], P ′ = P [y]pP [y], R′ = R[y]mR[y], and m′ = mR′, then the extensions 
Q → Q′, P → P ′, and R → R′ are faithfully flat, and therefore, νPi = 0 if and only if 
νP

′

i = 0, and

TorRi (ms,k) → TorRi (mt,k) is zero ⇐⇒ TorR
′

i (m′s,k′) → TorR
′

i (m′t,k′) is zero.

(a) Let νQi : TorQi (mj , k) → TorQi (mt, k) denote the map induced by the inclusion mj ⊆
mt. Apply Lemma 5.9 to the inclusion mj ⊆ mt. Observe that nt−1 annihilates mj and 
mt/mj . Observe also that the map inclAi of 5.9 is now denoted νAi for A = P or A = Q. 
We conclude that assertion (a) is equivalent to the assertion

ϕm
t

i ◦ νQi = 0, for all i, (6.4.1)

where ϕm
t

i : TorQi (mt, k) → TorPi (mt, k) is the map induced by the natural quotient map 
Q → P . If 0 ≤ i ≤ e − 1, then Lemma 6.1 yields that the map νQi (mt) of Definition 5.3
is identically zero. The map νQi factors through νQi (mt); therefore, νQi = 0 and (6.4.1)
holds for 0 ≤ i ≤ e − 1.

We now prove (6.4.1) for i = e. Recall the Koszul complex (K, ∂) of Data 6.2 which 
is a resolution of k by free Q-modules. We identify the functors

H•(−⊗Q K) and TorQ• (−,k). (6.4.2)

Observe that

TorQe (mj ,k) = He(mj ⊗Q K) = socle(mj) ⊗Q Ke (6.4.3)

and

TorQe (mt,k) = He(mt ⊗Q K) = socle(mt) ⊗Q Ke = (socle(R) ∩mt) ⊗Q Ke. (6.4.4)

The hypothesis that socle(R) ∩ mj = ms yields socle(mj) ⊗Q Ke = ms ⊗Q Ke. Thus, 
im νQe is equal to the submodule ms ⊗Q Ke of (socle(R) ∩mt) ⊗Q Ke.

We compute ϕm
t

e (ms ⊗Q Ke). Let G be as in Lemma 6.3. The image of G in P ⊗Q K, 
denoted by g, is a cycle and the minimal resolution of k by free P -modules is the Tate 
complex T = (P ⊗Q K)〈Y 〉, with

∂(Y ) = g. (6.4.5)
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The homomorphism ϕm
t

e is induced by the natural map

mt ⊗Q K −→ mt ⊗P T = mt ⊗P (P ⊗Q K)〈Y 〉 = (mt ⊗Q K)〈Y 〉;

hence ϕm
t

e is the natural map

ϕm
t

e : (socle(R) ∩mt) ⊗Q Ke → He

(
(mt ⊗Q K)〈Y 〉

)
.

Let z ∈ ms⊗QKe. According to Lemma 6.3, z = ḡz′ for some z′ in Ze−1(mt⊗QK), where 
ḡ is the image of g in R ⊗Q K. The defining property of Y , given in (6.4.5), together 
with the graded product rule yields

z = ḡz′ = ∂(Y )z′ = ∂(Y z′) − Y ∂(z′) = ∂(Y z′), (6.4.6)

which establishes that the image of z under the map ϕm
t

e is represented by a boundary in 
(mt ⊗Q K)〈Y 〉; and therefore is zero in He ((mt ⊗Q K)〈Y 〉) = TorPe (mt, k). This finishes 
the proof of (6.4.1) and hence the proof of (a).

(b) Apply Theorem 6.5 with b = t, τ = t − 1, KR = R ⊗Q K, and z1 = ḡ. Recall that 
ḡ ∈ Z1(mt−1 ⊗Q K). It is clear that the one-cycle ḡ squares to zero. We verify that 
hypothesis (6.5.1) is satisfied. On the one hand, Lemma 6.3 yields that

ms ⊗Q Ke ⊆ ḡZe−1(mt ⊗Q K)

and, on the other hand, Lemma 6.1 yields that TorQi (ms ⊗Q K) → TorQi (ms−1 ⊗Q K) is 
the zero map for i < e. It follows that ms ⊗Q Ki ⊂ B(ms−1 ⊗Q K) for i < e. �

The following Theorem is a special case of [12, Thm. 3.1]. This result was used in the 
proof of Lemma 6.4.

