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Let A be an associative algebra of arbitrary dimension over 
a field F and G a finite group of automorphisms of A of 
order n, prime to the characteristic of F . Denote by AG =
{a ∈ A | ag = a for all g ∈ G} the fixed-point subalgebra. 
By the classical Bergman–Isaacs theorem, if AG is nilpotent 
of index d, i.e. (AG)d = 0, then A is also nilpotent and its 
nilpotency index is bounded by a function depending only 
on n and d. We prove, under the additional assumption of 
solubility of G, that if AG contains a two-sided nilpotent ideal 
I � AG of nilpotency index d and of finite codimension m
in AG, then A contains a nilpotent two-sided ideal H � A of 
nilpotency index bounded by a function of n and d and of finite 
codimension bounded by a function of m, n and d. An even 
stronger result is provided for graded associative algebras: if 
G is a finite (not necessarily soluble) group of order n and 
A =

⊕
g∈G Ag is a G-graded associative algebra over a field 

F , i.e. AgAh ⊂ Agh, such that the identity component Ae

has a two-sided nilpotent ideal Ie � AG of nilpotency index d
and of finite codimension m in Ae, then A has a homogeneous 
nilpotent two-sided ideal H � A of nilpotency index bounded 
by a function of n and d and of finite codimension bounded 
by a function of n, d and m.
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1. Introduction

By the classical Bergman–Isaacs theorem [1], if an associative algebra A over a field F
admits a finite group of automorphisms G of order |G| = n, prime to the characteristic 
of F , and the fixed-point subalgebra AG = {a ∈ A | ag = a for all g ∈ G} is nilpotent 
of index d, i.e. (AG)d = 0, then A is nilpotent of index bounded by a function of n
and d. After this work, a great number of paper deal with properties of an algebra 
(or a ring) under a finite group action subject to some constraints on the fixed-point 
subalgebra. In this paper we prove, under the additional assumption of the solubility 
of the automorphism group, that the “almost nilpotency” of the fixed-point subalgebra 
implies the “almost nilpotency” of the algebra itself. Namely, the following theorem 
holds.

Theorem 1.1. Let A be an associative algebra of arbitrary (possibly infinite) dimension 
over a field F acted on by a finite soluble group G of order n. Suppose that the charac-
teristic of F does not divide n. If the fixed-point subalgebra AG has a nilpotent two-sided 
ideal I � AG of nilpotency index d and of finite codimension m in AG, then A has a 
nilpotent two-sided ideal H�A of nilpotency index bounded by a function of n and d and 
of finite codimension bounded by a function of m, n and d.

The restrictions on the order of the automorphism group are unavoidable. There are 
examples showing that the result is not true either for infinite automorphism groups or 
for algebras with n-torsion.

Theorem 1.1 follows by induction on the order of G from the Bergman–Isaacs theorem 
and the following statement on graded associative algebras, in which we do not suppose 
either G to be soluble or the order of G to be prime to the characteristic of the field.

Theorem 1.2. Let G be a finite group of order n and let A =
⊕

g∈G Ag be a G-graded 
associative algebra over a field F , i.e. AgAh ⊂ Agh. If the identity component Ae has 
a nilpotent two-sided ideal Ie � Ae of nilpotency index d and of finite codimension m
in Ae, then A has a homogeneous nilpotent two-sided ideal H � A of nilpotency index 
bounded by a function on n and d and of finite codimension bounded by a function on n, 
d and m.

The proof of Theorem 1.2 is based on the method of generalized centralizers, originally 
created by Khukhro in [3] for nilpotent groups and Lie algebras with an almost regular 
automorphism of prime order. In [4,5] the approach was significantly revised and new 
techniques were introduced to study a more complicated case of an almost regular auto-
morphism of arbitrary (not necessarily prime) finite order. In particular, it was proved 
that if a Lie algebra L admits an automorphism ϕ of finite order n with fixed-point 
subalgebra of finite dimension m, then L has a soluble ideal of derived length bounded 
by a function of n whose codimension is bounded by a function of m and n. The com-
binatorial nature of the construction in [5] makes possible to apply it to a wide range 
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of situations. For example, the approach was used to study Lie type algebras (a large 
class of algebras which includes associative, Lie algebras, color Lie superalgebras) with 
an almost regular automorphism of finite order in [6].

