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1. Introduction

A standard graded K-algebra R is Koszul if its residual field K has a linear resolution 
over R. Koszul algebras occur frequently in combinatorial and geometric contexts. They 
were first introduced and studied by Priddy [20]. For a nice survey on fundamental results 
and open questions regarding Koszul algebras, we refer the reader to [1].

Let R = S/I where S = K[x1, . . . , xn] is the polynomial ring over a field K and 
I ⊂ S is a homogeneous ideal. It is well-known that if I has a quadratic Gröbner basis 
with respect to a coordinate system of S1 and some monomial order on S, that is, R is 
G-quadratic, then R is Koszul. On the other hand, if R is Koszul, then I is generated 
by quadrics. If I is generated by quadratic monomials, then R = S/I is Koszul. For the 
proofs of all these statements, one may consult, for example, [7, Section 6.1]. Therefore, 
we have the following implications:

I has a quadratic Gröbner basis

=⇒ S/I is Koszul =⇒ I is generated by quadrics.

There are examples which show that none of the above implications can be reversed; 
see [1], [7, Section 6.1], and the references therein.

Nice Koszul algebras arising from combinatorics are the ones defined by binomial edge 
ideals.

Let G be a simple graph on the vertex set [n] with the edge set E(G) and SG =
K[x1, . . . , xn, y1, . . . , yn] the polynomial ring in 2n variables over the field K. For 1 ≤
i < j ≤ n, we set fij = xiyj − xjyi. The binomial edge ideal of G is

JG = (fij : {i, j} ∈ E(G)) ⊂ SG.

Since JG is generated by quadrics, it is natural to classify the graphs G with the property 
that the algebra defined by JG is Koszul. A graph G is called Koszul (over K) if the 
K-algebra RG = SG/JG is so. Koszul graphs have been studied in [9]. In that paper, it 
was shown that the following implications hold:

G is closed, equivalently, JG has a quadratic Gröbner basis

=⇒ G is Koszul =⇒ G is chordal and claw-free.

We recall the combinatorial definition of closed graphs in Section 2. In [9], one finds 
examples which show that none of the above implications can be reversed. Furthermore, 
in [9, Section 3], a classification of the Koszul graphs with clique complex of dimension 
at most two is given in pure combinatorial terms.

Koszul filtrations were introduced in [2]. Let R be a standard graded K-algebra with 
graded maximal ideal m. A Koszul filtration of R is a family F of ideals of R generated 
by linear forms with the following properties:
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(i) F contains the zero ideal and the maximal ideal m;
(ii) for every non-zero ideal I ∈ F there exists J ∈ F such that J ⊂ I and I/J is a 

cyclic module whose annihilator, namely J : I, belongs to F .

When the set of all ideals generated by subsets of variables form a Koszul filtration 
of R, then R is called c-universally Koszul.

In [2, Proposition 1.2] it was shown that all the ideals of F have a linear resolution. 
In particular, it follows that R is Koszul if it admits a Koszul filtration. However, there 
are examples of Koszul algebras which do not possess a Koszul filtration; see [2].

In [10] it was proved that if the defining ideal I of the standard graded K-algebra 
R = S/I has a quadratic Gröbner basis with respect to the reverse lexicographic or-
der induced by the natural order of the variables, then, for every i, the ideal quotient 
(I, xn, xn−1, . . . , xi+1) : xi is generated, modulo I, by linear forms. One may easily find 
examples which show that even if I has a quadratic Gröbner basis with respect to the 
reverse lexicographic order, then the ideals (x̄n, . . . , ̄xi+1) : x̄i are not generated by 
variables. (Here − denotes the residue class modulo I.) However, in case of algebras 
defined by binomial edge ideals, by [10, Theorem 2.1], all the ideals (x̄n, . . . , ̄xi+1) : x̄i

in RG = SG/JG have linear quotients if and only if G is a closed graph.
The goal of this paper is to study Koszul algebras defined by binomial edge ideals of 

pairs of graphs.
Let m, n ≥ 3 be some integers and G1, G2 simple graphs on the vertex sets [m] and [n], 

with edge sets E(G1), E(G2), respectively. Let S = K[X] be the polynomial ring in the 
variables xij where 1 ≤ i ≤ m and 1 ≤ j ≤ n. For 1 ≤ i < j ≤ m and 1 ≤ k < � ≤ n

such that e = {i, j} ∈ E(G1) and f = {k, �} ∈ E(G2), pef denotes the 2-minor of the 
matrix X = (xij) 1≤i≤m

1≤j≤n
determined by the rows i, j and the columns k, � of X. Thus,

pef = [ij|k�] = xikxj� − xi�xjk.

The binomial edge ideal of the pair (G1, G2) is defined as

JG1,G2 = (pef : e ∈ E(G1), f ∈ E(G2)).

