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Given a Z-graded ring A and a subring R ⊆ A, it is natural to 
ask whether A can be realised as the Cuntz–Pimsner ring of 
some R-system. In this paper, we derive sufficient conditions 
on A and R for this to be the case. As an application, we 
give conditions under which the Steinberg algebra AK(G)
associated to a Z-graded groupoid G = �n∈ZGn can be 
realised as the Cuntz–Pimsner ring of an AK(G0)-system.
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1. Introduction

Cuntz–Pimsner rings were introduced by Carlsen and Ortega in [4] as an algebraic 
analogue of Cuntz–Pimsner C∗-algebras (first introduced by Pimsner [15] and later re-
fined by Katsura [11]). To construct a Cuntz–Pimsner algebra one requires a C∗-algebra 
A (often called the coefficient algebra) along with a C∗-correspondence X over A (loosely 
speaking, this can be thought of as a Hilbert space where the inner product takes values 
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in A rather than just the complex numbers). One then constructs the Toeplitz algebra 
TX associated to the correspondence, and defines the Cuntz–Pimsner algebra OX as a 
suitable quotient. The Cuntz–Pimsner algebra OX contains a faithful copy of A and 
naturally carries a gauge action of the circle group (which can in turn be used to define a 
Z-grading). Of key importance to the study of Toeplitz and Cuntz–Pimsner algebras are 
numerous results that relate structural properties of TX and OX to structural properties 
of the coefficient algebra A (for example, [11, Theorem 7.1] deals with exactness, [11, The-
orem 7.2 and Corollary 7.4] with nuclearity, [12, Theorem 8.6 and Proposition 8.8] with 
the gauge-invariant ideal structure, and [11, Proposition 8.2 and Theorem 8.6] with oper-
ator K-theory). This of course serves as motivation for attempting to realise C∗-algebras 
as Cuntz–Pimsner algebras: given a C∗-algebra B, can we find a subalgebra A ⊆ B (which 
we hopefully already know some information about) and a C∗-correspondence X over 
A such that B is isomorphic to OX? Various C∗-algebraic constructions are well-known 
to be realisable (nontrivially) in terms of Cuntz–Pimsner algebras: for example crossed 
products by automorphisms [15, Example 3], graph C∗-algebras [17, Example 8.13], and 
more generally topological graph algebras [13].

Similarly, to construct a Toeplitz (or Cuntz–Pimsner) ring one requires a coefficient 
ring R, two R-bimodules P and Q, and an R-bimodule homomorphism ψ : P ⊗RQ → R. 
Such data is called an R-system. One can think of the bimodules P and Q as playing 
the role of the C∗-correspondence, whilst the map ψ plays the role of an R-valued ‘inner 
product’. The associated Toeplitz ring T(P,Q,ψ) is then defined in much the same way as 
in the C∗-algebraic setting. The Toeplitz ring then naturally carries a Z-grading. Un-
fortunately, when moving to the purely algebraic setting, the missing analytic structure 
forces the authors of [4] to impose additional technical hypotheses in order to pass from 
T(P,Q,ψ) to the Cuntz–Pimsner ring O(P,Q,ψ) (see [4, Proposition 3.11 and Remark 4.10]). 
We summarise all the necessary background material that we will require in Section 2. 
Despite these difficulties, a number of positive results have still been derived for Cuntz–
Pimsner rings. For example, [4, Corollary 5.4] gives necessary and sufficient conditions for 
a graded representation of O(P,Q,ψ) to be injective, [4, Corollary 7.29] gives a complete 
description of the lattice of two sided graded ideals of O(P,Q,ψ), whilst [5, Theorem 7.3]
gives necessary and sufficient condition for simplicity. Of course, this construction, along 
with the positive results, would be redundant without a collection of interesting examples 
of rings that can be realised (nontrivially) as Cuntz–Pimsner rings. Carlsen and Ortega 
present three examples to motivate their construction:

(i) The crossed product of a ring R by an automorphism can be realised as the Cuntz–
Pimsner ring of an R-system [4, Example 5.5];

(ii) Given a unital ring R, an idempotent p ∈ R, and a ring isomorphism φ : R → pRp, 
the fractional skew monoid ring R[t+, t−, α] (as constructed in [2]) can be realised 
as the Cuntz–Pimsner ring of an R-system [4, Example 5.7];

(iii) Given a directed graph E and a unital commutative ring K, if we let ⊕v∈E0K

denote the ring of finitely supported K-valued functions on the vertex set E0, then 
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the Leavitt path algebra LK(E) can be realised as the Cuntz–Pimsner ring of an 
⊕v∈E0K-system [4, Examples 1.10 and 5.8].

In [4] these three examples are treated individually using various ad hoc techniques, and 
thus one of the main goals of this paper is to provide a systematic approach for dealing 
with examples of this sort.

When we began this project, our original goal was to ‘algebraify’ the results of [16]
by investigating how the Steinberg algebra AK(G) associated to a groupoid G equipped 
with a continuous Z-valued cocycle c fits into the Cuntz–Pimsner framework. In partic-
ular, we wanted to show that AK(G) can be realised as the Cuntz–Pimsner ring of an 
AK(c−1(0))-system. Eventually we realised that our arguments could be applied in more 
general settings, and that is what we report in this paper. Our main result gives a con-
struction for recognizing and building Cuntz–Pimsner rings: given a ring R and a subring 
A ⊆ R, Theorem 3.1 tells us what additional conditions are required in order for there 
to exist a graded isomorphism from R to the Cuntz–Pimsner ring of some A-system. 
Our construction is very general and does not impose a lot of technical hypotheses. At 
the same time, we show how the three key examples listed above can be recovered (rela-
tively easily) using our procedure. Finally, in Section 4 we apply our results to Steinberg 
algebras associated to Z-graded groupoids and complete our original goal of proving an 
algebraic analogue of [16, Proposition 10].

2. Preliminaries: Cuntz–Pimsner rings

In this section, we present some preliminary results about graded rings and recall 
from [4] the basic construction of Cuntz–Pimsner rings. A ring A (possibly without unit) 
is called a Z-graded ring if A =

⊕
n∈ZAn with each An an additive subgroup of A and 

AnAm ⊆ An+m for all n, m ∈ Z. Elements of ∪n∈ZAn are called homogeneous elements
of A, and a nonzero element a ∈ An is said to have degree n, which we denote by |a| = n. 
If A is an algebra over a ring K, then A is called a graded algebra if A is a graded ring 
and An is a K-submodule for each n ∈ Z. For the basics on graded ring theory see [9,14].

Let R be a ring. Given two R-bimodules P and Q we denote by P⊗RQ the R-balanced 
tensor product. An R-system is a triple (P, Q, ψ) where P and Q are R-bimodules, and 
ψ : P ⊗R Q → R is an R-bimodule homomorphism; see [4, Definition 1.1].