In the proof of Theorem 1.2 we use virtually the same construction as in [5]. But 
the strong condition of associativity simplifies the reasoning and allows to provide much 
stronger results than in the case of Lie algebras. In particular, we do not need to suppose 
that the automorphism group is cyclic.

We give some definitions and auxiliary lemmas in § 2. In § 3 we prove Theorem 1.2. For 
this, we set N = d2 + 3 and for each g ∈ G \ {e} we construct by induction generalized 
centralizers Ag(i) of levels i = 1, 2, . . . N , which are some subspaces of the homoge-
neous components Ag. Then we demonstrate that the ideal generated by all the Ag(N), 
g ∈ G \ {e} is the required one. In § 4 we derive the Theorem 1.1 from Theorem 1.2 and 
the Bergman–Isaacs Theorem by induction on the order of G.

Throughout the paper we will say that a number is “(a, b, . . .)-bounded” if it is 
“bounded above by some function depending only on a, b, . . .”.

2. Preliminaries

If G is a group of automorphisms of A, then AG = {a ∈ A | ag = a for all g ∈ G}
will denote the fixed-point subalgebra. A two-sided ideal H of A is denoted by H �A. If 
I and J are subspaces of A, IJ will denote the subspace spanned by all products ab with 
a ∈ I and b ∈ J , and Id will denote the d-fold product I . . . I︸ ︷︷ ︸

d

. We say that an algebra 

is nilpotent of (nilpotency) index d if the product of any d elements of the algebra A
equals zero, i.e. Ad = 0. The subalgebra generated by subspaces B1, B2, . . . , Bs is denoted 
by 〈B1, B2, . . . , Bs〉, and the two-sided ideal generated by B1, B2, . . . , Bs is denoted by 

id〈B1, B2, . . . , Bs〉. If H is an algebra, then H# will denote the algebra obtained by 
adjoining 1 to H. The (two-sided) ideal of H generated by a subspace I is sometimes 
written as H#IH#.

We now state some facts needed hereinafter.

Lemma 2.1. (Bergman–Isaacs Theorem [1]). Let G be a finite group of order n of auto-
morphisms of an associative ring (algebra) R. If R has no n-torsion and RG is nilpotent 
of index d then R is nilpotent of index at most hd, where h = 1 +

∏n
i=0(Ci

n + 1).

The following two lemmas are known. We give their proofs for the convenience of 
readers.

Lemma 2.2. (Bergman–Isaacs [1, Lemma 1.1]). Let G be a finite group of order n and 
let A =

⊕
g∈G Ag be a G-graded associative algebra over a field F , i.e. AgAh ⊂ Agh. 

If the identity component Ae is nilpotent of index d, then A is nilpotent of index at 
most nd.
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Proof. It suffices to prove that a product ag1ag2 . . . agnd
in homogeneous elements 

agi ∈ Agi , i = 1, . . . , nd of length nd is trivial. We consider nd + 1 products h0 = e, 
h1 = g1, hi = g1 . . . gi, i = 1, . . . , nd. Since the order of G is n, some d + 1 elements 
must be equal. If hi = hj with i < j, then gi+1 . . . gj = e. We obtain that ag1ag2 . . . agnd

can be represented as P1Q1Q2 . . . QdP2, where P1 and P2 are (possibly empty) prod-
ucts in homogeneous elements agi , and each Qi is a non-empty product of the form 
Qi = agi+1 . . . agj with gi+1 . . . gj = e. It follows that Qi ∈ Ae for all i = 1, . . . , d. Since 
(Ae)d = 0, we have that Q1Q2 . . . Qd = 0, and therefore ag1ag2 . . . agnd

= 0. �
Lemma 2.3 ([2, Lemma 1.3.7 ]). Let A be an associative algebra over a field F acted on 
by a finite group G of order n. Suppose that the characteristic of F does not divide n. 
If the fixed-point subalgebra AG contains a nilpotent ideal I � AG of nilpotency index d, 
then A contains a G-invariant nilpotent ideal J ≥ I of (n, d)-bounded nilpotency index.