This ideal was introduced in [11]. In [11, Theorem 1.3], it was shown that JG1,G2 has a 
quadratic Gröbner basis with respect to the lexicographic order induced by x11 > x12 >

· · · > x1n > x21 > · · · > x2n > · · · > xm1 > · · · > xmn if and only if one of the graphs is 
closed and the other one is complete.

A pair of graphs (G1, G2) is called Koszul if the algebra R = S/JG1,G2 is Koszul. The 
above mentioned statement implies that if G1 is closed and G2 is complete or vice-versa, 
the pair (G1, G2) is Koszul. The surprising fact is that the converse is also true. Actually, 
we prove even more. Namely, in Theorem 3.1 we show that the following statements are 
equivalent:
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(i) The pair of graphs (G1, G2) is Koszul;
(ii) G1 is closed and G2 is complete or vice-versa;
(iii) The graded maximal ideal of R has linear quotients with respect to a suitable order 

of its generators.

The paper is organized as follows. In Section 2 we provide a combinatorial charac-
terization of closed graphs in Theorem 2.2 which is needed to prove Theorem 3.1. The 
statement of Theorem 2.2 appeared in [3, Theorem 3.6] in an equivalent form. We give 
here a different proof to that given in [3] which might be of interest for algebraists since 
it does not involve many concepts and results of combinatorics. Our proof essentially 
uses only Dirac’s theorem on chordal graphs [6].

Section 3 contains the main theorem of this paper, namely Theorem 3.1, which pro-
vides various characterizations of the Koszul pairs of graphs. Finally, we show that 
R = S/JG1,G2 is c-universally Koszul if and only if G1 and G2 are complete graphs.

2. A combinatorial characterization of closed graphs

Closed graphs were considered in [16]. We recall here the definition.
Let G be a simple graph with n vertices and with edge set E(G). The graph G is 

called closed if there exists a labeling of its vertices with labels from 1 to n such that the 
following condition is fulfilled: for any i < j < k or i > j > k, if {i, j}, {i, k} are edges 
of G, then {j, k} is an edge as well. In fact, as it was shown in [16, Theorem 1.1], a given 
labeling of G satisfies the above condition if and only if JG has a quadratic Gröbner 
basis with respect to the lexicographic order on SG induced by the natural order of the 
variables, that is, x1 > x2 > · · · > xn > y1 > · · · > yn.

In [4, Theorem 3.4], it was proved that a graph G is closed if and only if the associated 
binomial ideal JG ⊂ SG = K[x1, . . . , xn, y1, . . . , yn] has a quadratic Gröbner basis with 
respect to some monomial order in the given coordinates of (SG)1.

Later on, it was discovered that closed graphs are actually proper interval graphs 
(PI graphs in brief) which are known in combinatorics for a long time. For the original 
definition of the PI graphs and various characterizations of them we refer the reader to 
[3,4,12–14,18,21]. In this paper, we will use the closed graph terminology.

It is easily seen that any closed graph is chordal, that is, it has no induced cycle of 
length greater than 3 and claw-free which means that it has no induced graph isomorphic 
to the graph on the vertex set [4] with edges {1, 2}, {1, 3}, {1, 4}. In addition, if G is 
closed, then any induced subgraph of G must be closed. On the other hand, one may 
easily show that the graphs of Fig. 1 are not closed, but they are chordal and claw-free. 
These two graphs will play an important role in the combinatorial characterization of 
closed graphs which we are going to use in the next section.

By a theorem of Dirac [6], any chordal graph G has a perfect elimination order which 
means that its vertices can be labeled with the numbers 1, . . . , n such that for every j, 
the set Cj = {i : i < j and {i, j} ∈ E(G)} is a clique of G. We recall that a clique 
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Fig. 1. Non-closed graphs.

of a graph G means a complete subgraph of G. The set of cliques of a graph G forms 
a simplicial complex Δ(G) which is called the clique complex of G. Its facets are the 
maximal cliques of G. By using Dirac’s theorem and an inductive argument, in [8], the 
following characterization of closed graphs was given.

Theorem 2.1. [8] Let G be a graph on [n]. The following conditions are equivalent:

(a) G is closed;
(b) there exists a labeling of G such that all facets of Δ(G) are intervals [a, b] ⊂ [n].

Moreover, if the equivalent conditions hold and the facets F1, . . . , Fr of Δ(G) are labeled 
such that min(F1) < min(F2) < · · · < min(Fr), then F1, . . . , Fr is a leaf order of Δ(G).

For more information about clique complexes, leaf order, and algebraic aspects of 
Dirac’s theorem, one may consult [15, Section 9.2].

We are now ready to give a new characterization of the closed graphs. As we have 
already mentioned in Introduction, an equivalent statement appears in [3], but with a 
completely different proof.

Theorem 2.2. Let G be a connected graph. Then G is closed if and only if it is chordal, 
claw-free, and none of the graphs depicted in Fig. 1 is an induced subgraph of G.

Proof. If G is closed, then any induced subgraph of G is closed as well, hence G must 
be chordal, claw-free, and none of the graphs H1 and H2 can be an induced subgraph of 
G since they are not closed.