Given an R-system (P, Q, ψ), we say that a quadruple (S, T, σ, B) is a covariant rep-
resentation of (P, Q, ψ) on B if:

(i) B is a ring;
(ii) S : P → B and T : Q → B are additive maps;
(iii) σ : R → B is a ring homomorphism;
(iv) S(pr) = S(p)σ(r), S(rp) = σ(r)S(p), T (qr) = T (q)σ(r) and T (rq) = σ(r)T (q) for 

r ∈ R, p ∈ P and q ∈ Q;
(v) σ(ψ(p ⊗R q)) = S(p)T (q) for p ∈ P and q ∈ Q.
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We denote by R〈S, T, σ〉 the subring of B generated by σ(R) ∪T (Q) ∪S(P ). If R〈S, T, σ〉 =
B, then we say that the covariant representation (S, T, σ, B) is surjective, and if the ring 
homomorphism σ is injective, then we say that the covariant representation (S, T, σ, B)
is injective.

Given an R-bimodule P , we define P⊗0 := R, P⊗1 := P , and for n ≥ 2, we define 
P⊗n recursively by P⊗n = P ⊗R P⊗(n−1). Each P⊗n then naturally has the structure 
of an R-bimodule. If P and Q are R-bimodules and ψ : P ⊗R Q → R is an R-bimodule 
homomorphism, we define ψ⊗0 : P⊗0 ⊗R Q⊗0 → R by ψ⊗0(r ⊗r s) := rs for r, s ∈ R, 
ψ⊗1 := ψ, and for n ≥ 2, we define ψ⊗n : P⊗n ⊗R Q⊗n → R recursively by

ψ⊗n
(
(p⊗R p′) ⊗R (q ⊗R q′)

)
:= ψ

(
p · ψ⊗(n−1)(p′ ⊗R q) ⊗R q′

)
for p ∈ P , p′ ∈ P⊗(n−1), q ∈ Q⊗(n−1), q′ ∈ Q.

It is routine to check that each ψ⊗n is an R-bimodule homomorphism. Similarly, if P is 
an R-bimodule, B is a ring, and S : P → B is an additive map, we define S⊗1 := S, 
and for n ≥ 2, we define an additive map S⊗n : P⊗n → B recursively by S⊗n(p ⊗ p′) :=
S(p)S⊗(n−1)(p′) for p ∈ P , p′ ∈ P⊗(n−1). It is not difficult to show that if (S, T, σ, B) is a 
covariant representation of an R-system (P, Q, ψ), then for each n ≥ 0, (S⊗n, T⊗n, σ, B)
(with S⊗0 := T⊗0 := σ) is a covariant representation of the R-system (P⊗n, Q⊗n, ψ⊗n)
(see [4, Lemma 1.5]). It follows that

R〈S, T, σ〉 = span{T⊗m(q)S⊗n(p) : m,n ≥ 0, q ∈ Q⊗m, p ∈ P⊗n}.

Furthermore, it follows that R〈S, T, σ〉 is Z-graded with

R〈S, T, σ〉t = span{T⊗m(q)S⊗n(p) : m,n ≥ 0,m− n = t, q ∈ Q⊗m, p ∈ P⊗n}

for each t ∈ Z (see [4, Proposition 3.1]).
By [4, Theorem 1.7], for an R-system (P, Q, ψ), there exists an injective and surjective 

covariant representation

(ιP , ιQ, ιR, T(P,Q,ψ))

with the following property: if (S, T, σ, B) is a covariant representation of (P, Q, ψ), then 
there exists a unique ring homomorphism

η(S,T,σ,B) : T(P,Q,ψ) → B

such that η(S,T,σ,B) ◦ ιR = σ, η(S,T,σ,B) ◦ ιQ = T , and η(S,T,σ,B) ◦ ιP = S. We call 
(ιP , ιQ, ιR, T(P,Q,ψ)) the Toeplitz representation of (P, Q, ψ), and T(P,Q,ψ) the Toeplitz 
ring of (P, Q, ψ).
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Let (P, Q, ψ) be an R-system. Then a right R-module homomorphism t : QR → QR

is called adjointable with respect to ψ if there exists a left R-module homomorphism 
s : RP → RP such that

ψ(p⊗R t(q)) = ψ(s(p) ⊗R q), for p ∈ P , q ∈ Q.

We call s an adjoint of t with respect to ψ. We write LP (Q) for the set of all adjointable 
homomorphisms (with respect to ψ). We denote by LQ(P ) the set of all the adjoints.

Given an R-system (P, Q, ψ), for each p ∈ P and q ∈ Q, we define homomorphisms 
θq,p : QR → QR and θp,q : RP → RP by

θq,p(x) := qψ(p⊗R x) and θp,q(y) := ψ(y ⊗R q)p for each x ∈ Q and y ∈ P .

Then θq,p ∈ LP (Q) with θp,q as an adjoint. We call the homomorphisms {θq,p : q ∈
Q, p ∈ P} rank-one adjointable homomorphisms, and we denote the linear span of all 
such homomorphisms by FP (Q). Similarly, we denote by FQ(P ) the set of all rank-one 
adjoints.

We say that an R-system (P, Q, ψ) satisfies condition (FS) if for all finite sets 
{q1, · · · , qn} ⊆ Q and {p1, · · · , pm} ⊆ P there exist Θ ∈ FP (Q) and Φ ∈ FQ(P ) such 
that Θ(qi) = qi and Φ(pj) = pj for every i = 1, · · · , n and j = 1, · · · , m, respectively. 
By [4, Lemma 3.8], if (P, Q, ψ) satisfies condition (FS) then so does (P⊗n, Q⊗n, ψ⊗n) for 
each n ≥ 1.

Let R be a ring and (P, Q, ψ) an R-system. We define ring homomorphisms Δ : R →
EndR(QR) and Γ : R → EndR(RP )op by

Δ(r)(q) := rq and Γ(r)(p) := pr for r ∈ R, p ∈ P , q ∈ Q. (2.1)

Note that for every r ∈ R we have that Γ(r) is the adjoint of Δ(r), and thus Δ(r) ∈
LP (Q) and Γ(r) ∈ LQ(P ).

Lemma 2.1. ([10, Lemma 2.2] and [4, Proposition 3.11]) Let R be a ring and (P, Q, ψ)
an R-system satisfying condition (FS) and let (S, T, σ, B) be a covariant representation 
of (P, Q, ψ). Then there exists a unique ring homomorphism πT,S : FP (Q) → B such 
that

πT,S(θq,p) = T (q)S(p) for p ∈ P, q ∈ Q.

We say that a two-sided ideal J of R is ψ-compatible if J ⊆ Δ−1(FP (Q)), and we 
say that a ψ-compatible two-sided ideal J of R is faithful if J ∩ ker Δ = {0}. For a 
ψ-compatible two-sided ideal J of R, we define T (J) to be the two-sided ideal of T(P,Q,ψ)
generated by {ιR(x) − πιQ,ιP (Δ(x)) : x ∈ J}.