Proof. Consider the right-sided ideal B = IA# generated by I (recall that A# is the 
algebra obtained from A by joining the unit). Let b ∈ BG be an element of B fixed 
by G, i.e. bg = b for all g ∈ G. There exist elements s ∈ B, im ∈ I, am ∈ A# such that 
b = ns = n 

∑
m imam. Since 

∑
g∈G agm ∈ AG and I is an ideal in AG, we have

b = ns =
∑
g∈G

sg =
∑
m

im
∑
g∈G

agm ∈ I,

i.e. BG ≤ I and BG is nilpotent of index ≤ d. Applying the Bergman–Isaacs Theorem 
to the algebra B we obtain that B is nilpotent of index at most hd, where h = 1 +∏n

i=0(Ci
n + 1). Finally, two-sided G-invariant ideal J ≥ I generated by B is also nilpotent 

of index at most hd: (A#IA#)hd = A#(IA#)hd = 0. �
3. Proof of Theorem 1.2

Let G be an arbitrary finite group of order n and A =
⊕

g∈G Ag be a G-graded 
associative algebra over a field F , i.e. AgAh ⊂ Agh. Suppose that the identity component 
Ae has a nilpotent ideal Ie of nilpotency index d and dimAe/Ie = m.

Index Convention. In what follows, unless otherwise stated, a small letter with an 
index g will denote an element of the homogeneous component Ag. The index only 
indicates which component this element belongs to: xg ∈ Ag. To lighten the notation, we 
shall not be using numbering indices for elements of the Ag, so that different elements 
can be denoted by the same symbol. For example, xg and xg can be different elements 
of Ag.

Construction of generalized centralizers and representatives. We fix N = d2 + 3. In 
each homogeneous component Ag, g ∈ G \ {e} we construct by induction a descending 
chain of subspaces:

Ag = Ag(0) ≥ Ag(1) ≥ · · · ≥ Ag(N).
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The subspaces Ag(s) are called generalized centralizers of level s. Simultaneously we fixe 
some homogeneous elements in Ag(s), s = 0, . . . , N which are referred to as representa-
tives of level s. The total number of representatives will be (n, d, m)-bounded.

Definition. For a monomial ag1ag2 . . . agk , where agi ∈ Agi , the record (∗g1 ∗g2 · · · ∗gk)
is called the pattern of the monomial. The length of a pattern is the degree of the 
monomial. The monomial is said to be the value of its pattern on the given elements.

For example, agagav and bgcgbv are values of the same pattern (∗g ∗g ∗v). (Under the 
Index Convention the elements ag in the first product can be different.)

Definition. Let g ∈ G \ {e}. For every ordered tuple of elements �x = (xg1 , . . . , xgk), 
xgs ∈ Ags , such that g1g2 . . . gl−1 g gl . . . gk = e for some l ∈ {1, . . . k + 1} we define the 
mapping:

ϑ�x,l : Ag → Ae/Ie;

ϑ�x,l : yg → xg1xg2 . . . xgl−1ygxgl . . . xgkIe,

where Ie is the nilpotent ideal of Ae of nilpotency index d and of codimension m in Ae. 
We use index l to distinguish the eventual cases of g1g2 . . . gk−1 g gk . . . gk = e and 
g1g2 . . . gl−1 g gl . . . gk = e with k 
= l which lead to different mappings.

By linearity, the mapping ϑ�x,l is a homomorphism of the subspace Ag into the quotient 
space Ae/Ie. Since dimAe/Ie ≤ m, we have that dimAg/Kerϑ�x,l ≤ m.

Definition of level 0. We set Ag(0) = Ag for all g ∈ G \{e}. To construct the represen-
tatives of level 0 we fix some elements xe ∈ Ae whose images form a basis of Ae/Ie. These 
elements are called representatives of level 0 and are denoted by xe(0) (under the Index 
Convention). In addition we consider a pattern P = (∗g ∗g−1) of length 2 with g ∈ G \{e}. 
The dimension of the subspace of the quotient space Ae/Ie spanned by all images of the 
values of P on homogeneous elements of Ag, Ag−1 is at most m by hypothesis. Hence 
we can choose at most m products c = xgxg−1 ∈ Ae whose images form a basis of this 
subspace. The elements xg, xg−1 involved in these representations of the elements c are 
also called representatives of level 0 and are denoted by xg(0), xg−1(0) (under the Index 
Convention). The same is done for every pattern P of the form (∗g ∗g−1), g ∈ G \ {e}.