We prove the converse by induction on the number of vertices of G. If G has two 
vertices, the statement is trivial. We assume now that G is a connected chordal claw-free 
graph on the vertex set [n], with n ≥ 3, and that the converse is true for graphs with 
n −1 vertices. Since G is chordal, we may choose a perfect elimination order on G. Then 
the vertex labeled with n is obviously a free vertex, that is, the vertex n belongs to 
exactly one maximal clique of G.

Let G′ be the restriction of G to the vertex set [n − 1]. Then G′ is clearly chordal 
claw-free and has no induced subgraph isomorphic to H1 or H2. We claim that G′ is also 
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connected. Indeed, if G′ has at least two connected components, as G is connected, it 
follows that the vertex n must belong to at least two maximal cliques of G, contradiction. 
Therefore, we may apply the inductive hypothesis to G′ and conclude that G′ is closed. 
By Theorem 2.1, it follows that we may relabel the vertices of G′ with labels from 1 to 
n − 1 such that the facets of Δ(G′) are F1 = [a1, b1], . . . , Fr = [ar, br] with 1 = a1 <

a2 < . . . < ar < br = n − 1.
We have to show that G is closed, that is, that G satisfies the condition (b) of Theo-

rem 2.1. The idea of the proof is very simple, but the details need some work. We have to 
figure out where the vertex labeled with n may be “located” such that we do not violate 
the hypothesis on G and next, we show that, for each such location of the vertex n, one 
may relabel all the vertices of G such that condition (b) of Theorem 2.1 holds, hence G
is closed.

Let us first assume that G′ itself is a clique. If the vertex n of G is adjacent to all the 
vertices of G′, then G is a clique as well, thus it is closed. If not, then we may relabel the 
vertices of G′ such that those which are adjacent to the vertex n of G have the largest 
labels among 1, . . . , n −1. Then, we get Δ(G) = 〈[1, n −1], [a, n]〉 for some 1 < a ≤ n −1, 
thus G is a closed graph with two maximal cliques.

We consider now the case when G′ has two maximal cliques, say, Δ(G′) = 〈F1 =
[1, b], F2 = [a, n − 1]〉 for some 1 < a ≤ b < n − 1. Let i1, . . . , i� ∈ [n − 1] be the vertices 
of G′ which belong to the maximal clique of G which contains the vertex n. In other 
words, i1, . . . , i� are all the vertices adjacent to n in G. As i1, . . . , i� form also a clique, 
all these vertices must be contained in one of the two cliques of G′. We may assume 
that i1, . . . , i� ∈ F2. Otherwise, we reduce to this case by relabeling the vertices of G′

as follows: i 	→ n − i for 1 ≤ i ≤ n − 1. If {i1, . . . , i�} = F2, then Δ(G) = 〈[1, b], [a, n]〉, 
hence G is closed.

Now we assume that {i1, . . . , i�} � F2. If all the vertices i1, . . . , i� are free in F2, then 
we may relabel all the free vertices of F2 such that {i1, . . . , i�} = {n −1, n −2, . . . , n −�}. 
It follows that Δ(G) = 〈[1, a], [b, n − 1], [n − �, n]〉, thus G is closed. We have to treat 
now the case when at least one of the vertices i1, . . . , i�, let us say i1, belong to F1 ∩F2. 
If there is a free vertex k ∈ F2 which is not adjacent to n, then we get an induced claw 
graph in G with the edges {1, i1}, {i1, n}, {i1, k} which is impossible. Therefore, all the 
free vertices of F2 are contained in the set {i1, . . . , i�}. In this case we may relabel the 
vertices in the intersection F1∩F2 such that the set {i1, . . . , i�} is an interval of the form 
[c, n −1] where a < c ≤ b. Consequently, Δ(G) = 〈[1, b], [a, n −1], [c, n]〉, thus G is closed. 
Here we have to mention that any permutation of the labels of the intersection vertices 
does not modify the intervals in G′.

Finally, we discuss the case when Δ(G′) has at least three facets, that is, the facets 
of Δ(G′) are F1 = [a1, b1], . . . , Fr = [ar, br] with 1 = a1 < a2 < · · · < ar < br = n − 1
and r ≥ 3. Let, as before, i1, . . . , i� be the vertices adjacent to the vertex n. Since 
i1, . . . , i� form a clique in G′, there must be a maximal clique of G′ which contains the 
set {i1, . . . , i�}. We distinguish two cases.