The Cuntz–Pimsner ring relative to the ψ-compatible ideal J is the quotient ring

O(P,Q,ψ)(J) = T(P,Q,ψ)/T (J).
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Note that O(P,Q,ψ)(J) is a Z-graded algebra whose grading is inherited from T(P,Q,ψ). 
We denote by ρJ the quotient map ρJ : T(P,Q,ψ) → O(P,Q,ψ)(J). A covariant repre-
sentation (S, T, σ, B) of (P, Q, ψ) is said to be Cuntz–Pimsner invariant relative to J if 
πT,S(Δ(x)) = σ(x) for every x ∈ J . If we let ιJR := ρJ ◦ιR, ιJQ := ρJ ◦ιQ and ιJP := ρJ ◦ιP , 
then (ιJP , ιJQ, ιJR, O(P,Q,ψ)(J)) is a surjective covariant representation of (P, Q, ψ) which is 
Cuntz–Pimsner invariant relative to J (see [4, Theorem 3.18]). It follows that O(P,Q,ψ)(J)
also has a universal property: if (S, T, σ, B) is a covariant representation of (P, Q, ψ) that 
is Cuntz–Pimsner invariant relative to J , then there exists a unique ring homomorphism

ηJ(S,T,σ,B) : O(P,Q,ψ)(J) → B

such that ηJ(S,T,σ,B) ◦ ιJR = σ, ηJ(S,T,σ,B) ◦ ιJQ = T , and ηJ(S,T,σ,B) ◦ ιJP = S.
Given a faithful ψ-compatible two-sided ideal J of R, we say that J is maximal if 

J = J ′ whenever J ′ is a faithful ψ-compatible two-sided ideal of R with J ⊆ J ′. We say 
that J is uniquely maximal if J ′ ⊆ J for every faithful ψ-compatible two-sided ideal J ′

of R.

Definition 2.2. Let R be a ring and (P, Q, ψ) an R-system satisfying condition (FS). If 
there exists a uniquely maximal faithful ψ-compatible two-sided ideal J of R, then we 
define the Cuntz–Pimsner ring of (P, Q, ψ) to be the ring

O(P,Q,ψ) := O(P,Q,ψ)(J)

and we let (ιCP
P , ιCP

Q , ιCP
R , O(P,Q,ψ)) denote the covariant representation

(ιJP , ιJQ, ιJR,O(P,Q,ψ)(J))

and call it the Cuntz–Pimsner representation of (P, Q, ψ).

Let J be a two-sided ideal of a ring R. We let J⊥ denote the two-sided ideal {r ∈ R :
ry = yr = 0 for all y ∈ J}.

Lemma 2.3. [4, Lemma 5.2] Let R be a ring and let (P, Q, ψ) be an R-system which sat-
isfies condition (FS). If Δ−1(FP (Q) ∩ (ker Δ)⊥ ∩ ker Δ = {0}, then J := Δ−1(FP (Q)) ∩
(ker Δ)⊥ is a uniquely maximal faithful ψ-compatible two-sided ideal of R. Thus the 
Cuntz–Pimsner ring of (P, Q, ψ) is defined in this case.

We finish this section with one of the properties of Cuntz–Pimsner rings which will 
be used in later sections.

Theorem 2.4. ([4, Corollary 5.4] and [11, Theorem 6.4], The Graded Uniqueness The-
orem) Let R be a ring and let (P, Q, ψ) be an R-system which satisfies condition (FS), 
and assume that there exists a uniquely maximal faithful ψ-compatible two-sided ideal 
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of R. If A is a Z-graded ring and η : O(P,Q,ψ) → A is a graded ring homomorphism with 
η(ιCP

R (r)) 
= 0 for every r ∈ R\{0}, then η is injective.

3. Z-graded rings as Cuntz–Pimsner rings

Given a ring A and a subring R ⊆ A, it is natural to ask whether A can be realised 
as the Cuntz–Pimsner ring of some R-system. If R = A, then the answer is trivially 
yes: writing ψ for the zero map, it follows almost immediately that ({0}, {0}, ψ) is an 
A-system satisfying condition (FS), {0} ⊆ A is a uniquely maximal faithful ψ-compatible 
two-sided ideal of A, and A ∼= T({0},{0},ψ) ∼= O({0},{0},ψ). Here, the key to making 
use of the Cuntz–Pimsner ring construction is to relate structural properties of the 
coefficient ring R to structural properties of A, so we would like R to be ‘smaller’ and 
more tractable than A itself. In this section, we consider a Z-graded ring A and derive 
sufficient conditions for when A is the Cuntz–Pimsner ring of an R-system where R is a 
subring of A0 (Theorem 3.1).

Before we state and prove our main theorem, we fix some more notation. Let R be a 
ring, M a left R-module and I a subset of M . The left annihilator

annR(I) = {r ∈ R : rx = 0 for all x ∈ I}

of I by R is a left ideal of R. In the case that I is a submodule of M , annR(I) is a 
two-sided ideal of R.

Theorem 3.1. Let A =
⊕

i∈ZAi be a Z-graded ring, R a subring of A0, and I ⊆ A1 and 
J ⊆ A−1 additive subgroups such that

(1) RI, IR ⊆ I, RJ, JR ⊆ J and JI ⊆ R;
(2) For any finite subset {i1, . . . , in} ⊆ I there is an element a in IJ such that ail = il

for each 1 ≤ l ≤ n, and for any finite subset {j1, . . . , jm} ⊆ J there is an element b
in IJ such that jlb = jl for each 1 ≤ l ≤ m;

(3) For r ∈ annR(I)⊥ and a ∈ IJ , if r − a ∈ annA0(I), then a ∈ R1;
(4) annR(I) ∩ annR(I)⊥ = {0}.

Then there exists an R-bimodule homomorphism ψ : J ⊗R I → R such that ψ(j ⊗R

i) = ji for each j ∈ J, i ∈ I, and (J, I, ψ) is an R-system. Furthermore, there is a 
graded isomorphism from the Cuntz–Pimsner ring O(J,I,ψ) of the R-system (J, I, ψ) to 
the subring of A generated by R, I, J .

Proof. First note that from Condition (1) we see that I and J are R-bimodules and 
there exists an R-bimodule homomorphism ψ : J ⊗R I → R such that ψ(j ⊗R i) = ji

1 Notice that if IJ ⊆ R, then Condition (3) is trivially satisfied.
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for each j ∈ J, i ∈ I. Thus, (J, I, ψ) is an R-system. Let S denote the subring of A
generated by R ∪ I ∪ J , and iR, iI , iJ denote the inclusion maps from R, I, J to S. 
Clearly (iJ , iI , iR, S) is a surjective covariant representation of the system (J, I, ψ). In 
this setting condition (FS) translates to Condition (2). Hence, by Lemma 2.1 there 
exists a ring homomorphism πiI ,iJ : FJ(I) → S such that πiI ,iJ (θi,j) = iI(i)iJ (j) = ij

for each i ∈ I, j ∈ J . By (2.1) the map Δ : R → EndR(I) is given by Δ(r)(x) = rx

for r ∈ R and x ∈ I, and thus kerΔ = annR(I). By Condition (4) and Lemma 2.3, 
Δ−1(FJ (I)) ∩ annR(I)⊥ is a uniquely maximal faithful ψ-compatible two-sided ideal of 
R, and thus the Cuntz–Pimsner ring O(J,I,ψ) is well-defined. We let ιCP

R : R → O(J,I,ψ), 
ιCP
I : I → O(J,I,ψ), and ιCP

J : J → O(J,I,ψ) denote the maps whose images generate 
O(J,I,ψ). We will show that this ring is graded isomorphic to S.

