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1. Introduction

In this paper, X stands for a (projective, geometrically irreducible, nonsingular al-
gebraic) curve of genus g ≥ 2 defined over an algebraically closed field K of any 
characteristic p, and, for an odd prime d different from p, G denotes a d-subgroup of 
Aut(X ), that is, a subgroup whose order is a power of d.

If K is the complex field, then X can be viewed as a Riemann surface, and for this case 
R. Zomorrodian proved |G| ≤ 9(g − 1); see [24,25]. He also pointed out that the bound 
is sharp if and only if g − 1 is a power of d = 3 and g ≥ 10. His approach, inspired by 
Harvey’s work [8], was based on the method of Fuchsian groups including Singerman’s 
Theorem, and it was largely used later in the studies of the minimum genus problem 
and the maximum order problem for other types of automorphism groups; see the survey 
paper [5].

For recent results on d-groups of Riemann surfaces see [9].
If K is any field, especially of positive characteristic, a completely different approach 

is necessary. However Zomorrodian’s bound still holds, see Theorems 3.1 and 3.2. The 
most interesting case arises when the bound is sharp, that is d = 3, g = 3h + 1, and 
|G| = 3h+2 with h ≥ 1. For a curve X for which this occurs, we use the name “extremal 
3-Zomorrodian curve”. Obviously, G is then a Sylow 3-subgroup of Aut(X ).

In the present paper, extremal 3-Zomorrodian curves are thoroughly investigated. Our 
approach relies on Group theory. We look inside the action of G viewed as a permutation 
group on the points of an extremal 3-Zomorrodian curve X , and try to extract as much 
as possible useful properties regarding both the geometry of X and the structure of G. 
Doing so, deeper results on groups whose order is a prime power are helpful and can be 
used in the following way.

Since the center Z(G) of G is non-trivial, Z(G) contains some subgroup of order 3. 
Such a subgroup Z gives rise to a quotient curve X̄ = X/Z so that the quotient group 
Ḡ = G/Z is a subgroup Aut(X̄ ). From Proposition 4.4, either X̄ is elliptic with zero 
j-invariant, or the cover X|X̄ is unramified, and in the latter case X̄ is also an extremal 
3-Zomorrodian curve (with Sylow 3-subgroup Ḡ). Therefore, we are led to work out 
the former case, that is, to carry out a detailed investigation of “elliptic type” extremal 
3-Zomorrodian curves.

It turns out that the assumption for a group to be a Sylow 3-subgroup G of an 
elliptic type extremal 3-Zomorrodian curve is quite restrictive; see Lemmas 5.1 and 5.3. 
In particular, either |Z(G)| = 3 or Z(G) is an elementary abelian group of order 9; see 
Proposition 4.4. In the former case G is of maximal nilpotency class, that is cl(G) = h +1
where |G| = 3h+2; while in the latter case cl(G) = h. Also, G contains a subgroup of 
index 3 which is either abelian, or minimal non-abelian; see Lemma 5.3. These properties 
of G together with classical results of Burnside and quite recent results obtained in [17]
are enough to determine completely the possibilities for G in terms of generators and 
relations; see Theorems 5.5 and 5.6.



314 G. Korchmáros, M. Montanucci / Journal of Algebra 547 (2020) 312–344
Another important issue is the existence of extremal 3-Zomorrodian curves, especially 
of elliptic type. Analogously to what was proven for Riemann surfaces in [25], no extremal 
3-Zomorrodian curve of genus g = 4 exists; see Lemma 4.3. The only familiar example 
of a (non-elliptic type) extremal 3-Zomorrodian curve is the plane Fermat curve F9 of 
degree 9 (and genus 28) which has an automorphism group G of order 243 isomorphic to 
(C9×C9) �C3. Its quotient curve X̄ = X/Z(G) is an elliptic type extremal 3-Zomorrodian 
curve of genus 10; see Example 4.1.

A complete, positive solution for the existence problem of elliptic type extremal 
3-Zomorrodian curves is given in Section 6. For every h ≥ 2, we construct an elliptic type 
extremal 3-Zomorrodian curve X of genus g(X ) = 3h + 1 as a degree 3 Kummer exten-
sion of an elliptic curve with vanishing j-invariant and prove that a Sylow 3-subgroup 
G of Aut(X ) has center Z(G) ∼= C3 × C3; see Proposition 6.6. Among the four quo-
tient curves arising from the order 3 subgroups of Z(G), just one is elliptic while the 
others are (possibly isomorphic) elliptic type extremal 3-Zomorrodian curves of genus 
3h−1 + 1; see Remark 6.7. Actually, for h ≥ 4, at least two of the latter three curves 
are not isomorphic as both possibilities (being of order 3 or 9) for the center of a Sylow 
3-subgroup do occur. Using the curve in the order 9 case, this process repeats as far as 
h ≥ 5 and provides at least two non isomorphic elliptic type extremal 3-Zomorrodian 
curves of genus 3h−1 + 1. We illustrate how to obtain in this way several examples of 
genus 10, 28 or 82; see Examples in Sections 6 and 7.

In Section 8 we exhibit an infinite family of extremal 3-Zomorrodian curves of non-
elliptic type.

Our final remark regards the case d = p not considered in the paper. Let S be a 
p-subgroup of X . If the p-rank γ(X ) of X is positive then Nakajima’s bound yields 
|S| ≤ 3(g(X ) − 1), [16] see also [10, Theorem 11.84], and this bound is attained by an 
infinite family of curves; see [7]. If γ(X ) = 0 then G fixes a point of X , see [6] or [10, 
Lemma 11.129], and Stichtenoth’s bound gives |S| ≤ 4p/(p − 1)2g, [19,20]; see also [10, 
Theorem 11.78]. This case is thoroughly investigated in [13,15].

2. Background and preliminary results

For a finite subgroup G of Aut(X ), let X̄ denote a non-singular model of K(X )G, that 
is, a (projective non-singular geometrically irreducible) algebraic curve with function 
field K(X )G, where K(X )G consists of all elements of K(X ) fixed by every element in 
G. Usually, X̄ is called the quotient curve of X by G and denoted by X/G. The field 
extension K(X )|K(X )G is Galois of degree |G|.

Since our approach is mostly group theoretical, we prefer to mostly use notation and 
terminology from Group theory rather than from Function field theory.

2.1. Background on automorphisms of algebraic curves

Let φ be the cover X|X̄ where X̄ = X/G. A point P ∈ X is a ramification point 
of G if the stabilizer GP of P in G is nontrivial; the ramification index eP is |GP |; a 
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point Q̄ ∈ X̄ is a branch point of G if there is a ramification point P ∈ X such that 
φ(P ) = Q̄; the ramification (branch) locus of G is the set of all ramification (branch) 
points. The G-orbit of P ∈ X is the subset o = {R | R = g(P ), g ∈ G} of X , and it is 
long if |o| = |G|, otherwise o is short. For a point Q̄, the G-orbit o lying over Q̄ consists 
of all points P ∈ X such that φ(P ) = Q̄. If P ∈ o then |o| = |G|/|GP | and hence Q̄ is 
a branch point if and only if o is a short G-orbit. It may be that G has no short orbits. 
This is the case if and only if every non-trivial element in G is fixed–point-free on X , 
that is, the cover Φ is unramified. On the other hand, G has a finite number of short 
orbits.

In this paper we deal with subgroups G of Aut(X ) whose order is prime to p.
Let ḡ be the genus of the quotient curve X̄ = X/G. Since p � |G|, the Riemann-Hurwitz 

genus formula is

2g− 2 = |G|(2ḡ− 2) +
s∑

i=1
(|G| − �i) (1)

where �1, . . . , �s denote the size of the short orbits of G.

Result 2.1. [10, Theorem 11.56]. If G is abelian then |G| ≤ 4g(X ) + 4.

Let E be an elliptic curve equipped with its group law “
⊕

” with respect to a point 
O ∈ E . For a point Q ∈ E , the translation τQ is the map P �→ Q 

⊕
P and the translation 

group of E consists of all translations, and it is a subgroup of Aut(X ). Since 
⊕

is 
commutative, any two translations commute. Also, the conjugate of a translation by any 
automorphism is still a translation. This gives the following well known result.

Result 2.2. The translation group J(E) of E is a sharply transitive permutation group on 
E, and Aut(E) = J(E) � GP for any P ∈ E.

Since any genus 2-curve X has an involutory automorphism in the center of Aut(X ), 
and the groups of order 9 are abelian, Result 2.1 has the following corollary.

Result 2.3. Let g(X ) = 2. Then Aut(X ) has no subgroup of order 9.

2.2. Background on groups whose order is a power of an odd prime

In our proofs we use some basic results on d-groups, see [1–3,11], together with a 
corollary to the classification of finite subgroups of the projective linear group PGL(2, K); 
see [22] or [10, Theorem A.8].

Result 2.4. [14, Theorem 2.37 (iii)]. Let N be a normal subgroup of G. Then G/N is 
abelian if and only if N contains G′.
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Result 2.5 (Burnside basis theorem, see [11, Chapter 3, Satz 3.15]). Let G be a d-group. 
Then G/Φ(G) is an elementary abelian group whose rank is equal to the minimum number 
of generators of G.

A non-abelian group is minimal non-abelian if each of its proper subgroups is abelian.

Result 2.6. [23, Lemma 2.2] Let G be a non-abelian d-group. Then G is minimal non-
abelian if and only if G can be generated by two elements and |G′| = d.

For a group G of order dm with d prime, let {1} = Z0 < Z1 = Z(G) ≤ Z2 ≤
· · ·Zk · · · ≤ Zn = G be the ascending central series of G where Zk+1/Zk = Z(G/Zk), 
for 0 ≤ k ≤ n, and n = cl(G) is the nilpotency class of G. Here cl(G) ≤ m − 1, and 
if equality holds then G has maximal nilpotency class. Let G be of maximal nilpotency 
class. Then its descending central series G = K1(G) ≥ K2(G), · · · ≥ Kk(G) ≥ · · · ≥ {1}
with Ki+1(G) = [Ki(G), G] has the same size m − 1, and Zi(G) = Km−1(G) for i =
0, 1, . . .m − 1. Furthermore, its characteristic subgroup

G1 = CG(K2(G)/K4(G))

is the fundamental subgroup of G; see [11, Definition 14.3].

Result 2.7. [23, Theorem 2.4] Let G be a d-group of maximal class. Then [G : G′] = d2, 
G′ = Φ(G) and G can be generated by two elements.

Result 2.8. [23, Theorem 3.5]. Assume that a non-abelian d-group G has an abelian 
maximal subgroup. Then G is of maximal nilpotency class if and only if either |Z(G)| = d

or [G : G′] = d2.

Result 2.9 (Corollary to Dickson’s classification, see also [22, Theorem 1]). For an odd 
prime d, let G be a d-subgroup of PGL(2, K). If d �= p then G is cyclic and it has two 
fixed points in the natural 3-transitive action of PGL(2, K) on the projective line over K.

2.3. Preliminary results on 3-groups

Essential ingredients from Group theory in our proofs are a number of deeper results 
on 3-groups including classification theorems in terms of generators and relations.

Result 2.10. [17, Corollary 3.5] Let G be a 3-group of order at most 35. If G has a unique 
minimal non-abelian subgroup then G is isomorphic to one of the following groups.

(i) Groups of order 35 and of maximal nilpotency class containing an abelian maximal 
subgroup;

(ii) < a, b, c|a9 = b9 = c3 = 1, b−1a−1ba = c, c−1a−1ca = a3, c−1b−1cb = b−3 >.
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Result 2.11. [17, Lemma 2.12] Let G be a 3-group of maximal nilpotency class. If its 
fundamental subgroup G1 is non-abelian then |G| ≥ 35 and G is isomorphic to one of 
the following non-isomorphic groups.

(i) |G| = 32e and G = 〈s1, s2, s | s3e

1 = s3e−1

2 = 1, s3 = sδ3
e−1

1 , [s1, s] = s2, [s2, s] =
s−3
2 s−3

1 , [s2, s1] = s3e−1

1 〉 where δ = 0, 1, 2.
(ii) |G| = 32e+1 and G = 〈s1, s2, s | s3e

1 = s3e

2 = 1, s3 = sδ3
e−1

2 , [s1, s] = s2, [s2, s] =
s−3
2 s−3

1 , [s2, s1] = s3e−1

2 〉 where δ = 0, 1, 2.

Result 2.12. [17, Theorem 3.6]. Let G be a 3-group of order ≥ 36. Then G has a unique 
minimal non-abelian subgroup whenever G has no abelian maximal subgroup but it has a 
maximal quotient Ḡ such that

(i) Ḡ is of maximal nilpotency class;
(ii) Ḡ has an abelian maximal group.

Result 2.13. Let G be a group of order 3m with m ≥ 4 whose center is an elementary 
abelian group of order 9 and contains a subgroup C of order 3 such that the quotient 
group G/C is of maximal nilpotency class. Then three of the four quotient groups G/Z

with {1} � Z � Z(G) have center of order 3, and one has center of order 9.

