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1. Introduction

In this article, we study a particular case of the theory of representations of categories: 
those of generalized correspondences. Our goal is to generalize the work of Serge Bouc and 
Jacques Thévenaz about correspondence functors in [6–8]. Their methodological point 
of view, which is also ours, makes crucial the study of simple functors. Its efficiency has 
been proved by previous works, especially about Mackey functors and biset functors: see 
for example [21,20,3–5,1].

The literature in this field is flourishing and the points of view are diverse. In particu-
lar, we are interested in categories having all finite sets as objects. Similar categories have 
been studied by various and fruitful methods. This is how Steven V. Sam and Andrew 
Snowden triumphed of the Lannes–Schwartz artinian conjecture with Gröbner methods 
in [18]. We can also cite [16,9] among other papers with the same flavor, as well as the 
more recent works by John D. Wiltshire-Gordon [22,23] and Andrew Gitlin [11].

We first recall in Section 2 fundamental results about representations of categories. 
In Section 3, we define our category of interest, that is, the category of generalized 
correspondences, and study its first properties. Sections 4, 5 and 6 are devoted to the 
study of modules over a finite distributive lattice and presheaves of posets. They play a 
crucial role in the sequel. In Section 7, we give a parametrization of simple generalized 
correspondence functors in terms of such presheaves. In accordance with the previously 
described point of view, it is the core of this paper. In Sections 8 and 9, we illustrate the 
power of this parametrization by studying some of its consequences, especially finiteness 
conditions.

Throughout this paper, k denotes a commutative ring, T denotes a finite distributive 
lattice and B = Irr(T ) denotes the set of join-irreducible elements of T . Additional 
assumptions about k will always be emphasized.

Acknowledgments. This work is a part of my PhD thesis at Université de Picardie 
Jules Verne funded by the French Ministry of Higher Education and Research. I wish to 
thank my advisers Serge Bouc and Radu Stancu, as well as the reviewer of this paper, 
for useful advice and numerous relevant comments.

2. Representations of categories

In this section, we recall the basics of the representation theory of categories. All of 
the following results can be found in [6]. We only give proofs when they are scattered in 
the literature.

Let C be a category. For all objects X and Y of C , we write C (Y, X) = HomC (X, Y )
for the set of arrows from X to Y in C . We assume that C has a small skeleton, in order 
to deal with sets of natural transformations between two functors with source C .

Definition 2.1. The k-linearization of C is the category kC defined as follows.



C. Guillaume / Journal of Algebra 521 (2019) 405–451 407
• Its objects are those of C .
• If X and Y are two objects of C , the set kC (Y, X) of arrows from X to Y in kC is 

the free k-module with basis C (Y, X).
• Its composition is the k-bilinear extension of the composition in C .
• Its identity morphisms are those of C .

Definition 2.2. A k-linear representation of C is a k-linear functor from kC to the cate-
gory k -Mod of all k-modules.

Let F be a k-linear representation of C and let X, Y be two objects of C . For all 
α ∈ kC (Y, X) and v ∈ F (X), we write α · v = F (α)(v). Thus F (X) becomes a left 
kC (X, X)-module.

We write Fk(C ) for the category of k-linear representations of C , the arrows of which 
are the natural transformations. [2, Proposition 1.4.4] ensures that Fk(C ) is an abelian 
category. In particular, a sequence of functors 0 → F1 → F2 → F3 → 0 is exact if and 
only if its evaluation 0 → F1(X) → F2(X) → F3(X) → 0 is exact for any object X of C . 
A k-linear representation of C is called simple if it is nonzero and has no proper nonzero 
subrepresentation.

For any object X of C , Yoneda’s lemma implies that the representable functor 
kC (−, X) is a projective functor. Its evaluation kC (Y, X) at Y has a structure of 
(kC (Y, Y ), kC (X, X))-bimodule given by composition on both sides. If V is a left 
kC (X, X)-module, we then write LX,V = kC (−, X) ⊗kC (X,X) V . It is a k-linear rep-
resentation of C .

Proposition 2.3. Let X be an object of C . The functor

kC (X,X) -Mod −→ Fk(C )
V �−→ LX,V

is left adjoint to the evaluation functor

Fk(C ) −→ kC (X,X) -Mod
F �−→ F (X).

Proof. Apply the tensor-hom adjunction, then Yoneda’s lemma. �
Let X be an object of C and let V be a left kC (X, X)-module. For any object Y of C , 

we define

JX,V (Y ) =
{

n∑
i=1

αi ⊗ vi ∈ LX,V (Y ),∀β ∈ kC (X,Y ),
n∑

i=1
(βαi) · vi = 0

}
.
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Proposition 2.4.

1. JX,V is the largest subrepresentation of LX,V that vanishes at X.
2. If V is a simple kC (X, X)-module, then JX,V is the largest proper subrepresentation 

of LX,V .

Proof. First notice that JX,V (X) = 0, because if α ⊗ v ∈ JX,V (X). Then α · v =
(IdX α) · v = 0, whence α⊗ v = IdX ⊗(α · v) = 0.

Moreover, the definition of JX,V (Y ) can immediately be rewritten as

JX,V (Y ) =
⋂

β∈kC (X,Y )

KerLX,V (β).

This implies that JX,V is a subrepresentation of LX,V .
Assume that F is a subrepresentation of LX,V that vanishes at X. This implies that 

for all β ∈ C (X, Y ), one has F (Y ) = KerF (β) ⊆ KerLX,V (β). So F (Y ) ⊆ JX,V (Y ). 
This proves the first assertion of the proposition.

Now assume that V is a simple kC (X, X)-module and let F be a subrepresentation 
of LX,V . Then F (X) is a kC (X, X)-submodule of LX,V (X) ∼= V . So F (X) is either 0
or LX,V (X). If F (X) = LX,V (X), then F = LX,V . Indeed, for all α⊗ v ∈ LX,V (Y ), one 
has

α⊗ v = LX,V (α)(IdX ⊗v) ∈ LX,V (α)(LX,V (X)) = LX,V (α)(F (X)) ⊆ F (Y ),

since F is a subrepresentation of LX,V .
So any proper subrepresentation of LX,V vanishes at X. Thus the second assertion of 

the proposition is a consequence of the first one. �
We write SX,V = LX,V /JX,V , so that SX,V is a simple k-linear representation when 

V is a simple kC (X, X)-module.

Proposition 2.5. Let S be a simple k-linear representation of C and let X be an object 
of C such that S(X) 	= 0.

1. S is generated by S(X), that is, S(Y ) = kC (Y, X) · S(X) for any object Y of C . 
More precisely, S(Y ) = kC (Y, X) · v for all v ∈ S(X) � {0}.

2. S(X) is a simple kC (X, X)-module.
3. S is isomorphic to SX,S(X).

Proof. See [6, Proposition 2.7]. �
Lemma 2.6. Let S be a simple k-linear representation of C , let X be an object of C such 
that S(X) 	= 0 and let F be any k-linear representation of C . Finally, let V1 ⊆ F (X) be 
a k-submodule of F (X). The following properties are equivalent.
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(i) There exists a k-submodule V2 ⊆ V1 such that S(X) is isomorphic to V1/V2.
(ii) There exist subrepresentations F2 ⊆ F1 ⊆ F such that F1(X) = V1 and S is isomor-

phic to F1/F2.

Proof. See [6, Proposition 2.8] or, for more details, [15, Lemma 3.1]. �
3. Generalized correspondences

We now move to a particular case of the general setting studied in Section 2. We first 
define what will be the arrows in our category of interest.

Definition 3.1. Let X and Y be two finite sets. A T -generalized correspondence between 
Y and X is a map Y ×X → T . We write CT (Y, X) = TY×X for the set of T -generalized 
correspondences between Y and X.

When T = {0, 1} is the two-element lattice, maps Y ×X → {0, 1} can be identified 
with subsets of Y × X. So a {0, 1}-generalized correspondence is just what is called a 
correspondence in [6].

Let X, Y and Z be three finite sets. For all T -generalized correspondences R ∈
CT (Y, X) and S ∈ CT (Z, Y ), we define their product SR ∈ CT (Z, X) by

SR(z, x) =
∨
y∈Y

S(z, y) ∧R(y, x)

for all z ∈ Z and x ∈ X. We also define a diagonal correspondence ΔX ∈ CT (X, X) by

ΔX(x, y) =
{

1T if x = y

0T otherwise

for all x, y ∈ X.

Lemma 3.2.

1. The product of T -generalized correspondences is associative. That is, for all finite sets 
W , X, Y , Z and for all T -generalized correspondences Q ∈ CT (X, W ), R ∈ CT (Y, X)
and S ∈ CT (Z, Y ), one has (SR)Q = S(RQ).

2. The diagonal correspondences are identities. That is, for all finite sets X, Y and for 
any T -generalized correspondence R ∈ CT (Y, X), one has ΔY R = R = RΔX .

Proof. It is a straightforward computation. �
Thus we can consider the category CT of T -generalized correspondences. Its objects 

are all finite sets and the set of arrows from X to Y is, in accordance with our notation, 
the set CT (Y, X) of T -generalized correspondences between Y and X.
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A k-linear representation of the category CT is called a T -generalized correspondence 
functor over k. If we need not emphasize k or T , we may simply talk about generalized 
correspondence functors.

We now give a series of easy consequences of the following lemma. All of them are 
direct generalizations of the results of [6, Section 3].

Lemma 3.3. Let X and Y be finite sets such that |X| � |Y |. There exist i∗ ∈ CT (Y, X)
and i∗ ∈ CT (X, Y ) such that i∗i∗ = ΔX .

Proof. Since |X| � |Y |, there exists an injection i : X → Y . Consider the T -generalized 
correspondences i∗ ∈ CT (Y, X) and i∗ ∈ CT (X, Y ) defined by

i∗(y, x) =
{

1T if y = i(x)
0T otherwise

and

i∗(x, y) =
{

1T if y = i(x)
0T otherwise

for all x ∈ X and y ∈ Y . It is then easy to check that i∗i∗ = ΔX . �
Corollary 3.4. Let X and Y be finite sets such that |X| � |Y |. The functor kCT (−, X)
is isomorphic to a direct summand of kCT (−, Y ).

Proof. Right multiplication by i∗ defines a natural transformation kCT (−, X) →
kCT (−, Y ). Similarly, right multiplication by i∗ defines a natural transformation 
kCT (−, Y ) → kCT (−, X). Their composition is the identity of kCT (−, X), thanks to 
Lemma 3.3. �
Corollary 3.5. Let X and Y be finite sets such that |X| � |Y |. The left kCT (Y, Y )-module 
kCT (Y, X) is projective.

Proof. Corollary 3.4 implies that kCT (Y, X) is isomorphic to a direct summand of 
kCT (Y, Y ), which is a free kCT (Y, Y )-module. �
Corollary 3.6. Let X and Y be finite sets such that |X| � |Y |. If F is a generalized 
correspondence functor such that F (Y ) = 0, then F (X) = 0.

Proof. For all v ∈ F (X), one has v = i∗i∗ · v. But i∗ · v ∈ F (Y ) = 0, so v = 0. �
We now make a first study of finitely generated generalized correspondence functors. 

It will be completed in Sections 8 and 9. The following definition and results are a direct 
generalization of [6, Section 6]
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Definition 3.7. Let (Xi)i∈I be a family of finite sets. For all i ∈ I, let vi ∈ Xi. A gener-
alized correspondence functor F is generated by (vi)i∈I if for any finite set Y and for all 
v ∈ F (Y ), there exist a finite subset J ⊆ I and elements αj ∈ kCT (Y, Xj) such that

v =
∑
j∈J

αj · vj .

If the set I is finite, F is said finitely generated.

For example, the representable functor kCT (−, X) is generated by the single element 
ΔX .

Lemma 3.8. Let F be a finitely generated generalized correspondence functor. For any 
finite set X, the k-module F (X) is finitely generated.

Proof. Let (vi)1�i�n be a finite family generating F , with vi ∈ F (Xi). Let A =
{R · vi, R ∈ CT (X,Xi), 1 � i � n}. Then any element of F (X) is a k-linear combination 
of elements in A. The latter being a finite set, F (X) is indeed finitely generated. �
Proposition 3.9. Let F be a generalized correspondence functor. The following properties 
are equivalent.

(i) F is finitely generated.
(ii) There exists a finite family (Xi)1�i�n of finite sets such that F is isomorphic to a 

quotient of

n⊕
i=1

kCT (−, Xi).

(iii) There exist a finite set X and an integer n ∈ N such that F is isomorphic to a 
quotient of kCT (−, X)⊕n.

(iv) There exist a finite set X and a finite subset A ⊆ F (X) such that F is generated 
by A.

Proof. (i) implies (ii): assume that F is generated by the finite family (vi)1�i�n, with 
vi ∈ Xi. By Yoneda’s lemma, there exist morphisms kCT (−, Xi) → F mapping ΔXi

to 
vi. Their sum is a morphism

n⊕
i=1

kCT (−, Xi) −→ F.