Since dimAe/Ie ≤ m and the total number of patterns P is n − 1, the number of 
representatives of level 0 is at most 2(n − 1)m + m.

Definition of level 111. Let W1 = 2d3(n − 1) + 2. For each g ∈ G \ {e} we set

Ag(1) =
⋂
�z

⋂
l

Kerϑ�z,l,

where �z = (zg1(0), . . . , zgk(0)) runs over all possible ordered tuples of all lengths k ≤
W1 consisting of representatives of level 0 such that g1 . . . g . . . gk = e; if for a fixed 
tuple �z = (zg1(0), . . . , zgk(0)) of length k there are several different integers l ≤ k +
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1 such that g1 . . . gl−1ggl . . . gk = e, we take the intersection over all such integers l. 
The subspaces Ag(1) are referred to as generalized centralizers of level 1, elements of 
the Ag(1) are called centralizers of level 1 and are denoted by yg(1) (under the Index 
Convention).

The subspace Ag(1) has (n, d, m)-bounded codimension in Ag since the intersection 
here is taken over an (n, d, m)-bounded number of subspaces of m-bounded codimension 
in Ag.

The representatives of level 1 are constructed in two different ways. First, for each 
g ∈ G \ {e} we fix some elements of Ag whose images form a basis of the quotient 
space Ag/Ag(1). These elements are called b-representatives of level 1 and are denoted 
by bg(1) ∈ Ag (under the Index Convention). Since the dimensions of Ag/Ag(1) are 
(n, d, m)-bounded for all g ∈ G \ {e}, the total number of b-representatives of level 1 is 
(n, d, m)-bounded.

Second, for each pattern P = (∗g ∗g−1) of length 2 with indices g, g−1 ∈ G \ {e} we 
consider the subspace of the quotient space Ae/Ie spanned by all images of the values 
of P on homogeneous elements of Ag(1), Ag−1(1). Since dimAe/Ie ≤ m, we can choose 
at most m products c = yg(1)yg−1(1) ∈ Ae whose images form a basis of this subspace 
in Ae/Ie and fix the elements yg(1), yg−1(1) involved in these representations. These 
elements are called x-representatives of level 1 and are denoted by xg(1) (under the 
Index Condition). Since the number of patterns under consideration is equal to n − 1, 
the total number of x-representatives of level 1 is at most 2(n − 1)m.

By construction, if g1 . . . gt−1 g gt . . . gk = e, for some t ≤ k+1 and k ≤ W1, a central-
izer yg(1) has the following property with respect to representatives xgj (0) of level 0:

xg1(0) . . . xgt−1(0) yg(1)xgt(0) . . . xgk(0) ∈ Ie. (1)

Definition of level s > 0s > 0s > 0. Suppose that we have already fixed representatives of 
level < s, which are either x-representatives or b-representatives and its number is 
(m, n, d)-bounded. We now define the generalized centralizers of level s. Let Ws =
Ws−1 + 1 = 2d3(n − 1) + 1 + s. For each g ∈ G \ {e} we set

Ag(s) =
⋂
�z

⋂
l

Kerϑ�z,l,

where �z = (zg1(ε1), . . . , zgk(εk)) runs over all possible ordered tuples of all lengths 
k ≤ Ws consisting of representatives of (possibly different) levels < s (i.e., zgu(εu)
denote elements of the form xgu(εu) or bgu(εu), εu < s, in any combination) such 
that

g1 . . . g . . . gk = e;

if for a fixed tuple �z = (zg1(ε1), . . . , zgk(εk)) of length k there are several different in-
tegers l ≤ k + 1 such that g1 . . . gl−1ggl . . . gk = e, we take the intersection over all such 
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integers l. Elements of the Ag(s) are also called centralizers of level s and are denoted 
by yg(s) (under the Index Convention).

The intersection here is taken over an (n, d, m)-bounded number of subspaces of 
m-bounded codimension in Ag, since the number of representatives of all levels <
s is (n, d, m)-bounded and dimAg/Kerϑ�z,l ≤ m for all �z. Hence Ag(s) also has 
(n, d, m)-bounded codimension in the subspace Ag.