350 H. Baskoroputro et al. / Journal of Algebra 515 (2018) 344–359
Case 1. {i1, . . . , i�} ⊆ Fr.
If we have equality, then clearly G is closed since Δ(G) = 〈F1, . . . , Fr−1, Fr ∪ {n}〉.
Let now {i1, . . . , i�} � Fr. We proceed further as we have already done in the case 

when G′ had two cliques. Indeed, if i1, . . . , i� are all free vertices of Fr, then we may 
relabel the free vertices of Fr such that {i1, . . . , i�} = {n − �, n − � + 1, . . . , n − 1}. With 
respect to this new labeling, we get Δ(G = 〈F1, . . . , Fr, [n − �, n]〉), thus G is closed. 
The difference to the preceding case when Δ(G′) had two cliques consists in the fact 
that Fr may have non-empty intersection with several maximal cliques of G′. We may 
choose the smallest integer j such that there exists an index in the set {i1, . . . , i�}, say 
i1, such that i1 ∈ Fj ∩ Fr. We claim that in this case, the set Fr \ Fj must be contained 
in {i1, . . . , i�}. Indeed, let us assume that there exists k ∈ Fr \ Fj such that k is not 
adjacent to the vertex n of G. It follows that G has the induced claw with the edges 
{minFj , i1}, {i1, n}, {i1, k}, which is impossible. Thus Fr \ Fj ⊂ {i1, . . . , i�}. Then we 
may relabel (if necessary) the vertices of Fj ∩ Fr such that the set {i1, . . . , i�} is an 
interval of the form [c, n − 1] where ar < c ≤ bj . With respect to this new labeling, the 
maximal cliques of G are the intervals F1, . . . , Fr−1, Fr, and Fr+1 = [c, n], hence G is 
closed.

If {i1, . . . , i�} ⊆ F1, then we may reduce to the case that we have just discussed by 
reversing the labels of G′, namely: i 	→ n − i for 1 ≤ i ≤ n − 1. Therefore it remains to 
discuss the following case.

Case 2. {i1, . . . , i�} ⊆ Fi for some 2 ≤ i ≤ r − 1.
If we have equality, namely {i1, . . . , i�} = Fi and Fi−1 ∩ Fi+1 = ∅, in other words, 

Fi has free vertices, then we may relabel the vertices of Fi ∪ {n} and of Fi+1, . . . , Fr

such that Δ(G) = 〈F1 = [a1, b1], . . . , Fi−1 = [ai−1, bi−1], F ′
i = [ai, bi + 1], F ′

i+1 = [ai+1 +
1, bi+1 + 1], . . . , F ′

r = [ar + 1, br + 1 = n]〉. The case when Fi has no free vertex, that is 
Fi−1 ∩ Fi+1 �= ∅, and {i1, . . . , i�} = Fi cannot occur. Indeed, let j ∈ Fi−1 ∩ Fi+1 and 
set p = min{t : j ∈ Ft}, q = max{t : j ∈ Ft}. Then G has the induced claw with edges 
{minFp, j}, {j, n}, {j, maxFq} as induced graph, which is impossible.

Let now {i1, . . . , i�} � Fi. We split the rest of the proof into two subcases.

Subcase 2 (a). Fi−1∩Fi+1 = ∅. Let us first assume that there exist vertices p ∈ Fi−1∩Fi

and q ∈ Fi ∩ Fi+1 which are not adjacent to n. Now we look at the possible neighbors 
of n. If there exists j ∈ Fi \ (Fi−1 ∪ Fi+1) such that {j, n} ∈ E(G), then we get an 
induced subgraph of G isomorphic to H1 by choosing the triangle {j, p, q} together with 
the edges {j, n}, {minFi−1, p}, {q, maxFi+1}. If there exists j ∈ Fi−1 ∩ Fi such that 
{j, n} ∈ E(G), then G has the induced claw with edges {minFi−1, j}, {j, n}, {j, q}. The 
case j ∈ Fi ∩ Fi+1 is symmetric.

Therefore, we have shown that if Fi−1 ∩ Fi+1 = ∅, then we must have Fi−1 ∩ Fi ⊂
{i1, . . . , i�} or Fi+1∩Fi ⊂ {i1, . . . , i�}. Clearly, by symmetry, we may assume that Fi+1∩
Fi ⊂ {i1, . . . , i�}. If there exists p ∈ Fi ∩ Fi−1 which is not adjacent to n, we get the 
induced claw of G with edges
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{p,min(Fi ∩ Fi+1)}, {n,min(Fi ∩ Fi+1)}, {min(Fi ∩ Fi+1),maxFi+1}.

Thus, we have shown that {i1, . . . , i�} must contain (Fi ∩ Fi−1) ∪ (Fi ∩ Fi+1). As 
{i1, . . . , i�} � Fi, there must exist a free vertex of Fi which is not adjacent to n. 
Then, we get the induced claw in G with the edges {u, min(Fi ∩ Fi+1)}, {n, min(Fi ∩
Fi+1)}, {min(Fi ∩ Fi+1), maxFi+1}.

Summarizing, we have shown that if Fi−1∩Fi+1 = ∅, then G must contain an induced 
graph isomorphic either to a claw or to H1, which impossible.

Subcase 2 (b). Fi−1∩Fi+1 �= ∅. We will show that also this subcase cannot occur. If there 
exists a vertex j ∈ Fi−1 ∩Fi+1 which is adjacent to n, then G has an induced claw with 
the edges {minFi−1, j}, {j, n}, {j, maxFi+1}, contradiction. Consequently, n cannot be 
adjacent to any vertex of Fi−1 ∩ Fi+1.