This morphism is surjective because F is generated by the family (vi)1�i�n.
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(ii) implies (iii): assume that F is isomorphic to a quotient of

n⊕
i=1

kCT (−, Xi).

Fix a finite set X such that |Xi| � |X| for all i ∈ �1, n�. By Corollary 3.4, each kCT (−, Xi)
is isomorphic to a direct summand of kCT (−, X). So F is isomorphic to a quotient of 
kCT (−, X)⊕n.

(iii) implies (iv): assume that F is isomorphic to a quotient of kCT (−, X)⊕n. For all 
i ∈ �1, n�, let bi ∈ kCT (X, X)⊕n the element the i-th coordinate of which is ΔX , the 
others being 0. Since kCT (−, X) is generated by ΔX , then F is generated by the images 
of the elements bi.

It is obvious that (iv) implies (i). �
Corollary 3.10. For any finite set X and for any finitely generated kCT (X, X)-module V , 
the functors LX,V and SX,V are finitely generated.

Proof. Let (vi)1�i�n be a finite family generating V . By Yoneda’s lemma, there exist 
morphisms kCT (−, Xi) → LX,V mapping ΔX to vi. Their sum is a surjective morphism 
kCT (−, X)⊕n → LX,V . Proposition 3.9 then ensures that LX,V is finitely generated. 
Thus SX,V is finitely generated too because it is a quotient of LX,V . �
4. Modules over a distributive lattice

This section and the two following ones are devoted to the study of modules over a 
distributive lattice. These objects will play a crucial role in describing simple generalized 
correspondence functors.

Recall that T is a finite distributive lattice. It is a semiring in the sense of [12], with 
its join and meet as semiring operations. Hence we can consider semimodules over them. 
Here we add an order relation to this semimodule structure.

Definition 4.1. A T -module is a join-semilattice U equipped with an action of T

T × U −→ U

(t, u) �−→ t · u

fulfilling the following axioms.

• For all t ∈ T and u, v ∈ U , one has t · (u ∨ v) = (t · u) ∨ (t · v).
• For all s, t ∈ T and u ∈ U , one has (s ∨ t) · u = (s · u) ∨ (t · u).
• For all s, t ∈ T and u ∈ U , one has (s ∧ t) · u = s · (t · u).
• For all u ∈ U , one has 1T · u = u.
• There exists 0U ∈ U such that for all t ∈ T and u ∈ U , one has t · 0U = 0U = 0T · u.
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Lemma 4.2. Let U be a T -module. For all s, t ∈ T and u ∈ U , the following properties 
hold.

1. 0U � u.
2. s · u � u.
3. If s � t, then s · u � t · u.
4. If u � v, then t · u � t · v.

Proof. We prove Assertion 3: since s � t, one has t = s ∨t. So t ·u = (s ∨t) ·u = (s ·u) ∨(t ·u), 
that is, s · u � t · u. A similar argument proves Assertion 4. Assertions 1 and 2 are a 
obtained from Assertion 3 by taking (s, t) = (0T , 1T ) and t = 1T respectively. �
Lemma 4.3. Any finite T -module is a lattice.

Proof. It is an immediate consequence of the following classical lemma. �
Lemma 4.4. Any finite join-semilattice having a smallest element is a lattice.

Now that we have a notion of linearity, we can define linear maps: they are maps 
between T -modules that preserve the join and the action of T . We can similarly define 
linear isomorphisms. Here we give without proof a list of easy properties of T -linear 
maps.

Lemma 4.5.

1. Any T -linear map maps 0 to 0.
2. Any T -linear map is order-preserving.
3. The inverse of a bijective T -linear map is also T -linear, so it is a T -linear isomor-

phism.
4. Any T -linear isomorphism between finite T -modules is a lattice isomorphism.
5. Any T -linear isomorphism between finite T -modules maps join-irreducible elements 

to join-irreducible elements.

Let E be a finite set and let • be a set of cardinality 1. We identify • × E with E, 
hence CT (•, E) with TE . We write CT (E) for the latter. The product of the T -generalized 
correspondences ϕ ∈ CT (E) and e ∈ CT (E, E) is the element ϕe ∈ CT (E) given by

ϕe(α) =
∨
β∈E

ϕ(β) ∧ e(β, α)

for all α ∈ E.
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We write CT (E)e = {ϕe, ϕ ∈ CT (E)}. From now on, we assume that e is idempotent, 
that is, e2 = e. In this case, CT (E)e = {ϕ ∈ CT (E), ϕe = ϕ}. Notice that CT (E)ΔE =
CT (E), so all of the statements below are in particular true for the set CT (E).

The elements of CT (E)e are maps with values in a poset, so CT (E)e it is actually a 
poset itself. For all ϕ, ψ ∈ CT (E)e, the function ϕ ∨ψ ∈ CT (E) is defined by (ϕ ∨ψ)(α) =
ϕ(α) ∨ψ(α) for all α ∈ E. Then, one can check that (ϕ ∨ψ)e = ϕe ∨ψe = ϕ ∨ψ, so that 
the function ϕ ∨ ψ is an element of CT (E)e. Hence, it is the join of ϕ and ψ in CT (E)e, 
so CT (E)e is a join-semilattice.

It is also equipped with an action of T defined by (t · ϕ)(α) = t ∧ ϕ(α) for all α ∈ E. 
Indeed, for all α ∈ E, one has

(t · ϕ)e(α) =
∨
β∈E

(t · ϕ)(β) ∧ e(β, α) =
∨
β∈E

t ∧ ϕ(β) ∧ e(β, α)

= t ∧
∨
β∈E

ϕ(β) ∧ e(β, α) = t ∧ ϕe(α) = t ∧ ϕ(α) = (t · ϕ)(α),

so that t · ϕ ∈ CT (E)e. The third equality above is a consequence of the distributivity 
of T .

Lemma 4.6. For any finite set E and for any idempotent e ∈ CT (E, E), the set CT (E)e
is a T -module.

Proof. The first two axioms defining a T -module are a consequence of the distributivity 
of T . The other ones are immediate to check, the smallest element of CT (E)e being the 
constant function equal to 0T , which is indeed an element of CT (E)e. �

Since CT (E)e is a finite T -module, it is a lattice. An important question is to determine 
its join-irreducible elements. Given α ∈ E and t ∈ T , we consider maps of type

δtα : E −→ T

β �−→ t ∧ ΔE(α, β).

In the sequel, we will simply write δα instead of δ1T
α . Recall that B is the set of join-

irreducible elements of T .

Lemma 4.7. The join-irreducible elements of CT (E)e are exactly the maps δbαe with α ∈ E

and b ∈ B such that b � e(α, α).

Proof. Let ϕ ∈ Irr(CT (E)e). One has

ϕ =
∨
α∈E

δϕ(α)
α .

For all α ∈ E, the element ϕ(α) ∈ T is the join of all elements b ∈ B with b � ϕ(α). So
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δϕ(α)
α =

∨
b∈B

b�ϕ(α)

δbα.

Hence

ϕ =
∨
α∈E

∨
b∈B

b�ϕ(α)

δbα.

Since ϕ ∈ CT (E)e, one has moreover

ϕ = ϕe =

⎛
⎜⎜⎝ ∨

b∈B
b�ϕ(α)

δbα

⎞
⎟⎟⎠ e =

∨
b∈B

b�ϕ(α)

δbαe.

Every function of type δbαe in an element of CT (E)e. Since ϕ is join-irreducible in CT (E)e, 
there exist α ∈ E and b ∈ B with b � ϕ(α) such that ϕ = δbαe. So

b � ϕ(α) = δbαe(α) =
∨
β∈E

δbα(β) ∧ e(β, α) = b ∧ e(α, α) � e(α, α).

So any join-irreducible element of CT (E)e is of type δbαe for some α ∈ E and b ∈ B such 
that b � e(α, α).

Conversely, let α ∈ E and b ∈ B be such that b � e(α, α) and assume that there exist 
ϕ, ψ ∈ CT (E)e such that δbαe = ϕ ∨ ψ. Then b = b ∧ e(α, α) = δbαe(α) = ϕ(α) ∨ ψ(α). 
Since b is join-irreducible, one has b ∈ {ϕ(α), ψ(α)}, say b = ϕ(α). Then for all β ∈ E, 
one has

ϕ(β) = ϕe(β) � ϕ(α) ∧ e(α, β) = b ∧ e(α, β) = δbαe(β) = ϕ(β) ∨ ψ(β).

So ϕ ∨ ψ = ϕ, that is, δbαe = ϕ. Hence δbαe is join-irreducible. �
Lemma 4.8. For all ϕ ∈ CT (E)e, one has

∨
γ∈E

ϕ(γ) · δγe = ϕ.

Proof. For all α ∈ E, one has
⎛
⎝∨

γ∈E

ϕ(γ) · δγe

⎞
⎠ (α) =

∨
γ∈E

ϕ(γ) ∧ δγe(α).

Now
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δγe(α) =
∨
β∈E

δγ(β) ∧ e(β, α) = e(γ, α),

so
∨
γ∈E

ϕ(γ) ∧ δγe(α) =
∨
γ∈E

ϕ(γ) ∧ e(γ, α) = ϕe(α) = ϕ(α)

since ϕ ∈ CT (E)e. Hence
∨
γ∈E

ϕ(γ) · δγe = ϕ. �

The end of this section is devoted to the study of T -modules of type CT (E)e. We will 
see that their properties generalize those of finite distributive lattices in a sense that will 
be made explicit later.

Definition 4.9. A T -module is regular if it is isomorphic to some CT (E)e for an idempo-
tent e ∈ CT (E, E).

Definition 4.10. Two idempotents e ∈ CT (E, E) and f ∈ CT (F, F ) are equivalent if there 
exist x ∈ eCT (E, F )f and y ∈ fCT (F, E)e such that e = xy and f = yx.

Lemma 4.11. Let e ∈ CT (E, E) and f ∈ CT (F, F ) be two idempotents. The following 
properties are equivalent.

(i) e and f are equivalent.
(ii) There exist x, b ∈ eCT (E, F )f and y, a ∈ fCT (F, E)e such that e = xy and f = ab.

Proof. The arguments are given in the proofs of [13, Theorem 3] and [17, Proposi-
tion A.1.15], with an easy generalization due to the fact that e and f need not lie in the 
same monoid. �
Proposition 4.12. The T -modules CT (E)e and CT (F )f are isomorphic if and only if the 
idempotents e and f are equivalent.

Proof. Let Θ: CT (E)e → CT (F )f be any T -linear map. Then we define a T -generalized 
correspondence RΘ ∈ CT (E, F ) by RΘ(α, β) = Θ(δαe)(β) for all α ∈ E and β ∈ F . Then

RΘf(α, β) =
∨
γ∈F

RΘ(α, γ) ∧ f(γ, β) =
∨
γ∈F

Θ(δαe)(γ) ∧ f(γ, β)

= Θ(δαe)f(β) = Θ(δαe)(β) = RΘ(α, β),

the fourth equality coming from the fact that Θ(δαe) ∈ CT (F )f .
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On the other hand,

eRΘ(α, β) =
∨
γ∈E

e(α, γ)∧RΘ(γ, β) =
∨
γ∈E

e(α, γ)∧Θ(δγe)(β) = Θ

⎛
⎝∨

γ∈E

e(α, γ) · δγe

⎞
⎠(β)

since Θ is T -linear. Since e is idempotent, the function e(α, −) is an element of CT (E)e. 
Then Lemma 4.8 ensures that

∨
γ∈E

e(α, γ) · δγe = e(α,−) = δαe.

Hence eRΘ(α, β) = Θ(δαe)(β) = RΘ(α, β). So one has RΘ ∈ eCT (E, F )f .
Now if Θ is an isomorphism, one has similarly RΘ−1 ∈ fCT (F, E)e. Moreover, for all 

α, β ∈ F , one has

RΘ−1RΘ(α, β) =
∨
γ∈E

RΘ−1(α, γ) ∧RΘ(γ, β) =
∨
γ∈E

Θ−1(δαf)(γ) ∧ Θ(δγe)(β)

= Θ

⎛
⎝∨

γ∈F

Θ−1(δαf)(γ) · δγe

⎞
⎠ (β) = Θ(Θ−1(δαf))(β)

= δαf(β) = f(α, β).

Here the third equality comes from the T -linearity of Θ, while the fourth one is again a 
consequence of Lemma 4.8. Hence RΘ−1RΘ = f .

One has similarly RΘRΘ−1 = e. So e and f are equivalent whenever CT (E)e and 
CT (F )f are isomorphic.

Conversely, assume that there exist x ∈ eCT (E, F )f and y ∈ fCT (F, E)e such that 
e = xy and f = yx. Then

CT (E)e −→ CT (F )f
ϕ �−→ ϕx

and

CT (F )f −→ CT (E)e
ϕ �−→ ϕy

are well-defined T -linear maps, inverse to each other. So CT (E)e and CT (F )f are iso-
morphic whenever e and f are equivalent. �
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For any T -module U , we define a map

m : U −→ T

u �−→
∧
t∈T
t·u=u

t.

Lemma 4.13. Let U be a T -module.