We claim that

Δ−1(FJ (I)) ∩ annR(I)⊥ = IJ ∩R. (3.1)

Clearly, IJ ∩R ⊆ Δ−1(FJ (I)). We now show that

IJ ∩R ⊆ annR(I)⊥. (3.2)

Let x =
∑n

l=1 iljl ∈ IJ ∩R and y ∈ annR(I). Then yx =
∑n

l=1(yil)jl = 0. On the other 
hand, xy =

∑n
l=1 il(jly). By Condition (1) each jly ∈ J , and by Condition (2) there is 

some b ∈ IJ such that jlyb = jly for each l ∈ {1, . . . , n}. But yb = 0 as y ∈ annR(I) and 
b ∈ IJ . Hence xy = 0, and so x ∈ annR(I)⊥. Thus IJ ∩ R ⊆ Δ−1(FJ (I)) ∩ annR(I)⊥. 
For the reverse containment, suppose x ∈ Δ−1(FJ (I)) ∩ annR(I)⊥. It follows that there 
is an element 

∑n
l=1 iljl ∈ IJ with il ∈ I and jl ∈ J such that x −

∑n
l=1 iljl ∈ annA0(I). 

Condition (3) guarantees that 
∑n

l=1 iljl ∈ IJ ∩R, and so x −
∑n

l=1 iljl ∈ annR(I). Since 
x ∈ annR(I)⊥, by (3.2) it follows that x −

∑n
l=1 iljl ∈ annR(I)⊥. Now Condition (4) 

implies that x =
∑n

l=1 iljl ∈ IJ , proving the claim.
Using (3.1) it is routine to check that πiI ,jJ (Δ(x)) = ιR(x) for each

x ∈ Δ−1(FJ (I)) ∩ annR(I)⊥ = IJ ∩R,

and so the surjective covariant representation (iJ , iI , iR, S) of (J, I, ψ) is Cuntz–Pimsner 
invariant. By [4, Theorem 3.18], there exists a surjective ring homomorphism η :
O(J,I,ψ) → S such that η ◦ ιCP

R = iR, η ◦ ιCP
I = iI , and η ◦ ιCP

J = iJ . As R ⊆ A0, 
I ⊆ A1, and J ⊆ A−1, it follows that η is graded. Finally, since η(ιCP

R (r)) = r for all 
r ∈ R, the graded uniqueness theorem for Cuntz–Pimsner rings (Theorem 2.4) ensures 
that η is also injective. �

Specialising Theorem 3.1 to the situation where I = A1, J = A−1, and R = A0, we 
have the following corollary.

Corollary 3.2. Let A =
⊕

i∈ZAi be a Z-graded ring such that
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(1) An = An
1 and A−n = An

−1 for n > 0;
(2) For {a1, . . . , an} ⊆ A1 there is an r ∈ A1A−1 such that ral = al for each 1 ≤ l ≤ n, 

and for {b1, . . . , bm} ⊆ A−1 there is an s ∈ A1A−1 such that bls = bl for each 
1 ≤ l ≤ m;

(3) annA0(A1) ∩ annA0(A1)⊥ = {0}.

Then there is a graded isomorphism from the Cuntz–Pimsner ring of the A0-system 
(A−1, A1, ψ) to A, where ψ : A−1⊗A0 A1 → A0 is the A0-bilinear map that sends a ⊗A0 b

to ab for each a ∈ A−1, b ∈ A1.

Recall that a Z-graded ring A =
⊕

i∈ZAi is said to be strongly graded if AmAn =
Am+n for each m, n ∈ Z (see [9]). We say that a Z-graded ring A has graded local units if 
for any finite set of homogeneous elements {x1, · · · , xn} ⊆ A, there exists a homogeneous 
idempotent e ∈ A such that {x1, · · · , xn} ⊆ eAe. Equivalently, A has graded local units, 
if A0 has local units and A0An = AnA0 = An for every n ∈ Z.

It is not difficult to see that for a strongly graded ring A, if a graded homomorphism 
φ : A → B restricted to A0 is injective, then φ is injective (see [14, Corollary 1.3.9]). 
However our results allows us to place this in the general framework of the Graded 
Uniqueness Theorem for Cuntz–Pimsner rings (Theorem 2.4).

Corollary 3.3 (Uniqueness theorem for strongly graded rings). Let A =
⊕

i∈ZAi be a 
strongly Z-graded ring with graded local units and B a Z-graded ring. If φ : A → B is a 
graded homomorphism such that φ|A0 is injective then φ is injective.

Proof. We will check conditions (1)–(3) in Corollary 3.2. Condition (1) follows from 
the definition of strongly graded rings. Since A1A−1 = A0 which contains local units 
for A, Condition (2) of Corollary 3.2 is immediate. Observe that annA0(A1) = {0} and 
thus Condition (3) of Corollary 3.2 follows. Thus there is a graded isomorphism from 
O(A1,A−1,ψ) to A, and the result now follows from Theorem 2.4. �

Next we show how [4, Example 5.7], [4, Example 5.5], and [4, Examples 1.10 and 5.8]
fit into the framework of Theorem 3.1 and Corollary 3.2. First we consider corner skew 
Laurent polynomial rings, studied in [3], where their K1-groups were calculated. The 
construction is a special case of the so-called fractional skew monoid rings constructed in 
[2] (see also [9, §1.6.2]). Corner skew Laurent polynomial rings are characterised by the 
following property: A = ⊕n∈ZAn is a Z-graded ring and A1 has a left invertible element 
([2, Lemma 2.4], [9, Theorem 1.6.9]). This characterisation is used in [9, Example 1.6.14]
to show that Leavitt path algebras associated to finite graphs with no sinks are examples 
of such rings. Using our Corollary 3.2, in Example 3.4 we realise corner skew Laurent 
polynomial rings as a special case of Cuntz–Pimsner rings. In Example 3.5, we show 
how Corollary 3.2 can be applied to crossed products by automorphisms. Finally, in 
Example 3.6 we show how Theorem 3.1 can be applied to Leavitt path algebras of 
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arbitrary graphs. In this last example the coefficient ring of our system is (in general) 
smaller than the zero graded part of the Leavitt path algebra, and so requires the full 
power of Theorem 3.1 rather than just Corollary 3.2.

Example 3.4 (Corner skew Laurent polynomial rings). Let R be a unital ring, p ∈ R an 
idempotent, and α : R → pRp a ring isomorphism. Recall from [2] that the corner skew 
Laurent polynomial ring is the universal unital ring R[t+, t−, α] generated by elements 
t+, t−, and {φ(r) : r ∈ R}, where φ : R → R[t+, t−, α] is a unital ring homomorphism, 
satisfying the following relations

(1) t−t+ = 1R[t+,t−,α];
(2) t+t− = φ(p);
(3) φ(r)t− = t−φ(α(r)) for r ∈ R; and
(4) t+φ(r) = φ(α(r))t+ for r ∈ R.

Observe that if r ∈ R and m, n ≥ 1, then

tm+φ(r)tn− = tm−1
+ φ(α(r))t+tn− = tm−1

+ φ(α(r)p)tn−1
− = tm−1

+ φ(α(r))tn−1
−

and, because t−t+ = 1R[t+,t−,α],

tm−φ(r)tn+ = tm−1
− (t−t+)t−φ(r)t+(t−t+)tn−1

+

= tm−1
− t−(t+t−)φ(r)(t+t−)t+tn−1

+

= tm−1
− t−φ(prp)tn+

= tm−1
− φ(α−1(prp))t−t+tn−1

+

= tm−1
− φ(α−1(prp))tn−1

+ .

