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In this paper, using Bourbaki’s convention, we consider a 
simple Lie algebra g ⊂ glm of type B, C or D and a 
parabolic subalgebra p of g associated with a Levi factor 
composed essentially, on each side of the second diagonal, by 
successive blocks of size two, except possibly for the first and 
the last ones. Extending the notion of a Weierstrass section 
introduced by Popov to the coadjoint action of the truncated 
parabolic subalgebra associated with p, we construct explicitly 
Weierstrass sections, which give the polynomiality (when 
it was not yet known) for the algebra generated by semi-
invariant polynomial functions on the dual space p∗ of p
and which allow to linearize semi-invariant generators. Our 
Weierstrass sections require the construction of an adapted 
pair, which is the analogue of a principal sl2-triple in the non 
reductive case.
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1.1. Let g be a simple Lie algebra over k and p be a standard parabolic subalgebra 
of g, acting by coadjoint action on its dual space p∗. Denote by Sy(p) the vector space 
generated by the semi-invariant polynomial functions on p∗. This is a subalgebra of the 
symmetric algebra S(p) of p. Moreover there exists a canonically defined subalgebra pΛ of 
p, called the canonical truncation of p or the truncated parabolic subalgebra associated 
with p, such that the algebra Y (pΛ) of invariant polynomial functions on p∗Λ coincides 
with the algebra Sy(p) (see 2.3 for more details). For some parabolic subalgebras p which 
we define below, we will study whether Sy(p) is isomorphic to a polynomial algebra over 
k and whether one can linearize generators of Sy(p).

1.2. Now we consider g simple of type Bn, Cn or Dn and integers � ∈ N and s ∈ N∗

with s + 2� ≤ n.
Using Bourbaki’s labelling [2] for a chosen set π = {α1, . . . , αn} of simple roots of 

g with respect to some Cartan subalgebra h, we focus on several standard parabolic 
subalgebras p of g associated with a particular subset π′ of π, where roughly speaking 
every second root in a chain of simple roots is deleted.

More precisely we consider the parabolic subalgebra ps, � of g associated with the 
subset π′ ⊂ π such that

π′ = π \ {αs, αs+2, . . . , αs+2�}

with s + 2� ≤ n.
When g is of type Dn, we also study some parabolic subalgebras associated with a 

subset π′ ⊂ π which does not contain the last two roots αn−1 and αn and also does not 
contain every second root in a chain of simple roots. Indeed we consider two other cases 
of parabolic subalgebras in g of type Dn which we define below.

The first case consists in deleting αn, αn−1 and then possibly every second simple 
root preceding αn−1 until αn−1−2� with 0 ≤ � ≤ (n − 2)/2. Thus we denote by p� the 
parabolic subalgebra of g of type Dn associated with the subset π′ ⊂ π such that

π′ = π \ {αn−1−2k, αn | 0 ≤ k ≤ �}

with 0 ≤ � ≤ (n − 2)/2.
The second case consists in deleting αn, αn−1 and then every second simple root from 

some simple root αs until αs+2� with s +2� ≤ n −2. Thus we denote by qs, � the parabolic 
subalgebra of g of type Dn associated with

π′ = π \ {αs, αs+2, . . . , αs+2�, αn−1, αn}

with s + 2� ≤ n − 4 or s + 2� = n − 2. Note that, if s + 2� = n − 3, then qs, (n−3−s)/2 =
p(n−1−s)/2 or simpler qn−3−2�, � = p�+1.

Roughly speaking, identifying g with a Lie subalgebra of some glm and adopting the 
conventions in [3, Chap VIII] the Levi factor of every parabolic subalgebra p as defined 
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above is composed, on each side of the second diagonal, by � successive blocks of size 
two, a first block and possibly a last block (in type Dn, when αn ∈ π′ but αn−1 /∈ π′, 
we may notice that we have a pair of blocks along the second diagonal, symmetric with 
respect to the first diagonal). In other words the Levi subalgebra of such p is of type 
As−1 × A�

1 × Rr, where

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s = n− 1 − 2� and Rr = {0} for p�
Rr = An−2−s−2� for qs, �
Rr = Bn−s−2� for ps, � and g of type Bn

Rr = Dn−s−2� for ps, � and g of type Dn

with the convention that A0 = B0 = D0 = A0
1 = {0}, B1 = D1 = A1 and D2 = A1 × A1

(here, for any k ∈ N∗, type {0} ×Ak or Ak ×{0}, resp. {0} ×Bk, resp. {0} ×Dk, simply 
means type Ak, resp. Bk, resp. Dk).

Note that the parabolic subalgebra ps, 0 is a maximal parabolic subalgebra and it has 
already been treated in [8], [13] and [14]. Thus we will not consider this case. This work 
is a continuation and a generalization of [8], [13] and [14].

1.3. Let X be a finite dimensional vector space on which a reductive Lie algebra a
acts linearly. Denote by S(X∗) the symmetric algebra of the dual space X∗ of X, which 
may be identified with the algebra of polynomial functions k[X] on X. Let S(X∗)a
denote the algebra of invariants in S(X∗) under the action of a (induced by the action 
of a on X), which is also the algebra of invariant polynomial functions on X. By a 
Hilbert’s theorem (see [28, II, Thm. 3.5] for an exposition), the algebra of invariants 
S(X∗)a is finitely generated and Popov considered in [27, 2.2.1] the problem of linearizing 
invariant generators in S(X∗)a by introducing the so-called Weierstrass sections for the 
action of a on X. Now assume that a is a finite dimensional Lie algebra, not necessarily 
reductive. We may extend Popov’s notion for X = a∗ the dual space of a, on which a
acts by coadjoint action, and define a Weierstrass section for coadjoint action of a as 
an affine subspace S of a∗ such that restriction of functions to S induces an algebra 
isomorphism between the algebra of symmetric invariants Y (a) = S(a)a and the algebra 
of polynomial functions k[S ] on S . Then the existence of a Weierstrass section for 
coadjoint action of a implies the polynomiality of Y (a), and the restriction map gives 
a linearization of invariant generators of Y (a). More details on Weierstrass sections are 
given in 2.5.