1. For all t ∈ T and u ∈ U , one has t · u = u if and only if m(u) � t.
2. The map m maps the set Irr(U) of join-irreducible elements of U to B.
3. Assume that m is order-preserving. For all t ∈ T and u, v ∈ U , one has u � t · v if 

and only if u = t · u and u � v.
4. Assume that U = CT (E)e. Then for all ϕ ∈ U , one has

m(ϕ) =
∨
α∈E

ϕ(α),

and for all α ∈ E and b ∈ B with b � e(α, α), one has m(δbαe) = b. In particular, 
the map m is order-preserving.

Proof. 1. If t · u = u, it follows from the definition of m that m(u) � t. Conversely, if 
m(u) � t, then u = m(u) · u � t · u � u by Lemma 4.2. So t · u = u.

2. Let ω ∈ Irr(U). One has

ω = m(ω) · ω =

⎛
⎜⎜⎝ ∨

b∈B
b�m(ω)

b

⎞
⎟⎟⎠ · ω =

∨
b∈B

b�m(ω)

b · ω.

Since ω is join-irreducible, there exists b � m(ω) such that b ·ω = ω. Then m(ω) � b, 
whence m(ω) = b ∈ B.

3. Assume that u � t · v. Since t · (t · v) = t · v, one has m(t · v) � t. Since m is 
order-preserving, one has m(u) � m(t · v) � t, so t · u = u. Moreover u � v by 
Lemma 4.2. Conversely, if u = t · u and u � v, then u = t · u � t · v.

4. Since m(ϕ) · ϕ = ϕ, one has m(ϕ) ∧ ϕ(α) = ϕ(α), so ϕ(α) � m(ϕ) for all α ∈ E. 
Hence

∨
α∈E

ϕ(α) � m(ϕ).

Conversely, for all β ∈ E, one has
( ∨

ϕ(α)
)

∧ ϕ(β) = ϕ(β).

α∈E
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This means that ( ∨
α∈E

ϕ(α)
)

· ϕ = ϕ,

so

m(ϕ) �
∨
α∈E

ϕ(α).

Now if α ∈ E and b ∈ B are such that b � e(α, α), then

m(δbαe) =
∨
β∈E

δbαe(β) =
∨
β∈E

b ∧ e(α, β),

so that one has both m(δbαe) � b and m(δbαe) � b ∧ e(α, α) = b. �
Now let U be a fixed finite T -module. We write Ω = Irr(U). For all u ∈ U and ω ∈ Ω, 

we define

d(u, ω) =
∨
b∈B

b�m(ω)
b·ω�u

b.

Then d ∈ CT (U, Ω).

Lemma 4.14.

1. For all u ∈ U and ω ∈ Ω, one has d(u, ω) � m(ω).
2. For all ω ∈ Ω, one has d(ω, ω) = m(ω).
3. For all ω, ξ ∈ Ω, one has ξ � ω if and only if d(ω, ξ) = m(ξ).

Proof. 1. It is an immediate consequence of the definition of d.
2. If ω ∈ Ω, then b · ω � ω for all b ∈ B, in view of Lemma 4.2. Then

d(ω, ω) =
∨

b�m(ω)
b·ω�ω

b =
∨

b�m(ω)

b = m(ω).

3. If ξ � ω, then b · ξ � ξ � ω for all b ∈ B. Then

d(ω, ξ) =
∨

b�m(ξ)
b·ξ�ω

b =
∨

b�m(ξ)

b = m(ξ).

Conversely, if d(ω, ξ) = m(ξ), then d(ω, ξ) · ξ = ξ. But
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d(ω, ξ) · ξ =
∨

b�m(ξ)
b·ξ�ω

b · ξ � ω,

so ξ � ω. �
Lemma 4.15. For all u ∈ U , one has

u =
∨
ω∈Ω

d(u, ω) · ω.

Proof. Let u ∈ U . For all ω ∈ Ω, one has d(u, ω) · ω � u by definition of d, so

∨
ω∈Ω

d(u, ω) · ω � u.

Conversely, if ω ∈ Ω is such that ω � u, then m(ω) ∈ B, thus

m(ω) �
∨

b�m(ω)
b·ω�u

b = d(u, ω).

So

u =
∨
ω�u

ω =
∨
ω�u

m(ω) · ω �
∨
ω�u

d(u, ω) · ω �
∨
ω∈Ω

d(u, ω) · ω.

These two inequalities prove the lemma. �
We write f = d|Ω×Ω ∈ CT (Ω, Ω).

Lemma 4.16. One has df = f . In particular, f ∈ CT (Ω, Ω) is idempotent.

Proof. Let u ∈ U . By Lemma 4.14, one has

df(u, ω) =
∨
ξ∈Ω

d(u, ξ) ∧ f(ξ, ω) �
∨
ξ∈Ω

d(u, ξ) ∧m(ω) � m(ω).

By Lemma 4.15, one has

u =
∨
ξ∈Ω

d(u, ξ) · ξ =
∨
ξ∈Ω

d(u, ξ) ·
(∨

ω∈Ω
d(ξ, ω) · ω

)

=
∨
ω∈Ω

⎛
⎝∨

ξ∈Ω

d(u, ξ) ∧ f(ξ, ω)

⎞
⎠ · ω =

∨
ω∈Ω

df(u, ω) · ω.
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In particular, df(u, ω) · ω � u for all ω ∈ Ω. So

df(u, ω) =
∨

b�df(u,ω)

b �
∨

b�m(ω)
b·ω�u

b = d(u, ω),

that is, df � d.
Conversely, define δm ∈ CT (Ω, Ω) by δm(ω, ξ) = m(ω) ∧ ΔΩ(ω, ξ) for all ω, ξ ∈ Ω. By 

Lemma 4.14, one has δm � f , so dδm � df . Lemma 4.14 again implies that dδm = f , so 
f � df . �
Proposition 4.17. The map

Θ: CT (Ω)f −→ U

ϕ �−→
∨
ω∈Ω

ϕ(ω) · ω

is T -linear and surjective.

Proof. It is straightforward to check that Θ is T -linear. By Lemmas 4.16 and 4.15, one 
has d(u, −) ∈ CT (Ω)f and Θ(d(u, −)) = u, so Θ is surjective. �
Definition 4.18. A T -module U is preregular if it fulfills the following axioms.

• The map m is order-preserving.
• For all b ∈ B and ω ∈ Irr(U) such that b � m(ω), one has b · ω ∈ Irr(U).
• For all b ∈ B and ω ∈ Irr(U) such that b � m(ω), one has m(b · ω) = b.

Proposition 4.19. Any regular T -module is both preregular and distributive.

Proof. The notions of preregularity and distributivity are invariant by isomorphism 
thanks to Lemma 4.5. Then it is enough to prove the proposition for a module of type 
CT (E)e. It is a straightforward computation to check that such modules are distributive. 
Lemma 4.13 implies that the map m is order-preserving. Moreover, Lemma 4.7 ensures 
that any join-irreducible element in CT (E)e is of type δbαe for some α ∈ E and b ∈ B

with b � e(α, α). Then m(δbαe) = b thanks to Lemma 4.13. Now for all c � b and for all 
β ∈ E, one has (c ·δbα)e(β) = c ∧ b ∧e(α, β) = c ∧e(α, β) = δcαe(β). So c ·δbαe = δcαe. Since 
c ∈ B and c � b � e(α, α), and thanks to Lemma 4.7, δcαe is a join-irreducible element of 
CT (E)e. Then m(δcαe) = c thanks to Lemma 4.13 again. Hence the three axioms defining 
a preregular module are verified by CT (E)e. �

We now focus on proving the converse, so we assume that U is finite, preregular and 
distributive.
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We first recall the following well-known property, which holds in any distributive 
lattice A: if a is a join-irreducible element of A, I a nonempty set and (ai)i∈I a family 
of elements of A such that

a �
∨
i∈I

ai,

then there exists i ∈ I such that a � ai. In the sequel, we shall use it without reference.

Lemma 4.20. For all t ∈ T , u, v ∈ U and ω ∈ Ω, the following properties hold.

1. d(u, ω) � m(u).
2. d(t · u, ω) = t ∧ d(u, ω).
3. d(u ∨ v, ω) = d(u, ω) ∨ d(v, ω).

Proof. 1. Let b ∈ B be such that b � m(ω) and b · ω � u. Preregularity implies that 
m(b · ω) = b and m(b · ω) � m(u), so b � m(u). Hence d(u, ω) is a join of elements 
smaller than m(u), whence d(u, ω) � m(u).

2. Let b ∈ B be such that b � d(t · u, ω). Then b � m(ω) and b · ω � t · u � u, so 
b � d(u, ω). Moreover, b � m(t · u) by the previous assertion, and m(t · u) � t since 
t · (t · u) = t · u. So b � t, and then b � t ∧ d(u, ω). Conversely, let b ∈ B be such that 
b � t ∧d(u, ω). Then b � t, b � m(ω) and b ·ω � u, so b ·ω = (t ∧b) ·ω = t ·(b ·ω) � t ·u. 
Hence b � d(t ·u, ω). Then {b ∈ B, b � d(t · u, ω)} = {b ∈ B, b � t ∧ d(u, ω)}. In other 
words, d(t · u, ω) = t ∧ d(u, ω).

3. Let b ∈ B be such that b � m(ω) and b · ω � u ∨ v. Preregularity implies 
that b · ω ∈ Irr(U), so b · ω � u or b · ω � v since U is distributive. Then 
{b ∈ B, b � m(ω), b · ω � u ∨ v} ⊆ {b ∈ B, b � m(ω), b · ω � u} ∪ {b ∈ B, b � m(ω),
b · ω � v}. The converse inclusion being obvious, one has

∨
b∈B

b�m(ω)
b·ω�u∨v

b =
∨
b∈B

b�m(ω)
b·ω�u

b ∨
∨
b∈B

b�m(ω)
b·ω�v

b,

that is, d(u ∨ v, ω) = d(u, ω) ∨ d(v, ω). �
Proposition 4.21. If U is finite, preregular and distributive, then Θ is bijective and its 
inverse is

H : U −→ CT (Ω)f
u �−→ d(u,−).

Proof. We already saw in the proof of Proposition 4.17 that Θ ◦H = IdU , without any 
assumption about U .
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Now if U is finite, preregular and distributive, then Lemma 4.20 ensures that H is 
T -linear. Then for all ϕ ∈ CT (Ω)f , one has

H ◦ Θ(ϕ) = H

(∨
ω∈Ω

ϕ(ω) · ω
)

=
∨
ω∈Ω

ϕ(ω) ·H(ω) =
∨
ω∈Ω

ϕ(ω) ∧ d(ω,−)

=
∨
ω∈Ω

ϕ(ω) ∧ f(ω,−) = ϕf = ϕ,

since ϕ ∈ CT (Ω)f .
Hence H ◦ Θ = IdCT (Ω)f , and H is indeed the inverse of Θ. �

Corollary 4.22. A finite T -module is regular if and only if it is preregular and distributive.

Remark 4.23. When T = {0, 1} is the two-elements lattice, finite {0, 1}-modules are just 
finite lattices. Propositions 4.17 and 4.21 thus generalize the classical theory of lattices. 
Indeed, any {0, 1}-module is preregular. So our results ensure that a finite lattice, that is, 
a {0, 1}-module, is regular if and only if it is distributive. This generalizes the well-known 
characterization of finite distributive lattices as those that are fully determined by their 
join-irreducible elements, which is stated for example in [19, Theorem 3.4.1].

Remark 4.24. Let E be a finite set and e ∈ CT (E, E) be an idempotent. The set of 
join-irreducible elements of the T -module CT (E)e has no reason to be in bijection with 
E. However, Proposition 4.21 ensures that Irr(CT (Ω)f) and Ω are isomorphic as posets. 
More precisely, the join-irreducible elements of CT (Ω)f are exactly the elements of type

d(ω,−) = f(ω,−) = δωf

with ω ∈ Ω. According to Lemma 4.7, elements of type δbαf with α ∈ Ω, b ∈ B and 
b � f(α, α) are join-irreducible. Then, such elements must be of type δω for ω ∈ Ω. 
Indeed one has

δbαf = b ∧ f(α,−) = f(b · α,−) = δb·αf,

and b · α ∈ Ω thanks to preregularity.

5. Presheaves

We consider presheaves of finite posets on B, that is, functors Bop → ord, where Bop

is the opposite of the category associated to the poset B and ord is the category of finite 
posets and order-preserving maps.

In this section, we build a correspondence between regular T -modules and presheaves. 
It will lead to a correspondence between idempotents and presheaves.
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Let E be a finite set, let e ∈ CT (E, E) be an idempotent and let U = CT (E)e. 
Write Ω = Irr(U) for the set of join-irreducible elements of U . For all b ∈ B, write 
�Ω(b) = Ω ∩m−1(b). For all b, c ∈ B such that c � b, Proposition 4.19 implies that the 
map

�Ωb
c : �Ω(b) −→ �Ω(c)

ω �−→ c · ω

is well-defined. Then one can check that �Ω: Bop → ord is a presheaf.
Conversely, let O be a presheaf of finite posets on B and let

	O =�
b∈B

O(b).