We now fix representatives of level s. First, for each g ∈ G \ {e} we fix some elements 
of Ag whose images form a basis of the quotient space Ag/Ag(s). These elements are 
denoted by bg(s) ∈ Ag (under the Index Convention) and are called b-representatives of 
level s. The total number of b-representatives of level s is (n, d, m)-bounded, since the 
dimensions of Ag/Ag(s) are (n, d, m)-bounded for all g ∈ G \ {e}.

Second, for each pattern P = (∗g ∗g−1) of length 2 with indices g ∈ G \{e} we consider 
the subspace of the quotient space Ae/Ie spanned by all images of the values of P on 
homogeneous elements of Ag(s), Ag−1(s). Since dimAe/Ie ≤ m, we can choose at most m
products c = yg(s)yg−1(s) ∈ Ae whose images form a basis of this subspace in Ae/Ie and 
fix the elements yg(s), yg−1(s) involved in these representations. These fixed elements are 
called x-representatives of level s and are denoted by xg(s) (under the Index Condition). 
The total number of x-representatives of level s is at most 2(n − 1)m.

Note that x-representatives of level s, elements xg(s), are also centralizers of level s.
It is clear from the construction that

Ag(k + 1) ≤ Ag(k) (2)

for all g ∈ G \ {e} and any k.
By definition, if g1 . . . gt−1 g gt . . . gk = e, for some t ≤ k + 1 and k ≤ Ws, then 

a centralizer yg(s) has the following property with respect to representatives of lower 
levels:

zg1(ε1) . . . zgt−1(εt−1) yg(s) zgt(εt) . . . zgk(εk) ∈ Ie, (3)

where the elements zgj (εj) are representatives (that is, either bgj (εj) or xgj (εj), in any 
combination) of any (possible different) levels εl < s.

The following lemmas are direct consequences of the inclusions (2), (3) and the defi-
nitions of representatives.

Lemma 3.1. Let g ∈ G \ {e}. Then
1) every homogeneous element ae ∈ Ae can be represented modulo Ie as a linear 

combination of representatives xe(0) of level 0.
2) every product ag bg−1 in homogeneous elements can be represented modulo Ie as a 

linear combination of products of the same pattern in representatives of level 0.
3) every product yg(k1)yg−1(k2) in centralizers of levels k1, k2 can be represented 

modulo Ie as a linear combination of products xg(s)xg−1(s) of the same pattern in 
x-representatives of any level s satisfying 0 ≤ s ≤ min{k1, k2}.
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Lemma 3.2. Let yg(l + 1) be a centralizer of level l + 1, bh(l) be b-representative of 
level l with g, h, gh ∈ G \ {e}. Then elements of the form ugh = yg(l + 1)bh(l) or 
vhg = bh(l)yg(l + 1) are centralizers of level l.

Proof. The proof follows directly from (3) and the definitions of Wi. �
Lemma 3.3. Any product of the form ag−1 yg(k+ 1) or yg(k+ 1) ag−1 , where yg(k+ 1) is 
a centralizer of level k + 1, is equal modulo Ie to a product of the form yg−1(k) yg(k) or 
accordingly yg(k) yg−1(k), where yg−1(k), yg(k) are centralizers of level k.

Proof. We represent ag−1 as a sum of a centralizer yg−1(k) of level k and a lin-
ear combination of b-representatives bg−1(k) of level k and substitute this sum into 
the product ag−1 yg(k + 1). We obtain a sum of the element yg−1(k) yg(k + 1) and 
a linear combination of elements of the form bg−1(k) yg(k + 1). By (3) the product 
bg−1(k) yg(k + 1) belongs to Ie. Hence ag−1 yg(k + 1) = yg−1(k) yg(k + 1) (mod Ie). Simi-
larly, yg−1(k+1) ag = yg−1(k+1) yg(k) (mod Ie). Since Ag(k) ≥ Ag(k+1), both products 
have the required form. �

Construction of the nilpotent ideal. Recall that N = d2 + 3 is the fixed notation for 
the highest level. We have constructed the generalized centralizers Ag(N) for g ∈ G \{e}. 
Let G \ {e} = {g1, . . . , gn−1} We set

Z =id
〈
Ag1(N), Ag2(N), . . . , Agn−1(N), Ie

〉
.