In the semisimple case (that is, when a = g a semisimple Lie algebra, see 2.7), a 
Weierstrass section S was constructed by Kostant in [23] using a principal sl2-triple. 
This particular Weierstrass section is called the Kostant slice, or Kostant section in [27]. 
The Kostant slice is also an affine slice in the sense that, if G is the adjoint group of g, 
then G.S is dense in g∗ and every coadjoint orbit in g∗ meets S in at most one point, 
and transversally. In 2.6 are more details on affine slices.
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In this article, our aim is to construct Weierstrass sections for coadjoint action of 
the canonical truncation pΛ of the standard parabolic subalgebra p whenever p is either 
equal to ps,� or p� or qs, � defined in the previous subsection.

1.4. Similarly to the Kostant slice, a Weierstrass section for coadjoint action of pΛ
is also an affine slice to the coadjoint action of pΛ by [12]. In particular if there exists a 
Weierstrass section S ⊂ p∗Λ for coadjoint action of pΛ, then every coadjoint orbit in p∗Λ
meets S in at most one point.

1.5. Unlike the reductive case where a principal sl2-triple exists, a Weierstrass sec-
tion in the non reductive case cannot be given by such a triple, since the latter does not 
exist. To fill in this lack, the notion of an adapted pair was introduced in [21]. Denote 
by hΛ := h ∩ pΛ the Cartan subalgebra of the truncated parabolic subalgebra pΛ and by 
ad the coadjoint action of pΛ on p∗Λ. An adapted pair for pΛ is a pair (h, y) ∈ hΛ × p∗Λ
such that:

(1) ad h(y) = −y and
(2) y is regular in p∗Λ that is, there exists a subspace V of p∗Λ of minimal dimension 

(called the index of pΛ and denoted by ind pΛ) such that ad pΛ(y) ⊕ V = p∗Λ.

More details on adapted pairs are given in 2.4. Unfortunately adapted pairs do not 
always exist and are quite hard to construct. They may not exist even when Weierstrass 
sections for coadjoint action exist, as it was shown in [20, Thm. 9.4] for the truncated 
Borel subalgebra bΛ in type B2n+1, D, E and G2. However in [20, 11.4 Example 2], 
although Sy(b) = Y (bΛ) is always a polynomial algebra by [15], it was also noticed that 
a Weierstrass section for coadjoint action of bΛ does not exist for g of type C2 since the 
invariant generators cannot be linearized in this case. As in [8], [13] and [14] we are able 
in our present cases to construct Weierstrass sections thanks to adapted pairs.

1.6. In [18] Weierstrass sections were constructed for coadjoint action of any trun-
cated (bi)parabolic subalgebra in a simple Lie algebra of type A. Thus we do not consider 
this type.

1.7. Main result

Recall the notation of subsection 1.2. In this paper we prove that Weierstrass sections 
exist for the following cases:

(1) for coadjoint action of the canonical truncation of ps, � when:
(a) g is of type Bn with n ≥ 2, s odd and � ≥ 1.
(b) g is of type Dn with n ≥ 4, s odd and � ≥ 1.
(c) g is of type Bn with n ≥ 4, s even and � = 1.
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(d) g is of type Dn with n ≥ 6, s even, s ≤ n − 4 and � = 1.
(e) g is of type Cn with n ≥ 3 and � ≥ 1;

(2) for coadjoint action of the canonical truncation of p� for g simple of type Dn when:
(a) n ≥ 4, and n even.
(b) n ≥ 5, n odd, and � = 0.
(c) n ≥ 5, n odd, and � = 1;

(3) for coadjoint action of the canonical truncation of qs, � when g is of type Dn with 
n ≥ 5, n odd and s odd.

1.8. The proof

The proof is in two steps and via a case by case consideration. Let p denote one of 
the above parabolic subalgebras and pΛ its canonical truncation.

Step 1 consists of constructing explicitly an adapted pair for pΛ, thanks to Propo-
sition 6.2 which uses extensively the notion of Heisenberg sets, generalizing the sets of 
roots of generators in Heisenberg Lie algebras, see subsection 6.1.

Step 2 is to prove that this adapted pair gives the required Weierstrass section. For 
this purpose, two means are available. The simplest way is to check that the equality 
of a lower and an upper bounds for the formal character of Sy(p) (see Sect. 4) holds. 
This equality implies polynomiality of Sy(p) and then the existence of an adapted pair 
for pΛ implies the existence of a Weierstrass section for coadjoint action of pΛ (see also 
subsection 2.5). However in some of our cases the lower and upper bounds mentioned 
above do not coincide and then the polynomiality of Sy(p) = Y (pΛ) was not yet known. 
We then check that the lower bound and a so-called improved upper bound introduced 
in [19] (see Sect. 5) coincide. The latter method concerns the cases 1c, 1d, 2b, 2c. The 
Weierstrass section we obtain in these cases assures then the polynomiality of Sy(p).

2. Some definitions

In what follows, we specify the notions mentioned in Sect. 1. Let a be an algebraic 
finite dimensional Lie algebra over k, which acts on its symmetric algebra S(a) by the 
action (denoted by ad) which extends by derivation the adjoint action of a on itself given 
by Lie bracket. We denote by A the adjoint group of a.

2.1. Algebra of symmetric invariants

An invariant of S(a) (symmetric invariant of a for short) is an element s ∈ S(a) such 
that, for all x ∈ a, ad x(s) = 0.