Let now j ∈ (Fi∩Fi−1) \Fi+1 adjacent to n. If there is no vertex adjacent to n among 
the vertices of Fi ∩ Fi+1, then we get the induced claw of G with the edges

{minFi−1, j}, {j, n}, {j,maxFi}.

This implies that all the vertices in the set (Fi∩Fi+1) \Fi−1 must be adjacent to n. But,
in this case, we reach a contradiction in the following way. Let t ∈ (Fi ∩ Fi+1) \ Fi−1. 
The induced subgraph of G with the triangles

{minFi−1, j,maxFi−1}, {j,maxFi−1, t}, {maxFi−1, t,maxFi+1}, and {n, j, t}

is isomorphic to H2, contradiction to the hypothesis on G.
We end this subcase and the whole proof by observing that the situation when we 

choose j ∈ (Fi ∩ Fi+1) \ Fi−1 adjacent to n is symmetric to the above one. �
3. Koszul pairs of graphs

In this section we state and prove the main theorem of this paper.
Let m, n ≥ 3 be integers and G1, G2 graphs on the vertex sets [m], [n], respectively. 

Let X be the (m ×n)-matrix with entries {xpq}1≤p≤m

1≤q≤n
and S = K[X] the polynomial ring 

over K with indeterminates {xpq}1≤p≤m

1≤q≤n
. Let JG1,G2 be the binomial edge ideal of the 

pair (G1, G2). As we have already mentioned, this ideal is generated by all the minors 
pef = [ij|k�] of the generic matrix X with {i, j} ∈ E(G1) and {k, �} ∈ E(G2). The pair 
(G1, G2) is called Koszul if the algebra R = S/JG1,G2 is Koszul.

To begin with, we notice that we may reduce the study of Kozulness of the algebra R
to the case when both graphs are connected.

Indeed, let G11, . . . , G1p be the connected components of G1 and G21, . . . , G2q the 
connected components of G2. Then,
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S

JG1,G2

∼=
⊗
r,s

Srs

JG1r,G2s

,

where Srs = K[{xtu : t ∈ V (G1r), u ∈ V (G2s)}] for all 1 ≤ r ≤ p, 1 ≤ s ≤ q.
We know that S/JG1,G2 is Koszul if and only if each factor Srs/JG1r,G2s is Koszul 

by [10, Proposition 2.1].

Theorem 3.1. Let G1, G2 be two connected graphs on the vertex sets [m], [n] respectively, 
where m, n ≥ 3. The following statements are equivalent:

(i) The pair of graphs (G1, G2) is Koszul.
(ii) G1 is closed and G2 is complete or vice-versa.
(iii) JG1,G2 has a quadratic Gröbner basis with respect to the lexicographic order, lex, 

induced by x11 > x12 > · · · > x1n > x21 > · · · > x2n > · · · > xm1 > · · · > xmn.
(iv) JG1,G2 has a quadratic Gröbner basis with respect to the reverse lexicographic order, 

rev, induced by x1n > x2n > · · · > xmn > x1n−1 > · · · > xmn−1 > · · · > x11 >

· · · > xm1.
(v) The graded maximal ideal of R has linear quotients with respect to the following 

order of its generators:

xm1, xm−1,1, . . . , x11, xm2, . . . , x12, . . . , xmn, . . . , x1n.

Proof. We first observe that (iii) and (iv) are obviously equivalent since, for 1 ≤ i <
j ≤ m and 1 ≤ k < � < n, we have inlex(xikxj�−xi�xjk) = inrev(xikxj�−xi�xjk). This is 
because we do not change only the monomial order, but also the order of the variables.

Furthermore, (ii) and (iii) are equivalent by [11, Theorem 1.3]. Also, (iii)⇒(i) is a 
known general statement.

In what follows we will prove (i)⇒(ii) and (ii)⇔(v). This will complete the whole 
proof of the theorem.

Proof of (i)⇒(ii). We begin by proving that at least one of the two graphs must be 
complete.

We first make the following remark. Let G′
1 and G′

2 be induced subgraphs of G1, G2, 
respectively, and let Y be the set of variables xij with i ∈ V (G′

1) and j ∈ V (G′
2). Then, 

by the proof of [22, Proposition 8], it follows that T = K[Y ]/JG′
1,G

′
2

is an algebra retract 
of R = S/JG1,G2 . Thus, by [19, Proposition 1.4], T must be a Koszul algebra, hence 
the pair (G′

1, G
′
2) is also Koszul. The same idea was used in [9] to show that an induced 

subgraph of a Koszul graph is also Koszul.
Let us assume that neither G1 nor G2 is complete. Then there exist two induced 

path subgraphs, L1 ⊂ G1 and L2 ⊂ G2, each of them consisting of two edges, say 
E(L1) = {{i, j}, {j, k}} and E(L2) = {{p, q}, {q, r}}. Let Y be the subset of X containing 
the variables xab with a ∈ {i, j, k} and b ∈ {p, q, r}. Then, by the above remark, T =
K[Y ]/JL1,L2 must be a Koszul algebra. But this is not true since βT