For all ω ∈ 	O, we write n(ω) for the unique element b ∈ B such that ω ∈ O(b). One can 
check that 	O is a poset ordered by

ξ � ω if
{

n(ξ) � n(ω)
ξ � O

n(ω)
n(ξ) (ω).

Let U = I↓(	O) be the lattice of lower subsets of 	O. By classical lattice theory, one 
has Irr(U) ∼= 	O as posets. More precisely, the element ω ∈ 	O corresponds to the interval 
]−, ω]�O in U . We may identify these elements when convenient, and we will write ]−, ω]
instead of ]−, ω]�O .

For all t ∈ T and u ∈ U , we write

t · u =
⋃
b∈B
b�t

u ∩ O(b).

One can then check that U is a T -module for this action of T .

Lemma 5.1. Let b ∈ B and let ω ∈ 	O. If b � n(ω), then b · ω = O
n(ω)
b (ω).

Proof. One has

b · ω = b · ]−, ω] =
⋃
c�b

]−, ω] ∩ O(c) =
⋃
c�b

]
−,On(ω)

c (ω)
]
∩ O(c)

=
⋃
c�b

]
−,Ob

c

(
O

n(ω)
b (ω)

)]
∩ O(c) =

⋃
c�b

]
−,O

n(ω)
b (ω)

]
∩ O(c).

Now if 
]
−,O

n(ω)
b (ω)

]
∩ O(c) 	= ∅, then c � b. For this reason

⋃
c�b

]
−,O

n(ω)
b (ω)

]
∩ O(c) =

⋃
c∈B

]
−,O

n(ω)
b (ω)

]
∩ O(c) =

]
−,O

n(ω)
b (ω)

]
= O

n(ω)
b (ω). �
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Corollary 5.2. Let b ∈ B and let ω ∈ 	O. If b � n(ω), then b · ω ∈ 	O and n(b · ω) = b.

Lemma 5.3. For all t ∈ T and u ∈ U , one has t · u = u if and only if

u ⊆
⋃
b∈B
b�t

O(b).

Proof. This is straightforward. �
Corollary 5.4. For all ω ∈ 	O, one has n(ω) = m(ω), that is, m|�O = n.

Proof. If t ·ω = ω, then there exists b � t such that ω ∈ O(b) by Lemma 5.3, so n(ω) � t. 
Conversely, if n(ω) � t, then

ω = ]−, ω] ⊆
⋃

b�n(ω)

O(b) ⊆
⋃
b�t

O(b),

hence t · ω = ω.
So

m(ω) =
∧

t·ω=ω

t =
∧

t�n(ω)

t = n(ω). �

Corollary 5.5. The map m is order-preserving.

Proof. Let u, v ∈ U be such that u ⊆ v. Since m(v) · v = v, Lemma 5.3 implies that

u ⊆ v ⊆
⋃

b�m(v)

O(b).

The same lemma then implies that m(v) · u = u. So m(u) � m(v) by Lemma 4.13. �
Proposition 5.6. The T -module U = I↓(	O) is regular.

Proof. By definition, U is a distributive lattice. Corollaries 5.2, 5.4 and 5.5 imply that 
it is preregular, so it is regular by Proposition 4.21. �
Lemma 5.7. Let U be a regular T -module and let Ω = Irr(U). One has 	�Ω = Ω as posets.

Proof. It is obvious that 	�Ω = Ω as sets, and it is straightforward to check, using the 
regularity of U , that the order relations are the same. �
Lemma 5.8. Let O be a presheaf a finite posets on B. One has �	O = O as presheaves.
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Proof. It is straightforward to check that for all b ∈ B, one has �	O(b) = O(b) as posets. 
Lemma 5.1 then implies that for all b, c ∈ B such that c � b, one has �	Ob

c = Ob
c . So 

�	O = O as presheaves. �
Lemma 5.9. Let U and V be two regular T -modules. If U and V are isomorphic, then 
the presheaves � Irr(U) and � Irr(V ) are isomorphic.

Proof. Let Θ: U → V be a T -linear isomorphism. Lemma 4.5 implies that for all b ∈ B, 
the map

θb : � Irr(U)(b) −→ � Irr(V )(b)
ω �−→ Θ(ω)

is well-defined and is an isomorphism of posets. The fact that Θ is T -linear implies that 
θ : � Irr(U) → � Irr(V ) is a natural transformation. Hence the presheaves � Irr(U) and 
� Irr(V ) are indeed isomorphic. �
Lemma 5.10. Let O and P be two presheaves of finite posets on B. If O and P are 
isomorphic, then the T -modules I↓(	O) and I↓(	P) are isomorphic.

Proof. Let θ : O → P be an isomorphism of presheaves. We also denote by θ, with a 
slight abuse, the induced map 	O → 	P. It is clearly a bijection. It is straightforward 
to check that θ maps lower subsets of 	O to lower subsets of 	P, and similarly that θ−1

maps lower subsets of 	P to lower subsets of 	O. Hence we have a bijective map

Θ: I↓(	O) −→ I↓(	P)
u �−→ θ(u).

It is then straightforward to check that Θ is a T -linear map, whence a T -linear isomor-
phism by Lemma 4.5. Hence the T -modules I↓(	O) and I↓(	P) are isomorphic. �
Lemma 5.11. Any regular T -module U is isomorphic to I↓(Irr(U)).

Proof. By classical lattice theory and because U is distributive,

I↓(Irr(U)) −→ U

u �−→
∨
ω∈u

ω

is a lattice isomorphism. It remains to prove that it is a T -linear map: let t ∈ T and 
a ∈ I↓(Irr(U)). For all ξ ∈ t ·a, there exists b ∈ B with b � t such that ξ ∈ a ∩ � Irr(U)(b). 
In particular, m(ξ) = b, so

ξ = b · ξ � t · ξ � t ·
∨

ω.

ω∈a
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Hence

∨
ω∈t·a

ω � t ·
∨
ω∈a

ω.

Conversely, let ξ ∈ Ω be such that

ξ � t ·
∨
ω∈a

ω =
∨
ω∈a

t · ω.

Since U is distributive, there exists ω ∈ a such that ξ � t · ω. So ξ � ω, hence ξ ∈ a

because a is a lower subset of Irr(U) and ω ∈ a. Moreover m(ξ) � m(t · ω) � t. Hence 
ξ ∈ t · a, so

ξ �
∨

ω∈t·a
ω.

Hence

t ·
∨
ω∈a

ω �
∨

ω∈t·a
ω. �

Lemma 5.12. Any presheaf of finite posets O on B is isomorphic to � Irr(I↓(	O)).

Proof. By classical lattice theory, the map

θ : 	O −→ Irr(I↓(	O))
ω �−→ ]−, ω]

is an isomorphism of posets. For all b ∈ B, this isomorphism maps O(b) to 
� Irr(I↓(	O))(b). Write θb = θ|O(b). Lemma 5.1 implies that θcOb

c = � Irr(I↓(	O))bcθc. 
In other words, θ : O → I↓(	O) is a morphism. Each θb is obviously bijective, hence O is 
isomorphic to � Irr(I↓(	O)). �

Let E be a finite set and let e ∈ CT (E, E) be an idempotent. We write O(e) =
� Irr(CT (E)e). Conversely, let O be a presheaf of finite posets on B and let U = I↓(	O), 
so that Irr(U) ∼= 	O. We write e(O) ∈ CT (	O, 	O) for the idempotent obtained in 
Lemma 4.16 for the T -module U .

Proposition 5.13. The set of equivalence classes of idempotent T -generalized correspon-
dences is in bijection with the set of isomorphism classes of presheaves of finite posets 
on B. More precisely, if we denote both equivalence and isomorphism classes by square 
brackets, then the maps [e] �→ [O(e)] and [O] �→ [e(O)] are well-defined and inverse to 
each other.
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Proof. By Proposition 4.12, Lemma 5.9 and Lemma 5.10, the maps [e] �→ [O(e)] and 
[O] �→ [e(O)] are well-defined.

Let E be a finite set and let e ∈ CT (E, E) an idempotent. Since O(e) = � Irr(CT (E)e)
by definition, one has

CT (E)e ∼= I↓(Irr(CT (E)e)) = I↓(	O(e)) ∼= CT (Irr(I↓(	O(e))))e(O(e)),

using successively Lemma 5.11, Lemma 5.7 and Proposition 4.21. Then Proposition 4.12
ensures that [e(O(e))] = [e].

Conversely, let O be a presheaf of finite posets on B. One has

O ∼= � Irr(I↓(	O)) ∼= � Irr(CT (	O)e(O)) ∼= O(e(O)),

using successively Lemma 5.12, Proposition 4.21 and Lemma 5.9. Hence [O(e(O))] =
[O]. �
6. Automorphism groups

Let E be a finite set and let e ∈ CT (E, E) be an idempotent. We write Ge =
(eCT (E, E)e)× for the group of invertible elements of the monoid eCT (E, E)e.

Let U be a T -module. We write GU = AutT (U) for the group of T -linear automor-
phisms of U .

Let O be a presheaf of finite posets on B. We write GO = Aut(O) for the group of 
natural automorphisms of the functor O.

Proposition 6.1. Let E be a finite set and let e ∈ CT (E, E) be an idempotent. We write 
U = CT (E)e and O = � Irr(U). Then Ge

∼= GU
∼= GO .

Proof. We first prove that Ge
∼= GU . Consider the maps

g : Ge −→ GU

g �−→
(
U → U

ϕ �→ ϕg−1

) (6.a)

and

h : GU −→ Ge

defined by

h(Θ)(α, β) = Θ−1(δαe)(β) (6.b)

For all g ∈ Ge and ϕ ∈ U , one has ϕg−1 ∈ U since g−1e = g−1. For all ϕ, ψ ∈ U , 
t ∈ T and α ∈ E, one has
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g(g)(ϕ ∨ ψ)(α) = (ϕ ∨ ψ)g−1(α) =
∨
β∈E

(ϕ ∨ ψ)(β) ∧ g−1(β, α)

=

⎛
⎝∨

β∈E

ϕ(β) ∧ g−1(β, α)

⎞
⎠ ∨

⎛
⎝∨

β∈E

ψ(β) ∧ g−1(β, α)

⎞
⎠

= ϕg−1(α) ∨ ψg−1(α) = (ϕg−1 ∨ ψg−1)(α) = (g(g)(ϕ) ∨ g(g)(ψ))(α)

and

g(g)(t · ϕ)(α) = (t · ϕ)g−1(α) =
∨
β∈E

(t · ϕ)(β) ∧ g−1(β, α) =
∨
β∈E

t ∧ ϕ(β) ∧ g−1(β, α)

= t ∧
∨
β∈E

ϕ(β) ∧ g−1(β, α) = t ∧ (ϕg−1)(α) = t ∧ g(g)(ϕ)(α)

= (t · g(g)(ϕ))(α).

Hence g(g) ∈ EndT (U). Clearly g(e) = IdU and g(gh) = g(g) ◦ g(h) for all g, h ∈ Ge. So 
g(g) is invertible and g(g)−1 = g(g−1) ∈ EndT (U). In particular, g(g) ∈ GU .

Now for all Θ ∈ GU and α, β ∈ E, one has

eh(Θ)e(α, β) =
∨

γ,ε∈E

e(α, γ) ∧ h(Θ)(γ, ε) ∧ e(ε, β) =
∨

γ,ε∈E

e(α, γ) ∧ Θ−1(δγe)(ε) ∧ e(ε, β)

=
∨
γ∈E

e(α, γ) ∧
(∨

ε∈E

Θ−1(δγe)(ε) ∧ e(ε, β)
)

=
∨
γ∈E

e(α, γ) ∧ Θ−1(δγe)(β)

= Θ−1

⎛
⎝∨

γ∈E

e(α, γ) · (δγe)

⎞
⎠ (β).

For all ζ ∈ E, one has
⎛
⎝∨

γ∈E

e(α, γ) · (δγe)

⎞
⎠ (ζ) =

∨
γ,η∈E

e(α, γ) ∧ δγ(η) ∧ e(η, ζ)

=
∨
γ∈E

e(α, γ) ∧ e(γ, ζ)

= e2(α, ζ) = e(α, ζ) = δαe(ζ).

So

eh(Θ)e(α, β) = Θ−1(δαe)(β) = h(Θ)(α, β).

Hence h(Θ) ∈ eCT (E, E)e. Moreover, for all Θ, H ∈ GU and α, β ∈ E, one has
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h(Θ)h(H)(α, β) =
∨
γ∈E

h(Θ)(α, γ) ∧ h(H)(γ, β) =
∨
γ∈E

Θ−1(δαe)(γ) ∧H−1(δγe)(β)

= H−1

⎛
⎝∨

γ∈E

Θ−1(δαe)(γ) · δγe

⎞
⎠ (β).

For all ζ ∈ E, one has

⎛
⎝∨

γ∈E

Θ−1(δαe)(γ) · δγe

⎞
⎠(ζ) =

∨
γ∈E

Θ−1(δαe)(γ)∧e(γ, ζ)=Θ−1(δαe)e(ζ) = Θ−1(δαe)(ζ).