We denote by Y (a) = S(a)a the set of symmetric invariants of a: it is a subalgebra 
of S(a), called the algebra of symmetric invariants of a. We may notice that the algebra 
Y (a) also coincides with the centre of S(a) for its natural Poisson structure (and that is 
why it is sometimes also called the Poisson centre of S(a) or of a for short). Moreover 
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Y (a) also coincides with the algebra S(a)A of invariants of S(a) under the action of A
by automorphisms.

2.2. Algebra of symmetric semi-invariants

An element s ∈ S(a) is called a (symmetric) semi-invariant of a, if there exists λ ∈ a∗

verifying that, for all x ∈ a, ad x(s) = λ(x)s. We denote by S(a)λ ⊂ S(a) the space 
of such symmetric semi-invariants. The vector space generated by all symmetric semi-
invariants of a will be denoted by Sy(a): it is a subalgebra of S(a), called the algebra of 
symmetric semi-invariants of a. A linear form λ ∈ a∗ such that S(a)λ �= {0} is said to be 
a weight of Sy(a). We denote by Λ(a) the set of weights of Sy(a). It is a semigroup. One 
has that Sy(a) =

⊕
λ∈Λ(a) S(a)λ. Since Y (a) = S(a)0, one always has that Y (a) ⊂ Sy(a).

We will say that a has no proper semi-invariants when all the semi-invariants of a are 
invariant that is, when Sy(a) = Y (a).

For example, when a = g is a semisimple Lie algebra, then g has no proper semi-
invariants. Moreover if h is a Cartan subalgebra of g, we will say that s ∈ S(g) is an 
h-weight vector if there exists μ ∈ h∗ such that for all x ∈ h, ad x(s) = μ(x)s. If p
is a (standard) parabolic subalgebra of g, then the set of weights Λ(p) of the algebra 
of semi-invariants Sy(p) of p may be viewed as a subset of h∗ (see Sect. 3). Hence the 
h-weight vectors of Sy(p) are exactly the semi-invariants of p.

A special case of a parabolic subalgebra is a Borel subalgebra b = n ⊕ h of g semi-
simple, where n denotes the nilpotent radical of b. By [15] the algebra of symmetric 
semi-invariants Sy(b), resp. the algebra of symmetric invariants Y (n) ⊂ Sy(b), is always 
a polynomial algebra, the former having rank(g) = dim h generators. Moreover both 
algebras have the same set of weights. (See [15, Tables I and II] and [10, Table] for an 
erratum, for an explicit description of weights and degrees of generators.)

2.3. Canonical truncation

Since a is algebraic, there exists by [1] a canonically defined subalgebra of a, called 
the canonical truncation of a and denoted by aΛ, such that Y (aΛ) = Sy(aΛ) = Sy(a). 
We also say that aΛ is the truncated subalgebra of a: it is the largest subalgebra of a
which vanishes on the weights of Sy(a). In particular, the canonical truncation of a has 
no proper semi-invariants. By say [29, 29.4.3] a parabolic subalgebra p of a semisimple 
Lie algebra is algebraic, hence one has that Sy(p) = Y (pΛ) = Sy(pΛ) where pΛ is the 
canonical truncation of p. Moreover a result of Chevalley-Dixmier in [4, Lem. 7], also 
known as a theorem of Rosenlicht, implies that

ind pΛ = degtr
k
(Fract(Y (pΛ))).

In other words the index ind pΛ of pΛ that is, the minimal codimension of a coadjoint 
orbit in p∗Λ, is also equal to the cardinality of a maximal set of algebraically independent 
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elements in Sy(p) = Y (pΛ). It is not known in general whether Sy(p) is or not finitely 
generated, but the transcendence degree of its field of fractions was shown to be finite 
with an explicit formula given in (1) of subsection 4.1. By [16, 7.9] (see also [7, Chap. 
I, Sec. B, 8.2]) the algebra of symmetric invariants Y (p) of a proper parabolic subal-
gebra p in a simple Lie algebra is always reduced to scalars, while by [5] its algebra of 
symmetric semi-invariants Sy(p) is never. That is why we consider the algebra of sym-
metric semi-invariants Sy(p) = Y (pΛ) of a parabolic subalgebra p rather than its algebra 
of symmetric invariants. Moreover the structure of Sy(p) may give information about
the field C(p) of invariant fractions of S(p). Specifically assume that Sy(p) = Y (pΛ) is a 
polynomial algebra (freely generated by semi-invariants of p). Then, since we have equal-
ity Fract(Y (pΛ)) = C(pΛ), the latter is obviously a pure transcendental extension of k. 
Moreover by [24, Thm. 66] so is also the field C(p), answering positively to Dixmier’s 
fourth problem [6, Problem 4].

2.4. Adapted pairs

An adapted pair for a is a pair (h, y) ∈ a × a∗ such that ad h(y) = −y, where ad
denotes here the coadjoint action of a, h is a semisimple element of a and y is a regular 
element in a∗, that is, there exists a subspace V of a∗ of minimal dimension such that 
ad a(y) ⊕ V = a∗ (the dimension of V is called the index of a, denoted by ind a).

Call an element of a∗ singular if it is not regular and denote by a∗sing the set of singular 
elements in a∗. The set of regular elements in a∗ is open dense in a∗ and the codimension 
of a∗sing is always bigger or equal to one. When equality holds the algebra a is said to be 
singular (nonsingular otherwise). The nonsingularity property is also called in [26, Def. 
1.1] the “codimension two property”.

If (h, y) is an adapted pair for a, then y belongs to the zero set of the ideal of S(a)
generated by the homogeneous elements of Y (a) with positive degree. When a admits 
an adapted pair and has no proper semi-invariants, then it follows by [22, 1.7] that the 
algebra a is nonsingular. In particular if a is a truncated parabolic subalgebra of a simple 
Lie algebra g and admits an adapted pair (h, y) then by the above, a is nonsingular.