Proof. With the above notation, Z2 = {g : gvg−1v−1 ∈ Z1, ∀v ∈ G}. Also n = m − 2
as G/C has order 3m−1 and (maximal) nilpotency class m − 2. Thus, |Zk| = 3k+1

for 1 ≤ k ≤ m − 2. In particular, |Z2| = 27. For an order 3 subgroup U of Z1, let 
Û = {u : uvu−1v−1 ∈ U, ∀v ∈ G}. Obviously, Z1 ≤ Û ≤ Z2. Moreover, g ∈ Û if and 
only if the coset gU is in Z(G/U). Take g ∈ Z2 \ Z1 together with v ∈ G such that 
gv �= vg, and set t = gvg−1v−1. Obviously, t ∈ Z1 is a nontrivial element. Take for U the 
subgroup generated by t. Then Û � Z1 whence |Û | ≥ 27. Since |Z2| = 27 and Û ≤ Z2, 
this yields Û = Z2. Therefore, |Z(G/U)| = 9, and Z2 = {g : gvg−1v−1 ∈ U, ∀v ∈ G}. 
Now, choose an order 3 subgroup D of Z1 other than U . Obviously, U ∩D = {1}. Since 
D̂ = {u : uvu−1v−1 ∈ D, ∀v ∈ G} and D̂ ≤ Z2, it turns out that D̂ = {u : uvu−1v−1 =
1, ∀v ∈ G}, that is, D̂ ≤ Z1. Thus Z(G/D) = Z1/D whence |Z(G/D)| = 3. �

The following classical result is due to Blackburn [4], see also [11, Satz 14.17, 14.22].

Result 2.14. Let G be a 3-group of maximal nilpotency class. Then its fundamental group 
G1 is metacyclic with cl(G1) ≤ 2, and (G′)′ = {1}. Furthermore, each of the maximal 
subgroups of G other than G1 is also of maximal nilpotency class.

A refinement of Blackburn’s classification [4], see also [17, Lemma 2.11] is given in the 
following result.

Result 2.15. Let G be a 3-group of maximal nilpotency class and of order ≥ 35. If
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(i) G has an abelian subgroup H of index 3,
(ii) G can be generated by two elements,
(iii) every element in G \H has order three,

then

G =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈s1, s2, β|s3e

1 = s3e

2 = β3 = 1, [s1, β] = s2, [s2, β] = s−3
2 s−3

1 , [s1, s2] = 1〉;
for |G| = 32e+1;

〈s1, s2, β|s3e

1 = s3e−1

2 = β3 = 1, [s1, β] = s2, [s2, β] = s−3
2 s−3

1 , [s1, s2] = 1〉;
for |G| = 32e;

(2)

where H = 〈s1, s2〉.

Proof. From (ii), we have [G : Φ(G)] = 9, and hence the maximal subgroups of G are 
exactly its subgroups of index 3. Since G is of maximal nilpotency class of order ≥ 243, its 
maximal abelian subgroups are not of maximal nilpotency class. Therefore, (i) together 
with Result 2.14 yield that H coincides with the fundamental subgroup G1 of G. Now, 
from [17, Lemma 2.11] one of the following cases occurs:

(A) |G| = 32e+1 with e ≥ 2,
(1) G = 〈s1, s2, β | s3e

1 = s3e

2 = β3 = 1, [s1, β] = s2, [s2, β] = s−3
2 s−3

1 , [s1, s2] = 1〉, 
where G1 = 〈s1, s2〉 and g3 = 1 for all g ∈ G \G1;

(2) G = 〈s1, s2, β | s3e

1 = s3e

2 = 1, β3 = s3e−1

2 , [s1, β] = s2, [s2, β] = s−3
2 s−3

1 , [s1, s2] =
1〉, where G1 = 〈s1, s2〉 and 〈g3〉 = 〈s3e−1

2 〉 for every g ∈ G \G1;
(3) G = 〈s1, s2, α, β | s3e

1 = s3e−1

2 = β3 = 1, α3 = s−3
1 s−1

2 s3e−1

1 , [α, β] = s1, [s1, β] =
s2, [s2, β] = s−3

2 s−3
1 , [s1, α] = [s1, s2] = 1〉, with G1 = 〈α, s1〉 = 〈α, s1, s2〉.

(B) |G| = 32e with e ≥ 2
(1) G = 〈s1, s2, β | s3e

1 = s3e−1

2 = β3 = 1, [s1, β] = s2, [s2, β] = s−3
2 s−3

1 , [s1, s2] = 1〉, 
where G1 = 〈s1, s2〉 and g3 = 1 for all g ∈ G \G1, or

(2) G = 〈s1, s2, β | s3e

1 = s3e−1

2 = 1, β3 = s3e−1

2 , [s1, β] = s2, [s2, β] =
s−3
2 s−3

1 , [s1, s2] = 1〉, with G1 = 〈s1, s2〉 and 〈g3〉 = 〈s3e−1

1 〉 for every g ∈ G \G1;
(3) G = 〈s1, s2, α, β | s3e−1

1 = s3e−1

2 = β3 = 1, α3 = s−3
1 s−1

2 sν3e−1

2 , [α, β] =
s1, [s1, β] = s2, [s2, β] = s−3

2 s−3
1 , [s1, α] = [s1, s2] = 1〉, where ν = 1, 2, G1 =

〈α, s1, s2〉 and if e > 2 or ν = 2 then G1 = 〈α, s2〉.

Clearly, Cases A(2) and B(2) are not possible by (iii) since no element g ∈ G \G1 may 
have order 3 by 〈g3〉 = 〈s3e−1

1 〉 and 〈g3〉 = 〈s3e−1

2 〉, respectively. For Cases A(3) and B(3), 
we exhibit an element g ∈ G \ G1 such that g has order 9. This will imply that Cases 
A(1) and B(1) cannot occur as well, so that Result 2.15 is true. Let g = αβ. Then g
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has order 9 whenever (αβ)3 = s3e−1

1 for Case A(3) and (αβ)3 = sν3e−2

2 for Case B(3). In 
both cases, the condition is equivalent to

(αβ)3 = s2s
3
1α

3. (3)

The proof of (3) is carried out in several steps.

2.3.1. Step 1

β−1s−1
2 βs−1

2 = βs2β
2. (4)

From [s1, β] = s2 and β3 = 1,

β−1s−1
2 βs−1

2 = β−1(s−1
1 β−1s1β)−1β(s−1

1 β−1s1β)−1 = β−2s−1
1 β2s1 = βs−1

1 β−1s1

and

βs2β
2 = β(s−1

1 β−1s1β)β2 = βs−1
1 β−1s1

whence (4) follows.

2.3.2. Step 2

βs2β
2 = s3

1s2. (5)

From [s2, β] = s−3
2 s−3

1 , we have s3
1 = β−1s−1

2 βs−2
2 . Combining this with Equation (4)

gives

s3
1s2 = (β−1s−1

2 βs−2
2 )s2 = β−1s−1

2 βs−1
2 = βs2β

2,

which shows (5). Since α, s1 and s2 commute, (5) yields

s3
1s2α

2 = α2s3
1s2 = α2βs2β

2. (6)

2.3.3. Step 3
From [α, β] = s1 and [s1, β] = s2, we infer αβs−1

1 = βα and s1s2β
−1 = β−1s1 = β2s1. 

Hence,

α2βs2β
2 = α(αβs−1

1 )s1s2β
−1 = α(βα)s1s2β

−1 = αβα(s1s2β
−1) = αβα(β2s1)

= (αβ)2βs1.

Multiply both sides by α. Since α, s1 and s2 commute pairwise, Equation (6) gives

(αβ)2βαs1 = (αβ)2βs1α = s3
1s2α

3. (7)

Furthermore, αβs−1
1 = βα yields (αβ)2βαs1 = (αβ)3.
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2.3.4. Step 4
If Case A(3) occurs then α3 = s−3

1 s−1
2 s3e−1

1 whence s3
1s2α

3 = s3
1s2(s−3

1 s−1
2 s3e−1

1 ) =
s3e−1

1 . If Case B(3) occurs then α3 = s−3
1 s−1

2 sν3e−1

2 whence s3
1s2α

3 = s3
1s2(s−3

1 s−1
2 sν3e−1

2 ) =
sν3e−1

2 .

2.3.5. Step 5
Finally, Claim (3) follows from Step 4 and Equation (7). �
In [17], 3-groups with a unique minimal non-abelian subgroup of index 3 are classified. 

Let G be such a group with its minimal non-abelian subgroup H of index 3. By Result 2.6, 
|H ′| = 3. With this notation, [17, Lemma 2.17, Theorems 3.8, 3.9] have the following 
corollary.

Result 2.16. Let G be a 3-group of order ≥ 35 which has a unique minimal non-abelian 
subgroup H of index 3.

(i) If H is metacyclic then G is of maximal nilpotency class, and the converse also holds.
(ii) If H is not metacyclic, and G \H contains at least 4

9 |G| elements of order 3, and 
G/H ′ is isomorphic to the group in Result 2.15, then

G =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈s1, s2, β, x|s3n

1 = s3n−1

2 = x3 = 1, β3 = x2, [s1, β] = s2, [s2, β] = s−3
2 s−3

1 ,

[s1, s2] = x, [x, s1] = [x, s2] = 1〉; for |G| = 32n+1, e ≥ 3;
〈s1, s2, β, x|s3n

1 = s3n

2 = x3 = 1, β3 = x2, [s1, β] = s2, [s2, β] = s−3
2 s−3

1 ,

[s1, s2] = x, [x, s1] = [x, s2] = 1〉; for |G| = 32n+2, n ≥ 2;

where H ′ = 〈x〉.

Proof. Since G is assumed to have a unique minimal non-abelian subgroup H, Claim 
(i) follows from [17, Theorem 3.7]. Therefore, H is assumed to be non-metacyclic. From 
[17, Theorems 3.8, 3.9], G is one of the non-isomorphic groups below where k = 0, 1, 2
and ν = 1, 2.

(I) |G| = 32e+2,
(1) G = 〈s1, s2, β, x | s3e

1 = s3e

2 = x3 = 1, β3 = xk, [s1, β] = s2, [s2, β] =
s−3
2 s−3

1 , [s1, s2] = x, [x, s1] = [x, β] = 1〉,
(2) G = 〈s1, s2, β, x | s3e

1 = s3e

2 = x3 = 1, β3 = s3e−1

2 xk, [s1, β] = s2, [s2, β] =
s−3
2 s−3

1 , [s1, s2] = x, [x, s1] = [x, β] = 1〉,
(3) G = 〈s1, s2, α, β, x | s3e

1 = s3e−1

2 = x3 = 1, β3 = xk, α3 = s−3
1 s−1

2 s3e−1

1 , [α, β] =
s1, [s1, α] = x, [s1, β] = s2, [s2, β] = s−3

2 s−3
1 , [s1, s2] = [x, α] = [x, β] = 1〉,

(4) G = 〈s1, s2, α, β, x | s3e

1 = s3e−1

2 = x3 = 1, β3 = xk, α3 = s−3
1 s−1

2 s3e−1

1 x, [α, β] =
s1, [s1, α] = x, [s1, β] = s2, [s2, β] = s−3

2 s−3
1 , [s1, s2] = [x, α] = [x, β] = 1〉;
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(II) |G| = 32e+1,
(1) G = 〈s1, s2, β, x | s3e

1 = s3e−1

2 = x3 = 1, β3 = xk, [s1, β] = s2, [s2, β] =
s−3
2 s−3

1 , [s1, s2] = x, [x, s1] = [x, β] = 1〉,
(2) G = 〈s1, s2, β, x | s3e

1 = s3e−1

2 = x3 = 1, β3 = s3e−1

1 xk, [s1, β] = s2, [s2, β] =
s−3
2 s−3

1 , [s1, s2] = x, [x, s1] = [x, β] = 1〉,
(3) G = 〈s1, s2, α, β, x | s3e−1

1 = s3e−1

2 = x3 = 1, β3 = xk, α3 = s−3
1 s−1

2 sν3e−2

2 , [α, β] =
s1, [s1, α] = x, [s1, β] = s2, [s2, β] = s−3

2 s−3
1 , [s1, s2] = [x, α] = [x, β] = 1〉,

(4) G = 〈s1, s2, α, β, x | s3e−1

1 = s3e−1

2 = x3 = 1, β3 = xk, α3 = s−3
1 s−1

2 sν3e−2

2 x, [α, β] =
s1, [s1, α] = x, [s1, β] = s2, [s2, β] = s−3

2 s−3
1 , [s1, s2] = [x, α] = [x, β] = 1〉.

Now, the proof is performed in several steps.

2.3.6. Step 1
From [17, Theorem 3.6] Ḡ = G/H ′ is a 3-group of maximal class with an abelian 

maximal subgroup H̄ = H/H ′. Also, Ḡ = G/H ′ is isomorphic to the group in Result 2.15. 
The proof of [17, Theorems 3.8, 3.9] shows that either Case (I)(1) or Case (II)(1) occurs 
for G as they are the unique possibilities for G such that Ḡ is one of the groups in 
Result 2.15. In both cases, 〈s1, s2〉 is a minimal non-abelian subgroup, and hence H =
〈s1, s2〉. It remains to prove that Cases k = 0, 1 cannot actually occur. For this purpose, 
an inductive argument on |G| is used.