Theorem 6.5. [12] Let (R, m, k) be an Artinian local ring with top socle degree s, KR

be the Koszul complex on a minimal generating set of m, and τ and b be integers with 
s − τ ≤ b ≤ s − 1 and 2 ≤ τ + 1 ≤ v(R). If there exists a cycle z1 in Z(mτKR) with 
z2
1 = 0 and

msKR ⊆ z1 · Z(mbKR) + B(ms−1KR), (6.5.1)

then the maps TorRi (ms, k) → TorRi (mb, k), induced by the inclusion ms ⊆ mb, are zero 
for all i.

7. Proof of the main result

In this section we prove Theorem 7.1, which is the main result of the paper. The short 
version of the statement is “If R is a compressed local Artinian ring with top socle degree 
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s, with s odd, 5 ≤ s, and socle(R) ∩ ms−1 = ms, then the Poincaré series of all finitely 
generated modules over R are rational, sharing a common denominator, and there is a 
Golod homomorphism from a complete intersection onto R.” Recall that the data of 6.2
is constructed from R.

Theorem 7.1. Let (R, m, k) be a compressed local Artinian ring of embedding dimension 
e and top socle degree s. Assume that s is odd, 5 ≤ s, and

socle(R) ∩ms−1 = ms.

Adopt Data 6.2. Then s ≤ 2t − 1 and the following statements hold:

{
κ : P → R is a Golod homomorphism, if s = 2t− 1, and
π : Q → R is a Golod homomorphism, if s < 2t− 1.

Furthermore, if dR(z) is the polynomial

dR(z) =
{

1 − z(PQ
R (z) − 1) + csz

e+1(1 + z), if s = 2t− 1, and
1 − z(PQ

R (z) − 1), if s < 2t− 1,

where cs = dimk(ms) then, for every finitely generated R-module M , there exists a 
polynomial pM (z) in Z[z] with

PR
M (z)dR(z) = pM (z).

In particular, pk(z) = (1 + z)e.

Proof. It is shown in Theorem 4.4.(c) that s ≤ 2t − 1. If s < 2t − 1, then it is shown in 
the proof and statement of Observation 5.6 that π is a Golod homomorphism and R is a 
Golod ring. The statement about the common denominator dR(z) is due to Lescot [17], 
see also [4, Thm. 5.3.2].

Henceforth, we assume s = 2t − 1. The following two conditions hold:

7.1.1. the map TorPi (R, k) → TorPi (R/mt−1, k), induced by the canonical quotient map 
R → R/mt−1, is zero for all positive i, and

7.1.2. the map

νPi : TorPi (m2t−2,k) → TorPi (mt,k),

induced by the inclusion m2t−2 ⊆ mt, is zero for all non-negative integers i.
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Indeed, assertion 7.1.1 follows from [22, Lemma 1.4], whose proof is similar to the 
proof of Lemma 5.5 and assertion 7.1.2 is established in Lemma 6.4.(a) with j = s − 1. 
The hypothesis

socle(R) ∩ms−1 = ms

of the present result is used to verify the critical hypothesis socle(R) ∩ mj = ms of 
Lemma 6.4.

Now that 7.1.2 holds, the map TorPi (m2t−2, k) → TorPi (mt−1, k) is also zero, and 
Lemma 5.2 can be applied with a = t − 1 to conclude that κ is Golod.

Apply Theorem 5.10 to finish the proof. It remains to prove that the Hilbert series of 
the kernel of

ϕR
• : TorQ• (R,k) → TorP• (R,k)

is HSker(ϕR
• )(z) = z + csz

e. It suffices to prove that

dimk ker(ϕR
i ) =

⎧⎪⎪⎨
⎪⎪⎩

0, if i = 0 or 2 ≤ i ≤ e− 1,
1, if i = 1, and
dimk m

s, if i = e.

(7.1.3)

Observe that ϕR
0 : TorQ0 (R, k) → TorP0 (R, k) is the isomorphism k → k. It follows that 

dimk ker(ϕR
0 ) = 0. Observe that ϕR

1 : TorQ1 (R, k) → TorP1 (R, k) is the natural map

kerπ
n kerπ → kerπ

n kerπ + L
.