35(K) �= 0 as one may 
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check by using Singular [5]. Indeed, the beginning of the resolution of K over T is the 
following:

0 1 2 3 4 5
------------------------------------------

0: 1 9 40 120 280 552
1: - - - - - -
2: - - - 2 24 148

------------------------------------------

Let us now assume that G2 is complete. We begin by proving that G1 is Koszul. 
This will follow easily by applying again the above remark for the algebra retract T ′ =
K[Z]/JG1,f , where f = {1, 2} ∈ E(G2) and Z = {xij : 1 ≤ i ≤ m, j ∈ {1, 2}}. Hence T ′

is Koszul. But JG1,f is exactly the classical binomial edge ideal associated with G1, thus 
G1 is Koszul.

It remains to prove that G1 is even closed. By [9, Theorem 2.1], it follows that G1 is 
chordal and claw-free. In order to apply Theorem 2.2 and derive the desired conclusion, 
it only remains to show that G1 has no induced subgraph isomorphic to H1 or H2.

It is known that the graph H2 of Fig. 1 is not Koszul; see [9, Page 133]. This implies 
that G1 has no induced subgraph isomorphic to H2. Let us suppose that there exists an 
induced subgraph of G1, say G′

1 isomorphic to H1. Let G′
2 be the complete subgraph of 

G2 on the vertex set [3]. We denote by U the set of all variables xij with i ∈ V (G′
1) and 

1 ≤ j ≤ 3. Then, T ′′ = K[U ]/JG′
1,G

′
2

is an algebra retract of R by the above remark. 
Hence T ′′ should be Koszul. But this is not true by the following lemma, hence G1 has 
no induced subgraph isomorphic to H1. This completes the proof of (i)⇒(ii).

Lemma 3.2. The pair of graphs (H1, K3) is not Koszul.

Proof. We label the vertices of H1 as follows. We assign the labels 2, 3, 4 to the vertices 
of the triangle. The additional edges are {1, 2}, {3, 5}, {4, 6}. Let H ′

1 be the induced 
subgraph of H1 on the vertex set [5]. H ′

1 is obviously a closed graph since it admits 
another labeling which is closed. Thus, the pair (H ′

1, K3) is Koszul since JH′
1,K3 has a 

quadratic Gröbner basis by [11, Theorem 1.3].
Let T = K[{xij}1≤i≤6, 1≤j≤3]/JH1,K3 be the coordinate ring of the pair (H1, K3)

and T ′ = K[{xij}1≤i≤5, 1≤j≤3]/JH′
1,K3 the coordinate ring of the pair (H ′

1, K3). Note 
that T ′ ∼= T/(x̄61, ̄x62, ̄x63) where − denotes the class modulo JH1,K3 . As H ′

1 is an 
induced graph in H1, it follows that T ′ is an algebra retract of T . Therefore, by [19, 
Proposition 1.4], it follows that T is Koszul if and only if T ′ has a linear resolution over T . 
But this is false since, as one may check with Singular, we have βT

56(T ′) = 1 �= 0. �
Proof of (ii)⇔(v). We begin with (ii)⇒(v). In the hypothesis (ii), by Theorem 3.1, it fol-
lows that JG1,G2 has a quadratic Gröbner basis with respect to the reverse lexicographic 
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order induced by x1n > x2n > · · · > xmn > x1,n−1 > · · · > xm,n−1 > · · · > x11 >

· · · > xm1. Then, by applying [8, Theorem 1.3], it follows that the sequence

xm1, xm−1,1, . . . , x11, xm2, . . . , x12, . . . , xmn, . . . , x1n

has linear quotients modulo JG1,G2 .
(v)⇒(ii). We assume that

xm1, xm−1,1, . . . , x11, xm2, . . . , x12, . . . , xmn, . . . , x1n

has linear quotients modulo JG1,G2 .
In the first step, we show that at least one of the two graphs must be complete. Let 

us assume that none of them is complete. Then there exist Li an induced path with 3
vertices in Gi for i = 1, 2.

Let i < j < k be the vertices of L1 and p < q < r the vertices of L2. We claim that 
x2
iqxkr is a minimal generator of the ideal quotient

Q = (xm1, . . . , x11, . . . , xmp, . . . , xkp, . . . , xj+1,p) : xjp.

If we prove the above claim, we reach a contradiction to our hypothesis. It follows that 
at least one of the two graphs must be complete.

We have

x2
iqxkrxjp = xiqxipxjqxkr = (1)

= xiqxipxjrxkq =

= xipxkqxirxjq =

= xkqxirxiqxjp =

= xirxiqxjqxkp.