So

h(Θ)h(H)(α, β) = H−1(Θ−1(δαe))(β) = h(Θ ◦H)(α, β).

Hence h(Θ ◦ H) = h(Θ)h(H). Clearly h(IdU ) = e, so h(Θ) is invertible and h(Θ)−1 =
h(Θ−1) ∈ eCT (E, E)e. In particular, h(Θ) ∈ Ge.

We proved that g and h are well-defined. It remains to prove that they are inverse to 
each other. For all g ∈ Ge and α, β ∈ E, one has

h(g(g))(α, β) = g(g)−1(δαe)(β) = g(g−1)(δαe)(β) = δαeg(β) = δαg(β) = g(α, β).

Hence h ◦ g = IdGe
.

Conversely, for all Θ ∈ GU , ϕ ∈ U and α ∈ E, one has

g(h(Θ))(ϕ)(α) = ϕh(Θ)−1(α) =
∨
β∈E

ϕ(β) ∧ h(Θ−1)(β, α) =
∨
β∈E

ϕ(β) ∧ Θ(δβe)(α)

= Θ

⎛
⎝∨

β∈E

ϕ(β) · δβe

⎞
⎠ (α) = Θ(ϕe)(α) = Θ(ϕ)(α).

Hence g ◦ h = IdGU
, and finally Ge

∼= GU .
We now prove that GU

∼= GO . Write Ω = Irr(U) = 	O. Consider the maps

p : GU −→ GO

Θ �−→ (Θ|O(b))b∈B

(6.c)

and

q : GO −→ GU

defined by
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q(θ)(ϕ) =
∨
ω∈Ω
ω�ϕ

θ(ω) (6.d)

For all Θ ∈ GU and ω ∈ Ω, one has Θ(ω) ∈ Ω by Lemma 4.5. Then, by Lemma 4.7, 
there exist α ∈ E and b ∈ B such that b � e(α, α) and ω = δbαe. Write g = h(Θ) =
g−1(Θ), so that Θ(ϕ) = ϕg−1 for all ϕ ∈ U . By Lemma 4.13, one has m(ω) = b. The 
same lemma ensures that

m(Θ(ω)) = m(ωg−1) =
∨
β∈E

ωg−1(β) =
∨

β,γ∈E

ω(γ) ∧ g−1(γ, β)

=
∨

β,γ∈E

b ∧ e(α, γ) ∧ g−1(γ, β) = b ∧
∨
β∈E

eg−1(α, β) = b ∧
∨
β∈E

g−1(α, β).

Now

b � e(α, α) =
∨
β∈E

g−1(α, β) ∧ g(β, α),

so since b ∈ B and T is distributive, there exists ζ ∈ E such that

b � g−1(α, ζ) ∧ g(ζ, α) � g−1(α, ζ) �
∨
β∈E

g−1(α, β).

So m(Θ(ω)) = b = m(ω), hence Θ(O(b)) ⊆ O(b). Since Θ is a T -linear automorphism, 
one has Ob

c ◦Θ|O(b) = Θ|O(c) ◦Ob
c for all b, c ∈ B such that c � b. Hence p(Θ) ∈ End(O). 

Clearly p(IdU ) = IdO and p(Θ ◦H) = p(Θ) ◦p(H) for all Θ, H ∈ GU . So p(Θ) is invertible 
and p(Θ)−1 = p(Θ−1) ∈ End(O). In particular, p(Θ) ∈ GO .

Now for all θ ∈ GO , ϕ, ψ ∈ U and t ∈ T , one has

q(θ)(ϕ ∨ ψ) =
∨
ω∈Ω

ω�ϕ∨ψ

θ(ω) =
∨
ω∈Ω
ω�ϕ

θ(ω) ∨
∨
ω∈Ω
ω�ψ

θ(ω) = q(θ)(ϕ) ∨ q(θ)(ψ).

Moreover, one has

t · q(θ)(ϕ) =
∨
ω∈Ω
ω�ϕ

t · θ(ω) =
∨

ω,ξ∈Ω
ω�ϕ

ξ�t·θ(ω)

ξ =
∨

ω,ξ∈Ω
ω�ϕ
ξ=t·ξ
ξ�θ(ω)

ξ =
∨

ω,χ∈Ω
ω�ϕ

θ(χ)=t·θ(χ)
θ(χ)�θ(ω)

θ(χ)

=
∨

ω,χ∈Ω
ω�ϕ
χ=t·χ
χ�ω

θ(χ) =
∨
χ∈Ω
χ�ϕ
χ=t·χ

θ(χ) =
∨
χ∈Ω
χ�t·ϕ

θ(χ) = q(θ)(t · ϕ).



432 C. Guillaume / Journal of Algebra 521 (2019) 405–451
The third and seventh equalities are consequences of Lemma 4.13. Moreover, the fourth 
equality holds because θ is bijective and the fifth one because θ and θ−1 are natural. 
Hence q(θ) ∈ EndT (U). For all θ, η ∈ GO and ϕ ∈ U , one has similarly

q(θ) ◦ q(η)(ϕ) = q(θ)

⎛
⎜⎝∨

ω∈Ω
ω�ϕ

η(ω)

⎞
⎟⎠ =

∨
ω∈Ω
ω�ϕ

q(θ)(η(ω)) =
∨
ω∈Ω
ω�ϕ

∨
ξ∈Ω

ξ�η(ω)

θ(ξ)

=
∨

ω,χ∈Ω
ω�ϕ

η(χ)�η(ω)

θ(η(χ)) =
∨
χ∈Ω
χ�ϕ

θ ◦ η(χ) = q(θ ◦ η)(ϕ).

Hence, q(θ ◦ η) = q(θ) ◦ q(η). Clearly q(IdO) = IdU , so q(θ) is invertible and q(θ)−1 =
q(θ−1) ∈ EndT (U). In particular q(θ) ∈ GU .

We proved that p and q are well-defined. It remains to prove that they are inverse to 
each other. For all Θ ∈ GU and ω ∈ Ω, one has p(Θ)(ω) = Θ(ω). So for all ϕ ∈ U , one 
has

q(p(Θ))(ϕ) =
∨
ω∈Ω
ω�ϕ

p(Θ)(ω) =
∨
ω∈Ω
ω�ϕ

Θ(ω) = Θ

⎛
⎜⎝∨

ω∈Ω
ω�ϕ

ω

⎞
⎟⎠ = Θ(ϕ).

Hence q ◦ p = IdGU
.

Conversely, for all θ ∈ GO and b ∈ B, one has q(θ)|O(b) = θ|O(b). So p(q(θ)) =
(q(θ)|O(b))b∈B = (θ|O(b))b∈B = θ. Hence p ◦ q = IdGO , and finally GU

∼= GO . �
Let E be a finite set and S(E) be the group of permutations of E. For all σ ∈ S(E), 

we consider the T -generalized correspondence Δσ = ΔE ◦(IdE ×σ) ∈ CT (E, E). In other 
words,

Δσ(α, β) =
{

1T if α = σ(β)
0T otherwise.

Remark 6.2. One can easily check that

S(E) −→ CT (E,E)
σ �−→ Δσ

is a morphism of monoids, so that Δσ is invertible and Δ−1
σ = Δσ−1 for all σ ∈ S(E).

If moreover e ∈ CT (E, E) is idempotent, we write Aut(E, e) = {σ ∈ S(E), eΔσ =
Δσe}. In other words, σ ∈ Aut(E, e) if and only if e(σ(α), σ(β)) = e(α, β) for all α, β ∈ E.
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Lemma 6.3. Let U be a regular T -module. We write Ω = Irr(U) and f = e(�Ω) ∈
CT (Ω, Ω). Then Gf = {fΔσ, σ ∈ Aut(Ω, f)}.

Proof. Let σ ∈ Aut(Ω, f). One has f(fΔσ)f = f3Δσ = fΔσ, since Δσ commutes with 
f and f is idempotent. So fΔσ ∈ fCT (Ω, Ω)f . Clearly σ−1 ∈ Aut(Ω, f), and similarly 
fΔσ−1 ∈ fCT (Ω, Ω)f . Moreover, (fΔσ)(fΔσ−1) = f2ΔσΔσ−1 = f . Hence fΔσ ∈ Gf

for all σ ∈ Aut(Ω, f).
Conversely, let g ∈ Gf . Let Θ: CT (Ω)f → U be the isomorphism of Propositions 4.17

and 4.21. Then the conjugation ConjΘ is an isomorphism between GCT (Ω)f and GU . 
Write Σ = ConjΘ ◦g(g), where g : Gf → GCT (Ω)f is the isomorphism defined by (6.a)
in the proof of Proposition 6.1. So Σ ∈ GU . By Lemma 4.5, Σ(Ω) ⊆ Ω, and in fact 
Σ(Ω) = Ω because |Σ(Ω)| = |Ω| since Σ is injective. So σ = Σ|ΩΩ belongs to S(Ω).

Moreover, the fact that Σ is T -linear implies that for all ω, ξ ∈ Ω, one has

f(σ(ω), σ(ξ)) =
∨

b�m(σ(ξ))
b·σ(ξ)�σ(ω)

b =
∨

b�m(ξ)
b·ξ�ω

b = f(ω, ξ).

Hence σ ∈ Aut(Ω, f).
Then g = g−1 ◦ ConjΘ−1(Σ) = h ◦ ConjΘ−1(Σ), where h is defined by (6.b) in the 

proof of Proposition 6.1. So for all ω, ξ ∈ Ω, one has g(ω, ξ) = (Θ−1ΣΘ)−1(δωf)(ξ) =
(Θ−1Σ−1Θ)(δωf)(ξ). Now

Θ(δωf) =
∨
χ∈Ω

δωf(χ) · χ =
∨
χ∈Ω

f(ω, χ) · χ = ω

thanks to Lemma 4.15. So g(ω, ξ) = Θ−1(Σ−1(ω))(ξ) = f(σ−1(ω), ξ). Hence g =
fΔσ. �
7. Parametrization of simple functors

Here we complete the study of Section 2, from which we know that any simple gen-
eralized correspondence functor is of the form SE,V where E is a finite set and V is a 
simple kCT (E, E)-module.

We need a more precise description of simple kCT (E, E)-modules. Let E be a finite 
set, let e ∈ CT (E, E) be an idempotent and V be a simple kGe-module. We write 
Me = eCT (E, E)e and we see V as a simple kMe-module on which Me�Ge acts by zero. 
We then consider the kCT (E, E)-module

V †
e = (kCT (E,E)e⊗kMe

V )/W,

where

W =
{

n∑
αi ⊗ vi, ∀β ∈ eCT (E,E),

n∑
(βαi) · vi = 0

}
.

i=1 i=1
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We also write SE for the class of pairs of type (e, V ), where e ∈ CT (E, E) is idempotent 
and V is a simple kGe-module.

Then a description of simple kCT (E, E)-modules is given by the following theorem, 
which summarizes [10], where it is proved independently of the context of representations 
of categories. However, it can also be proved using the results of Section 2, as it is done 
in [14].

Theorem 7.1. There exists an equivalence relation ∼ on SE fulfilling the following prop-
erties.

• If (e, V ) ∼ (f, W ), then e and f are equivalent is the sense of Definition 4.10. 
Moreover, for all x ∈ eCT (E, E)f and y ∈ fCT (E, E)e such that e = xy and f = yx, 
there exists a k-linear isomorphism Φ: V → W such that Φ(g · v) = (ygx) · Φ(v) for 
all g ∈ Ge and v ∈ V .

• The map [(e, V )] �→ [V †
e ] is a bijection between the quotient set SE/∼ and the set of 

isomorphism classes of simple kCT (E, E)-modules.

Now let S be a simple generalized correspondence functor and let E be a finite set 
such that S(E) 	= 0. Proposition 2.5 ensures that S(E) is a simple kCT (E, E)-module. 
Then Theorem 7.1 ensures that there exist an idempotent e ∈ CT (E, E) and a simple 
kGe-module V such that S(E) ∼= V †

e . We write Ω = Irr(CT (E)e) and f = e(�Ω). By 
Proposition 4.21, one has CT (E)e ∼= CT (Ω)f . Then Proposition 4.12 ensures that e and f
are equivalent. Hence there exist x ∈ eCT (E, Ω)f and y ∈ fCT (Ω, E)e such that e = xy

and f = yx. Then

Gf −→ Ge

g �−→ xgy

is an isomorphism. In particular, this isomorphism makes Gf act on V , which thus can 
be seen as a simple kGf -module. Then we have a simple kCT (Ω, Ω)-module V †

f .

Lemma 7.2. One has S ∼= SΩ,V †
f
.

Proof. By Proposition 2.5, it is enough to prove that S(Ω) ∼= V †
f . But we already know 

that S ∼= SE,V †
e
, so that S(Ω) ∼= SE,V †

e
(Ω). We are going to prove that SE,V †

e
(Ω) ∼= V †

f . 
Square brackets denote equivalence classes modulo the relevant submodule.