We begin with Case (I)(1). First, let |G| = 32e+2 with e ≥ 2. Observe that x ∈ Z(G)
as x commutes with both s1 and β by [x, β] = [x, s1] = 1.

2.3.7. Step 2
We prove [x, s2] = 1. Since

[x, s2] = [x, [s1, β]] = x−1(s−1
1 β( − 1)s1β)−1x(s−1

1 β−1s1β)

= x−1β−1s−1
1 β(s1xs

−1
1 )β−1s1β,

[x, s1] = 1 yields [x, s2] = x−1β−1s−1
1 (βxβ−1)s1β. From this and [x, β] = 1, [x, s2] =

x−1β−1(s−1
1 xs1)β = 1.

2.3.8. Step 3
We prove that s3e−1

2 ∈ Z(G). From [s1, s2] = [s2, s1]−1 = x−1 and x ∈ Z(G), s1
commutes with [s1, s2]. Hence from [11, Hilfssatz 1.3 (a)],

[s3e−1

2 , s1] = [s2, s1]3
e−1

= (x−1)3
e−1

= 1. (8)

Since both subgroups 〈s3
1, s2〉 and 〈s3

2, s1〉 are proper subgroups of H, the assumption 
on H = 〈s1, s2〉 to be minimal non-abelian yields [s1, s3

2] = 1 and [s2, s3
1] = 1. From 

βs2β = s−2
2 s−3

1 = s−3
1 s−2

2 ,
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β−1s3e−1

2 β = (s−2
2 s−3

1 )3
e−1

= (s−2
2 )3

e−1
(s−3

1 )3
e−1

= (s3e−1

2 )−2,

which is equal to s3e−1

2 by (s3e−1

2 )3 = 1. This together with (8) yield s3e−1

2 ∈ Z(G). Since 
x �= s3e−1

2 , we also have that s3e−1

2 is another generator of Z(G).

2.3.9. Step 4
The quotient group G̃ = G/〈s3e−1

2 〉 is given by

G̃ = 〈s̃1, s̃2, β̃, x̃ | s̃3e

1 = s̃3e−1

2 = x̃3 = 1, β̃3 = x̃k, [s̃1, β̃] = s̃2, [s̃2, β̃] = s̃−3
2 s̃−3

1 ,

[s̃1, s̃2] = x̃, [x̃, s1] = [x̃, β] = 1〉,

and hence G̃ satisfies Case (II)(1) with the same value of k as in G. From s3e−1

2 ∈ H, 
in the natural homomorphism G �→ Ḡ, every element of order 3 in G \H produces an 
element in G̃ of the same order 3. Therefore, G̃ \ H̃ contains at least as many as 4|G̃|/9
elements of order 3.

2.3.10. Step 5
With some formal changes, the above arguments apply to Case (II)(1). Therefore, if 

G satisfies Case (II)(1) with a given value of k then G̃ = G/〈s3e−1

1 〉 satisfies Case (I)(1), 
and it has at least as many as 4|G̃|/9 elements in G̃ \ H̃.

2.3.11. Step 6
Therefore, with an inductive argument on e, it suffices to rule out the cases 

k = 0, 1 when |G| is assumed to be as small as possible, namely |G| = 36, that 
is, e = 2. A MAGMA aided computation shows that if |G| = 36 and k = 0 then 
G ∼= SmallGroup(729, 49) while if k = 1 then G ∼= SmallGroup(729, 54). In the former 
case G \ H contains 162 < 324 = 4|G|/9 elements of order 3, a contradiction. In the 
latter case G \H contains no elements of order 3, again a contradiction. �
2.4. Some preliminary results on 3-groups of automorphisms of elliptic curves

Assume that p �= 3. Let Ē be the elliptic curve of homogenous equation X3+Y 3+Z3 =
0. Then Ē has zero j-invariant, P = (−1, 0, 1) is an inflection point of Ē , and the map 
(X, Y, Z) → (X, εY, Z) with a primitive cubic root of unity ε is an order 3 automorphism 
ᾱ of Ē fixing P . Actually, ᾱ has two more fixed points on Ē , namely P1 = (−ε, 0, 1) and 
P2 = (−ε2, 0, 1). The map (X, Y, Z) → (εX, ε2Y, Z) is another order 3 automorphism 
β of Ē . Since ᾱ and β̄ commute, β̄ preserves the pointset π = {P, P1, P2}. Let J̄(Ē)
denote the translation group of Ē. Then β̄ belongs to J̄(Ē) but ᾱ does not. Choose a 
3-subgroup Ḡ of Aut(Ē) such that some element of order 3 of Ḡ has a fixed point on Ē . 
Since Aut(X̄ ) acts transitively on the points of Ē, such a fixed point may be assumed to 
be P . Then
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(i) |Ḡ| = 3h+1 with h ≥ 1;
(ii) |ḠP | = 3.

Furthermore, ḠP = 〈ᾱ〉 and β̄ ∈ Z(Ḡ). More precisely, Z(Ḡ) = 〈β̄〉 as Z(Ḡ) preserves π
and (ii) holds.

Lemma 2.17. Ḡ = H̄ � ḠP where H̄ = Ḡ ∩ J(Ē).

Proof. If |Ḡ| = 9 then Ḡ = 〈β̄〉 × ḠP and the claim follows for h = 1 by β̄ ∈ J(Ē). Let 
W̄ = Ḡ ∩ J(Ē). Then W̄ is a nontrivial normal subgroup and Ĝ = Ḡ/W̄ is a subgroup 
of Aut(Ê) where the quotient curve Ê = Ē/W̄ is also elliptic as no nontrivial element in 
J(Ē) fixes a point in Ē . By induction on h, assume that Ĝ = T̂ �ĜP̂ where T̂ < J(Ê) and 
P̂ is the (unique) point of Ê lying under P in the cover Ē |Ê . Let T̄ be the subgroup of Ḡ
containing W̄ such that T̂ = T̄ /W̄ . Then no nontrivial element in T̄ fixes a point of Ē. 
Furthermore, |T̄ | = |H̄|, and T̄ is a normal subgroup of Ḡ. Therefore, Ḡ = T̄ � ḠP . Now, 
let o be the T̄ -orbit of P , and take any point P̄ ′ from o. Then P̄ ′ = t̄(P ) for some t̄ ∈ T̄ . 
On the other hand, J(Ē) contains an element j̄ such that j̄(P̄ ′) = P . Then j̄t̄(P ) = P

whence j̄ ∈ Ḡ. Since |o| = |T̄ | this yields that Ḡ ∩ J(Ē) contains at least as many as 
|T̄ | = |H̄| elements. As ḠP ∩ J(Ē) is trivial, this shows that Ḡ ∩ J(Ē) = T̄ whence the 
claim follows. �
Lemma 2.18. The centralizer CḠP

of ḠP in Ḡ is an elementary abelian group of order 
9.

Proof. Since ḠP = 〈ᾱ〉 and ᾱ fixes exactly three points, namely those in π, CḠ(ḠP )
preserves π. This together with ḠP yield |CḠ(ḠP )| = 3. Therefore CḠ(ḠP ) is the direct 
product of ḠP and Z(Ḡ) = 〈β̄〉. �

The possibilities for the structure of H̄ = Ḡ∩J(Ē) in Lemma 2.17 are rather restricted.

Proposition 2.19. If h is even, say 2n, then H̄ ∼= C3n ×C3n . If h is odd, say 2n − 1, then 
H̄ ∼= C3n × C3n−1 .

Proof. Since H̄ is a subgroup of J(Ē), we have H̄ = Ū × V̄ where Ū ∼= C3i × C3j with 
i ≥ j and i + j = h. Let T̄ = ᾱŪ ᾱ−1. Consider the set of all elements ū ∈ U such that 
ᾱūᾱ−1 ∈ Ū . Actually, this set W̄ is a subgroup of Ū . Since Ū is cyclic, W̄ is also cyclic 
and it consists of all elements ū ∈ Ū whose order divides |W̄ |. In particular, since ū and 
ᾱūᾱ−1 have the same order, ū ∈ W̄ implies ᾱūᾱ−1 ∈ W̄ , that is, the subgroup of Ḡ
generated by W̄ together with ᾱ is the semidirect product W̄ � 〈ᾱ〉.

If W̄ is trivial then Ū ∩ T̄ = {1̄} and hence Ū × T̄ is a subgroup of H̄, whence 
H̄ = Ū × T̄ and the first claim follows. Otherwise, W̄ � ḠP is a proper subgroup of 
Ḡ. Since W̄ is cyclic, we have |W̄ | = 3. Therefore W̄ � ḠP has order 9 and is abelian. 
Thus W̄ � ḠP = W̄ × ḠP . Therefore a generator of W̄ commutes with ᾱ, and hence 
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W̄ = 〈β̄〉 showing that W̄ = Z(Ḡ). Look at the quotient group Ĥ = H̄/Z(Ḡ). Since 
Z(Ḡ) = W̄ ≤ Ū , we have that Û = Ū/Z(Ḡ) is a subgroup of Ĥ of order 3i−1. The 
same holds for the subgroup T̂ = T̄ /Z(Ḡ) of order 3i−1. Let ŝ ∈ Û ∩ T̂ . If ŝ is nontrivial 
then there exist ū, ̄t ∈ Ū \ W̄ such that ūt̄−1 ∈ W̄ . If ū = t̄ then ū = ᾱū′ᾱ−1 for some 
ū′ ∈ Ū . This implies ū′ ∈ W̄ whence ū′ ∈ Z(Ḡ) and ū = ū′ ∈ Z(Ḡ), a contradiction. 
Similarly, if ū = t̄β̄ (or ū = t̄β̄2) then ū = ᾱū′ᾱ−1β̄ for some ū′ ∈ W̄ . Since β̄ ∈ W̄ , 
this implies ū = ū′β̄ whence ū ∈ W̄ = Z(Ḡ), a contradiction. Therefore, Û ∩ T̂ is trivial, 
and |Ĥ| = |Û ||T̂ | whence |Ĥ| = 32(i−1). On the other hand, |Ĥ| = 1

3 |H̄| = 3i+j−1. 
Thus 2(i − 1) ≤ i + j − 1 whence i − 1 ≤ j. Since i ≥ j, this yields either i = j or 
j = i − 1. �
Lemma 2.20. If h ≥ 2 then the following hold.

(i) Ḡ is of maximal nilpotency class.
(ii) Ḡ can be generated by two elements.
(iii) Every element in Ḡ \ H̄ has order 3.
(iv) In terms of generators and relations, Ḡ is given in Result 2.15.

Proof. As Ḡ is non-abelian and H̄ is an abelian maximal subgroup of Ḡ, Result 2.8
applies. Since |Z(Ḡ)| = 3, this gives the first claim whence the second claim follows 
by Result 2.7. To prove the third claim, apply the Hurwitz genus formula for Ḡ. From 
ᾱ ∈ Ḡ, Ḡ has k ≥ 1 short orbits and Hurwitz genus formula gives

0 = 2g(Ē) − 2 = |Ḡ|(2g− 2) +
k∑

i=1
(|Ḡ| − �i).

Therefore, g = 0, k = 3 and �i = 1
3 |Ḡ|. Since ᾱ has exactly three fixed points, the same 

holds for every nontrivial element in Aut(Ē) fixing a point. Thus, �i produces as many 
as 2

3�i = 2
9 |Ḡ| elements of order 3. Since k = 3, this shows that Ḡ \ H̄ has at least 2

3 |Ḡ|
elements of order 3. On the other hand, |Ḡ| − |H̄| = 2

3 |Ḡ|. From this Claim (iii) follows. 
Finally, Result 2.15 gives Claim (iv). �
3. Case d �= p

Let G be a subgroup of Aut(X ) whose order is dh where d is a prime and h ≥ 1 is an 
integer.

If the quotient curve X̄ = X/G has genus g(X̄ ) ≥ 2, then the Hurwitz genus formula 
yields |G| ≤ g(X ) − 1.

If X̄ is elliptic, then the cover X|X̄ is ramified, and the Hurwitz genus formula gives 
2(g(X ) − 1) ≥ |G| − |�| where � is any short orbit of G. Since |�| ≤ |G|/d, this yields 
|G| ≤ 2d (g(X ) − 1).
d−1
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We are left with the case where X̄ = X/G is rational. Assume that |G| > 4(g(X ) −1). 
Then the quotient curve X̄ is rational; see, for instance, the proof of [10, Theorem 11.56]. 
Therefore, the Hurwitz genus formula applied to G gives

2(g(X ) − 1) = −2dh +
k∑

j=1
(dh − �j) = −�1 − �2 +

k∑
j=3

(dh − �j) (9)

where �1, . . . �k denote the short orbits of G on X . Since g(X ) ≥ 2, (9) yields that G
has at least 3 short orbits. Also, in (9) each �j is a power of d. For d = 3 this yields 
|G| ≤ 9(g(X ) − 1) and if equality holds with g(X ) �= 2 then G is not abelian by (ii) of 
Result 2.1. Actually, the case g(X ) = 2 with |G| = 9 cannot occur from Result 2.3.