The kernel of this map has dimension 1 because one of the minimal generators of kerπ
has been sent to zero. It is shown in Lemma 7.2 that ker(ϕR

e ) ∼= ms. We complete the 
proof of (7.1.3), hence the proof of the Theorem, by showing that

ϕR
i is injective for 2 ≤ i ≤ e− 1. (7.1.4)

Fix i with 2 ≤ i ≤ e − 1. The hypothesis

5 ≤ s = 2t− 1

ensures that 3 ≤ t; hence,

m2t−2 ⊆ mt+1 ⊆ mt ⊆ mt−1

and
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TorQi (m2t−2,k) incli−−−→ TorQi (mt−1,k) (7.1.5)

factors through

TorQi (mt+1,k) incli−−−→ TorQi (mt,k). (7.1.6)

Lemma 6.1 yields that (7.1.6) is the zero map; hence, (7.1.5) is also the zero map. 
Apply Lemma 5.8, together with the fact that (7.1.5) is the zero map, to the inclusion 
m2t−2 ⊆ mt−1. Observe that nt−1 annihilates mt−1/m2t−2. Conclude that

ϕm
t−1

i : TorQi (mt−1,k) → TorPi (mt−1,k)

is injective. One can now employ the commutative diagram in proof of Claim 2 in the 
proof of [22, Lem. 3.4] to complete the proof of (7.1.4). �

The following calculation is used in the proof of Theorem 7.1.

Lemma 7.2. Adopt the notation and hypotheses of Theorem 7.1 with s = 2t − 1. Let 
ϕR
e : TorQe (R, k) → TorPe (R, k) be the map induced by the natural quotient map Q → P

and let K be the Koszul complex which is a minimal resolution of k by free Q-modules. 
Then

ker(ϕR
e ) = ms ⊗Q Ke.

Proof. As described at the beginning of the proof of Lemma 6.4, it does no harm to 
assume that k is infinite. The following consequence of Lemma 5.5 is used repeatedly in 
this proof.

7.2.1. The homomorphism TorQi (R/mt, k) → TorQi (R/mt−1, k), which is induced by the 
natural quotient map R/mt → R/mt−1, is zero for 1 ≤ i.

We continue the identification of the functors

H•(−⊗Q K) and TorQ• (−,k)

which was begun in (6.4.2). In other words, we take

TorQe (R,k) to be socle(R) ⊗Q Ke and TorPe (R, k) to be He((R⊗Q K)〈Y 〉);

furthermore, ϕR
e carries the cycle z in socle(R) ⊗Q Ke to the homology class of z in 

(R⊗Q K)〈Y 〉. The argument (6.4.6) shows that if z ∈ ms ⊗Q Ke, then the image of z in 
(mt⊗QK)〈Y 〉 is a boundary; hence the image of z in (R⊗QK)〈Y 〉 is a boundary. Thus, 
ms ⊗Q Ke ⊆ ker(ϕR

e ). We prove the other direction.
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Let w be an element of socle(R) ⊗Q Ke which is an element of the kernel of kerϕR
e . 

It follows that w is a boundary in (R⊗Q K)〈Y 〉; therefore,

w = ∂
(
a0 + Y a1 + Y (2)a2 + · · · + Y (m)am

)
=

(
∂(a0) + ḡa1

)
+ Y

(
∂(a1) + ḡa2

)
+ · · · + Y (m−1)(∂(am−1) + ḡam

)
+ Y (m)∂(am),

for some ai ∈ R⊗QKe+1−2i, with 1 ≤ i ≤ � e+1
2 �. The module Ke+1 is zero; consequently, 

a0 = 0. The (R⊗Q K)-module (R⊗Q K)〈Y 〉 is free, with basis {Y (i)}, and therefore

w = ḡa1, ∂(a1) + ḡa2 = 0, . . . , (7.2.2)

∂(am−1) + ḡam = 0, and ∂(am) = 0.