Fix α ∈ kCT (Ω, E). Consider

Φα : V †
e −→ V †

f

[γ ⊗ v] �−→ [αγx⊗ v] ,

with γ ∈ kCT (E, E)e and v ∈ V . One can check that it is a well-defined k-linear map. 
Similarly,
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Φ: SE,V †
e
(Ω) −→ V †

f

[α⊗ z] �−→ Φα(z),

with α ∈ kCT (Ω, E) and z ∈ V †
e , is a well-defined kCT (Ω, Ω)-linear map.

Consider

Ψ: V †
f −→ SE,V †

e
(Ω)

[β ⊗ v] �−→ [βy ⊗ [e⊗ v]] ,

with β ∈ kCT (Ω, Ω)f and v ∈ V . It is also well-defined and kCT (Ω, Ω)-linear.
Then a straightforward computation ensures that both Φ ◦Ψ and Ψ ◦Φ are the identity. 

This proves the lemma. �
Let O be a presheaf of finite posets on B and let V be a simple kGO-module. We 

write Ω = 	O and f = e(O). Proposition 6.1 ensures that GO
∼= Gf , so that V can be 

seen as a simple kGf -module. We then write SO,V = SΩ,V †
f
.

Corollary 7.3. Any simple functor is of type SO,V , where O is a presheaf of finite posets 
on B and V a simple kGO-module.

Let O and P be two presheaves of finite posets on B, let V be a simple kGO-module 
and let W be a simple kGP-module. The pairs (O, V ) and (P, W ) are called equivalent, 
which we write (O, V ) � (P, W ), if there exist an isomorphism θ : O → P and a k-linear 
isomorphism Φ: V → W such that Φ(g · v) = (θgθ−1) · Φ(v) for all g ∈ GO and v ∈ V .

Proposition 7.4. Let O and P be two presheaves of finite posets on B, let V be a simple 
kGO-module and let W be a simple kGP-module. If SO,V

∼= SP,W , then (O, V ) �
(P, W ).

Proof. Write Ω = 	O and f = e(O) as well as Ξ = 	P and e = e(P). Then, one has 
SO,V = SΩ,V †

f
and SP,W = SΞ,W †

e
. Let ζ : SΩ,V †

f
→ SΞ,W †

e
be an isomorphism.

We first prove that the idempotents e and f are equivalent.
Fix v ∈ V �{0}. Since V is a simple kGf -module, v generates V both as a kGf -module 

and as a kfCT (Ω, Ω)f -module. Then v† = [f ⊗ v] generates V †
f as a kCT (Ω, Ω)-module. 

Since moreover f · v† = v†, the map

ϕX : kCT (X,Ω)f −→ SΩ,V †
f
(X)

γ �−→
[
γ ⊗ v†

]
is a surjection for any finite set X. The definition of SΩ,V †

f
immediately implies that 

ϕ : kCT (−, Ω) → SΩ,V †
f

is a natural transformation. Similarly, fixing w ∈ W � {0} gives 
rise to a surjective morphism ψ : kCT (−, Ξ)e → S † .
Ξ,We
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The functor kCT (−, Ω)f is projective as a direct summand of a representable func-
tor. Hence there exists a morphism α : kCT (−, Ω)f → kCT (−, Ξ)e such that ψα = ζϕ. 
Similarly, there exists a morphism β : kCT (−, Ξ)e → kCT (−, Ω)f such that ϕβ = ζ−1ψ.

Write a = αΩ(f) ∈ kCT (Ω, Ξ)e and b = βΞ(e) ∈ kCT (Ξ, Ω)f . Then
[
f ⊗ v†

]
= ϕΩ(f) = ζ−1

Ω ζΩϕΩ(f) = ζ−1
Ω ψΩαΩ(f) = ζ−1

Ω ψΩ(a) = ζ−1
Ω
([
a⊗ w†])

= ζ−1
Ω SΞ,W †

e
(a)

([
e⊗ w†]) = SΩ,V †

f
(a)ζ−1

Ξ
([
e⊗ w†]) = SΩ,V †

f
(a)ζ−1

Ξ ψΞ(e)

= SΩ,V †
f
(a)ϕΞβΞ(e) = SΩ,V †

f
(a)ϕΞ(b) = SΩ,V †

f
(a)

([
b⊗ v†

])
=
[
ab⊗ v†

]
.

This equality occurs in SΩ,V †
f
(Ω), which is isomorphic to V †

f . Transported in V †
f , this 

equality becomes v† = f ·v† = (ab) ·v†. This implies that v = (fab) ·v. Since Mf�Gf acts 
by 0 on V , one has fab /∈ k(Mf �Gf ). Decomposing a and b as k-linear combinations of 
T -generalized correspondences leads to the existence of c ∈ CT (Ω, Ξ)e and d ∈ CT (Ξ, Ω)f
such that fcd ∈ Gf . Let m be the inverse of fcd in Gf , so that fcdm = f . Then one has 
f = fceedm because c ∈ CT (Ω, Ξ)e. Obviously fce ∈ fCT (Ω, Ξ)e and ecm ∈ eCT (Ξ, Ω)f . 
We can decompose e in the same way by a similar argument. Hence Lemma 4.11 implies 
that f and e are equivalent.

So there exist x ∈ fCT (Ω, Ξ)e and y ∈ eCT (Ξ, Ω)f such that f = xy and e = yx. We 
are now going to build an isomorphism θ : O → P thanks to x and y. Proposition 4.12
ensures that CT (Ω)f ∼= CT (Ξ)e. Its proof gives explicit inverse T -linear isomorphisms

CT (Ω)f ←→ CT (Ξ)e
σ �−→ σx

τy ←−� τ.

Remark 4.24 gives inverse isomorphisms of posets

Irr(CT (Ω)f) ←→ Ω
δωf ←→ ω.

There exist similar inverse isomorphisms of posets between Irr(CT (Ξ)e) and Ξ.
They give rise to isomorphisms of presheaves o : � Irr(CT (Ω)f) → �Ω = O and 

π : � Irr(CT (Ξ)e) → �Ξ = P. Now, the T -linear isomorphism CT (Ω)f ∼= CT (Ξ)e also 
gives rise to an isomorphism of presheaves ρ : � Irr(CT (Ω)f) → � Irr(CT (Ξ)e). We then 
write θ = πρo−1 : O → P.

As we did in the proof of Lemma 5.10, we write again θ : Ω → Ξ for the induced 
isomorphism of posets. In other words, one has θ(ω) = π(o−1(ω)x) = π(δωx) for all 
ω ∈ Ω. Now fix ω ∈ Ω. We know that δωx = ρo−1(ω) ∈ Irr(CT (Ξ)e). Hence, there exists 
ξ ∈ Ξ such that δωx = δξe. Then θ(ω) = π(δωx) = π(δξe) = ξ, that is, δωx = δξe =
δθ(ω)e. Similarly, for all ξ ∈ Ξ, one has δξy = δθ−1(ξ)f .

We finally prove that there exist an isomorphism V → W compatible with the actions 
of GO and GP .
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Write e� = e ◦(θ×θ) ∈ CT (Ω, Ω), x� = x ◦(IdΩ ×θ) ∈ CT (Ω, Ω) and y� = y◦(θ×IdΩ) ∈
CT (Ω, Ω). It is easy to check that (e�)2 = e�, x� = fx�e�, y� = e�y�f , x�y� = f and 
y�x� = e. Then

Ge� −→ Ge

g �−→ g ◦ (θ−1 × θ−1)

is a group isomorphism. In particular, W can be seen as a kGe�-module.
Moreover, the functor SΞ,W †

e
is isomorphic to SΩ,W †

e�
, via

εX : SΞ,W †
e
(X) −→ SΩ,W †

e�
(X)

[α⊗ [β ⊗ w]] �−→ [α� ⊗ [β� ⊗ w]] ,

where α ∈ kCT (X, Ξ) and β ∈ kCT (Ξ, Ξ)e. Here α� and β� denote the images of α and 
β by the k-linearizations of the maps

CT (X,Ξ) −→ kCT (X,Ω)
γ �−→ γ ◦ (IdX ×θ)

and CT (Ξ,Ξ)e −→ kCT (Ω,Ω)e�
γ �−→ γ ◦ (θ × θ)

respectively. Then

εΩζΩ : SΩ,V †
f
(Ω) → SΩ,W †

e�
(Ω)

is an isomorphism. So V †
f

∼= W †
e� . Theorem 7.1 then ensures that (f, V ) ∼ (e�, W ). It 

also ensures that there exists a k-linear isomorphism Φ: V → W such that Φ(g · v) =
(y�gx�) · Φ(v) for all g ∈ Gf and v ∈ V .

Now the structure of kGf -module of V is induced by the inverse of the isomorphism 
of groups

i : GO −→ Gf

g �−→ hqConjo−1(g),

where h : GCT (Ω)f → Gf and q : G�Irr(CT (Ω)f) → GCT (Ω)f are the isomorphisms defined 
respectively by (6.b) and (6.d) in the proof of Proposition 6.1. Similarly, the structure 
of kGe� -module of W is induced by the isomorphism of groups

j : Ge� −→ GP

g �−→ Conjπ pg(g ◦ (θ−1 × θ−1)),

where p : GCT (Ξ)e → G�Irr(CT (Ξ)e) and g : Ge → GCT (Ξ)e are the isomorphisms defined 
respectively by (6.c) and (6.a) in the proof of Proposition 6.1.

So for all g ∈ GO and v ∈ V , one has Φ(g · v) = Φ(i(g) · v) = (y�i(g)x�) · Φ(v) =
j(y�i(g)x�) · Φ(v).
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Fix g ∈ GO , and let us compute j(y�i(g)x�). Write h = y�i(g)x�, so that j(y�i(g)x�) =
j(h). The latter is an element of GP . For all ξ ∈ Ξ = 	P, one has

j(h)(ξ) = π
(
pg(h ◦ (θ−1 × θ−1))

(
π−1(ξ)

))
= π

(
pg(h ◦ (θ−1 × θ−1)) (δξe)

)
= π

(
δξe

(
h ◦ (θ−1 × θ−1)

)−1
)
,

using (6.c) and (6.a).
Now (h ◦ (θ−1 × θ−1))−1 = h−1 ◦ (θ−1 × θ−1) = (y�i(g−1)x�) ◦ (θ−1 × θ−1). This is an 

element of CT (Ξ, Ξ), mapping the element (β, χ) ∈ Ξ × Ξ to

∨
γ,λ∈Ω

y�(θ−1(β), γ) ∧ i(g−1)(γ, λ) ∧ x�(λ, θ−1(χ))

=
∨

γ,λ∈Ω

y(β, γ) ∧ qConjo−1(g)(δγf)(λ) ∧ x(λ, χ)

=
∨
λ∈Ω

qConjo−1(g)

⎛
⎝∨

γ∈Ω
y(β, γ) · δγf

⎞
⎠ (λ) ∧ x(λ, χ)

=
∨
λ∈Ω

qConjo−1(g)(δβy)(λ) ∧ x(λ, χ).

The first equality above uses the definitions of y� and x�, and (6.a). The second equality 
uses the T -linearity of q Conjo−1(g) ∈ GCT (Ω)f , and the third equality uses Lemma 4.8.

Consequently, δξe 
(
h ◦ (θ−1 × θ−1)

)−1 is the element of CT (Ξ) mapping χ ∈ Ξ to

∨
α,β∈Ξ

δξ(α) ∧ e(α, β) ∧ (h ◦ (θ−1 × θ−1))−1(β, χ)

=
∨
β∈Ξ
λ∈Ω

e(ξ, β) ∧ qConjo−1(g)(δβy)(λ) ∧ x(λ, χ)

=
∨
λ∈Ω

qConjo−1(g)

⎛
⎝∨

β∈Ξ

e(ξ, β) · δβy

⎞
⎠ (λ) ∧ x(λ, χ)

=
∨
λ∈Ω

qConjo−1(g) (δξy) (λ) ∧ x(λ, χ)

= qConjo−1(g) (δξy)x.

The third equality above uses an argument similar, but not strictly identical, to the one 
of Lemma 4.8.
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Now

qConjo−1(g) (δξy) = q(o−1go) (δξy) = q(o−1go)
(
δθ−1(ξ)f

)
= o−1go

(
δθ−1(ξ)f

)
= o−1g

(
θ−1(ξ)

)
= o−1gθ−1(ξ).

Here the third equality uses (6.d).
Finally, we are left with j(y�i(g)x�)(ξ) = π

(
o−1gθ−1(ξ)x

)
= πρo−1gθ−1(ξ) =

θgθ−1(ξ). In other words, j(y�i(g)x�) = θgθ−1. Hence Φ(g · v) = (θgθ−1) · Φ(v) for 
all g ∈ GO and v ∈ V . Finally, (O, V ) � (P, W ), as was to be proved. �

Corollary 7.3 and Proposition 7.4 imply the following theorem.

Theorem 7.5. The set of equivalence classes of pairs (O, V ), consisting of a presheaf O of 
finite posets on B and a simple module V for its group of automorphisms, is in bijection 
with the set of isomorphism classes of simple generalized correspondence functors, via 
the map [(O, V )] �→ [SO,V ].