Equality (1) yields x2
iqxkr ∈ Q. We have to show that x2

iqxkr is a minimal generator 
of Q. By assumption, Q is generated by linear forms, hence if x2

iqxkr is not a minimal 
generator, then there must exist the forms �, v such that

x2
iqxkr = lv, (2)

where l is a minimal generator of Q and v ∈ S is a homogeneous polynomial of degree 2.
We consider the Zm+n-multigrading on S by defining

m− deg(xij) = εi,j+m, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where εi,j+m = εi + εj+m, and εk is the k-th element in the canonical basis of Zm+n.



H. Baskoroputro et al. / Journal of Algebra 515 (2018) 344–359 355
The ideal JG1,G2 and, consequently, the algebra R = S/JG1,G2 are homogeneous 
with respect to this grading. Then the forms �, v are also Zm+n-homogeneous, thus, by 
equality (2), it follows that

m− deg(�) ≤ 2εi,q+m + εk,m+r

componentwise. The same holds for v.
Equation (2) implies that

x2
iqxkr − �v ∈ JG1,G2 ,

thus,

x2
iqxkr − �v =

∑
e∈E(G1),f∈E(G2)

hefpef , (3)

for some polynomial hef ∈ S.
In equality (3), we substitute xuv by 0 for every pair (u, v) /∈ {i, j, k} × {p, q, r}. Te 

conditions on the multidegrees of � and v imply that x2
iqxkr − v� ∈ JL1,L2 . On the other 

hand, � is a minimal generator of Q, hence

�xjp ∈ (JG1,G2 , xm1, . . . , x11, . . . , xmp, . . . , xkp, . . . , xj+1,p).

By using again the condition on the multidegree of �, it follows that

�xjp ∈ (JL1,L2 , xkp)

in the subring S′ = K[X ′], where X ′ =

⎛
⎜⎝

xip xiq xir

xjp xjq xjr

xkp xkq xkr

⎞
⎟⎠. This implies that � is a 

minimal generator of (JL1,L2 , xkp) : xjp in S′. By using Singular, we may easily see 
that there is no minimal generator of (JL1,L2 , xkp) : xjp which satisfies the multidegree 
inequality of �.

Therefore, we have proved that Q does not have linear quotients. Consequently, at 
least one of the two graphs must be complete.

We first choose G2 to be complete. We have to show that G1 is closed with respect to 
its given labeling. By hypothesis, we know that for every 2 ≤ i ≤ m, the ideal quotient

(xm1, . . . , x11, . . . , xm,n−2, . . . , x1,n−2, xm,n−1 . . . , xi,n−1) : xi−1,n−1

is generated by linear forms in R. This is equivalent to saying that

(xm1, . . . , x11, . . . , xm,n−2, . . . , x1,n−2, xm,n−1, . . . , xi,n−1, JG1,G2) : xi−1,n−1

is generated by linear forms modulo JG1,G2 .
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We have

(xm1, . . . , x11, . . . , xm,n−2, . . . , x1,n−2, xm,n−1, . . . , xi,n−1, JG1,G2) : xi−1,n−1 =

(xm1, . . . , x11, . . . , xm,n−2, . . . , x1,n−2) + (xm,n−1, . . . , xi,n−1, JG1,{n−1,n}) : xi−1,n−1

and the last term in the above sum is generated by linear forms modulo JG1,{n−1,n} if 
and only if G1 is closed with respect to its given labeling by [10, Theorem 1.6].

It remains to consider the case when G1 is complete. We have to show that G2 is 
closed with respect to its given labeling. Assume that this is not the case and that there 
exist i < j < k or i > j > k such that {i, j}, {i, k} ∈ E(G2) and {j, k} /∈ E(G2).

It is enough to make the proof for i < j < k such that {i, j}, {i, k} ∈ E(G2) and 
{j, k} /∈ E(G2) since the case i > j > k is symmetric. We only need to exchange the 
roles of i and k. Let us consider the minor

g = [m− 2 m− 1|jk] = xm−2,jxm−1,k − xm−2,kxm−1,j .

We observe that

xmig = xmixm−2,jxm−1,k − xmixm−2,kxm−1,j =

xm−2,ixmjxm−1,k − xm−1,ixmjxm−2,k = 0(mod(JG1,G2)).

In the above relations, we used that the minors [m −2 m|ij], [m −2 m −1|ik] belong to 
JG1,G2 since {i, j}, {i, k} ∈ E(G2). The above calculation shows that g belongs to ideal 
quotient

Q = (xm1, . . . , x11, . . . , xm,i+1, . . . , x1,i+1) : xmi.

We claim that g is a minimal generator of Q. This will then give a contradiction to our 
hypothesis and completes the proof for i < j < k. The proof of the claim uses arguments 
similar to those of the previous part of this proof. Let us assume that g is not a minimal 
generator of Q. Then there exist two linear forms, � and v such that g = �v with � a 
minimal generator of Q. By multidegree considerations, we derive that � is a minimal 
linear generator of JG′

1,G
′
2

: xmi where G′
1 is the restriction of G1 to {m − 2, m − 1, m}

and G′
2 is the restriction of G2 to {i, j, k}. But the ideal quotient JG′

1,G
′
2

: xmi has no 
minimal linear generator as the following lemma shows. �

The proof of this lemma uses standard arguments involving Gröbner basis theory, but 
we include all the details for the convenience of the reader.