This ideal has (n, d, m)-bounded codimension in A, since each subspace Ah(N), 
h ∈ G \ {e}, has (n, d, m)-bounded codimension in Ah, while the dimension of Ae/Ie
is at most m by hypothesis. To prove Theorem 1.2 we show that the ideal Z is nilpotent 
of (n, d)-bounded nilpotency index.

Definition. For every g ∈ G we set Zg = Z ∩Ag.

Lemma 3.4. The subspace Ze is contained modulo Ie in the subspace spanned by prod-
ucts of the form yh−1(N − 2) yh(N − 2) and by products of the form ag−1 ie ag, where 
yh−1(N − 2), yh(N − 2) are centralizers of level N − 2, ag−1 ∈ Ag−1 , ag ∈ Ag, ie ∈ Ie, 
h, g ∈ G \ {e}.

Proof. An element of Ze is modulo Ie a linear combination of products of the forms:

ag−1 ie ag, where g 
= e, ag−1 ∈ Ag, ie ∈ Ie, ag ∈ Ag, (4)

ag−1 yg(N), where g 
= e, ag−1 ∈ Ag−1 , yg(N) ∈ Ag(N), (5)

yg(N) ag−1 , where g 
= e, yg(N) ∈ Ag(N), ag−1 ∈ Ag−1 , (6)

ag1 yg(N) ag2 , where g 
= e, g1gg2 = e ag1 ∈ Ag1 , ag2 ∈ Ag2 , yg(N) ∈ Ag(N). (7)
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The product (4) is already of the required form. By Lemma 3.3 the products yg(N) ag−1

and ag−1 yg(N) can be represented modulo Ie as linear combinations of products of the 
form yg(N − 1) yg−1(N − 1) and therefore have also the required representation since 
Ag(N − 1) ≤ Ag(N − 2).

Consider the product (7). Since g1gg2 = e and g 
= e, at least one gi, i = 1, 2 is 
not equal to e. Let, for example, g1 
= e. We represent ag1 as a sum of a centralizer 
yg−1(N − 1) of level N − 1 and a linear combination of b-representatives bg−1(N − 1)
of level N − 1 and insert this expression into (7). We obtain a linear combination of 
products of the following two forms

yg1(N − 1) yg(N) ag2 (8)

and

bg1(N − 1) yg(N) ag2 . (9)

In (8) we set ag−1
1

:= yg(N) ag2 . Applying Lemma 3.3 and inclusions (2) to yg1(N − 1)ag−1
1

we obtain that (8) is equal modulo Ie to a product of the required form
yg1(N − 2) yg−1

1
(N − 2).

Let us now consider the product (9). If g2 = e, then g1g = e and bg1(N−1) yg(N) ∈ Ie
by (3). Since Ie is an ideal of Ae and g2 = e,

bg1(N − 1) yg(N) ae ∈ Ie.

If g2 
= e, then g1g 
= e and bg1(N−1) yg(N) is a centralizer of level N−1 by Lemma 3.2:

bg1(N − 1) yg(N) ag2 = yg1g(N − 1) ag2 .

Again by Lemma 3.3 the product yg1g(N − 1) ag2 is equal modulo Ie to the product of 
the required form yg1g(N − 2) yg2(N − 2). The case where g1 = e, g2 
= e in (7) can be 
treated in the same manner. �
Proof of Theorem 1.2. We set H = d2 + 1, T = d(H − 1) + 1 = d3 + 1, S = (T − 1)×
(n− 1) + 1 = d3(n − 1) + 1, U = d(n − 1) and Q = (U + d)(S − 1) + 1 =
(d(n − 1) + d)d3(n − 1) = d4(n − 1)2 + d4(n − 1). By Lemma 2.2 it suffices to show 
that (Ze)Q = 0.