Remark 7.6. In [6, Theorem 4.7], the simple correspondence functors are parametrized 
by triples (E, R, V ), where E is a finite set, R is an order on E and V a simple 
kAut(E, R)-module. The finite poset (E, R) can be viewed as a presheaf of finite posets 
over {1} = Irr({0, 1}). Hence, our Theorem 7.5 generalizes this result.

However, an additional property is proved in [6]: in the triple (E, R, V ) which corre-
sponds to a simple correspondence functor S, the set E is minimal among sets fulfilling 
S(E) 	= 0.

This property does not necessarily hold here. We always have SO,V (	O) 	= 0, but 
for any subset E of 	O generating the T -module I↓(	O), one also has SO,V (E) 	= 0. In 
general, there exist several proper subsets of 	O generating the T -module I↓(	O). See 
[14] for details.

8. Finiteness conditions: the case of a field

In all this section, we assume that k is a field. The first part of this section is devoted 
to give upper and lower bounds for the dimension of the evaluations of simple functors. 
The results of this section generalize those of [6, Sections 8 and 9]. Several proofs are 
straightforward extensions of those of [6].

Let O be a presheaf of finite posets on B. We write Ω = 	O and f = e(O). For any 
finite set X and for any map ϕ : X → Ω, we define two T -generalized correspondences 
Λϕ and Γϕ in the following way. For all ω ∈ Ω and x ∈ X, we set Λϕ(ω, x) = f(ω, ϕ(x))
and Γϕ(x, ω) = f(ϕ(x), ω), so that Λϕ ∈ CT (Ω, X) and Γϕ ∈ CT (X, Ω).

For any finite set X, we fix a map θX : X → B such that for all b ∈ B, one has

|θ−1
X (b)| �

⌊
|X|

⌋
,
|B|
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where the corner brackets denote the floor function. In particular,

lim
|X|→+∞

|θ−1
X (b)| = +∞

for all b ∈ B. We write ΦX for the set of surjective maps ϕ : X → Ω such that m ◦ϕ = θX .
We recall from Section 6 that Aut(Ω, f) denotes the group of permutations σ ∈ S(Ω)

such that fΔσ = Δσf , that is, f(σ(ω), σ(ξ)) = f(ω, ξ) for all ω, ξ ∈ Ω. This group 
acts on ΦX by composition on the left. Indeed, let σ ∈ Aut(Ω, f). For any ω ∈ Ω, one 
has m(σ(ω)) = f(σ(ω), σ(ω)) = f(ω, ω) = m(ω), the first and third equalities being a 
consequence of Lemma 4.14 and the second one coming from the fact that σ ∈ Aut(Ω, f). 
Hence, for all ϕ ∈ ΦX , one has m ◦ σ ◦ ϕ = m ◦ ϕ = θX , so that σ ◦ ϕ ∈ ΦX .

We fix a set AX ⊆ ΦX of representatives of the set of left orbits Aut(Ω, f)\ΦX .

Lemma 8.1. Let ϕ, ψ ∈ AX . If ΛψΓϕ = f , then ϕ � ψ, that is, ϕ(x) � ψ(x) for all 
x ∈ X.

Proof. Let x ∈ X and ω ∈ Ω. Lemmas 4.14 and 4.20 ensure that f(ξ, ω) � m(ξ) and 
f(ω, ω) = m(ω) for all ω, ξ ∈ Ω. Then

f(ϕ(x), ω) = m(ϕ(x)) ∧ f(ϕ(x), ω) = θX(x) ∧ f(ϕ(x), ω) = m(ψ(x)) ∧ f(ϕ(x), ω)

= f(ψ(x), ψ(x)) ∧ f(ϕ(x), ω) �
∨
y∈X

f(ψ(x), ψ(y)) ∧ f(ϕ(y), ω)

= ΛψΓϕ(ψ(x), ω) = f(ψ(x), ω).

So Lemma 4.15 implies that

ϕ(x) =
∨
ω∈Ω

f(ϕ(x), ω) · ω �
∨
ω∈Ω

f(ψ(x), ω) · ω = ψ(x).

Hence ϕ � ψ. �
For all ϕ, ψ ∈ AX , we write ϕ � ψ if there exists σ ∈ Aut(Ω, f) such that σ ◦ ϕ � ψ.

Lemma 8.2. The relation � is a partial order on AX .

Proof. It is obvious that � is reflexive, since IdΩ ∈ Aut(Ω, f), so we prove that it is 
transitive and antisymmetric.

Let ϕ, ψ, χ ∈ AX be such that ϕ � ψ and ψ � χ. There exist σ, τ ∈ Aut(Ω, f) such 
that σ ◦ ϕ � ψ and τ ◦ ψ � χ. Now τ is order preserving. Indeed, for any ω, ξ ∈ Ω, the 
following equivalences hold:

ξ � ω ⇐⇒ f(ω, ξ) = m(ξ) ⇐⇒ f(τ(ω), τ(ξ)) = m(τ(ξ)) ⇐⇒ τ(ξ) � τ(ω).
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The first and third equivalences come from Lemma 4.14 while the second one is a con-
sequence of the fact that τ ∈ Aut(Ω, f), the equality m ◦ τ = m having been proved just 
before Lemma 8.1. So τ ◦ σ ◦ ϕ � χ, whence ϕ � χ.

Finally, let ϕ, ψ ∈ AX be such that ϕ � ψ and ψ � ϕ. There exist σ, τ ∈ Aut(Ω, f)
such that σ ◦ ϕ � ψ and τ ◦ ψ � ϕ. The elements of Aut(Ω, f) being order-preserving 
maps, one has τσ ◦ ϕ � ϕ. Let n be the order of τσ in the group Aut(Ω, f). Then 
ϕ = (τσ)n ◦ϕ � τσ ◦ϕ � ϕ. So ϕ = τσ ◦ϕ � τ ◦ψ � ϕ, whence ϕ = τ ◦ψ. This implies 
that ϕ = ψ since AX is a set of representatives of Aut(Ω, f)\ΦX . �

Let V be a simple kGO-module. We are interested in the dimensions of the evaluations 
of the simple functor SO,V .

Theorem 8.3. There exist an integer r � 0 and a constant c > 0 such that for any finite 
set X with |X| � r, one has

c

((
|Ω|
|B|

)1/|B|)|X|

� dimk SO,V (X) � (T |Ω|)|X|.

Proof. The functor SO,V = SΩ,V †
f

is a quotient of LΩ,V †
f
, which is itself a quotient of 

kCT (−, Ω), since V †
f is a simple kCT (Ω, Ω)-module. Then for any finite set X, one has 

dimk SO,V (X) � dimk kCT (X, Ω) = |T ||X||Ω| = (T |Ω|)|X|.
Now fix v ∈ V � {0}. Then v generates the simple kGf -module V , and v† = [f ⊗ v] ∈

V †
f generates V †

f .
Let X be a finite set. We are going to prove that the image of the family (Γϕ⊗v†)ϕ∈AX

in SO,V (X) is linearly independent. Assume that the family of scalars (λϕ)ϕ∈AX
∈ kAX

is such that

∑
ϕ∈AX

λϕ

[
Γϕ ⊗ v†

]
= 0

in SO,V (X). It means that

∑
ϕ∈AX

λϕΓϕ ⊗ v† ∈ JΩ,V †
f
(X).

So for all β ∈ CT (Ω, X), one has

∑
ϕ∈AX

λϕ(βΓϕ) · v† = 0.

Now the action of an element α ∈ CT (Ω, Ω), on v† is given by α · v† = [αf ⊗ v]. So the 
previous condition implies that for all β ∈ CT (Ω, X), one has
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⎡
⎣ ∑
ϕ∈AX

λϕ(βΓϕf) ⊗ v

⎤
⎦ = 0

in V †
f . One has Γϕf = Γϕ for all ϕ ∈ AX : indeed, for all x ∈ X and ω ∈ Ω, one has

Γϕf(x, ω) =
∨
ξ∈Ω

f(ϕ(x), ξ) ∧ f(ξ, ω) = f2(ϕ(x), ω) = f(ϕ(x), ω) = Γϕ(x, ω).

Then, by definition of V †
f one has, for all β ∈ fCT (Ω, X),

∑
ϕ∈AX

λϕ(βΓϕ) · v = 0.

Non-invertible elements of fCT (Ω, Ω)f act by zero on V , so for all β ∈ fCT (Ω, X), one 
has

∑
ϕ∈AX

βΓϕ∈Gf

λϕ(βΓϕ) · v = 0.

Now choose β = Λψ with ψ ∈ AX . Then for all ψ ∈ AX , one has

∑
ϕ∈AX

ΛψΓϕ∈Gf

λϕ(ΛψΓϕ) · v = 0.

Lemma 6.3 implies that we can rewrite this equation as

∑
ϕ∈AX

σ∈Aut(Ω,f)
ΛψΓϕ=fΔσ

λϕ(ΛψΓϕ) · v = 0.

One has ΓϕΔσ−1 = Γσ◦ϕ for all ϕ ∈ AX and σ ∈ Aut(Ω, f): indeed, for all x ∈ X and 
ω ∈ Ω, one has

ΓϕΔσ−1(x, ω) =
∨
ξ∈Ω

f(ϕ(x), ξ) ∧ Δσ−1(ξ, ω) = f(ϕ(x), σ−1(ω))

= f(σ ◦ ϕ(x), ω) = Γσ◦ϕ(x, ω)

since σ ∈ Aut(Ω, f). Then, thanks to Remark 6.2, the fact that ΛψΓϕ = fΔσ is equivalent 
to ΛψΓσ◦ϕ = f , which in turn implies that ϕ � ψ, thanks to Lemma 8.1. Let � be a 
linear extension of �, that is, a total order compatible with �, and let ψ be the smallest 
element of AX for �. The only ϕ ∈ AX appearing in the sum
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∑
ϕ∈AX

σ∈Aut(Ω,f)
ΛψΓσ◦ϕ=f

λϕ(ΛψΓϕ) · v

is ψ itself. So our equation reduces to
∑

σ∈Aut(Ω,f)
ΛψΓψ=fΔσ

λψ(ΛψΓψ) · v = 0.

But for all ω, ξ ∈ Ω, one has

ΛψΓψ(ω, ξ) =
∨
x∈X

f(ω, ψ(x)) ∧ f(ψ(x), ξ) =
∨
χ∈Ω

f(ω, χ) ∧ f(χ, ξ) = f2(ω, ξ) = f(ω, ξ),

the second equality being a consequence of the surjectivity of ψ. Then the only σ ∈
Aut(Ω, f) appearing in this sum is σ = IdΩ. Indeed, the fact that f = fΔσ means that 
f(ω, ξ) = f(σ−1(ω), ξ) for all ω, ξ ∈ Ω. This in turn implies that σ−1(ω) = ω thanks to 
Lemma 4.15. So our equation again reduces to λψf · v = 0. Now f · v 	= 0 since f is the 
identity element of Gf and v 	= 0. So λψ = 0, and by induction on the total order �, 
we get that λψ = 0 for all ψ ∈ AX . Consequently, the image in SO,V (X) of the family 
(Γϕ ⊗ v†)ϕ∈AX

is linearly independent. In particular, dimk SO,V (X) � |AX |.
For any sets E and F , write Surj(E, F ) for the set of surjective functions from E to F . 

Then ΦX is in bijection with the set
∏

b∈Im m

Surj(θ−1
X (b),m−1(b)),

via the maps

ΦX ←→
∏

b∈Im m

Surj(θ−1
X (b),m−1(b))

ϕ �−→
(
ϕ|θ−1

X (b)

)
b∈Im m(

X → Ω
x �→ ϕθX(x)(x)

)
←− � (ϕb)b∈Im m ,

which are easily checked to be well-defined inverse bijections.
For all b ∈ B, write θX,b = |θ−1

X (b)| and mb = |m−1(b)|. Then one has

|ΦX | =
∏

b∈Im m

|Surj(θ−1
X (b),m−1(b))| =

∏
b∈Im m

mb∑
i=0

(−1)mb−i

(
mb

i

)
iθX,b ,

the cardinality of the sets of type Surj(θ−1
X (b), m−1(b)) being computed in [19, Sec-

tion 1.9]. A precise formula for this cardinality is given by [19, Equation 1.94a].
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The action of Aut(Ω, f) on ΦX is free, so

|AX | = 1
|Aut(Ω, f)| |ΦX | = 1

|Aut(Ω, f)|
∏

b∈Im m

mb∑
i=0

(−1)mb−i

(
mb

i

)
iθX,b

= 1
|Aut(Ω, f)|

∏
b∈Im m

mb
θX,b

(
1 +

mb−1∑
i=0

(−1)mb−i

(
mb

i

)(
i

mb

)θX,b
)
.

For all b ∈ Imm and i � mb − 1, one has i
mb

< 1. The way we chose θX also implies 
that

lim
|X|→+∞

θX,b = +∞

for all b ∈ B. So each sum appearing in the previous expression approaches 0 when |X|
approaches +∞. In particular, there exists an integer r � 0 such that for any finite set 
X with |X| � r and for all b ∈ Imm, one has

1 +
mb−1∑
i=0

(−1)mb−i

(
mb

i

)(
i

mb

)θX,b

� 1
2 .