It follows that every element of R[t+, t−, α] can be written in the form

φ(rn)tn+ + · · · + φ(r1)t+ + φ(r0) + t−φ(r−1) + · · · + tm−φ(r−m)

for some m, n ∈ N+ and ri ∈ R. Furthermore, if we define

An :=

⎧⎪⎪⎨⎪⎪⎩
tn−φ(R) if n > 0
φ(R) if n = 0
φ(R)t−n

+ if n < 0,

then 
⊕

n∈ZAn is a Z-grading of R[t+, t−, α].
We now show that this example fits into our framework. Observe that

t− = 1R[t+,t−,α]t− = (t−t+)t− = t−(t+t−) = t−φ(p) ∈ A1
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and

t+ = t+1R[t+,t−,α] = t+(t−t+) = (t+t−)t+ = φ(p)t+ ∈ A−1.

It follows immediately that Condition (1) of Corollary 3.2 holds. Furthermore, since

1R[t+,t−,α] = t−t+ ∈ A1A−1,

we see that Condition (2) of Corollary 3.2 holds. Lastly, observe that if φ(r) ∈ annA0(A1), 
then

φ(r) = φ(r)1R[t+,t−,α] ∈ φ(r)A1A−1 = {0},

and so we see that Condition (3) of Corollary 3.2 holds. Consequently, if ψ : A−1 ⊗A0

A1 → A0 is defined by ψ(x ⊗A0 y) = xy, then there is a graded isomorphism from 
R[t+, t−, α] to the Cuntz–Pimsner ring of the A0-system (A−1, A1, ψ).

Example 3.5 (Crossed products by automorphisms). By applying Corollary 3.2, we see 
that [4, Example 5.5], mentioned in the introduction, fits into our framework as well. 
Let R be a ring with local units and ϕ be an automorphism of R. Then the crossed 
product A := R ×ϕ Z is the universal ring generated by {[r, k] : r ∈ R and k ∈ Z}
satisfying [r1, k] + [r2, k] = [r1 + r2, k] and [r1, k1][r2, k2] = [r1ϕk1(r2), k1 + k2]. Then A
is a strongly Z-graded ring with An := {[r, n] : r ∈ R} for each n ∈ Z. Consequently, 
it is straightforward to show that the hypotheses of Corollary 3.2 are satisfied. Hence, 
A is isomorphic to the Cuntz–Pimsner ring of the A0-system (A−1, A1, ψ) where ψ :
A−1 ⊗A0 A1 → A0 is defined by ψ([r1, −1] ⊗A0 [r2, 1]) = [r1ϕ−1(r2), 0].

Example 3.6 (Leavitt path algebras). Let E = (E0, E1, r, s) be a directed graph. Recall 
from [1] that the Leavitt path algebra A := LK(E) over a unital commutative ring K
is generated by {v : v ∈ E0} ∪ {e : e ∈ E1} ∪ {e∗ : e ∈ E1} subject to the following 
relations

(1) uv = δu,vu for u, v ∈ E0;
(2) r(e)e = e = es(e) for e ∈ E1;
(3) s(e)e∗ = e∗ = e∗r(e) for e ∈ E1;
(4) e∗f = δe,fs(e) for e, f ∈ E1;
(5)

∑
e∈r−1(v) ee

∗ = v if v ∈ E0 with r−1(v) a finite nonempty set.

Relations (4) and (5) are called the Cuntz–Krieger relations. Note that we are using the 
‘Southern Hemisphere’ convention where a path is a finite sequence of edges e1...en such 
that s(ei) = r(ei+1). A is naturally Z-graded with |v| = 0, |e| = 1 and |e∗| = −1 for 
v ∈ E0 and e ∈ E1.
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We set R := span{v : v ∈ E0}, I := span{e : e ∈ E1}, and J := span{e∗ : e ∈
E1}. We apply Theorem 3.1 to show that there is a graded ring isomorphism from 
the Cuntz–Pimsner ring of the R-system (J, I, ψ) to A. By relations (1)–(4) of A, R
is a subring of LK(E), RI, IR ⊆ I, RJ, JR ⊆ J , and JI ⊆ R. Thus Condition (1) 
of Theorem 3.1 holds. Note that it is possible that IJ is not contained in R. It is 
straightforward to show that annR(I) = span{v : vE1 = ∅} and annR(I)⊥ = span{v :
vE1 
= ∅}, and so annR(I) ∩ annR(I)⊥ = {0}. Thus, Condition (4) of Theorem 3.1 is 
satisfied.

Next we show that Condition (2) is satisfied. Let {i1, . . . , in} ⊆ I be a finite set. For 
each l ∈ {1, . . . , n} there exist finite sets Fl ⊆ E1 and {λe : e ∈ Fl} ⊆ K such that 
il =

∑
e∈Fl

λee. Since ee∗f = δe,ff for any e, f ∈ E1, if we set a :=
∑

e∈∪n
l=1Fl

ee∗ ∈ IJ , 
then ail = il for each l ∈ {1, . . . , n}. Similarly, if {j1, . . . , jm} ⊆ J is a finite set, we 
may write jl =

∑
e∈Fl

λee
∗ where Xl ⊆ E1 and {λe : e ∈ Xl} ⊆ K are finite sets. With 

b :=
∑

e∈∪m
l=1Xl

ee∗ ∈ IJ , we then have that jlb = jl for each l ∈ {1, . . . , m}.
It remains to check Condition (3) of Theorem 3.1. Let r :=

∑
v∈F λvv ∈ annR(I)⊥, 

a :=
∑

(e,f)∈G μ(e,f)ef
∗ ∈ IJ , where F ⊆ E0, G ⊆ E1 × E1, {λv : v ∈ F} and {μ(e,f) :

(e, f) ∈ G} ⊆ K are finite sets. Suppose that r − a ∈ annA0(I). Observe that for any 
u, w ∈ E0,

δu,wλuu−
∑

(e,f)∈G
r(e)=u,r(f)=w

μ(e,f)ef
∗ = u(r − a)w ∈ annA0(I), (3.3)

since RI ⊆ I (where λu := 0 if u /∈ F ). Thus,∑
(e,f)∈G
r(e) 	=r(f)

μ(e,f)ef
∗,

∑
(e,f)∈G

r(e)=r(f)/∈F

μ(e,f)ef
∗ ∈ annA0(I).

We claim that ∑
(e,f)∈G
r(e) 	=r(f)

μ(e,f)ef
∗ = 0 (3.4)

and ∑
(e,f)∈G

r(e)=r(f)/∈F

μ(e,f)ef
∗ = 0. (3.5)

For k ∈ E1 ⊆ I, we have

0 =
( ∑

(e,f)∈G

μ(e,f)ef
∗
)
k =

∑
(e,k)∈G

μ(e,k)e.
r(e) 	=r(f) r(e) 	=r(k)
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Since the collection of edges {e : e ∈ E1} is a linearly independent set in A, this forces 
μ(e,k) = 0 whenever (e, k) ∈ G and r(e) 
= r(k). This gives (3.4). Similar calculations 
show that (3.5) holds as well. Now suppose that v ∈ F and λv 
= 0. By (3.3),

λvv −
∑

(e,f)∈G
r(e)=r(f)=v

μ(e,f)ef
∗ ∈ annA0(I).