Dealing with the case d ≥ 5, assume that |G| > 2d
d−3 (g(X ) − 1) > 4(g(X ) − 1). Since 

�i divides dh, �i ≤ dh−1 holds for every i. If G has exactly three short orbits then (9)
gives,

2(g(X ) − 1) = −2dh + (3dh − �1 − �2 − �3) ≥ dh − 3dh−1 = dh−1(d− 3),

whence |G| = dh ≤ 2d
d−3 (g(X ) − 1), a contradiction. Similarly, if G has four short orbits, 

then (9) gives

2(g(X ) − 1) = 2dh − �1 − �2 − �3 − �4 ≥ 2dh − 4dh−1 = dh−1(2d− 4),

whence |G| = dh ≤ 2d
2d−4 (g(X ) − 1) < 2d

d−3 (g(X ) − 1), again a contradiction. We are left 
with the case where G has at least 5 short orbits. Since d ≥ 5, the Hurwitz genus formula 
gives

2(g(X ) − 1) ≥ 3dh − �1 − �2 − �3 − �4 − �5 ≥ 3dh − 5dh−1 ≥ 3dh − dh = 2dh

whence |G| = dh ≤ (g(X ) − 1); again a contradiction.
Therefore, the following result is obtained.

Theorem 3.1. If G is an d-subgroup of Aut(X ) with an odd prime d different from p

|G| ≤
{

9(g(X ) − 1) for d = 3;
2d
d−3 (g(X ) − 1) for d > 3.

(10)

For d = 3, if equality holds then G is not abelian and g(X ) �= 2.

For abelian groups, the above bound is sharp for d ≥ 5. In fact, the Fermat curve Fd

of affine equation xd + yd + 1 = 0 has genus 1
2 (d − 1)(d − 2) and Aut(Fq) has an abelian 

subgroup of order d2 which is the direct product of two cyclic groups of order d.
For non-abelian groups a slight improvement on the bound in Proposition 3.1 is given.



326 G. Korchmáros, M. Montanucci / Journal of Algebra 547 (2020) 312–344
Theorem 3.2. Let G be a non-abelian d-subgroup of Aut(X ) where d is an odd prime 
different from p. If Z is an order d subgroup of Z(G) such that the quotient curve 
X̄ = X/Z has genus at most 1 then X̄ is elliptic and

|G| ≤ 2d
d−1 (g(X ) − 1), (11)

apart from the case where

d = 3, and |G| = 9(g(X ) − 1). (12)

Proof. Obviously, Z is a proper subgroup of G. If the quotient curve X̄ = X/Z is rational 
then the quotient group Ḡ = G/Z is a isomorphic to a subgroup of PGL(2, K). From 
Result 2.9, Ḡ is a cyclic group. But this yields that G is an abelian group, a contradiction.

Therefore X̄ is elliptic. Since the set consisting of all fixed points of Z is left invariant 
under the action of G, it is partitioned in G-orbits, say Ω1, . . . , Ωk. From the Hurwitz 
genus formula applied to Z,

2(g(X ) − 1) =
k∑

i=1
|Ωi|(|ZPi

| − 1) =
k∑

i=1

|G|
|GPi

| (|ZPi
| − 1)

=
k∑

i=1
|G| |ZPi

|
|GPi

|
1

|ZPi
| (|ZPi

| − 1) ≥ e− 1
e

|G|
k∑

i=1

|ZPi
|

|GPi
| .

We show that GPi
= ZPi

with a possible exception for d = 3 and |GPi
| = 3|ZPi

|. Let 
P̄i be the point of X̄ lying under the Z-orbit Ωi. Then Aut(X̄ ) has a subgroup M̄i

isomorphic to GPi
/ZPi

that fixes P̄i. From (ii) of Result 2.2, this subgroup of order d
is actually trivial with just one possible exception when d = 3 and [GPi

: ZPi
] = 3. For 

d > 3, the above bound reads

2(g(X ) − 1) = k
e− 1
e

|G| ≥ d− 1
d

|G|

whence (11) follows. In the exceptional case, (12) holds with g(X ) > 2. �
4. Extremal 3-Zomorrodian curves

From now on

p �= 3,

is assumed. We use the name of “extremal 3-Zomorrodian curve” for any curve X with 
a non-abelian 3-subgroup G in Aut(X ) attaining the bound in Proposition 3.2 for d = 3. 
Obviously, the group G with respect to an extremal 3-Zomorrodian curve X is a Sylow 
3-subgroup of Aut(X ). We begin with two sporadic examples.
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Example 4.1. The genus 10 curve X with affine equation x6y3 + x3y6 + 1 = 0 has a 
non-abelian automorphism group of order 81 isomorphic to “SmallGroup”(81,9) in the 
MAGMA database.

Example 4.2. The Fermat curve F9 of degree 9 has genus 28 and Aut(F9) has a non-
abelian subgroup of order 243 which is the semidirect product of an abelian group of 
order 81 (direct product of two cyclic groups) and a subgroup of order 3.

We remark that Example 4.1 is the quotient curve of F9 with respect to the center of its 
automorphism group of order 243. This shows that the non-elliptic case in Proposition 4.4
can occur.

The following proposition shows that no extremal 3-Zomorrodian curve of genus 4
exists.

Lemma 4.3. There exists no extremal 3-Zomorrodian curve of genus g(X ) = 4.

Proof. By contradiction, X is a genus 4 curve and G is a subgroup of order 27 in Aut(X ). 
From (ii) of Result 2.1, G is not abelian as 27 > 4g(X ) + 4 = 20.

Up to isomorphisms, there exist two non-abelian groups of order 27, namely G =
U(3, 3) = (C3 × C3) � C3 and G = C9 � C3. In both cases, the center Z(G) of G has 
order 3, and the G/Z(G) is an elementary abelian group of order 9. In the latter case, 
G = 〈a, b : a9 = b3 = 1, b−1ab = a4〉 and G has three subgroups of order 9 while the 
elements of order 3 form an elementary abelian subgroup H of order 9.

The Hurwitz genus formula applied to Z(G) reads,

6 = 2g(X ) − 2 = 6(g(X̃ ) − 1) + 2Δ,

where Δ counts the number of fixed points of Z(G). Hence g(X̃ ) ≤ 2.
If X̃ is rational, then a Sylow 3-subgroup of Aut(X̃ ) is cyclic by Result 2.9, a contra-

diction. Case g(X̃ ) = 2 does not occur by Result 2.3.
Hence X̃ is elliptic, and Δ = 3. The latter claim yields that G has a short orbit of 

size 3. Therefore, |GP | = 9 for any point P fixed by Z(G). From [10, Theorem 11.49] GP

is a cyclic group of order 9, this rules out case G ∼= U(3, 3). Finally, to deal with case 
G = C9 �C3 two cases are distinguished according as an element g ∈ G \Z(G) of order 
3 has a fixed point or not. In the former case, no element in G \Z/G) has a fixed point, 
as being conjugate to g or g2 in G. Furthermore, no element G of order 9 other than 
those in GP has a fixed point as its cube is in Z(G). Therefore, from the Hurwitz genus 
formula applied to G, 6 = 2g(X ) −2 = 54(g(X̂ ) −1) +24, which is a contradiction. In the 
latter case, g has exactly three fixed points. In fact, if H̃ is the quotient group H/Z(G)
then the Hurwitz genus formula applied to H̃ gives 0 = 2g(X̃ ) − 2 = 3(g(X̂ ) − 2) + 2λ
where X̂ is the quotient curve X̃/H̃ and λ̃ counts the number of fixed points of H̃ on X̃ . 
From this, g(X̂ ) = 0 and λ̃ = 3. Hence the unique short H-orbit has size 9.
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Therefore, G has two short orbits, one consists of the three fixed points of Z(G), the 
other has length 9. From the Hurwitz genus formula applied to G, 6 = 2g(X ) − 2 =
−54 + 24 + 18 = −12, which is a contradiction. �

The following result shows that the center of a Sylow 3-subgroup of Aut(X ) plays an 
important role in the study of extremal 3-Zomorrodian curves X .

Proposition 4.4. Let G be a Sylow 3-subgroup of Aut(X ) of an extremal 3-Zomorrodian 
curve X of genus g(X ) = 3h +1 with h ≥ 2. Let Z be an order 3 subgroup of Z(G). Then 
the quotient curve X̄ = X/Z is either elliptic (with zero j-invariant), or an extremal 
3-Zomorrodian curve of genus 3h−1 + 1 and Ḡ = G/Z is a Sylow 3-subgroup of Aut(X̄ ). 
Furthermore, there exists at most one subgroup Z for which X̄ is elliptic. If such a 
subgroup Z exists and h ≥ 3 then either Z(G) ∼= C3, or Z(G) ∼= C3 × C3.

Proof. By Proposition 3.2, g(X̄ ) > 0. From Lemma 4.3, |G| ≥ 81 and hence g(X̄ ) �= 2
by Result 2.3.

First case g(X̄ ) > 2 is considered. From the Hurwitz genus formula applied to Z, 
g(X ) − 1 ≥ 3(g(X̄ ) − 1). Since g(X ) − 1 = 9|G| and |G| = 3|Ḡ|, this yields g(X̄ ) − 1 ≥ 9. 
Now, from Proposition 3.2 applied to e = 3, g(X̄ ) − 1 = 9|Ḡ| follows.

From now on, g(X̄ ) = 1. With notation as in the proof of Proposition 3.2, |GPi
| =

3|ZPi
|, and

2(g(X ) − 1) = k 2
9 |G|.

For k ≥ 2, this yields (11) with equality. Therefore, k = 1, and the set Ω of all fixed 
points of Z has size 1

9 |G|. Take a point P ∈ X such that GP is non-trivial. Let P̄ be the 
point of X̄ lying under P in the cover X|X̄ . There is a subgroup M̄ in Aut(X̄ ) which 
acts on X̄ as GP does on the Z-orbits. The quotient curve X̂ = X̄/M̄ is rational as M̄
fixes P̄ . More precisely, the Hurwitz genus formula applied to M̄ yields 0 = −6 + 2λ
where λ counts the fixed points of M̄ . Hence, λ = 3. Observe that M̄ is not contained in 
the center Z(Ḡ), otherwise the set of fixed points of M̄ is left invariant by Ḡ and hence 
|Ḡ| = 9 which contradicts |G| ≥ 81. This yields that |Z(Ḡ)| = 3, since the group Z(Ḡ)M̄
generated by Z(Ḡ) and M̄ has order at most 9 but M̄ � Z(Ḡ). Therefore |Z(G)| = 3, 9.

From the Hurwitz genus formula applied to G,

2
9 |G| = 2(g(X ) − 1) = −2|G| + (|G| − 1

9 |G|) +
∑j

i=1(|G| − �j)

where �1, . . . , �j are the sizes of the short G-orbits other than Ω. Since |G| and �i are 
powers of 3, this yields j = 2 and �1 = �2 = 1

3 |G|. Therefore, |GP | = 9 for P ∈ Ω, 
otherwise |GP | = 3 or GP is trivial. From this we infer that Z is the unique order 3
subgroup of Z(G) such that the quotient curve X̄ is elliptic. In fact, if Z(G) contains 
a putative subgroup U of order 3 other than Z such that the quotient curve X/U is 
elliptic, then the above argument applied to U shows that the set of fixed points of U
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has size 19 |G| and hence it must coincide with Ω. But this is impossible in our case, as the 
stabilizer GP with P ∈ Ω is a cyclic group, and hence it can contain only one subgroup 
of order 3.

Let θ be one of the two short G-orbits of length 1
3 |G|, and take point Q ∈ θ. Then the 

stabilizer of Q, U = GQ has order three, and U ∩ Z = {1}. Furthermore, the quotient 
group Ū = UZ/Z is isomorphic to U and it is a subgroup of Aut(X̄ ) of order three. The 
same holds true for the other short G-orbit σ.

The quotient curve X̂ = X̄/Ū is rational. In fact, the cover X̄ → X̂ ramifies as U
preserves the Z-orbit θ containing the point Q. From the Hurwitz genus formula applied 
to Ū ,

0 = 2g(X̄ ) − 2 = 3(2g(X̂ ) − 2) + 2λ̄,

where λ̄ is the number of fixed points of Ū . Hence λ̄ = 3. If Q̄1, Q̄2, Q̄3 are the fixed 
points of Ū then each of the three Z-orbits θ1, θ2, θ3 lying over Q̄1, Q̄2, Q̄3 respectively is 
preserved by U . If a point in such a Z-orbit is fixed by U then the same Z-orbit is fixed 
by U pointwise. Since one of these three Z-orbits contains Q, it turns out that U fixes 
either 3, 6 or 9 points in θ1∪θ2∪θ3. Furthermore, U has no other fixed point. From now 
on, |Z(G)| = 9 is assumed.

We are in a position to prove that V = Z(G) is not a cyclic group of order 9. Assume 
on the contrary that V ∼= C9.

Let X̃ = X/U . From the Hurwitz genus formula applied to U ,

2g(X ) − 2 = 3(2g(X̃ ) − 2) + 2λ̃ (13)

with λ̃ ∈ {3, 6, 9}. Since g(X ) −1 is divisible by 27, (13) and assumption g(X ) ≥ 28 yield 
that g(X̃ ) − 1 is not divisible by 9. Since no nontrivial element in V fixes a point off Ω, 
each V -orbit disjoint from Ω has size 9. Since the number of fixed points of U does not 
exceed 9, this yields that U has as many as 9 fixed points.