2.5. Weierstrass sections

A Weierstrass section for coadjoint action of a (see [12]) is an affine subspace y + V

of a∗ (with y ∈ a∗ and V a vector subspace of a∗) such that restriction of functions of 
S(a) = k[a∗] to y + V induces an algebra isomorphism between Y (a) and the algebra 
of polynomial functions k[y + V ] on y + V . Of course, since k[y + V ] is isomorphic 
to S(V ∗), the existence of a Weierstrass section for coadjoint action of a implies that 
the algebra Y (a) is isomorphic to S(V ∗) and then that Y (a) is a polynomial algebra (on 
dimV generators). Moreover, under this isomorphism, a set of homogeneous algebraically 
independent generators of Y (a) is sent to a basis of V ∗, hence each element of this set 
is linearized. In [20] Weierstrass sections were called algebraic slices.
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Assume that a has no proper semi-invariants, admits an adapted pair (h, y), and that 
the algebra of symmetric invariants Y (a) is polynomial. Then by [22, 2.3], for any ad h-
stable complement V of ad a(y) in a∗, the affine subspace y + V is a Weierstrass section 
for coadjoint action of a.

Suppose now that a = pΛ is the canonical truncation of a proper parabolic subalgebra 
p in a simple Lie algebra. By [10] there exist a lower and an upper bounds for the formal 
character of Sy(p) = Y (pΛ) (see also Sect. 4). Assume that these bounds coincide. This 
implies by [10] that Y (pΛ) is a polynomial algebra over k. Assume further that we have 
constructed an adapted pair for pΛ. Thus by the above, this adapted pair provides a 
Weierstrass section for coadjoint action of pΛ. This method will be used in roughly half 
of the cases we will consider in this paper.

2.6. Affine slice

An affine slice to the coadjoint action of a is an affine subspace y + V of a∗ such that 
A.(y + V ) is dense in a∗ and y + V meets every coadjoint orbit in A.(y + V ) at exactly 
one point and transversally. Assume that a has no proper semi-invariants. Then if there 
exists a Weierstrass section y + V ⊂ a∗ for coadjoint action of a, one has by [12, 3.2]
that y + V is an affine slice to the coadjoint action of a. The converse does not hold in 
general, but if (y+V )sing := (y+V ) ∩ a∗sing is of codimension at least two in y+V then 
it holds by [12, 3.3]. One may also find in [20] more details on affine slices.

2.7. The reductive case

Take a = g semisimple. Then there exists a principal sl2-triple (x, h, y) of g with 
h ∈ g a semisimple element and x and y regular in g 	 g∗, such that [h, y] = −y. Then 
the pair (h, y) is an adapted pair for g. Denote by gx the centralizer of x in g. Then by 
[23] y + gx is a Weierstrass section and also an affine slice to the coadjoint action of g. 
It is called the Kostant slice or Kostant section.

2.8. Magic number and nonsingularity

The magic number of a is

c(a) = 1
2(dim a + ind a).

It is always an integer. By [25, Prop. 3.1] one always has that c(aΛ) = c(a), where aΛ
is the canonical truncation of a. When a = g is semisimple, one has that c(g) = dim b

where b is a Borel subalgebra of g.
Assume that a has no proper semi-invariants and is nonsingular (which is the case by 

2.4 when a admits an adapted pair for instance). Let f1, . . . , fl be l = ind a homogeneous 
algebraically independent elements of Y (a). Then by [26, Thm. 1.2]
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l∑
i=1

deg(fi) ≥ c(a). (deg)

Moreover by [22, 5.6] and [26, Thm. 1.2], equality holds in (deg) if and only if Y (a) is 
generated by f1, . . . , fl.

In particular when a = pΛ is the canonical truncation of a parabolic subalgebra p then 
by the above the existence of a Weierstrass section for coadjoint action of pΛ, given by an 
adapted pair for pΛ, implies that equality holds in (deg) for a set of ind pΛ homogeneous 
algebraically independent elements of Y (pΛ).

3. Notation

Let g be a semisimple Lie algebra over k and h be a fixed Cartan subalgebra of g. Let 
Δ be the set of roots of g (or root system of g) with respect to h and π a chosen set of 
simple roots. Denote by Δ± the subset of Δ formed by the positive, resp. negative, roots 
of Δ, with respect to π.

With each root α ∈ Δ is associated a root vector space gα and a nonzero root vector 
xα ∈ gα. For all A ⊂ Δ, set gA =

⊕
α∈A gα and −A = {γ ∈ Δ | −γ ∈ A}. We denote 

by α∨ the coroot associated with the root α ∈ Δ. Then (α∨)α∈π is a basis for the k-
vector space h. We denote by n, resp. n−, the subalgebra of g such that n = gΔ+ , resp. 
n− = gΔ− . We have the following triangular decomposition

g = n⊕ h⊕ n−.

A standard parabolic subalgebra of g is given by the choice of a subset π′ of π. That is 
why we may denote it by pπ′ . Let Δ±

π′ denote the subset of Δ± associated to π′, namely 
Δ±

π′ = ±Nπ′ ∩Δ±. Set n±π′ = gΔ±
π′

. Then pπ′ = n ⊕ h ⊕ n
−
π′ . Moreover p−π′ = n

+
π′ ⊕ h ⊕ n−

is the opposite algebra of pπ′ .
Via the Killing form K on g, the dual space p∗π′ of pπ′ is isomorphic to p−π′ which is 

then endowed with the coadjoint action of pπ′ .
We denote by ( , ) the non-degenerate symmetric bilinear form on h∗ × h∗, induced 

by the Killing form on h × h, and denote by H : h −→ h∗ the isomorphism induced by 
the latter. The form ( , ) is invariant under the action of the Weyl group of (g, h). If g
is simple of type Bn, Cn or Dn, resp. An, we may also view the form ( , ) as a scalar 
product on Rn, resp. on Rn+1. For all γ, γ′ ∈ h∗, one has that γ(H−1(γ′)) = (γ, γ′). 
We have that H(α∨) = 2α/(α, α), for all α ∈ Δ so that, for all α, β ∈ Δ, we have that 
β(α∨) = (2α/(α, α), β).