We claim that

(i) if (e, f) ∈ G and r(e) = r(f) = v, then μ(e,f) = λv when e = f and μ(e,f) is zero 
otherwise; and

(ii) if e ∈ vE1 then (e, e) ∈ G (and so in particular, vE1 is a finite set).

For k ∈ vE1, we have

0 =
(
λvv −

∑
(e,f)∈G

r(e)=r(f)=v

μ(e,f)ef
∗
)
k = λvk −

∑
(e,k)∈G
r(e)=v

μ(e,k)e.

Again since the edges {e : e ∈ E1} are linearly independent, we conclude (since λv 
= 0) 
that (k, k) ∈ G, λv = μ(k,k), and μ(e,k) = 0 whenever e ∈ vE1 \ {k} and (e, k) ∈ G. Thus 
(i) and (ii) hold. Since r ∈ annR(I)⊥, we also know that vE1 
= ∅, and so by relation (5) 
of A, we have

∑
(e,f)∈G

r(e)=r(f)=v

μ(e,f)ef
∗ =

∑
(e,e)∈G
r(e)=v

λvee
∗ =

∑
e∈vE1

λvee
∗ = λvv. (3.6)

Therefore,

a =
∑

(e,f)∈G

μ(e,f)ef
∗ =

∑
(e,f)∈G
r(e) 	=r(f)

μ(e,f)ef
∗ +

∑
(e,f)∈G

r(e)=r(f)/∈F

μ(e,f)ef
∗

∑
(e,f)∈G

r(e)=r(f)∈F

μ(e,f)ef
∗

=
∑
v∈F

∑
(e,f)∈G

r(e)=r(f)=v

μ(e,f)ef
∗

=
∑
v∈F

λvv ∈ R,

where the penultimate equality comes from (3.4) and (3.5), and the final equality from 
(3.6). Hence, we conclude that Condition (3) holds.
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4. Application to Steinberg algebras

Steinberg algebras were introduced in [18] in the context of discrete inverse semigroup 
algebras and independently in [6] as a model for Leavitt path algebras. Throughout this 
section, K denotes an arbitrary field. Let G be an ample Hausdorff groupoid, that is, 
a topological groupoid whose topology is Hausdorff and has a base of compact open 
bisections. The Steinberg K-algebra of G is the K-linear span of characteristic functions 
1B : G → K with B a compact open bisection of G; see [6, Lemma 3.3]. Addition and 
scalar multiplication are pointwise and multiplication is given by convolution (which 
reduces to 1B1D = 1BD for compact open bisections B and D). For the basics on 
Steinberg algebras see [6,18].

We are interested in Z-graded Steinberg algebras where the grading comes from a 
continuous cocycle c, that is, a continuous homomorphism c : G → Z (where Z has the 
discrete topology). The homogeneous components are given by

AK(G)n := {f ∈ AK(G) : f(γ) 
= 0 =⇒ c(γ) = n}.

For any clopen set H ⊆ G, with some abuse of notation, we write

AK(H) := {f ∈ AK(G) : f(γ) = 0 for γ /∈ H}.

Thus AK(H) consists of functions that can be written as a linear combination of char-
acteristic functions associated to compact open bisections contained in H. With this 
convention, for each n ∈ Z, let Gn := c−1(n) which is a clopen subset of G as c is contin-
uous and Z is discrete. Then we have AK(Gn) = AK(G)n (see [6–8] for more details).

With some moderate hypotheses, it is not hard to show how Corollary 3.2 can be ap-
plied to Steinberg algebras. This boils down to applying Theorem 3.1 with I := AK(G)1, 
J := AK(G)−1, and R := AK(G)0, giving us an algebraic analogue of [16, Proposition 10]
(see Corollary 4.6). This is the natural choice and we expect suffices in most situations. 
However, we can do things more generally and use smaller I, J, R, as the next Theorem 
shows.

Theorem 4.1. Let G be a locally compact Hausdorff ample groupoid and c : G → Z be a 
continuous cocycle. Suppose we have clopen sets H0 ⊆ G0, H1 ⊆ G1, and H−1 ⊆ G−1. 
Define R := AK(H0) ⊆ AK(G)0, I := AK(H1) ⊆ AK(G)1, and J := AK(H−1) ⊆
AK(G)−1.

(i) If H0 is closed under multiplication, H0H1 ∪H1H0 ⊆ H1, and H0H−1 ∪H−1H0 ⊆
H−1,2 H−1H1 ⊆ H0, and r(H1) ∪s(H−1) ⊆ H1H−1, then R is a subring of AK(G)0
and Conditions (1), (2), and (3) of Theorem 3.1 are satisfied.

2 This condition follows from the previous one if H−1 = H−1
1 and H0 is closed under taking inverses.
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(ii) If H0 and H1 have the property that

B ⊆ H0 is a compact open bisection and s(B) ∩ r(H1) = ∅

=⇒ s(B) ⊆ H0, (4.1)

then Condition (4) of Theorem 3.1 is satisfied.3
(iii) If every element of G can be written as the product of elements from H0, H1, and 

H−1, then R, I, J generate AK(G) as a ring.

If H0, H1, and H−1 satisfy Conditions (i)–(iii), then there is a graded algebra 
isomorphism from the Steinberg algebra AK(G) to the Cuntz–Pimsner ring of the 
AK(H0)-system (AK(H1), AK(H−1), ψ).

Before we give the proof of this theorem, we need the following lemma.

Lemma 4.2. Let G be a locally compact Hausdorff ample groupoid. If C ⊆ G is a compact 
open bisection and there exist clopen sets D1, . . . , Dn ⊆ G such that every element of C
can be written as the product of elements from ∪n

i=1Di, then 1C belongs to the subring 
of AK(G) generated by AK(D1), . . . , AK(Dn).

Proof. Let C ⊆ G be a compact open bisection. For γ ∈ C write γ = μ1 . . . μnγ
where 

each μi ∈ Di ∈ {D1, . . . , Dn}. Suppose that nγ > 1. For each i ∈ {1, . . . , nγ − 1}
choose a compact open bisection Bγ

i ⊆ Di with μi ∈ Bγ
i . Then μnγ

= μ−1
nγ−1 . . . μ

−1
1 γ ∈(

(Bγ
nγ−1)−1 . . . (Bγ

1 )−1C
)
∩ Dnγ , which is an open set because multiplication and in-

version in G are open maps. Hence, we can choose a compact open bisection Bγ
nγ

⊆(
(Bγ

nγ−1)−1 . . . (Bγ
1 )−1C

)
∩Dnγ containing μnγ

. Thus, γ = μ1 . . . μnγ
∈ Bγ

1 . . . Bγ
nγ

and 
Bγ

1 . . . Bγ
nγ

⊆ Bγ
1 . . . Bγ

nγ−1(B
γ
nγ−1)−1 . . . (Bγ

1 )−1C ⊆ C. (If nγ = 1, then γ = μ1 ∈
C ∩ D1, and we can choose a compact open bisection Bγ

1 ⊆ C ∩ D1 with γ ∈ Bγ
1 .) 