We consider an arbitrary product of length Q in elements ci from Ze:

c1 c2 . . . cQ, (10)

(here the indices are numbering). By Lemma 3.4 we can represent modulo Ie every ck as 
a linear combination of products of the form yh−1(N − 2) yh(N − 2), where yh−1(N − 2), 
yh(N − 2) are centralizers of level N − 2 and of products of the form ag−1 ie ag, where 
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ag−1 ∈ Ag−1 , ag ∈ Ag, ie ∈ Ie. Substituting these expressions into (10) we obtain a linear 
combination of elements

z1 z2 . . . zQ, (11)

where the zk (here the indices are numbering) are either elements ie ∈ Ie or products 
ce = ag−1 we ag ∈ Ae, we ∈ Ie, or products ve = yg−1

k
(N − 2) ygk(N − 2) ∈ Ae in 

centralizers yg−1
k

(N − 2), ygk(N − 2) of level N − 2.
If in (11) among zk there are at least d occurrences of elements ie ∈ Ie, the summand 

is trivial since Ie is an ideal of Ae and (Ie)d = 0.
Suppose now that in (11) there are at least (d − 1)n + 1 entries of products ce =

ag−1 ie ag. Among them we can choose d products ce = ag−1
k

ie agk ∈ Ae with the same 

pair of indices g−1
k , gk:

z1 . . . zl1 ag−1
k

ie agk︸ ︷︷ ︸ zl1+1 . . . zl2 ag−1
k

ie agk︸ ︷︷ ︸ zl2 . . . zlk ag−1
k

ie agk︸ ︷︷ ︸ zlk+1 . . . zQ.

Since the products agk zls+1 . . . zls+1 ag−1
k

between the elements ie belong to Ae, Ie is an 

ideal in Ae and (Ie)d = 0, then the product (11) is equal to 0.
Consider the case where the number of ie-occurrences in (11) is at most d −1 and the 

number of ce-occurrences is at most U = d(n − 1). Since Q = (U + d)(S − 1) + 1, the 
product (11) has at least one subproduct consisting of S elements ve (going one after 
another):
(
yg−1

1
(N − 2) yg1(N − 2)

) (
yg−1

2
(N − 2) yg2(N − 2)

)
. . .

(
yg−1

S
(N − 2) ygS (N − 2)

)
, (12)

where ygi(N − 2) ∈ Agi(N − 2), yg−1
i

(N − 2) ∈ Ag−1
i

(N − 2) are (possibly different) 
centralizers of level N − 2. Since S = (T − 1)(n − 1) + 1 in (12) there are at least T
entries of products yg−1

i
(N − 2)ygi(N − 2) with the same pair of indices, say, g−1

k , gk. 
We choose any T such products and represent modulo Ie all the other pairs as linear 
combinations of products in representatives of level 0 by Lemma 3.1:

we . . . we

(
yg−1

k
(N − 2) ygk(N − 2)

)
we . . . we

(
yg−1

k
(N − 2) ygk(N − 2)

)
. . . , (13)

where there are T occurrences of (possibly different) products yg−1
k

(N − 2), ygk(N − 2)
with the same pair of indices g−1

k , gk, the we are possibly different elements of Ae: either 
ie ∈ Ie or representatives xe(0). If in (13) among we there are at least d occurrences of 
elements of Ie, the summand is trivial since Ie is an ideal of Ae and (Ie)d = 0. In the 
opposite case, as T = d(H − 1) + 1, there is a subproduct of the form

(
yg−1

k
(N − 2) ygk(N − 2)

)
xe(0) . . . xe(0)

(
yg−1

k
(N − 2) ygk(N − 2)

)
. . . ,

with H = d2 + 1 occurrences of products yg−1
k

(N − 2) ygk(N − 2) between which there 
are only x-representative of level 0 and no elements from Ie. By Lemma 3.1 we represent 
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modulo Ie the first entry yg−1
k

(N −2) ygk(N −2) as a linear combination of the products 
of the same pattern in representatives in level 1, the second — in level 2, and so on, the 
last one — in level H. We obtain a linear combination

(
xg−1

k
(1)xgk(1) + ie

)
xe(0) . . . xe(0)

(
xg−1

k
(2)xgk(2) + ie

)
. . .

(
xg−1

k
(H)xgk(H) + ie

)
.

Expanding this expression we get a linear combination of products of the form

c1 xe(0) . . . xe(0) c2 xe(0) . . . xe(0) . . . cH ,

(here the indices are numbering) where the ck are either elements ie ∈ Ie or products 
xg−1

k
(nk) xgk(nk) of different levels with one and the same pair of indices g−1

k , gk ∈ G. 
If in a summand there are at least d entries of ie ∈ Ie it is trivial by assumptions. In the 
summands with less than d entries of the ie, we can find an interval long enough without 
ie-entries. More precisely, since H = d2 + 1 there is a subproduct of the form

(
xg−1

k
(s)xgk(s)

)
xe(0) . . . xe(0)

(
xg−1

k
(s+1)xgk(s+1)

)
. . .