We find all points in X where the cover X|X̃ ramifies. If some nontrivial element 
v ∈ V fixes a point P ∈ X , then P is also fixed by Z since either v ∈ Z, or v /∈ Z and 
v3 ∈ Z. This shows that Ω is the set of all points which are fixed by some nontrivial 
element in V . More precisely, if P ∈ Ω then either |VP | = 3, or |VP | = 9. Since Ω is a 
G-orbit and V is a normal subgroup, either |VP | = 3 for all P ∈ Ω, or |VP | = 9 for all 
P ∈ Ω. As Z �= U , we have U ∩ V = {1}. Then Ṽ = V U/U is a subgroup of Aut(X̃ )
isomorphic to V . Let Ω̃ denote the set of all points of X̃ lying under the points of Ω in 
the cover X|X̃ . Since U has no fixed point in Ω, we have |Ω̃| = 1

27 |G|.
This shows that either |ṼP̃ | = 3 for all points P̃ ∈ Ω̃, or |ṼP̃ | = 9 for all points P̃ ∈ Ω̃. 

Now we prove that no nontrivial element in Ṽ has a fixed point outside Ω̃.
By way a contradiction, take a point R̃ fixed by a nontrivial element ṽ ∈ Ṽ . Let ρ

be the U -orbit consisting of all points lying over R̃ in the cover X|X̃ . Then ρ is left 
invariant not only by U but also by a nontrivial subgroup W of V fixing a point in ρ
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where WU/U ∼= 〈ṽ〉. Since U ∩ W = {1}, the subgroup T = UW has order either 27
or 9, according as |W | = 9 or |W | = 3. The former case cannot actually occur. In fact, 
since |ρ| = 3 we have |TR| = 1

3 |T | for any R ∈ ρ. On the other hand |TR| = 3 by R /∈ Ω. 
Therefore, T = U ×Z, and ρ is a common orbit of U and Z. The latter claim shows that 
the point R̄ lying under ρ in the cover X|X̄ is fixed by Ū . Since no fixed point of U lies 
in ρ, this shows that Ū fixes at least four points, namely R̄ and each of the three points 
lying under the fixed points of U in the cover X|X̄ . But this contradicts the previous 
claim λ̄ = 3.

From the Hurwitz genus formula applied to Ṽ ,

g(X̃ ) − 1 = 9(g(X ∗) − 1) + c
|G|
27 ,

where X ∗ denotes the quotient curve X̃/V̄ and either c = 2, or c = 8, according as 
|VP | = 3 or |VP | = 9 for P ∈ Ω. A contradiction is now obtained since 9 divides both 
9(g(X ∗) − 1) and |G|

27 , but it does not g(X̃ ) − 1. �
Remark 4.5. The proof of Proposition 4.4 also shows some useful properties of the action 
of a Sylow 3-subgroup G of Aut(X ) of an extremal 3-Zomorrodian curve X of genus 
g(X ) = 3h +1 with h ≥ 2. Here, we mention some of them: G has exactly 3 short orbits, 
namely Ω of size 1

9 |G|, θ and σ both of size 1
3 |G|. The subgroup Z < Z(G) such that 

X/Z ∼= Ē is elliptic, fixes Ω pointwise. If |Z(G)| = 9, no other non-trivial element in 
Z(G) ∼= C3 × C3 has fixed a point on X . The stabilizer of P ∈ Ω fixes exactly three 
points in Ω while the stabilizer of Q ∈ θ fixes as many as |Z(G)| points, each lying in θ, 
and the same holds for Q ∈ σ.

5. Elliptic type extremal 3-Zomorrodian curves

In the light of Proposition 4.4, it is useful to adopt the term of “elliptic type” for an 
extremal 3-Zomorrodian curve X if the center Z(G) of a Sylow 3-subgroup of Aut(X )
contains a subgroup Z of order 3 such that the quotient curve X/Z is elliptic. With this 
definition, all examples from Section 6 are of elliptic type. By Lemma 4.3, any extremal 
3-Zomorrodian curve of genus 10, in particular Example 4.1, is of elliptic type. Instead, 
Example 4.2 is not of elliptic type.

First we collect some basic results on the abstract structure of the Sylow 3-subgroups 
of an extremal 3-Zomorrodian curves of elliptic type.

Lemma 5.1. Let G be a Sylow 3-subgroup of an extremal 3-Zomorrodian curve of elliptic 
type. Then

(i) G can be generated by two elements;
(ii) [G : G′] = 9; Φ(G) = G′;
(iii) G contains exactly four maximal subgroups, each is normal and of index 3.
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Proof. Let X̂ = X/G′. From Result 2.4, the factor group Ĝ = G/G′ is an abelian 
subgroup of Aut(X̂ ). If X̂ were rational then by Result 2.3 Ĝ would be cyclic, hence G
itself would be cyclic by (iii) of Result 2.8, a contradiction with Proposition 3.1. Similarly, 
if g(X̂ ) were bigger than 2, then X̂ would be an extremal 3-Zomorrodian curve which 
is impossible as Ĝ is abelian. We are left with the elliptic case, that is, X̄ = Ē . Let 
P ∈ X be a fixed point of some non-trivial element of G. Let P̄ ∈ Ē be the point lying 
under P in the cover X|Ē . Then ḠP̄ is non-trivial. Since Ḡ is abelian, this yields |Ḡ| = 9
by Lemma 2.18. This shows first claim in (ii). Since G is not cyclic, the Burnside basis 
theorem yields [G : Φ(G)] ≥ 9. This together with G′ ≤ Φ(G) and [G : G′] = 9 give the 
second claim in (ii). Since Φ(G) contains all maximal subgroups of G, claim (ii) yields 
that G/Φ(G) has exactly four subgroups, each being normal and of order 3. �

Proposition 4.4 and Lemmas 4.3, 5.1 have the following corollary.

Lemma 5.2. Let X be an extremal 3-Zomorrodian of genus 10. Then a Sylow 3-subgroup G
of Aut(X ) of maximal nilpotency class. More precisely, the possibilities for G are “Small-
Group”(81,7), “SmallGroup”(81,8), “SmallGroup”(81,9), and ‘SmallGroup”(81,10).

Proof. By Lemma 4.3 and Proposition 4.4, the quotient curve X/Z is elliptic for any 
order 3 subgroup of Z(G). Also, from Proposition 4.4, Z(G) has a unique subgroup of 
order 3. Among the 15 groups of order 81 those satisfying (ii) of Lemma 5.1 have center 
of order 3, and they are isomorphic to one of the four “SmallGroup”’s listed above. �

We prove a key result on the abstract structure of a Sylow 3-subgroup G of an extremal 
3-Zomorrodian curve of elliptic type. From Result 2.12 and Lemma 2.20, we already 
know (for |G| ≥ 36), the existence of a unique abelian or minimal non-abelian subgroup 
of index 3. But we need some more properties of such a subgroup in order to determine 
the abstract structure of G.

Lemma 5.3. Let G be a Sylow 3-subgroup of an extremal 3-Zomorrodian curve of elliptic 
type. Then exactly one of the subgroups of G of index 3 is either abelian or minimal 
non-abelian. Let H be such a subgroup. If H is minimal non-abelian then H ′ ≤ Z(G)
and the quotient curve X/H ′ is elliptic.

Proof. Choose a point P ∈ X fixed by some non-trivial element of G. Let Z be a 
subgroup of Z(G) for which the quotient curve Ē = X/Z is elliptic. Then the factor 
group Ḡ = G/Z is a subgroup of Aut(Ē) of order 1

3 |G| such that ḠP is non-trivial for 
the point P̄ lying under P in the cover X|Ē . From Lemma 2.17, Ḡ = H̄ � ḠP̄ where 
H̄ = Ḡ∩ J(Ē) and H̄ = Ū × V̄ with two nontrivial cyclic groups Ū and V̄ . Let H be the 
subgroup of G containing Z such that H/Z = H̄. Then H is a subgroup of G of index 
3. To show that H satisfies the property required, we may assume H to be non-abelian.

First we prove that d(H) = 2, that is, H can be generated by two elements. Let U and 
V be the (normal) subgroups of G containing Z for which Ū = U/Z and V̄ = V/Z. Since 
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Ū is cyclic, we have that U is abelian. More precisely, either U is cyclic, or U = U1 × Z

where U1 is a cyclic group isomorphic to Ū . The same holds for V . Every element w ∈ H

is a product w = uv with u ∈ U, v ∈ V . Obviously, if both U and V are cyclic, then 
d(H) = 2. Assume that U = U1 × Z and V is cyclic. Then w = u1zv with u1 ∈ U1, z ∈
Z, v ∈ V . Since z ∈ V , this yields w = u1v

′ with u1 ∈ U1, v′ ∈ V . Therefore, d(H) = 2. 
If both U and V are not cyclic, but z ∈ 〈U1, V1〉 then again w ∈ 〈U1, V1〉 and d(H) = 2. 
Otherwise, z /∈ 〈U1, V1〉. We show that the set U1V1 = {u1 ∈ U1, v1 ∈ V1} is subgroup 
of G. From Ū V̄ = V̄ Ū , we have ū1v̄1ū2v̄2 = ū1ū2v̄1v̄2, whence u1v1u2v2 = u1u2v1v2z

i

with 0 ≤ i ≤ 2. Since z /∈ 〈U1, V1〉 is assumed, i must be equal to zero. Therefore, U1V1
is indeed a subgroup of G. Since |U1V1| = |U1||V1| = |Ū ||V̄ | = |H̄| = 1

3 |H|, the subgroup 
U1V1 of H has index 3, and hence H = U1V1 × Z. Therefore U1V1 ∼= H̄. This implies 
that U1V1 is an abelian group. But then H itself must be abelian, a contradiction. Thus 
d(H) = 2.

Next we prove that H ′ = Z. As Z ≤ H and the factor group H/Z is abelian, Result 2.4
yields H ′ ≤ Z. On the other hand, H ′ is non-trivial as H is assumed to be non-abelian. 
Therefore, H ′ = Z. Now, Result 2.6 shows that H is minimal non-abelian, and the 
quotient curve X/H ′ = X̄ is elliptic.

Finally, uniqueness of H follows from Result 2.12 when H is non-abelian, and from 
Results 2.8, 2.11 and Lemma 5.1. �
Lemma 5.4. Let H be as in Lemma 5.3. If |Z(G)| = 9 and |G| ≥ 36 then G has as many 
as 4

9 |G| + 26 elements of order 3.

Proof. We keep our notation from Remark 4.5.
We prove first that G \H contains at least as many as 2

9 |G| elements of order 9. Let 
P ∈ Ω, and take a generator g of GP . From Remark 4.5, g fixes exactly three points of 
X , each lying in Ω. Furthermore, g ∈ G \H, as its image ḡ in the natural homomorphism 
G �→ Ḡ has a fixed point on Ē and hence ḡ /∈ H̄, equivalently g /∈ H. Thus, G contains 
exactly 13 |Ω| = 1

27 |G| pairwise distinct cyclic subgroups of order 9 each with a fixed point 
in Ω. Since each such subgroup contains exactly 6 elements of order 9, G \H contains 
indeed at least 6

27 |G| = 2
9 |G| elements of order 9.

We prove next that G \H contains at least 49 |G| elements of order 3. From Remark 4.5, 
no non-trivial element in Z(G) \Z has a fixed point in X . Hence, if X/Z is elliptic then 
X/Z(G) is also elliptic. Let Q ∈ θ and GQ = 〈u〉. Then u has order 3. Furthermore, by 
Remark 4.5, u has as many as 9 fixed points in X , each lying in θ. Therefore, these 9
points form a Z(G)-orbit as |Z(G)| = 9. Thus θ splits into 1

27 |G| Z(G)-orbits each being 
the set of fixed points of GQ where Q ranges over θ. Since |GQ| = 3, each Z(G)-orbit in 
θ is preserved exactly by SQ = GQ × Z(G). In particular, SQ contains 9 elements from 
Z(G) and 18 elements off Z(G). All these facts remain true for Q ∈ σ.