Consequently, {Bγ
1 . . . Bγ

nγ
: γ ∈ C} is an open cover for C with Bγ

1 . . . Bγ
nγ

⊆ C for 
each γ ∈ C. Since C is compact, it follows that there exist γ1, . . . , γk ∈ C such that 
C =

⋃k
j=1 B

γj

1 . . . B
γj
nγj

. If for each j ∈ {1, . . . , k} we define

B̃γj
nγj

:=

⎧⎪⎨⎪⎩
B

γj
nγj

\
((

B
γj

1 . . . B
γj

nγj
−1

)−1
(⋃k

i=j+1 B
γi

1 . . . Bγi
nγi

))
if nγj

> 1

B
γj

1 \
(⋃k

i=j+1 B
γi

1 . . . Bγi
nγi

)
if nγj

= 1
,

then C =
⋃k

j=1 B
γj

1 . . . B
γj

nγj
−1B̃

γj
nγj

and this union is disjoint. Thus,

3 This condition is automatic if either G(0) ⊆ H0, or if H0 is closed under taking inverses and under 
multiplication (or in other words H0 is a subgroupoid of G0).
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1C =
k∑

j=1
1
B

γj
1

. . . 1
B

γj
nγj

−1
1
B̃

γj
nγj

.

Since Bγj

i is contained in one of D1, . . . , Dn, for each j ∈ {1, . . . , k} and i ∈ {1, . . . , nγj
}, 

we see that 1C is contained in the ring generated by AK(D1), . . . , AK(Dn). �
Remark 4.3. Observe that in the proof of Lemma 4.2 we showed that if C ⊆ D1 · · ·Dn, 
then 1C ∈ AK(D1) · · ·AK(Dn).

Proof of Theorem 4.1. It is routine to check that if H0 is closed under multiplication, 
then R is a closed under multiplication. Clearly, R, I, and J are closed under addition, 
and so R is a subring of AK(G)0 and I and J are (additive) subgroups of AK(G)1 and 
AK(G)−1 respectively. It is routine to check that if H0H1 ∪ H1H0 ⊆ H1, H0H−1 ∪
H−1H0 ⊆ H−1, and H−1H1 ⊆ H0, then RI, IR ⊆ I, RJ, JR ⊆ J , and JI ⊆ R. Thus, 
Condition (1) of Theorem 3.1 is satisfied.

Now suppose that r(H1) ∪ s(H−1) ⊆ H1H−1. We will show that Condition (2) of 
Theorem 3.1 is satisfied. Let {f1, . . . , fn} ⊆ A(H1) be a finite set. For each i ∈ {1, . . . , n}
choose compact open bisections Bi

1, . . . , B
i
mi

⊆ H1 and scalars αi
1, . . . , α

i
mi

∈ K such that 
fi =

∑mi

l=1 α
i
l1Bi

l
. Now choose compact open bisections {Ci

li
⊆ H1 : i ∈ {1, . . . , n}, li ∈

{1, . . . , mi}} such that the sets r(Ci
li
) where i ∈ {1, . . . , n} and li ∈ {1, . . . , mi} are 

mutually disjoint and 
⋃n

i=1
⋃mi

li=1 r(Bi
li
) =

⋃n
i=1

⋃mi

li=1 r(Ci
li
). Note: one way to do this 

is to set

Ci
li := Bi

li \ r
−1

(
n⋃

s=i+1

ms⋃
t=1

r(Bs
t ) ∪

mi⋃
p=li+1

r(Bi
p)
)

for each i ∈ {1, . . . , n} and li ∈ {1, . . . , mi}. We then define

r :=
n∑

i=1

mi∑
li=1

1r(Ci
li

).

Since r(Ci
li
) ⊆ r(H1) ⊆ H1H−1 for each i ∈ {1, . . . , n} and li ∈ {1, . . . , mi}, Lemma 4.2

(and Remark 4.3), tells us that r ∈ IJ . Hence for any k ∈ {1, . . . , n},

rfk =
n∑

i=1

mi∑
li=1

1r(Ci
li

)

( mk∑
j=1

αk
j 1Bk

j

)
=

n∑
i=1

mi∑
li=1

mk∑
j=1

αk
j 1r(Ci

li
)Bk

j
=

mk∑
j=1

αk
j 1Bk

j
= fk,

where the third equality follows from the fact that

r(Bk
j ) ⊆

n⋃ mi⋃
r(Bi

li) =
n⋃ mi⋃

r(Ci
li)
i=1 li=1 i=1 li=1
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for each j ∈ {1, . . . , mk}, and this last union is, by construction, disjoint. The proof 
that the second part of Condition (2) is satisfied is almost exactly the same, but we use 
sources instead of ranges.

Now we check that Condition (3) of Theorem 3.1 is satisfied. Let r ∈ R and a ∈ IJ

be such that r − a ∈ annA0(I). Write r =
∑m

i=1 αi1Bi
and a =

∑n
j=1 βj1Cj

where 
α1, . . . , αm, β1, . . . , βn ∈ K \ {0} and B1, . . . , Bm ⊆ H0 are compact open bisections and 
C1, . . . , Cn ⊆ H1H−1 are disjoint compact open bisections. Looking for a contradiction, 
suppose that there exists l ∈ {1, . . . , m} such that Cl � ∪n

i=1Bi. Choose x ∈ Cl \ ∪n
i=1Bi

and write x = yz where y ∈ H1 and z ∈ H−1. Since s(x) = s(z) ∈ s(H−1), if we assume 
that r(H1) ∪ s(H−1) ⊆ H1H−1, then we can choose ξ ∈ H1 and σ ∈ H−1 such that 
s(x) = ξσ. Thus, s(x) = r(ξ). Let D ⊆ H1 be a compact open bisection containing ξ. 
Then 1D ∈ I and so

0 = (r − a)1D =
m∑
i=1

αi1BiD −
n∑

j=1
βj1CjD.

By construction xξ ∈ ClD. If xξ ∈ CkD for some k ∈ {1, . . . , n} \{l}, say xξ = μν where 
μ ∈ Ck and ν ∈ D, then s(ν) = s(ξ) forces ν = ξ because D is a bisection, and so μ = x

which is impossible because Cl ∩Ck = ∅. Similarly, if xξ ∈ BiD for some i ∈ {1, . . . , m}, 
say xξ = ητ where η ∈ Bi and τ ∈ D, then s(τ) = s(ξ) forces τ = ξ, and so x = η which 
is impossible because x ∈ Cl \ ∪n

i=1Bi. Thus,

0 =
( m∑

i=1
αi1BiD −

n∑
j=1

βj1CjD

)
(xξ) = βl 
= 0,

which is obviously not possible. Hence, Cj ⊆ ∪n
i=1Bi ⊆ H0 for each j ∈ {1, . . . , m}, and 

so a =
∑n

j=1 βj1Cj
∈ AK(H0) = R as required. We have now shown that part (i) of the 

theorem holds.
Before we check that part (ii) of the theorem holds, we get a handle on annR(I). We 

claim that

annR(I) = spanK{1B : B ⊆ H0 is a compact open bisection and s(B) ∩ r(H1) = ∅}.
(4.2)
Firstly, suppose that B ⊆ H0 is a compact open bisection and s(B) ∩r(H1) = ∅. Clearly, 
1B ∈ R. Let f ∈ I, say f =

∑n
i=1 αi1Di

where α1, . . . , αn ∈ K are some scalars and 
D1, . . . , Dn ⊆ H1 are compact open bisections. Since r(Di) ∩ s(B) ⊆ r(H1) ∩ s(B) = ∅
for each i ∈ {1, . . . , n}, we have

1Bf =
n∑

i=1
αi1BDi

= 0.