We use Bourbaki’s labelling for the roots, as in [2, Planches I, resp. II, resp. III, 
resp. IV] when g is simple of type An, resp. Bn, resp. Cn, resp. Dn. We then set π =
{α1, . . . , αn} and denote by �i, or sometimes �αi

, 1 ≤ i ≤ n, the fundamental weight 
associated with αi. Similarly, if π′ = {αi1 , . . . , αir} ⊂ π we denote by �′

ij
, or sometimes 

�′
α , the fundamental weight associated with αij with respect to π′.
ij
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We denote by εi, 1 ≤ i ≤ n, resp. 1 ≤ i ≤ n + 1, the elements of an orthonormal basis 
of Rn, resp. Rn+1, with respect to the scalar product ( , ) and according to which the 
simple roots αi, 1 ≤ i ≤ n, are expanded as in [2, Planches II, III, IV, resp. I] for type 
Bn, Cn, Dn, resp. An.

Recall the definition of the canonical truncation given in 2.3 and denote by pπ′,Λ the 
canonical truncation of pπ′ . Then one has that

pπ′,Λ = n⊕ hΛ ⊕ n
−
π′

where hΛ ⊂ h is the largest subalgebra of h which vanishes on Λ(pπ′), the set of weights 
of Sy(pπ′) which may be identified with a subset of h∗. For an explicit description of hΛ, 
see [11, 5.2.2, 5.2.9 and 5.2.10] or [13, 2.2]. Denote by p′π′ the derived subalgebra of pπ′

and set h′ = h ∩p′π′ . Then h′ is the vector space generated by the coroots α∨ with α ∈ π′

and h′ ⊂ hΛ. Let w0 be the longest element of the Weyl group of (g, h). If w0 = −Id

then hΛ = h′. In particular if g is simple of type Bn, Cn, or D2m, then we have that 
hΛ = h′. Now assume that g is simple of type Dn with n odd. Then if both αn−1 and αn

do not belong to π′, we have that

hΛ = h′ ⊕ kH−1(�n −�n−1) = h′ ⊕ kH−1(εn) = h′ ⊕ k(α∨
n − α∨

n−1),

otherwise hΛ = h′.
For convenience we will replace pπ′ by its opposite algebra p−π′ (simply denoted by p

from now on) and we will consider the canonical truncation pΛ = p
−
π′,Λ of p = p

−
π′ . We 

have that

pΛ = p
−
π′,Λ = n− ⊕ hΛ ⊕ n

+
π′

and its dual space p∗Λ may be identified via the Killing form K on g with pπ′,Λ (since by 
[11, 5.2.2, 5.2.9] the restriction of K to hΛ × hΛ is non-degenerate).

We will denote by g′ the Levi subalgebra of p (and of pΛ), namely:

g′ = n
+
π′ ⊕ h′ ⊕ n

−
π′ .

Then w′
0 will denote the longest element of the Weyl group of (g′, h′).

4. Bounds for formal character

Keep the notation of previous Section. A h-module M is called a weight module 
if M = ⊕ν∈h∗Mν , with finite dimensional weight subspaces Mν := {m ∈ M | ∀h ∈
h, h.m = ν(h)m}. For a weight module M one defines the formal character chM of M
as follows:

chM =
∑

∗

dimMνe
ν

ν∈h
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where eμ+ν = eμeν for all μ, ν ∈ h∗. Obviously the formal character is multiplicative on 
tensor products that is, if M and N are weight modules, then

ch (M ⊗N) = chMch N.

Hence if A ⊂ S(p) is a polynomial algebra with algebraically independent h-weight 
generators ai, 1 ≤ i ≤ l, each of them having a nonzero weight λi ∈ h∗, then

ch A =
∏

1≤i≤l

(1 − eλi)−1.

Moreover for weight modules M and N , we write chM ≤ chN if dimMν ≤ dimNν for 
all ν ∈ h∗. Hence if M ⊂ N , then chM ≤ chN and if equality holds then M = N .

We will specify below (see subsection 4.4) the lower and upper bounds for chY (pΛ)
mentioned in subsection 2.5. For this, we have to summarize results in [9], [10], [11] and 
[17].

4.1. Let i and j be involutions of π defined as in [11, 5.1] or as in [13, 2.2]. More 
precisely j = −w0 and i(α) = −w′

0(α) for all α ∈ π′. If now α ∈ π \ π′, then i(α) = j(α)
if j(α) /∈ π′, and otherwise i(α) = j(ij)r(α) where r is the smallest integer such that 
j(ij)r(α) /∈ π′. Let E(π′) be the set of 〈ij〉-orbits in π. By [11, 2.5] and [9, 3.2], we have 
that

ind pΛ = degtr
k
(Fract(Y (pΛ))) = |E(π′)|. (1)

4.2. Following [11, 5.2.1] one may set, for each Γ ∈ E(π′):

δΓ = −
∑
γ∈Γ

�γ −
∑

γ∈j(Γ)

�γ +
∑

γ∈Γ∩π′

�′
γ +

∑
γ∈i(Γ∩π′)

�′
γ . (2)

Note that, for all Γ ∈ E(π′), one has that i(Γ ∩ π′) = j(Γ) ∩ π′ by [10, 3.2.2].

4.3. Let Γ ∈ E(π′). One sets dΓ =
∑

γ∈Γ �γ and d′Γ =
∑

γ∈Γ∩π′ �′
γ and one denotes 

by Bπ := Λ(n ⊕h) ⊂ h∗, resp. Bπ′ := Λ(n+
π′⊕h′) ⊂ h′ ∗ the set of weights of the polynomial 

algebra of symmetric semi-invariants Sy(n ⊕ h), resp. Sy(n+
π′ ⊕ h′): generators of the set 

Bπ (and then also of Bπ′) are given in [15, Table I and II] and in [10, Table]. The set Bπ, 
resp. Bπ′ , is equal to the set of weights of the polynomial algebra Y (n), resp. Y (n+

π′), see 
below subsection 4.5.