Our aim is to show that among the non-central elements of G of order 3, exactly 
4
9 |G| have a fixed point in θ ∪ σ. For this purpose, look at the intersection of two such 
subgroups, namely SQ and SR with Q, R ∈ θ∪σ. From |SQ| = |SR| = 27 and |Z(G)| = 9, 



G. Korchmáros, M. Montanucci / Journal of Algebra 547 (2020) 312–344 333
either SQ ∩ SR = Z(G) or SQ = SR. The latter case occurs if and only if GR < SQ, 
equivalently, GR preserves the Z(G)-orbit containing Q. This shows that the coincidences 
SQ = SR can be counted by computing the number of Z(G)-orbits lying in θ∪σ on which 
GR acts. This computation can be carried out on the quotient curve X̂ = X/Z(G), since 
the Z(G)-orbits preserved by GR = 〈v〉 are as many as the fixed points of v̂ in X̂ where 
v̂ is the image of v in the natural homomorphism G �→ Ĝ. Observe that X̂ is elliptic as 
the elements of Z(G) with a fixed a point in X are exactly those in Z. Further, as v
fixes R, v̂ fixes the point R̂ ∈ X̂ lying under R in the cover X|X̂ . There exist exactly 
two more fixed points of v̄, say Ŝ1, Ŝ2. Let S1 ∈ X be a point lying over Ŝ1 in the cover 
X|X̂ . Then GR × Z(G) preserves the Z(G)-orbit Δ1 containing S1. Therefore, for some 
z ∈ Z(G), vz fixes S1 whence S1 ∈ Ω ∪θ∪σ follows. Actually, S1 /∈ Ω, as Z is the unique 
subgroup of order 3 in GP whereas vz ∈ Z would yield v ∈ Z(G). Similarly, we have 
S2 ∈ σ. Since θ (and σ) is partitioned in Z(G)-orbits whose size is divisible by 9, the 
number of GP -invariant Z(G) lie in θ (and σ) is divisible by 3. It turns out that each of 
the three Z(G)-orbits {Δ1, Δ2, Δ3} preserved by GR lie in either θ or σ. Such a triple 
{Δ1, Δ2, Δ3} does not change when R is chosen from Δ2 or Δ3. Since |θ| = |σ| = 1

3 |G|
and GR with R ∈ θ ∪ σ has as many as 18 elements off Z(G), the number of elements of 
order 3 in G \H is at least

18 · 2
3 |G| · 1

9 · 1
3 = 4

9 |G|.

Since |G \H| = 2
3 |G| = 4

9 |G| + 2
9 |G|, the above two assertions we have already proven 

yield that G \ H contains exactly 4
9 |G| elements of order 3. Since H has exactly 26

elements of order 3 which are contained in Φ(G), the claim follows. �
Theorem 5.5. Let G be a Sylow 3-subgroup of an elliptic type extremal 3-Zomorrodian 
curve X of genus g(X ) ≥ 82. If |Z(G)| = 9 then, in terms of generators and relations, 
G is the group given in Result 2.16.

Proof. G is not of maximal nilpotency class, and none of its subgroups of index 3
is abelian by Result 2.16. Thus, the claim follows from Lemmas 5.3, 2.20 and Re-
sult 2.16. �
Theorem 5.6. Let G be a Sylow 3-subgroup of an elliptic type extremal 3-Zomorrodian 
curve X of genus g(X ) ≥ 82. If |Z(G)| = 3 then, in terms of generators and relations, 
G is the group given in Result 2.11.

Proof. From Lemma 5.3, G has a unique subgroup H of index 3 which is either abelian 
or minimal non-abelian. Definition and properties of H are described in Lemmas 5.3, 5.4
and in their proofs.

Two cases are treated separately according as H is abelian or not.
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Case of abelian H. Result 2.6 together with (ii) of Lemma 5.1 show that G has maximal 
nilpotency class. Also, from the initial part of proof of Result 2.15, H coincides with the 
fundamental group G1 of G, and G is one of the groups listed in (I) and (II) in the proof 
of Result 2.15. Moreover, Result 2.15 applied to Ḡ = G/Z(G) shows that

Ḡ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈s̄1, s̄2, β̄|s̄3e

1 = s̄3e

2 = β̄3 = 1, [s̄1, β̄] = s̄2, [s̄2, β̄] = s̄−3
2 s̄−3

1 , [s̄1, s̄2] = 1〉;
for |Ḡ| = 32e+1;

〈s̄1, s̄2, β̄|s̄3e

1 = s̄3e−1

2 = β̄3 = 1, [s̄1, β̄] = s̄2, [s̄2, β̄] = s̄−3
2 s̄−3

1 , [s̄1, s̄2] = 1〉;
for |Ḡ| = 32e.

(14)

Since some element of order 9 falls in G \H, for instance the generator of the stabilizer 
GP with P ∈ Ω, Cases A(1) and B(1) do not occur. Also, G \H contains some element 
of order 3, for instance the stabilizer GQ with Q ∈ θ, Cases A(2) and B(2) do not occur, 
as well. We are left with one of Cases A(3) and B(3).

In the former case |G| = 22e+1, and we show that Z(G) = 〈s3e−1

1 〉. If G is given by 
A(3) then [s3e−1

1 , α] = [s3e−1

1 , s2] = 1 by s3e−1

1 , α, s2 ∈ H. Furthermore, since [s1, β] = s2

and s2 commutes with s1, an elementary fact on commutators, see for instance [11, 
Hilfssatz 1.3 (a)], yields [s3e−1

1 , β] = [s1, β]3e−1 = s3e−1

2 = 1 whence [s3e−1

1 , β] = 1 follows. 
Similarly, for Case B(3), |G| = 22e, and Z(G) = 〈sν3e−1

2 〉. Therefore, Ḡ is isomorphic to 
B(3) for |Ḡ| = 22e, and to A(3) for |Ḡ| = 22(e−1)+1. But this contradicts (14). Thus H
is not abelian.

Case of non-abelian H. If G has maximal nilpotency class, then the claim follows from 
Result 2.11. Otherwise, from the initial part in the proof of Result 2.16, one of the cases 
in (I) or (II) occurs. Since Ḡ = G/Z(G) is given by (14), G must be isomorphic to either 
I(1) or II(1) in the proof of Result 2.15; see the proof of [23, Theorem 3.8]. In both cases, 
the proof of Result 2.16 shows that Z(G) has more than 3 elements, for instance, 1, x, x2

and s3e−1

2 for I(1) and s3e−1

1 for II(1). But this contradicts our assumption |Z(G)| = 3. �
6. An infinite family of elliptic type extremal 3-Zomorrodian curves

We describe an explicit construction that provides an elliptic type extremal 3-Zomorro-
dian curve for every possible genus. We keep notation from Subsection 2.4 and suppose 
that |Ḡ| = 3h+1 with h ≥ 2.

Since Ḡ is generated by two elements, the factor group Ḡ/Φ(Ḡ) is an elementary 
abelian group of order 9 where Φ(Ḡ) is the Frattini subgroup of Ḡ. As H̄ is a maximal 
subgroup, Φ(Ḡ) is contained in H̄.

Let θ1 be the Φ(Ḡ)-orbit containing P̄ = (−1, 0, 1). Then |θ1| = 3h−1. Since Φ(Ḡ) is a 
normal subgroup of H̄, the H-orbit θ containing P̄ is partitioned into three Φ(Ḡ)-orbits 
which may be parameterized by Φ(Ḡ) together with its two cosets in H̄.
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More precisely, θ1 = {f̄(P̄ )|f̄ ∈ Φ(Ḡ)} while the other two Φ(Ḡ) orbits are θ2 =
{ūf̄(P̄ )|f̄ ∈ Φ(Ḡ)} and θ3 = {ū2f̄(P̄ )|f̄ ∈ Φ(Ḡ)} where ū ∈ H̄ with ū3 ∈ Φ(Ḡ). For a 
proof of the following lemma, the Reader is referred to [26], or [12, Section 4].

Lemma 6.1. If Q̄ ∈ θ2 then the line through P̄ and Q̄ meets Ē in a point R̄ ∈ θ3.

Now, take a line � through P̄ and a point Q̄ ∈ θ2. Then � has homogenous equation 
mX − Y + mZ = 0 for some m ∈ K. Furthermore, the (inflectional) tangent to Ē at 
P̄ has homogenous equation X + Z = 0. In the function field K(Ē) = K(x̄, ȳ) with 
x̄3 + ȳ3 + 1 = 0, the rational function

t̄ = mx̄− ȳ + m

x̄ + 1

has one pole (with multiplicity 2), namely P̄ , and two zeros (both of multiplicity 1), one 
is Q̄ while the other R̄ is in θ3 by Lemma 6.1. Let

w̄ =
∏

f̄∈Φ(Ḡ)

f̄(t̄).

Then the poles of w̄, each with multiplicity 2, are exactly the points in θ1 while the zeros 
of w̄, each with multiplicity 1 are exactly the points in θ2 ∪ θ3. From this, the following 
result follows.

Lemma 6.2. There is no element in K(Ē) whose cube is equal to w̄.

Therefore, we define the curve X as those whose function field K(X ) is the Kum-
mer extension of K(Ē) defined by z3 = w̄. Our goal is to show that X is an extremal 
3-Zomorrodian curve.

Since no nontrivial element in H̄ fixes a point in θ, the above discussion also gives the 
following result.

Lemma 6.3. For any ḡ ∈ Ḡ, the rational function ḡ(w̄)/w̄ is either constant, or its poles, 
each with multiplicity 3, are exactly the points of one of the Φ(Ḡ)-orbits θ1, θ2, θ3, and 
its zeros, each with multiplicity 3, are exactly the points of another of these Φ(Ḡ)-orbits.

To find a large 3-subgroup in Aut(X ) the following result is useful.

Lemma 6.4. For any ḡ ∈ Ḡ, there exists a rational function v̄ ∈ K(Ē) such that v̄3 =
ḡ(w̄)/w̄.

Proof. For i = 1, 2, 3, the sum of all points in θi can be viewed as a divisor Di of 
K(Ē). Then deg(Di) = |θi| = 3h−1, and the complete linear series |Di| has (projective) 
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dimension 3h−1−1 by the Riemann-Roch Theorem. Therefore, there exists Q̄ ∈ D2 such 
that

D1 ≡ D2 − Q̄ + S̄ (15)

where S̄ is a point in Ē . Since θ is a Ḡ-orbit, some element ḡ ∈ Ḡ takes P̄ to R̄. Then 
ḠQ̄ is conjugate to ḠP̄ and hence it contains a nontrivial element ḡ∗. Since ḡ∗(Q̄) = Q̄

and the fixed points of ḡ∗ form a Z(Ḡ)-orbit, each of the three fixed points of ḡ∗ is in θ2. 
Furthermore, ḡ∗ preserves each of the Φ(Ḡ)-orbits θ1, θ2, θ3. Now, from (15), ḡ∗(D1) ≡
ḡ∗(D2) − ḡ∗(Q̄) + ḡ∗(S̄) whence

D1 ≡ D2 − Q̄ + ḡ∗(S̄). (16)

This together with (15) yield S̄ ≡ ḡ∗(S̄). Since Ē is not rational, S̄ = ḡ∗(S̄) follows. 
Therefore, D1 ≡ D2, and hence there exists a rational function v̄ ∈ K(Ē) such that 
div(v̄) = D1 −D2. From Lemma 6.1 the claim follows. �

Lemma 6.4 shows that for every ḡ ∈ Ḡ, the map g defined by

g(x̄, ȳ, z) = (ḡ(x̄), ḡ(ȳ), v̄z) (17)

is in Aut(X ). They are as many as |Ḡ| and form a subgroup of Aut(X ). The map

c(x̄, ȳ, z) = (x̄, ȳ, εz) (18)

is also in Aut(X ). Therefore G together with its two cosets cG and c2G give a subgroup G
of Aut(X ) of order 3|Ḡ| = 3h+2. On the other hand, since the poles of w̄ have multiplicity 
2 and are the points in θ1 while the zeros of w̄ have multiplicity 1 and they are precisely 
the points in θ2 ∪ θ3, a basic fact on Kummer extensions, see for instance [21, Corollary 
III. 7.4], states that g(X ) − 1 = 1

2 (2|θ1| + 2|θ2| + 2|θ3|) = 3h. Therefore, X is an elliptic 
type extremal 3-Zomorrodian curve of genus g(X ) = 3h + 1 such that G is a Sylow 
3-subgroup of Aut(X ) and the following result is proven.

Lemma 6.5. The group G has the following properties.

(i) There exists an order 3 subgroup Z of Z(G) such that the quotient group G/Z is of 
maximal nilpotency class and contains an abelian maximal subgroup.

(ii) Either Φ(G) ∼= C3n × C3n × Z with h = 2n + 1, or Φ(G) ∼= C3n × C3n−1 × Z with 
h = 2n.

(iii) If h > 2 then Z(G) ∼= C3 × C3.
(iv) For h > 3, in terms of generators and relations G is the group given in Result 2.16.
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Proof. Claim (i): Let Z be the subgroup of Z(G) generated by c. Then Ḡ = G/Z is a 
subgroup of Aut(X̄ ) and some non-trivial element of Ḡ fixes a point in X̄ . Therefore, the 
claim follows from Lemma 2.17.

Claim (ii): From the definition of w̄, we have f̄(w̄) = w̄ when f̄ ∈ Φ(Ḡ). Therefore, 
for every f̄ ∈ Φ(Ḡ),

f(x̄, ȳ, z) = (f̄(x̄), f̄(ȳ), z) (19)

is in Aut(X ), and hence such automorphisms form a group F ∼= Φ(G). Therefore, Φ(G) =
F × Z, and (ii) follows from Proposition 2.19.

Claim (iii): Z(G) contains both c and β inducing β̄ on Aut(Ē), where β̄ is as defined 
in Section 2.4, and hence |Z(G)| ≥ 9. On the other hand, |Ḡ| = 3. Hence (iii) holds. If 
h > 3, Claim (iv) comes from Theorem 5.5. �

As a corollary of the results proven in the present subsection, the following result is 
obtained.