(
xg−1

k
(s+d)xgk(s+d)

)
, (14)

where there are d + 1 products yg−1
k

(l) ygk(l) of different levels l = s, s + 1, . . . , s + d. For 
each t = 0, . . . , d − 1, the product

xgk(s + t)xe(0) . . . xe(0)xg−1
k

(s + t + 1)

includes exactly one centralizer of level s + t + 1, all the other elements are representa-
tives of lower levels, and the weight of the product is at most 2S = 2d3(n − 1) + 2 =
W1 ≤ Ws+t+1. By (3)

xgk(s + t)xe(0) . . . xe(0)xg−1
k

(s + t + 1) ∈ Ie

for all t = 0, . . . , d − 1. It follows that (14) is equal to the product

xg−1
k

(s) (ie ie . . . ie)︸ ︷︷ ︸
d

xgk(s + d) = 0,

which is trivial, since (Ie)d = 0. �
4. Proof of Theorem 1.1

Recall that we are given an associative algebra A over a field F that admits a finite 
soluble automorphism group G of order n prime to the characteristic of F such that 
the fixed-point subalgebra AG has a two-sided nilpotent ideal I � AG of nilpotency 
index d and of finite codimension m in AG. The aim is to find a nilpotent ideal in A of 
(n, d)-bounded nilpotency index and of finite (n, d, m)-bounded codimension.
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Proof of Theorem 1.1. First, we consider the case where G is a cyclic group of prime 
order p. Let g be a generator of G. Then g induces an automorphism of the algebra 
A ⊗Z Z[ω], where ω is a primitive p-th root of unity. The fixed-point subalgebra of 
A ⊗Z Z[ω] with respect to this automorphism (denoted by the same letter g) has the same 
dimension m. It suffices to prove Theorem 1.1 for the algebra A ⊗Z Z[ω]. Hence in what 
follows we can assume that the ground field F contains ω. We define the homogeneous 
components Ak for k = 0, . . . , p − 1 as the subspaces

Ak =
{
a ∈ A | ag = ωka

}
.

Since the characteristic of F does not divide p, we have

A = A0 ⊕A1 ⊕ · · · ⊕Ap−1.

This decomposition determines a grading on A by a cyclic group of prime order p, with 
A0 = AG in view of the obvious inclusions

AsAt ⊆ As+t,

where s + t is computed modulo p. Hence the case |G| = p in Theorem 1.1 follows from 
Theorem 1.2.

Let now G be any finite soluble group of automorphisms of the algebra A, and sup-
pose that its order n = |G| is not divisible by the characteristic of F . We use induction 
on n. We may assume that n is not a prime number. This means that G contains a 
non-trivial normal subgroup H. We consider its fixed-point subalgebra C = AH . Since 
H � G, we have Cg � C for any g ∈ G. The subalgebra C admits a finite solv-
able group of automorphisms of order ≤ |G/H| which is strictly less than |G| and not 
divisible by the characteristic of F . By induction C has a nilpotent ideal J � C of 
(|G/H|, d, m)-bounded codimension t = t(|G/H|, d, m) and of (|G/H|, d)-bounded nilpo-
tency index h = h(|G/H|, d). By Lemma 2.3 there exists a nilpotent G-invariant ideal 
K ≥ J in A of nilpotency index h1 = h1(|H|, h) bounded by |H| and by the nilpotency 
index of J . The subgroup H acts on the factor-algebra Ā = A/K and subalgebra of 
fixed points ĀH has dimension at most t. We apply induction hypothesis to the algebra 
Ā and the automorphism group H of Aut Ā whose order is strictly less than |G|. The 
algebra Ā has a nilpotent ideal Z of (|H|, t)-bounded codimension and of |H|-bounded 
nilpotent index h2 = h2(|H|). The image of Z in A is a required ideal since its nilpo-
tency index is at most h1h2, which is an (n, d)-bounded number, and the codimension is 
(n, d, m)-bounded. �
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