Lemma 3.3. Let X =

⎛
⎜⎝

x1 y1 z1
x2 y2 z2
x3 y3 z3

⎞
⎟⎠ be a 3 × 3-matrix of indeterminates and let I ⊂

K[xi, yi, zi : i = 1, 2, 3] be the binomial ideal generated by the following 2-minors of X:
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[12|12], [13|12], [23|12], [12|13], [13|13], [23|13].

Then I : (x3) = I2(X) where I2(X) denotes the ideal generated by all 2-minors of the 
matrix X.

Proof. A straightforward calculation shows that the reduced Gröbner basis of I with 
respect to the lexicographic order induced by x1 > y1 > z1 > x2 > y2 > z2 > x3 >

y3 > z3 consists of the generators of I together with the following binomials of degree 3: 
x2[12|23], x3[12|23], x3[13|23], x3[23|23]. In particular, this implies that inlex(I) : (x3) =
inlex(I2(X)) since the generators of I2(X) form the reduced Gröbner basis of I2(X) with 
respect to the above lexicographic order.

Clearly, we have I2(X) ⊆ I : (x3). Let us assume that there exists a polynomial 
f ∈ I : (x3) such that f /∈ I2(X). Reducing the polynomial f modulo I2(X), we may 
assume that no monomial in the support of f belongs to inlex(I2(X)). On the other hand, 
x3f ∈ I, thus x3 inlex f ∈ I which implies that inlex f ∈ inlex(I) : (x3) = inlex(I2(X)), 
contradiction. Therefore, we have I2(X) = I : (x3). �

Of course it is natural to ask whether any Koszul algebra defined by a binomial edge 
ideal associated to a pair of graphs has a Koszul filtration as it was introduced in [2]. 
Some computer experiments give some hope that the following question may have a 
positive answer.

Question 3.4. Let G1, G2 be two connected graphs on the vertex sets [m], [n] respectively, 
where m, n ≥ 3, and R = S/JG1,G2 . Assume that R is Koszul. Does it admit a Koszul 
filtration?

We end this section by proving a result inspired by [10, Proposition 2.3]. First, we 
recall the definition of c-universally Koszul algebras from [10].

Definition 3.5. Let R be a standard graded K-algebra. R is called c-universally Koszul if 
the set consisting of all ideals which are generated by subsets of the variables is a Koszul 
filtration of R.

Proposition 3.6. Let G1, G2 be two connected graphs on the vertex sets [m], [n] respec-
tively, where m, n ≥ 3. Then R is c-universally Koszul if and only if G1 and G2 are 
complete graphs.

Proof. If G1 and G2 are complete graphs, then JG1,G2 is the ideal of all the 2-minors of 
the matrix X = (xij). This is exactly the defining ideal of the Segre product of the poly-
nomial rings over K in m and, respectively, n indeterminates. By [17, Proposition 2.3], 
it follows that R is strongly Koszul, therefore c-universally Koszul.

For the converse, let us assume that R is c-universally Koszul. We have to show that 
G1, G2 are complete graphs. Let us assume, for example, that G2 is not complete. By 
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relabeling its vertices if necessary, we may assume that {1, 2}, {2, 3} ∈ E(G2) while 
{1, 3} /∈ E(G2). With similar techniques to those used in the proof of Theorem 3.1, we 
find that g, where g = [m −1 m|13], is a minimal generator of the ideal quotient 0 : xm2, 
hence we get a contradiction to our hypothesis.

Indeed, let us assume that g is not a minimal generator of 0 : xm2. Thus, there exist 
two linear forms, � and v, with � a minimal generator of 0 : xm2 such that g = �v. 
We have �xm2 = 0 if and only if �xm2 ∈ JG1,G2 . As m − deg(�) ≤ m − deg(g) =
εm−1+εm+ε1+m+ε3+m, we may express �xm2 as a linear combination of the generators 
of the ideal JG′

1,G
′
2

where G′
1 consists of the edge {m −1, m} of G1 and G′

2 is the restriction 
of G2 to {1, 2, 3}, thus G′

2 consists of two edges, namely {1, 2}, {2, 3}. Thus, in the ring 
S′ = K[{xij : m − 1 ≤ i ≤ m, 1 ≤ j ≤ 3}], �xm2 belongs to the ideal of S′ generated by 
the minors h1 = [m − 1 m|12], h2 = [m − 1 m|23]. Therefore, � is a linear generator 
of (h1, h2) : xm2. But one easily checks with Singular, or by direct computation, that 
(h1, h2) : xm2 = (h1, h2, g), hence (h1, h2) : xm2 has no linear generator. �
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