Thus, 1B ∈ annR(I), and we conclude that
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spanK{1B : B ⊆ H0 is a compact open bisection and s(B) ∩ r(H1) = ∅} ⊆ annR(I).

For the reverse containment, let f :=
∑n

i=1 αi1Di
∈ R (where α1, . . . , αn ∈ K \ {0}

are scalars and D1, . . . , Dn ⊆ H0 are mutually disjoint compact open bisections), and 
suppose that there exists j ∈ {1, . . . , n} such that s(Dj) ∩r(H1) 
= ∅. Choose x ∈ H1 and 
y ∈ Dj such that r(x) = s(y) and let E ⊆ H1 be a compact open bisection containing 
x (we can certainly do this — if we pick a compact open bisection in G containing x
then its intersection with H1 is still compact and open because H1 is clopen). Looking 
for a contradiction, suppose there exists k ∈ {1, . . . , n} \ {j} such that yx ∈ DkE. Thus, 
yx = wz for some w ∈ Dk and z ∈ E. Since s(x) = s(z) and x, z ∈ E which is a bisection, 
we must have x = z. Thus, y = w, which is impossible because Dj and Dk are disjoint. 
Hence,

(f1E)(yx) =
n∑

i=1
αi1DiE(yx) = αj 
= 0.

Thus, f1E 
= 0, and so f /∈ annR(I). This completes the proof that (4.2) holds.
We now show that Condition (4) holds provided we have (4.1). Suppose f ∈ annR(I) ∩

annR(I)⊥. By (4.2), f =
∑n

i=1 αi1Bi
for some choice of scalars α1, . . . , αn ∈ K and 

compact open bisections B1, . . . , Bn ⊆ H0 with s(Bi) ∩r(H1) = ∅ for each i ∈ {1, . . . , n}. 
Let D :=

⋃n
i=1 s(Bi). Then D is compact and open (because s is a local homeomorphism, 

it is a continuous open map) and a bisection (because it is a subset of the unit space). 
Moreover, s(D) = D =

⋃n
i=1 s(Bi) is disjoint from r(H1), and so is contained in H0 by 

(4.1). Hence, by (4.2), 1D ∈ annR(I), and we must have

0 = f1D =
n∑

i=1
αi1BiD =

n∑
i=1

αi1Bi
= f.

Thus, annR(I) ∩ annR(I)⊥ = {0} as required. Thus, part (ii) of the theorem holds.
Finally, another application of Lemma 4.2 shows that if every element of G can be 

written as the product of elements from H0, H1, and H−1, then R = AK(H0), I =
AK(H0), and J = AK(H−1) generate AK(G) as a ring. This shows that part (iii) of the 
theorem holds. �
Remark 4.4. It is not immediately obvious whether there exists a groupoid G satisfying 
the hypotheses of Theorem 4.1 with clopen sets H0 ⊆ G0, H1 ⊆ G1, H−1 ⊆ G−1 satisfying 
conditions (i)–(iii) of the same Theorem in which H−1 
= (H1)−1. We can show that if 
H0 is also closed under taking inverses (i.e. it is a subgroupoid), then H−1 = (H1)−1. Let 
γ ∈ H−1. Since s(H−1) ⊆ H1H−1, we have that s(γ) = μν for some μ ∈ H1 and ν ∈ H−1. 
Thus, μν = s(γ) = s(ν) = ν−1ν, which forces μ = ν−1 (and so μ−1 = ν ∈ (H1)−1∩H−1). 
Hence, γ = γs(γ) = γμμ−1 ∈ H−1H1(H1)−1 ⊆ H0(H1)−1 = (H1(H0)−1)−1 ⊆ (H1)−1. 
Thus, H−1 ⊆ (H1)−1. Similar working using the fact that r(H1) ⊆ H1H−1 shows that 



100 L.O. Clark et al. / Journal of Algebra 536 (2019) 82–101
H1 ⊆ (H−1)−1. Hence, H−1 = (H1)−1. However, as the next example shows, if H0 is not 
closed under taking inverses, then H−1 need not equal (H1)−1.

Example 4.5. Let E be the directed graph with vertex set E0 = {u, v, w}, edge set E1 =
{e, f, g}, and range and source maps determined by r(e) = u, s(e) = r(f) = r(g) = w, 
and s(f) = s(g) = v. Then the boundary path groupoid GE is a second-countable locally 
compact Hausdorff ample groupoid. See for example [8, Example 2.1] for the details. 
For this graph, the usual topology on GE is discrete. The map c : GE → Z given by 
c(x, m, y) = m for all (x, m, y) ∈ GE is a continuous cocycle. Hence,

H0 := {(g, 0, g), (eg, 0, eg), (v, 0, v), (f, 0, f), (f, 0, g)},

H1 := {(ef, 1, f), (ef, 1, g), (eg, 1, g), (eg, 1, f), (f, 1, v), (g, 1, v)},

H−1 := {(f,−1, ef), (f,−1, eg), (v,−1, f), (v,−1, g)}

are clopen subsets of (GE)0, (GE)1, and (GE)−1 respectively. It is then straightforward to 
check that H0 is closed under multiplication, H0H1 ∪H1H0 ⊆ H1, H0H−1 ∪H−1H0 ⊆
H−1, H−1H1 ⊆ H0, and r(H1) ∪ s(H−1) ⊆ H1H−1. Furthermore, H0 and H1 satisfy 
Condition 4.1 (in fact s(H0) ⊆ H0), and every element of GE can be written as the 
product of elements from H0 ∪H1 ∪H−1. However, since (g, −1, ef) = (ef, 1, g)−1 (and 
(g, −1, eg) = (eg, 1, g)−1) is not in H−1, we see that (H1)−1 � H−1.

Finally we use Theorem 4.1 to show that the Steinberg algebra associated to an 
unperforated Z-graded groupoid G can be realised as the Cuntz–Pimsner ring of an 
AK(G0)-system. This is an algebraic analogue of [16, Proposition 10], which shows that 
under similar hypotheses, the reduced groupoid C∗-algebra C∗

r (G) associated to an (étale) 
groupoid can be realised as the Cuntz–Pimsner algebra of a C∗-correspondence over 
C∗

r (G0).

Corollary 4.6. Let G be a locally compact Hausdorff ample groupoid and c : G → Z be 
a continuous cocycle. Suppose that c is unperforated in the sense that if n > 0 and 
g ∈ Gn, then there exist g1, . . . , gn ∈ G1 such that g = g1 · · · gn. Then with H0 := G0, 
H1 := G1, and H−1 = G−1 the conditions of Theorem 4.1 are satisfied. Consequently, 
there is a graded algebra isomorphism from AK(G) to the Cuntz–Pimsner ring of the 
AK(G0)-system (AK(G)−1, AK(G)1, ψ).
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