Then following [10, 3.2.7] one sets

εΓ =
{

1/2 if Γ = j(Γ) and dΓ ∈ Bπ and d′Γ ∈ Bπ′

1 otherwise.
(3)
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Below we give some details on the set Bπ, resp. Bπ′ . For a real number x, denote by 
[x] the integer such that x − 1 < [x] ≤ x.

Assume that g is simple of type Bn, with n ≥ 2. Recall that j = Idπ. Let α ∈ π. 
If α = α2k with 1 ≤ k ≤ [(n − 1)/2], then �2k ∈ Bπ. Otherwise 2�α ∈ Bπ but 
�α /∈ Bπ.

Now assume that g is simple of type Dn, with n ≥ 4. Then the same as above is true 
for the first n − 2 simple roots. Moreover if n is even then j = Idπ and if n is odd, then 
j(αn−1) = αn and j is the identity if restricted to the n − 2 first simple roots. In both 
cases, if α ∈ {αn−1, αn}, then �α + �j(α) ∈ Bπ but �α /∈ Bπ.

If g is simple of type Cn, with n ≥ 2, then, for all 1 ≤ i ≤ n, 2�i ∈ Bπ but �i /∈ Bπ.
Finally if α belongs to a connected component of π′ of type A, then �′

α +�′
i(α) ∈ Bπ′

but �′
α /∈ Bπ′ .

4.4. Assume from now on that g is simple and that the parabolic subalgebra p is 
proper that is, π′ � π. By [17, Thm. 6.7] (see also [10, 7.1]) one has that

∏
Γ∈E(π′)

(1 − eδΓ)−1 ≤ ch (Y (pΛ)) ≤
∏

Γ∈E(π′)

(1 − eεΓδΓ)−1. (4)

Assume now that both bounds in (4) coincide that is, that εΓ = 1 for all Γ ∈ E(π′). 
For example, it occurs when g is simple of type A or C. Then one deduces that Sy(p) =
Y (pΛ) is a polynomial algebra over k on |E(π′)| homogeneous and h-weight algebraically 
independent generators. One generator corresponds to every Γ ∈ E(π′) and has a weight 
δΓ given by (2) above (recall that one has assumed that the parabolic subalgebra p
contains the negative Borel subalgebra n− ⊕ h) and a degree ∂Γ which may be easily 
computed by [10, 5.4.2]. To explain how one may compute this degree (see (5) or (6)
below), we have to recall results in subsection below.

4.5. By [15] Y (n+
π′) ⊂ Sy(n+

π′ ⊕ h′), resp. Y (n) ⊂ Sy(n ⊕ h), is a polynomial alge-
bra whose set of homogeneous and h′-weight, resp. h-weight, algebraically independent 
generators is formed by the elements aρ′

γ
, resp. aργ

: their weight ρ′γ , resp. ργ , and their 
degree are given in [15, Table I and II] and in [10, Table] and we precise them below. 
Recall the sets Bπ′ , resp. Bπ, of subsection 4.3 and that these sets are also the sets of 
weights of Y (n+

π′), resp. of Y (n). One has that, for all γ ∈ π′, resp. γ ∈ π,

ρ′γ = �′
γ if �′

γ ∈ Bπ′ , resp. ργ = �γ if �γ ∈ Bπ.

Otherwise

ρ′γ = �′
γ + �′

i(γ), resp. ργ = �γ + �j(γ).
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Assume that g is simple of type Bn, resp. Dn. For all 1 ≤ u ≤ [(n − 1)/2], resp. 
1 ≤ u ≤ [(n − 2)/2], one has that

deg(aρα2u
) = deg(a�2u) = u

and for all 1 ≤ u ≤ [n/2], resp. 1 ≤ u ≤ [(n − 1)/2],

deg(aρα2u−1
) = deg(a2�2u−1) = 2u.

Moreover for g of type Bn,

deg(aραn
) = deg(a2�n

) = [(n + 1)/2].

For g of type Dn, then for α ∈ {αn−1, αn}, one has that

deg(aρα
) = deg(a�α+�j(α)) = [n/2].

Finally assume that g is simple of type An, resp. Cn. Then for all 1 ≤ u ≤ [(n +
1)/2], resp. for all 1 ≤ u ≤ n, one has that deg(aραu

) = deg(a�u+�n+1−u
) = u, resp. 

deg(aραu
) = deg(a2�u

) = u.

4.6. Assume now that, for all Γ ∈ E(π′), one has εΓ = 1.
Let Γ ∈ E(π′) be such that Γ = j(Γ). The degree ∂Γ of the homogeneous generator 

of Y (pΛ) corresponding to Γ verifies

∂Γ =
∑

γ∈Γ|ργ=�γ

2 deg(aργ
) +

∑
γ∈Γ|ργ �=�γ

deg(aργ
)+

∑
γ∈Γ∩π′|ρ′

γ=�′
γ

2 deg(aρ′
γ
) +

∑
γ∈Γ∩π′|ρ′

γ �=�′
γ

deg(aρ′
γ
). (5)

Let Γ ∈ E(π′) be such that Γ = {α} with α ∈ π \ π′ and i(α) �= α. Then necessarily 
one has that Γ �= j(Γ) (by [11, 5.2.6]) and there exist two homogeneous generators sΓ

and tΓ of Y (pΛ) corresponding to Γ (more precisely one corresponds to Γ and the other 
to j(Γ)) whose weight δΓ = δj(Γ) is given by (2) and whose degree ∂Γ, resp. ∂j(Γ), is 
given by the formula:

∂Γ = deg(sΓ) = deg(aρα
) and ∂j(Γ) = deg(tΓ) = deg(aρα

) + 1. (6)