It is possible that m = (e + 1)/2 and am ∈ R⊗Q K0 = R. Observe that, in this case, 
am ∈ m. Indeed, if am were a unit, then the equation ∂(am−1) + ḡam = 0 of (7.2.2)
would yield that ḡ is a boundary in R ⊗Q K and it would follow from Lemma 6.3 that 
ms ⊗Q Ke ⊆ ∂(R⊗Q Ke+1) = 0. The most recent statement is impossible because R has 
top socle degree s.

We claim that for each i, there exists bi ∈ R⊗Q Ke+2−2i, ci ∈ mt−1 ⊗Q Ke+1−2i, and 
di ∈ R⊗Q Ke−2i such that

ai = ∂(bi) + ci + ḡdi. (7.2.3)

We prove (7.2.3) by descending induction.
If m < (e +1)/2, then am is a (e +1 −2m)-cycle in R⊗QK. (Of course, am is also a cycle 

in R/mt⊗QK.) Apply (7.2.1) to find bm ∈ R⊗QKe+2−2m and cm in mt−1 ⊗QKe+1−2m
with am = ∂(bm) + cm. If m = (e + 1)/2, then am ∈ m and am = ∂(bm) for some 
bm ∈ R⊗Q K1.

In any event, (7.2.3) holds for i = m. Suppose, by induction, that (7.2.3) holds at i, 
for some i with 2 ≤ i ≤ m. We will establish (7.2.3) at i −1. Apply (7.2.2), the induction 
hypothesis (7.2.3), the fact that ḡ is a cycle in R⊗QK, and the fact that ḡ ∈ (R⊗QK)1
in order to see that

0 = ∂(ai−1) + ḡai = ∂(ai−1) + ḡ (∂(bi) + ci + ḡdi)

= ∂
(
ai−1 − (ḡbi)

)
+ ḡci. (7.2.4)

The product ḡci is in m2t−2⊗Ke+2−2i; and therefore, equation (7.2.4) exhibits ai−1−(ḡbi)
as a cycle in R/mt ⊗Q K. Apply (7.2.1) to find bi−1 in R ⊗Q Ke+4−2i and ci−1 ∈
mt−1 ⊗Q Ke+3−2i with

ai−1 − (ḡbi) = ∂(bi−1) + ci−1.

Thus, (7.2.3) holds at i − 1.
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By induction, (7.2.3) holds at i = 1 and

w = ḡa1 = ḡ
(
∂(b1) + c1 + ḡd1

)
= −∂(ḡb1) + ḡc1 = ḡc1,

for some b1 ∈ R⊗QKe, c1 ∈ mt−1 ⊗QKe−1, and d1 ∈ R⊗QKe−2. We used the fact that 
ḡb1 ∈ R⊗Q Ke+1 = 0. Thus,

w = ḡc1 ∈ (socle(R) ∩m2t−2) ⊗Q Ke.

We have assumed that s = 2t − 1 and that

socle(R) ∩ms−1 = ms.

It follows that w ∈ ms ⊗Q Ke, and the proof is complete. �
8. Factoring out the highest power of the maximal ideal

The hypotheses s = 2t − 1, 5 ≤ s, and socle(R) ∩ ms−1 = ms all are in effect in 
the interesting case of the main theorem, Theorem 7.1. If we only assume s = 2t − 1, 
then we are not able to make any claim about the Poincaré series PR

k ; nonetheless, in 
Corollary 8.1, we prove that the homomorphism R → R/ms is Golod. As a consequence, 
when all of the hypotheses of the interesting case of Theorem 7.1 are reimposed, we 
prove, in Corollary 8.3, that R/ms is a Golod ring.

Corollary 8.1. Let (R, m, k) be a compressed local Artinian ring with top socle degree s. 
If s = 2v(R) − 1, then the natural quotient homomorphism ρ : R → R/ms is Golod.

Proof. Let t = v(R). It is shown in Lemma 6.4.(b) that the maps

TorRi (ms,k) → TorRi (mt,k),

induced by the inclusion ms ⊆ mt, are zero for all i. It follows that the maps

TorRi (R/ms,k) → TorRi (R/mt,k), (8.1.1)

induced by the natural quotient homomorphism R/ms → R/mt, are zero for all positive i. 
Apply Lemma 5.2 with P = R, R replaced by R/ms, and a = t. Condition (a) of 
Lemma 5.2 is satisfied by (8.1.1). Condition (b) of Lemma 5.2 holds because m2t = 0. 
Conclude that ρ is a Golod homomorphism. �

The next result describes how to use a mapping cone to obtain a minimal resolution 
of the Q-module R/ms if one already knows the minimal resolution of R.
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Lemma 8.2. Let (R, m, k) be a compressed local Artinian ring of embedding dimension e
and top socle degree s, (Q, n, k) be a regular local ring of embedding dimension e with 
R = Q/I for some ideal I of Q, and cs be dimk m

s. If v(R) + 1 ≤ s, then

PQ
R/ms(z) = PQ

R (z) + csz(1 + z)e − csz
e(1 + z).