So

|AX | � 1
|Aut(Ω, f)|

∏
b∈Im m

1
2mb

θX,b = 1
2|Im m||Aut(Ω, f)|

∏
b∈Im m

mb
θX,b .

Then for all b ∈ Imm, one has

|AX | � 1
2|Im m||Aut(Ω, f)|mb

θX,b � 1
2|Im m||Aut(Ω, f)|mb

�|X|/|B|�

� 1
2|Im m||Aut(Ω, f)|mb

|X|/|B|−1.

In other words,

(
2|Im m||Aut(Ω, f)||AX |

)|B|/(|X|−|B|)
� mb.

This inequality remains true for b /∈ Im(m). So we can sum these inequalities for b ∈ B

to get

|B|
(
2|Im m||Aut(Ω, f)||AX |

)|B|/(|X|−|B|)
�
∑
b∈B

mb = |Ω|.

It implies that
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|AX | � 1
2|Im m||Aut(Ω, f)|

(
|Ω|
|B|

)|X|/|B|−1

= |B|
2|Im m||Aut(Ω, f)||Ω|

((
|Ω|
|B|

)1/|B|)|X|

.

We get the claimed lower bound by writing

c = |B|
2|Im m||Aut(Ω, f)||Ω| . �

The previous theorem has several interesting consequences in the study of finitely 
generated functors.

Theorem 8.4. A generalized correspondence functor F is finitely generated if and only if 
there exist an integer r � 0 and constants a, p > 0 such that dimk F (X) � ap|X| for any 
finite set X with |X| � r.

Proof. It is essentially the same as the proof of [6, Theorem 8.4].
Assume that F is finitely generated. Proposition 3.9 ensures that there exist finite 

sets E and I such that F is a quotient of kCT (−, E)⊕I . So for any finite set X, one has 
dimk F (X) � |I|(|T ||E|)|X|.

Conversely, assume that there exist an integer r � 0 and constants a, p > 0 such that 
dimk F (X) � ap|X| for any finite set X with |X| � r. Let P and Q be subfunctors of 
F such that Q ⊆ P and the quotient P/Q is simple, say P/Q ∼= SO,V . Write Ω = 	O. 
Theorem 8.3 ensures that there exists a constant c > 0 such that

c

((
|Ω|
|B|

)1/|B|)|X|

� dimk SO,V (X)

whenever |X| is large enough. Thanks to our hypothesis about F , one has

c

((
|Ω|
|B|

)1/|B|)|X|

� ap|X|

whenever |X| is large enough. This means that

c � a

(
p

(
|B|
|Ω|

)1/|B|)|X|

.

Since c > 0, one must have

p

(
|B|
|Ω|

)1/|B|
� 1,

otherwise the right-hand side of the second-to-last inequality would approach zero when 
|X| approaches +∞. Hence |Ω| � |B|p|B|.
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For any finite set Y such that |Y | � |B|p|B|, choose a basis (vi)1�i�dY
of F (Y ). By 

Yoneda’s lemma, there exist morphisms ψY
i : kCT (−, Y ) → F such that ψY

i maps ΔY to 
vi. Then

ψY =
dY∑
i=1

ψY
i : kCT (−, Y )⊕dY −→ F

is a surjective morphism. We are going to prove that the sum ψ of the ψY ’s is surjective 
too.

Write G = Im(ψ). Assume that G 	= F and fix a finite set X of minimal cardinality 
such that F (X)/G(X) 	= 0. Let W be a simple kCT (X, X)-submodule of F (X)/G(X). 
By Lemma 2.6, SX,W is isomorphic to a subquotient of F/G. By Corollary 7.3, SX,W is 
of type SO,V , so |	O| � |B|p|B| by the first part of the proof.

Write f = e(O). Then V †
f
∼= SO,V (	O) ∼= SX,W (	O) is isomorphic to a subquotient of 

F (	O)/G(	O). So |X| � |	O| by minimality of |X|. Hence |X| � |B|p|B|. But this implies 
that ψX is surjective, and G(X) = F (X): this is a contradiction. Hence ψ is surjective.

So F is isomorphic to a quotient of

⊕
|Ω|�|B|p|B|

kCT (−,Ω)dΩ .

Then by Proposition 3.9, F is finitely generated. �
Theorem 8.5.

1. Any nonzero finitely generated generalized correspondence functor has a maximal 
subfunctor.

2. Any subfunctor of a finitely generated generalized correspondence functor is also 
finitely generated.

Proof. It is essentially the same as the proof of [6, Lemma 9.1].
Let F be a finitely generated generalized correspondence functor.

1. Proposition 3.9 implies that there exists a finite set X such that F is generated by 
F (X). Let M be a maximal kCT (X, X)-submodule of F (X). Then F (X)/M is a 
simple kCT (X, X)-module. So Proposition 2.6 implies that there exist subfunctors 
H ⊆ G ⊆ F such that G/H is simple and G(X) = F (X). The last equality implies 
that G = F since F is generated by F (X). Hence H is a maximal subfunctor of F .

2. Let G be a subfunctor of F . Theorem 8.4 ensures that there exist constants a, p > 0
such that dimk F (X) � ap|X| whenever |X| is large enough. The same inequality 
holds for F , so the same theorem ensures that G is also finitely generated. �



C. Guillaume / Journal of Algebra 521 (2019) 405–451 447
The following theorem is a generalization of both [6, Theorem 9.2], which treats the 
case T = {0, 1}, and [11, Theorem 3.2], which treats, with different methods, the case 
of an infinite field. It states that the category CT is of dimension zero, according to the 
terminology of [23].

Theorem 8.6. Any finitely generated generalized correspondence functor has finite length.

Proof. It is essentially the same as the proof of [6, Theorem 9.2].
Let F be a finitely generated generalized correspondence functor. By Theorem 8.5, it 

has a maximal subfunctor F1, which is also finitely generated. Iterating this construction, 
we get a sequence F = F0 ⊇ F1 ⊇ F2 ⊇ . . . such that for all i ∈ N, either Fi/Fi+1 is 
simple or Fi = 0. Fix i ∈ N such that Fi/Fi+1 is simple, say Fi/Fi+1 ∼= SO,V . By 
Theorem 8.4, there exist constants a, p > 0 such that dimk F (X) � ap|X|, whence 
dimk SO,V (X) � ap|X|, whenever |X| is large enough. By Theorem 8.3, there exists a 
constant c > 0 such that

c

((
|	O|
|B|

)1/|B|)|X|

� dimk SO,V (X)

whenever |X| is large enough. It implies, just like in the proof of Theorem 8.4, that 
|	O| � |B|p|B|.

For all n � |B|p|B|, there is only a finite number of presheaves O such that |	O| = n

up to isomorphism. For each such presheaf, there is only a finite number of simple 
kGO-modules up to isomorphism. Hence, there is only a finite number of isomorphism 
classes of simple functors isomorphic to a subquotient of F . If all the quotients Fi/Fi+1
were simple, one of them would appear infinitely many times. Then for some presheaf O, 
the module V †

e(O) would appear infinitely many times as a composition factor of F (	O). 
This is impossible because evaluations of F are finitely generated by Lemma 3.8. So 
there exists i ∈ N such that Fi = 0, hence F has finite length. �
9. The case of a noetherian ring

In this section, we study finiteness conditions and stability properties when k is a 
noetherian ring. All the results of this section are direct generalizations of those of [6, 
Sections 11 and 12]. For this reason, we do not give full proofs but we only sketch them 
and highlight differences with [6]. However, full proofs for the generalized case can be 
found in [14].

For any generalized correspondence functor F , we write

F (X) = F (X)
/ ∑

Y⊂X

kCT (X,Y )F (Y ),

the sum being running over proper subsets of X.



448 C. Guillaume / Journal of Algebra 521 (2019) 405–451
Let F be a generalized correspondence functor and let p be a prime ideal of k. The 
localization Fp of F at p is defined by Fp(X) = F (X)p for any finite set X.

Lemma 9.1.

1. Fp is a generalized correspondence functor over kp.
2. If F is finitely generated over k, then Fp is finitely generated over kp.
3. For any finite set X, the kpCT (X, X)-modules F (X)p and F p(X) are isomorphic.

Proof. See [6, Lemma 11.2]. �
Proposition 9.2. Let F be a generalized correspondence functor and let X be a finite set 
such that F (X) 	= 0.

1. There exists a prime ideal p of k such that Fp(X) 	= 0.

We fix such a prime ideal p and we write k(p) = kp/pkp.

2. If F (X) is a finitely generated k-module, then there exist subfunctors M and N of 
Fp and a simple k(p)CT (X, X)-module W with the following properties.
• pFp ⊆ N ⊂ M .
• M/N ∼= SX,W .
• X has minimal cardinality among sets at which SX,W does not vanish.

3. There exist an integer r � 1 and a constant c > 0 such that for any finite set Y with 
|Y | � r, one has

c

((
|X|
|B|

)1/|B|)|Y |

� dimk(p) SX,W (Y ).

Proof. 1. This is a consequence of the injectivity of the map

F (X) −→
∏

p∈Spec(k)

F (X)p

and of the isomorphism F (X)p ∼= Fp(X) of Lemma 9.1.
2. Write G = Fp/pFp, so that G is a generalized correspondence functor over k(p). If 

G(X) = 0, then Nakayama’s lemma implies that

Fp(X) =
∑
Y⊂X

kpCT (X,Y )Fp(Y ),

that is, Fp(X) = 0. This contradicts our choice of p, so G(X) 	= 0. Now 
G(X) is a k(p)CT (X, X)-module, and it is finitely generated as k(p)-vector 
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space. Hence G(X) has a quotient W which is simple as k(p)CT (X, X)-module. 
Moreover, k(p)CT (X, Y )CT (Y, X) acts by 0 on G(X) whenever |Y | < |X| so 
k(p)CT (X, Y )CT (Y, X) also acts by 0 on W whenever |Y | < |X|. Then W is a 
quotient of G(X), so Proposition 2.6 implies that there exist subfunctors M and N
of Fp such that pFp ⊆ N ⊂ M and

M/N ∼= (M/pFp)/(N/pFp) ∼= SX,W .

By definition of JX,W , since k(p)CT (X, Y )CT (Y, X) acts by 0 on W whenever |Y | <
|X| and since SX,W (X) 	= 0, we deduce that X has minimal cardinality among sets 
at which SX,W does not vanish.

3. By Corollary 7.3, SX,W is of type SO,V . One has V †
e(O)

∼= SO,V (	O) ∼= SX,W (	O), 
so |X| � |	O| by minimality of |X|. Theorem 8.3 ensures that there exist an integer 
r � 0 and a constant c > 0 such that

c

((
|	O|
|B|

)1/|B|)|Y |

� dimk(p) SO,V (Y )

whenever |Y | � r. Then

c

((
|X|
|B|

)1/|B|)|Y |

� dimk(p) SX,W (Y )

whenever |Y | � r. �
From now on, we assume that k is noetherian.

Proposition 9.3. Let F be a generalized correspondence functor and let G be a subfunctor 
of F . If X and Z are finite sets such that F is generated by F (X) and G(Z) 	= 0, then 
|Z| � |B||T ||B||X|.

Proof. By an argument of finite generation and localization, and using Proposition 9.2, 
we can assume that k is local, that F = kCT (−, X)⊕t for some integer t � 1 and that G
has a subfunctor H such that G/H is simple and Z has minimal cardinality among sets at 
which G/H does not vanish. We then conclude the proof just like [6, Theorem 11.4]. �
Theorem 9.4. Let F be a generalized correspondence functor and let G be a subfunctor 
of F .

1. If X and Y are finite sets such that F is generated by F (X) and |Y | � |B||T ||B||X|, 
then G is generated by G(Y ).

2. If F is finitely generated, then G is finitely generated.
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Proof. See [6, Corollary 11.5]. �
In the same fashion, we can prove the following stabilization results.

Theorem 9.5. Let F be a generalized correspondence functor. Assume that there exists a 
finite set X such that F is generated by F (X).

1. For any finite set Y with |Y | � |B||T ||B||X|, one has F ∼= LY,F (Y ). Moreover, this 
isomorphism is given by the counit LY,F (Y ) → F of the adjunction of Proposition 2.3.

2. For any finite set Y with |Y | � |B||T ||B|2|T ||B||X| , one has F ∼= SY,F (Y ).
3. For any generalized correspondence functor G, for any finite set Y and for any integer 

i ∈ N, there exists an integer ni ∈ N such that the evaluation at Y

ExtiFk(CT )(F,G) −→ ExtikCT (Y,Y )(F (Y ), G(Y ))

is an isomorphism whenever |Y | � ni.
4. For any finite set Y with |Y | � |B||T ||B|2|T ||B||X| , for any finite set Z and for any 

kCT (X, X)-module V , one has

TorkCT (Y,Y )
1 (kCT (Z, Y ), LX,V (Y )) = 0.

Proof. See [6, Section 12]. �
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