The latter situation can occur when g is simple of type Dn with n odd and when both 
αn−1 and αn do not belong to π′ (see Sect. 14).
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5. Improved upper bound

Keep the notation and hypotheses of Section 3 and assume that pΛ admits an adapted 
pair (h, y) ∈ hΛ × p∗Λ. Since y is regular in p∗Λ there exists an ad h-stable complement 
V to ad pΛ(y) in p∗Λ of dimension ind pΛ. Moreover by [12, 2.2.4] we may assume that 
V = gT with T ⊂ Δ+ � Δ−

π′ that is, ad pΛ(y) ⊕ gT = p∗Λ with |T | = ind pΛ. Assume 
further that y =

∑
γ∈S xγ with S ⊂ Δ+ � Δ−

π′ and that S|hΛ is a basis for h∗Λ. Then for 
each γ ∈ T , there exists a unique element s(γ) ∈ QS such that γ + s(γ) vanishes on hΛ. 
By [19, Lem. 6.11], one has that

ch (Y (pΛ)) ≤
∏
γ∈T

(1 − e−(γ+s(γ)))−1. (7)

The right hand side of the above inequality is called an improved upper bound for 
ch (Y (pΛ)).

Assume now that ∏
Γ∈E(π′)

(1 − eδΓ)−1 =
∏
γ∈T

(1 − e−(γ+s(γ)))−1. (8)

Then by (4) of Sect. 4 equality holds in (7) and by [19, Lem. 6.11] the restriction map 
gives an isomorphism Y (pΛ) ∼→ k[y + gT ]. Then y + gT is a Weierstrass section for 
coadjoint action of pΛ as defined in 2.5.

This implies that Y (pΛ) is a polynomial algebra over k on |E(π′)| = |T | algebraically 
independent homogeneous and h-weight generators, each of them having δΓ, for Γ ∈
E(π′), as a weight, given by (2) of Sect. 4 (this weight is also equal to −(γ + s(γ)), for 
some γ ∈ T ). Moreover the degree of each of these generators is equal to 1 + |s(γ)|, 
γ ∈ T , where |s(γ)| =

∑
α∈S mα,γ if s(γ) =

∑
α∈S mα,γ α (mα,γ ∈ N, actually). For all 

γ ∈ T , the integer |s(γ)| is also equal to the eigenvalue of xγ with respect to ad h. (For 
more details, see [19, 6.11].)

Conversely if y + gT is a Weierstrass section for coadjoint action of pΛ, then equality 
holds in (7) by [19, Remark 6.11].

6. Construction of an adapted pair

As we already said in the previous sections, our Weierstrass sections require the con-
struction of an adapted pair. This construction uses the notions we already introduced 
in [8], [13] and [14]. For convenience we recall some of them, notably the Heisenberg sets 
and the Kostant cascades.

6.1. Heisenberg sets and Kostant cascades

A Heisenberg set with centre γ ∈ Δ ([8, Def. 7]) is a subset Γγ of Δ such that γ ∈ Γγ

and for all α ∈ Γγ \ {γ}, there exists a (unique) α′ ∈ Γγ \ {γ} such that α + α′ = γ. 
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We may take care to not be confused by the above notation of a Heisenberg set and 
an element Γ ∈ E(π′), resp. Γu ∈ E(π′), which denotes an 〈ij〉-orbit in π, resp. the 
〈ij〉-orbit of αu ∈ π.

A typical example of Heisenberg set is given by the Kostant cascade of g (see also 
[8, Example 8]). More precisely assume that the semisimple Lie algebra g admits a 
set of roots Δ = �i∈I Δi with I ⊂ N∗, each Δi being a maximal irreducible root 
system with highest root βi. Then take (Δi)βi

= {α ∈ Δi | (α, βi) = 0}. For every 
i ∈ I, set (Δi)βi

= �j∈J Δij with J ⊂ N∗ and Δij being a maximal irreducible root 
system with highest root βij . Continuing we obtain a subset K(g) ⊂ N∗ ∪N∗2 ∪ . . . with 
CardK(g) ≤ rank g, irreducible root systems ΔK , K ∈ K(g) and a maximal set βπ of 
strongly orthogonal positive roots βK , K ∈ K(g), called the Kostant cascade of g. The 
subset K(g) admits a partial order ≤ through K ≤ L if K = L or if L = {K, l1, . . . , lt}
with li ∈ N∗. In type A or C, this order is actually a total order, since the sets (ΔK)βK

are already irreducible. So one can index the subset βπ of Δ+ simply by N in these types, 
so that the roots in βπ are simply denoted by βi, 1 ≤ i ≤ CardK(g). In type B or D, 
the order is not total. In type Bn or D2n+1, resp. D2n, for the elements βK , K ∈ K(g), 
we use the notation βi, βi′ , resp. βi, βi′ , βi′′ with order relation i < i′, resp. i < i′ and 
i < i′′. For more details, see for example [10, Table], [13, Table I], [14, Sect. 7] or [15, 
Tables I, II, III].

Let βK be an element of the Kostant cascade βπ of g and set

HβK
= {α ∈ ΔK | (α, βK) > 0}.

Then HβK
is a Heisenberg set with centre βK : it is the largest Heisenberg set with centre 

βK which is included in Δ+ by ii) of Lemma below. Moreover the vector subspace gHβK

of g associated with HβK
(with the notation in Sect. 3) is a Heisenberg Lie subalgebra of g

by iv) of Lemma below. Of course all the Heisenberg sets are not necessarily associated 
with Heisenberg Lie subalgebras and even not with Lie subalgebras of g, since iv) of 
Lemma below need not be true for a Heisenberg set in general.

By [15, Lem. 2.2] (see also [13, Lem. 3]) we have the following Lemma, which is very 
useful to construct adapted pairs thanks to the Kostant cascade βπ and to the largest 
Heisenberg sets Hβ , β ∈ βπ, which are defined above.