Proof. Observe that the inclusion ms ⊆ R induces the following statements:

{
TorQi (ms,k) → TorQi (R,k) is zero for 0 ≤ i ≤ e− 1, and
TorQi (ms,k) → TorQi (R,k) is an injection for i = e.

(8.2.1)

Before establishing (8.2.1); we draw consequences from these statements. One combines 
(8.2.1) and the short exact sequence

0 → ms → R → R/ms → 0 (8.2.2)

to relate the Betti numbers (denoted bi(M)) of the Q-modules M = R/ms, M = R, and 
M = ms. Keep in mind that ms is isomorphic to the direct sum of cs copies of k. The 
Betti numbers are related by

bi(R/ms) =

⎧⎪⎪⎨
⎪⎪⎩
b0(R), if i = 0,
bi(R) + csbi−1(k), if 1 ≤ i ≤ e− 1, and
be(R) − cs + csbe−1(k), if i = e.

It follows that

PQ
R/ms(z) = PQ

R (z) + csP
Q
k (z) − csz

e − csz
e+1,

as claimed.
Now we prove (8.2.1). The long exact sequence of homology that is associated to 

(8.2.2) ends with

0 → TorQe (ms,k) → TorQe (R,k);

hence, the lower line in (8.2.1) holds. On the other hand, if 0 ≤ i ≤ e −1, then Lemma 6.1
guarantees that the inclusion m�+1 ⊆ m� induces the zero map

TorQi (m�+1,k) → TorQi (m�,k)

for all � with v(R) ≤ �. The hypothesis ensures that v(R) ≤ s − 1; hence,

TorQi (ms,k) → TorQi (ms−1,k)
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is the zero map for i < e. The top line of (8.2.1) holds because the inclusion ms ⊆ R

factors through the inclusion ms ⊆ ms−1. �
In the interesting case of the main theorem, the ring R/ms is Golod.

Corollary 8.3. Let (R, m, k) be a compressed local Artinian ring with top socle degree s. 
If s = 2v(R) − 1, 5 ≤ s, and socle(R) ∩ms−1 = ms, then the ring R/ms is Golod.

Proof. Let e be the embedding dimension of R, cs be dimk m
s, and (Q, n, k) be a regular 

local ring with R = Q/I for some ideal I ⊆ n2. Recall (see, for example, [4, (5.0.1)] or 
2.14) that R/ms is Golod if and only if

P
R/ms

k (z) =
PQ
k (z)

1 − z(PQ
R/ms(z) − 1)

. (8.3.1)

We calculate both sides of (8.3.1), verify the equality, and thereby prove the result. 
Observe first that

PR
R/ms(z) = 1 + cszP

R
k (z). (8.3.2)

Indeed, the exact sequence

0 → ms → R → R/ms → 0

is the beginning of the minimal resolution of R/ms by free R-modules and ms is isomor-
phic to 

⊕
cs
k.

The hypotheses of Theorem 7.1 are in effect; and therefore,

PR
k (z) = (1 + z)e

1 − z(PQ
R (z) − 1) + csze+1(1 + z)

. (8.3.3)

The map R → R/ms is Golod by Corollary 8.1; and therefore,

P
R/ms

k (z) = PR
k (z)

1 − z(PR
R/ms(z) − 1)

; (8.3.4)

see, for example [15, Prop. 1] or [4, Prop. 3.3.2]. Use (8.3.4), (8.3.2), (8.3.3), and then 
Lemma 8.2 to calculate

P
R/ms

k (z) = (1 + z)e

1 − z
(
PQ
R/ms(z) − 1

) .
Apply (8.3.1) to conclude that R/ms is a Golod ring. �
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