Proposition 6.6. For every h ≥ 3 there exists an elliptic type extremal 3-Zomorrodian 
curve X of genus 3h +1 such that a Sylow 3-subgroup of Aut(X ) has the properties listed 
in Lemma 6.5.

Remark 6.7. We point out that the curve X in Proposition 6.6 gives rise up to at least 
two elliptic type extremal 3-Zomorrodian curves of genus 3h−1 + 1. According to (iii) of 
Lemma 6.5, Z(G) has four subgroups of order 3. From Lemma 2.13, just one of them, 
say U , is such that |Z(G/U)| = 9. The arising quotient curve X/U is not elliptic, and 
hence an elliptic type extremal 3-Zomorrodian curve such that a Sylow 3-subgroup of 
Aut(X/U) has center of order 9. Now, choose for U one of other three subgroups of Z(G)
of order 3. From Lemma 2.13, |Z(G/U)| = 3. If U = Z where Z as in (ii) of Lemma 6.5, 
then the arising quotient curve the above elliptic curve X̄ . For U �= Z, Proposition 3.2
states that the quotient curve X/U has genus ≥ 2. From Proposition 4.4 it is an elliptic 
type extremal 3-Zomorrodian curve of genus 3h−1 + 1 such that a Sylow 3-subgroup of 
Aut(X/U) has center of order 3.

We illustrate our construction for the smallest case.

Example 6.8. Let Ḡ be the linear group U(3, 3) of order 27 generated by ᾱ and δ̄ :
(X, Y, Z) = (Y, Z, X). Also, let J(Ē) ∩ Ḡ = 〈ᾱ, ̄δ〉, and Z(Ḡ) = Φ(Ḡ) = Ḡ′ = 〈β̄〉. Let

P̄3 = (1,−1, 0), P̄4 = (1,−ε, 0), P̄5 = (1,−ε2, 0), P̄6 = (0, 1,−1),

P̄7 = (0, 1,−ε), P̄8 = (0, 1,−ε2).
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Then θ1 = {P̄ , P̄1, P̄2}, θ2 = {P̄3, P̄4, P̄5} and θ3 = {P̄6, P̄7, P̄8}. Now, take P̄3 for Q̄. 
Then m = ε, as � has equation εX + Y + εZ = 0, and t̄ = (εx̄ + ȳ + ε)/(x̄ + 1). By a 
straightforward computation, w̄ = x̄/ȳ2. Hence K(X ) is given by

{
x̄3 + ȳ3 + 1 = 0;
z3 = x̄

ȳ2 .
(20)

Furthermore, ᾱ(w)/w = −ε and δ̄(w)/w = ȳ3. Hence G = 〈α, δ〉 where α(x̄, ȳ, z) =
(x̄, εȳ, −ε2z), and δ(x̄, ȳ, z) = (ȳ/x̄, 1/x̄, ȳ). Therefore, G ∼= “SmallGroup”(81,9). Elimi-
nation x from (20) gives z9ȳ3+ ȳ3+1 = 0 which is an (affine) equation of X regarded as a 
plane curve. A straightforward computation shows that X is isomorphic to Example 4.1.

Computations carried out by MAGMA package where K is viewed as the algebraic 
closure of the finite field Fq can provide explicit equations for X and show the exis-
tence of elliptic type extremal 3-Zomorrodian curves with Sylow 3-subgroup of maximal 
nilpotency class. Here we limit ourselves to g(X ) = 82, 244.

Let h = 5. The smallest prime q such that Aut(Ē) has a subgroup of order |Ḡ| = 36

defined over Fq is q = 271. This allows us to find an explicit equation for X over F271, 
in terms of K(X ) = K(x, y, z) we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x3 + y3 + 1 = 0;
z3 = (y54 + 9y51 + 151y48 + 191y45 + 243y42 + 21y39 + 86y36 + 184y33 + y30+
153y27 + y24 + 184y21 + 86y18 + 21y15 + 243y12 + 191y9 + 151y6 + 9y3 + 1)/
(y53 + 9y50 + 261y47 + 258y44 + 138y41 + 146y38 + 206y35 + 24y32 + 12y29+
12y26 + 24y23 + 206y20 + 146y17 + 138y14 + 258y11 + 261y8 + 9y5 + y2)x.

Furthermore, G has order 2187 and its center Z(G) is isomorphic to C3 × C3. Since β
inducing β̄ is in Z(G), the arising quotient curve X̃ = X/〈β〉 is an elliptic type extremal 
3-Zomorrodian curve of genus g(X̃ ) = 82 with function field K(ξ, η, ζ) where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ3 + η2 + η = 0;
ζ3 = (η18 + 9η17 + 151η16 + 191η15 + 243η14 + 21η13 + 86η12 + 184η11 + η10+
153η9 + η8 + 184η7 + 86η6 + 21η5 + 243η4 + 191η3 + 151η2 + 9η1 + 1)/
(η17 + 9η16 + 261η15 + 258η14 + 138η13 + 146η12 + 206η11 + 24η10 + 12η9+
12η8 + 24η7 + 206η6 + 146η5 + 138η4 + 258η3 + 261η2 + 9η + 1)(ξ/η).

A Sylow 3-subgroup of Aut(X̃ ) is isomorphic to “SmallGroup”(729,100). Another max-
imal quotient of G is isomorphic to “SmallGroup”(729,95) which contains an abelian 
subgroup of index 3. Hence the arising quotient curve is elliptic. The forth maximal quo-
tient of G is isomorphic to “SmallGroup”(729,40) whose center is an elementary abelian 
group of order 9.
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Let h = 4. This time we choose q = 73. Then Aut(Ē) has a subgroup of order 729
defined over F729 and our construction provides an elliptic type extremal 3-Zomorrodian 
curve X of genus g(X ) = 82. In terms of K(X ) = K(x, y, z),

⎧⎪⎨
⎪⎩

x3 + y3 + 1 = 0;
z3 = (y18 + 3y15 + 52y12 + 26y9 + 52y6 + 3y3 + 1)/(y17 + 3y14 + 5y11 + 5y8+

3y5 + y2)x.

A Sylow 3-subgroup G is isomorphic to the “SmallGroup”(729,40). Its four subgroups 
of index 3 are isomorphic to “SmallGroup”(243,53), “SmallGroup”(243,15), “Small-
Group”(243,2), “SmallGroup”(243,53), respectively. None of these are abelian whereas 
“SmallGroup”(243,2) is the unique minimal non-abelian.

The four quotient groups of G arising from the order 3 subgroups of Z(G) are 
Ḡ1 ∼= “SmallGroup”(243,3), Ḡ2 ∼= “SmallGroup”(243,26), Ḡ3 ∼= “SmallGroup”(243,28), 
and Ḡ4 ∼= “SmallGroup”(243,28) respectively. Here, |Z(Ḡ1)| = 9, |Z(Ḡ2)| = |Z(Ḡ3)| =
|Z(Ḡ4)| = 3, and just one of them, namely Ḡ2, has an abelian subgroup of index 3.

7. Elliptic type extremal 3-Zomorrodian curves of low genus

For g(X ) = 10, 28, Lemma 5.3 together with Result 2.10 are enough to determine the 
structure of G. Here, we give some more detail.

7.1. Genus=28

Let q = 73 and X as in case h = 4; see Section 6. Four quotient curves arise from 
the order 3 subgroups of Z(G), say X̄i, with Ḡi ≤ Aut(X̄i). Here, X̄2 is elliptic, the 
other three being elliptic type extremal 3-Zomorrodian curves of genus 28. At least two 
of them, X̄1 and X̄3, are non-isomorphic. The subgroup Ḡ1 ∼= “SmallGroup”(243,3) of 
Aut(X̄1) has no abelian but two minimal non-abelian subgroups. The subgroup Ḡ3 ∼=
“SmallGroup”(243,28) of Aut(X̄3) has no abelian but one minimal non-abelian subgroup. 
The latter one holds for X̄4 which may be isomorphic to X̄3.

Apply the construction in Section 6 for h = 3, and choose q = 19. Then the resulting 
curve X is, in terms of K(X ) = K(x, y, z),

{
x3 + y3 + 1 = 0;
z3 = (y6 + y3 + 1)/(y5 + y2)x.

The following maps are in Aut(X )

f(x, y, z) =
( 4y
y3+12x

2 + 6
y3+12x + 4y2

y3+12 ,
3

y3+12x
2 + 2y2

y3+12x + 3y
y3+12 ,

13y
y3+12xz

)
;

g(x, y, z) = (7x, 7y, 16z),
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and they generate a group G isomorphic to “SmallGroup”(243,3). Its four sub-
groups of index 3 are isomorphic to “SmallGroup”(81,3), “SmallGroup”(81,3), “Small-
Group”(81,12), “SmallGroup”(81,12), respectively. The four quotient groups of G aris-
ing from the order 3 subgroups of Z(G) are isomorphic to the non-abelian groups 
Ḡ1 ∼= “SmallGroup”(81,7), Ḡ2 ∼= “SmallGroup”(81,7), Ḡ3 ∼= “SmallGroup”(81,9), 
Ḡ4 ∼= “SmallGroup”(81,9), respectively. For 1 ≤ i ≤ 4, |Z(Ḡi)| = 3, and Ḡi is of 
maximal nilpotency class.

7.2. Genus=10

Let q = 19. We have four quotient curves X̄i with Ḡi ≤ Aut(X̄i) where Ḡi is defined 
at the end of Subsection 7.1. Since “SmallGroup”(81,7) has an elementary abelian group 
of order 27 but “SmallGroup”(81,9) does not, we have that X̄i is elliptic only for either 
i = 3, or i = 4, say i = 4. Therefore X̄i is an elliptic type extremal 3-Zomorrodian curve 
of genus 10 with a Sylow 3-subgroup isomorphic to “SmallGroup”(81,7) for i = 1, 2 and 
to “SmallGroup”(81,9) for i = 3. Choose that i with i ∈ {1, 2, 3} for which Ḡi = G/Z

with Z = 〈β〉 and β(x, y, z) = (εx, ε2y, z). Then K(X̄i) = K(ξ, η, ζ) where ξ = xy, η =
y3, ζ = z, that is,

{
ξ3 + η2 + η = 0;
ζ3 = η2+η+1

η2+η ξ.

Then Aut(Xi) has a Sylow 3-subgroup isomorphic to “SmallGroup”(81,9), and hence 
i = 3. Actually, X is isomorphic to Example 20 (equivalently to Example 4.1). Similarly, 
a MAGMA aided computation shows that K(X1) is

{
ξ3 + η2 + η = 0;
ζ3 = − ξ3+ξ2+ξ

η2 ;

Elimination of ξ from (20) gives η7 − 2η4 + η3ζ3 + η2ζ6 + η− ζ3 = 0 which is an (affine) 
equation of X1 regarded as a plane curve.

8. An infinite family of non-elliptic type extremal 3-Zomorrodian curves

The elliptic type extremal 3-Zomorrodian curve given in Example 4.1 is projectively 
equivalent to the irreducible plane curve X0 with affine equation y9 + x6 + x3 = 0. 
The singular points of X0 are the origin O = (0, 0) and its unique point at infinity 
X∞ = (1, 0, 0), both are triple points. For any pair (λ, μ) with λ3 = μ9 = 1, and 
λ, μ ∈ K the map αλ,μ(x, y) = (λx, μy) is in Aut(X0). All these maps form an abelian 
subgroup A of Aut(X0) of order 27. Moreover, Aut(X0) contains the map

α2(x, y) =
(

x
3 ,

x
2

)
,

y y
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which has order 3. The subgroup G of Aut(X0) generated by A together with α2 is the 
semidirect product G = A � 〈α2〉, and it has order 81. The center of G has order 3
and it is generated by α1,ε where ε denotes a primitive third of unity. From the proof 
of Proposition 4.4, the set Ω of fixed points of α1,ε has size 1

9 |G| = 9. Since α1,ε fixes 
the (non-singular) points Ri = (−εi, 0) for i = 1, 2, 3, the remaining 6 points of Ω are 
branches (places) with center at the origin O = (0, 0), or at the infinite point X∞ of 
the x-axis. Since both are triple points, the only possibility is that each such point is 
the center of exactly three branches. Let P1, P2, P3 denote the branches centered at O, 
and Q1, Q2, Q3 those centered at X∞. Then the y-axis (resp. the line at infinity) is the 
common tangent to the branches Pi (resp. Qi).

Write, for brevity, F in place of K(X0), and regard K = K(x3) as a subfield of F . A 
straightforward computation shows that x3 is fixed by A. Since [F : K] = 27, the fixed 
field Fix(A) of A coincides with K. Furthermore, [10, Theorem 6.42] applied to x and y, 
viewed as functions in F , gives

div(x) = −3(Q1 + Q2 + Q3) + 3(P1 + P2 + P3),

div(y) = −2(Q1 + Q2 + Q3) + P1 + P2 + P3 + R1 + R2 + R3.

Now, take from F the function

t = x9 − 3x3 − 1
x3(x3 + 1) = x3 + x3

y9 + y9

x6 = x3 + α2(x3) + α2
2(x3). (21)

A straightforward computation shows that t is fixed by both A and α2. Therefore, K(t)
is a subfield of the fixed field Fix(G) of G. Furthermore,

div(t)∞ = 9(P1 + P2 + P3 + Q1 + Q2 + Q3 + R1 + R2 + R3).

Since [F : K(t)] = 81, this shows that K(t) is Fix(G).

Lemma 8.1. Let L be a function field over K containing F . If γ ∈ Aut(L) fixes t, then γ
preserves F .

Proof. We first show γ(K) = K. Let ξ = x3 and γ(ξ) = θ. Then (21) gives γ(t) =
(θ3−3θ−1)/(θ2 +θ), and from γ(t) = t we infer γ(t) = (ξ3−3ξ−1)/(ξ2 +ξ). Therefore,

(θ3 − 3θ − 1)(ξ2 + ξ) − (θ2 + θ)(ξ3 − 3ξ − 1) = (θ − ξ)(θξ + ξ + 1)(θξ + θ + 1) = 0.

From this, either θ = ξ, or θ = −(ξ + 1)/ξ or θ = −1/(ξ + 1). These three possibilities 
are treated separately.

If γ(ξ) = θ = ξ then γ(x)3 = x3 whence γ(x) = εix with 0 ≤ i ≤ 2. Hence γ(x) ∈ F . 
Moreover,
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0 = γ(y9) + γ(x6) + γ(x3) = γ(y)9 + γ(ξ)2 + γ(ξ) = γ(y)9 + ξ2 + ξ = γ(y)9 + y9,

whence γ(y) = νy with ν9 = 1. Thus γ(y) ∈ F , and hence γ(F ) = F .
If γ(ξ) = θ = −(ξ + 1)/ξ then γ(x)3 = −(x3 + 1)/x3. Then γ(x)3 = (y3/x2)3, whence 

γ(x) = εi(y3/x2) with 0 ≤ i ≤ 2. Thus γ(x) ∈ F . Moreover, from y9 + x6 + x3 = 0,

0 = γ(y9) + γ(x6) + γ(x3) = γ(y)9 + 1 + x3

x3 = γ(y)9 +
(
y

x

)9

= 0,

whence γ(y) = ν(−x/y) with ν9 = 1. Thus γ(y) ∈ F , and hence γ(F ) = F .
If γ(ξ) = θ = −1/(ξ + 1) then γ(x)3 = −1/(1 + x3). Hence γ(x)3 = (x/y3)3. Thus 

γ(x) = εi(x/y3) with 0 ≤ i ≤ 2. Hence γ(x) ∈ F . Moreover, from y9 + x6 + x3 = 0,

0 = γ(y9) + γ(x6) + γ(x3) = γ(y)9 − x3

(1 + x3)2 = γ(y)9 −
(

x

y2

)9

= 0,

whence γ(y) = ν(x/y2) with ν9 = 1. So γ(y) ∈ F , and hence γ(F ) = F . �
We show how to use Lemma 8.1 for the construction of a tower of curves {X�}

with � = 1, 2, . . ., consisting of extremal 3-Zomorrodian curves of non elliptic type. We 
change our notation by setting F0 = K(X0) where X0 is the above elliptic type extremal 
3-Zomorrodian curve of genus g(X0) = 10 given by the affine equation y9 + x6 + x3 = 0. 
Let t ∈ F0 be defined as in (21).

Now, F0 has a unique maximal unramified abelian 3-extension L in a fixed algebraic 
closure F̄0 of F0. This means that

(i) L|F0 is a Galois extension of degree 32g(F0),
(ii) L|F0 is an unramified extension,
(iii) Gal(L|F0) is an elementary abelian 3-group,

see, for instance, the survey [18, Section 4.7]. It should be noticed that if both the 
extensions L|F and F |K(t) are Galois extensions, the extension L|K(t) needs not be 
Galois. Let L′ the Galois closure of F over K(t) in F̄0, and set Γ = Gal(L′|K(t)). Then 
the diagram shows the fields extensions with the relative dimensions which we deal with:

L′∣∣∣∣|Γ|/(81·32g(F0))

L∣∣∣∣32g(F0)

F0∣∣∣∣81

K(t)
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Therefore, |Γ| = [L′ : K(t)] = [L′ : L][L : F0][F0 : K(t)] = [L′ : L] · 32g(F0) · 81 = [L′ :
L] · 32g(F0)+4. This implies that 32g(F0)+4 divides |Γ|. Since Γ fixes t, Lemma 8.1 yields 
that Γ preserves F0. Since L is the unique maximal unramified abelian 3-extension of F0
in F̄0, this shows that Γ preserves L, as well. Let G be the subgroup of Aut(L) induced 
by Γ on L. Then G ∼= Γ/Σ where Σ is the subgroup of Γ fixing L elementwise. Since 
|Σ| divides [L′ : L], it turns out that G contains a 3-subgroup of order 32g(F0)+4. On the 
other hand, the Hurwitz genus formula applied to the unramified extension L|F gives

g(L) − 1 = 32g(F0)(g(F0) − 1) = 32g(F0)+2.

From Theorem 3.1, |G| = 32g(F0)+4. Therefore, the following result holds.

Lemma 8.2. The curve Y with function field L is an extremal 3-Zomorrodian curve such 
that G is a Sylow 3-subgroup of Aut(Y).

As a byproduct, [L : K(t)] = [L : F0][F0 : K(t)] = 32g(F0)34 = |G| which shows that 
L|K(t) is a Galois extension.

Lemma 8.3. The extremal 3-Zomorrodian curve Y in Lemma 8.2 is not of elliptic type.

Proof. Let G0 be the subgroup of G which fixes X0 pointwise. Then the quotient group 
G/G0 is an elementary abelian 3-group of order 32g(F0) ≥ 9. Therefore, G/G0 has more 
than four maximal subgroups of index 3, and this holds true for G. From Lemma 5.1, 
X0 is not of elliptic type. �

The above construction also works if L is taken for the unique maximal unramified 
abelian 3m-extension of F0 in F̄0 where m is any positive integer. Here K has the following 
properties.

(i) L|F0 is a Galois extension of degree 32g(F0)m,
(ii) L|F0 is an unramified extension,
(iii) Gal(L|F0) is the direct product of 2g(F0) cyclic groups of order 3m.

Therefore, the construction provides an infinite family of non elliptic type extremal 
3-Zomorrodian curves.

References

[1] Y. Berkovich, J. Zvonimir, Groups of Prime Power Order, Vol. I, Walter de Gruyter GmbH & Co. 
KG, Berlin, 2008, xx+512 pp.

[2] Y. Berkovich, Z. Janko, Groups of Prime Power Order, Vol. II, Walter de Gruyter GmbH & Co. 
KG, Berlin, 2008, xvi+596 pp.

[3] Y. Berkovich, Z. Janko, Groups of Prime Power Order, Vol. III, Walter de Gruyter GmbH & Co. 
KG, Berlin, 2011, xxvi+639 pp.

[4] N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958) 45–92.

http://refhub.elsevier.com/S0021-8693(19)30647-7/bib424231s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib424231s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib424232s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib424232s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib424233s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib424233s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib426C31s1


344 G. Korchmáros, M. Montanucci / Journal of Algebra 547 (2020) 312–344
[5] E. Bujalance, F-J. Cirre, G. Gromadzki, A survey of research inspired by Harvey’s theorem on cyclic 
groups of automorphisms, in: Geometry of Riemann Surfaces, in: London Math. Soc. Lecture Note 
Ser., vol. 368, Cambridge Univ. Press, Cambridge, 2010, pp. 15–37.

[6] M. Giulietti, G. Korchmáros, Algebraic curves with a large non-tame automorphism group fixing 
no point, Trans. Amer. Math. Soc. 362 (2010) 5983–6001.

[7] M. Giulietti, G. Korchmáros, Large p-groups of automorphisms of algebraic curves in characteristic 
p, J. Algebra 481 (2017) 215–249.

[8] W.J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. 
Oxford Ser. (2) 17 (1966) 86–97.

[9] R.A. Hidalgo, p-groups acting on Riemann surfaces, J. Pure Appl. Algebra 222 (2018) 4173–4188.
[10] J.W.P. Hirschfeld, G. Korchmáros, F. Torres, Algebraic Curves over a Finite Field, Princeton Series 

in Applied Mathematics, Princeton University Press, Princeton, 2008.
[11] B. Huppert, Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften, vol. 134, 

Springer, Berlin, 1967, xii+793 pp.
[12] G. Korchmáros, G.P. Nagy, N. Pace, 3-nets realizing a group in a projective plane, J. Algebraic 

Combin. 39 (2014) 939–966.
[13] C. Lehr, M. Matignon, Automorphism groups for p-cyclic covers of the affine line, Compos. Math. 

141 (2005) 1213–1237.
[14] A. Machì, Groups. An Introduction to Ideas and Methods of the Theory of Groups, Unitext, vol. 58, 

Springer, Milan, 2012, xiv+371 pp.
[15] M. Matignon, M. Rocher, Smooth curves having a large automorphism p-group in characteristic 

p > 0, Algebra Number Theory 2 (2008) 887–926.
[16] S. Nakajima, p-ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc. 303 

(1987) 595–607.
[17] H. Qu, S. Yang, M. Xu, L. An, Finite p-groups with a minimal non-Abelian subgroup of index p 

(I), J. Algebra 358 (2012) 178–188.
[18] R. Pries, K. Stevenson, A survey of Galois theory of curves in characteristic p, in: A.C. Cojocaru, K. 

Lauter, R. Pries, R. Scheidler (Eds.), WIN - Women in Numbers: Research Directions in Number 
Theory, in: Fields Inst. Commun., vol. 60, Amer. Math. Soc., Providence, RI, 2011, pp. 169–191.

[19] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von 
Primzahlcharakteristik. I. Eine Abschätzung der Ordnung der Automorphismengruppe, Arch. Math. 
24 (1973) 527–544.

[20] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von 
Primzahl-charakteristik. II. Ein spezieller Typ von Funktionenkörpern, Arch. Math. 24 (1973) 
615–631.

[21] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin and Heidelberg, 1993, 
vii+260 pp.

[22] R.C. Valentini, M.L. Madan, A Hauptsatz of L.E. Dickson and Artin–Schreier extensions, J. Reine 
Angew. Math. 318 (1980) 156–177.

[23] Mingyao Xu, Lijian An, Qinhai Zhang, Finite p-groups all of whose non-Abelian proper subgroups 
are generated by two elements, J. Algebra 319 (2008) 3603–3620.

[24] R. Zomorrodian, Nilpotent automorphism groups of Riemann surfaces, Trans. Amer. Math. Soc. 
288 (1985) 241–255.

[25] R. Zomorrodian, Classification of p-groups of automorphisms of Riemann surfaces and their lower 
central series, Glasg. Math. J. 29 (1987) 237–244.

[26] S. Yuzvinsky, Realization of finite Abelian groups by nets in P2, Compos. Math. 140 (2004) 
1614–1624.

http://refhub.elsevier.com/S0021-8693(19)30647-7/bib626367s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib626367s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib626367s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib676B7472616E73s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib676B7472616E73s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib676B6A61s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib676B6A61s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib6877s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib6877s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib5248s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib484B54s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib484B54s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib687570706572744931393637s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib687570706572744931393637s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib6B6E70s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib6B6E70s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib4C4Ds1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib4C4Ds1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib4D41s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib4D41s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib4D52s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib4D52s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib4Es1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib4Es1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib5175s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib5175s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib7073s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib7073s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib7073s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib737469636874656E6F74683139373349s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib737469636874656E6F74683139373349s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib737469636874656E6F74683139373349s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib737469636874656E6F7468313937334949s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib737469636874656E6F7468313937334949s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib737469636874656E6F7468313937334949s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib737469636874656E6F746831393933s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib737469636874656E6F746831393933s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib6D616464656E6576616C656E74696E6931393832s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib6D616464656E6576616C656E74696E6931393832s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib587532303038s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib587532303038s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib7A72s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib7A72s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib7A7231s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib7A7231s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib7975s1
http://refhub.elsevier.com/S0021-8693(19)30647-7/bib7975s1

	Large odd prime power order automorphism groups of algebraic curves in any characteristic
	1 Introduction
	2 Background and preliminary results
	2.1 Background on automorphisms of algebraic curves
	2.2 Background on groups whose order is a power of an odd prime
	2.3 Preliminary results on 3-groups
	2.3.1 Step 1
	2.3.2 Step 2
	2.3.3 Step 3
	2.3.4 Step 4
	2.3.5 Step 5
	2.3.6 Step 1
	2.3.7 Step 2
	2.3.8 Step 3
	2.3.9 Step 4
	2.3.10 Step 5
	2.3.11 Step 6

	2.4 Some preliminary results on 3-groups of automorphisms of elliptic curves

	3 Case d<>p
	4 Extremal 3-Zomorrodian curves
	5 Elliptic type extremal 3-Zomorrodian curves
	6 An inﬁnite family of elliptic type extremal 3-Zomorrodian curves
	7 Elliptic type extremal 3-Zomorrodian curves of low genus
	7.1 Genus=28
	7.2 Genus=10

	8 An inﬁnite family of non-elliptic type extremal 3-Zomorrodian curves
	References