Lemma. [15, Lem. 2.2] Let βπ denote the Kostant cascade of g. Then we have that:

i) Δ+ = �β∈βπ
Hβ (disjoint union).

ii) If γ, δ ∈ Δ+ are such that γ + δ = β ∈ βπ then γ, δ ∈ Hβ \ {β}.
iii) If γ ∈ HβK

and δ ∈ HβL
are such that γ + δ ∈ HβM

with K, L, M ∈ K(g), then 
K ≤ L (resp. L ≤ K) and M = K (resp. M = L).

iv) If γ, δ ∈ Hβ , β ∈ βπ, and γ + δ ∈ Δ then γ + δ = β.
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For an explicit description of Kostant cascades, see for example [13], [14] or [15]. The 
Heisenberg sets (not only the largest Heisenberg sets Hβ, β ∈ βπ) are very helpful for 
the construction of an adapted pair. They were used in [18], resp. in [8], [13] and [14], to 
build adapted pairs for every truncated biparabolic subalgebra in a simple Lie algebra of 
type A, resp. for truncated maximal parabolic subalgebras. Below is a proposition where 
Heisenberg sets appear to be crucial for constructing an adapted pair.

6.2. A proposition of regularity

The following proposition (see [8, Prop. 9]) is a generalization of [18, Thm. 8.6]. We 
keep the notation of Sect. 3 and consider S, T and T ∗ disjoint subsets of Δ+ �Δ−

π′ and 
set y =

∑
γ∈S xγ .

Proposition. [8, Prop. 9] We assume that, for each γ ∈ S, there exists Γγ ⊂ Δ+ �Δ−
π′ a 

Heisenberg set with centre γ and that all the sets Γγ, for γ ∈ S, together with T and T ∗

are disjoint.
We also assume that we can decompose S into S+ � S− where S+, resp. S−, is the 

subset of S containing those γ ∈ S with Γγ ⊂ Δ+, resp. Γγ ⊂ Δ−
π′ .

For all γ ∈ S, set Γ0
γ = Γγ \ {γ}, O = �γ∈S Γ0

γ and O± = �γ∈S± Γ0
γ .

We assume further that:

(i) S|hΛ is a basis for h∗Λ.
(ii) If α ∈ Γ0

γ with γ ∈ S+, is such that there exists β ∈ O+, with α + β ∈ S, then 
β ∈ Γ0

γ and α + β = γ.
(iii) If α ∈ Γ0

γ with γ ∈ S−, is such that there exists β ∈ O−, with α + β ∈ S, then 
β ∈ Γ0

γ and α + β = γ.
(iv) Δ+ � Δ−

π′ = �γ∈S Γγ � T � T ∗.
(v) For all α ∈ T ∗, gα ⊂ ad pΛ(y) + gT .
(vi) |T | = ind pΛ.

Then y is regular in p∗Λ and

ad pΛ(y) ⊕ gT = p∗Λ.

Moreover we can uniquely define h ∈ hΛ by γ(h) = −1 for all γ ∈ S, and then (h, y) is 
an adapted pair for pΛ.

We give below the proof of the above proposition for the reader’s convenience.

Proof. Condition (iv) implies that pΛ = hΛ ⊕ g−O ⊕ g−S ⊕ g−T∗ ⊕ g−T and that p∗Λ =
hΛ ⊕ gO ⊕ gS ⊕ gT∗ ⊕ gT .

Let Φy denote the skew-symmetric bilinear form defined by Φy(x, x′) = K(y, [x, x′])
for all x, x′ ∈ g where recall K is the Killing form on g.
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Conditions (ii) and (iii) imply by [18, Lem. 8.5] that the restriction of Φy to g−O×g−O

is non-degenerate. Then gO ⊂ ad g−O(y) + hΛ + gS + gT + gT∗ .
But since O∩S = ∅ one has that for all x ∈ gO and x′ ∈ g−O, the element x −ad x′(y)

belongs to the orthogonal of hΛ for the Killing form. Then gO ⊂ ad g−O(y) +gS+gT +gT∗ .
Condition (i) implies that gS = ad hΛ(y) and that hΛ ⊂ ad g−S(y) +gO+gS+gT +gT∗ . 

Condition (v) implies that gT∗ ⊂ ad pΛ(y) + gT . Hence p∗Λ = hΛ ⊕ gO ⊕ gS ⊕ gT∗ ⊕ gT ⊂
ad pΛ(y) +gT . Finally condition (vi) implies that the latter sum is direct, since dim gT =
ind pΛ ≤ codim ad pΛ(y). �
Remarks. 

(1) Notice that [18, Thm. 8.6] is a special case of the above Proposition, with T ∗ = ∅. 
Here we need to take sometimes a set T ∗ �= ∅ as in [8].

(2) In [14, Lem. 3.2 and Lem. 6.1] lemmas were given to insure condition (v) in the 
above Proposition. In this paper, as in [8], we verify by hand that condition (v) of 
the above Proposition is satisfied, using if necessary Lemma and Proposition 6.3
below.

(3) Assume that there exists an adapted pair (h, y) for pΛ and denote by gT a comple-
ment of ad pΛ(y) in p∗Λ, with T ⊂ Δ+ � Δ−

π′ .
(a) Assume further that εΓ = 1 for all Γ ∈ E(π′) (as defined in (3) of Sect. 4). 

Then Y (pΛ) is a polynomial algebra and by what we said in subsection 2.5 one 
has that y + gT is a Weierstrass section for coadjoint action of pΛ (since gT is 
ad h-stable).

(b) Assume now that there exists Γ ∈ E(π′) such that εΓ = 1/2. Assume further 
that (8) of Sect. 5 holds. Then by what we said in Sect. 5, y+gT is a Weierstrass 
section for coadjoint action of pΛ.

6.3. Condition (v) of Proposition 6.2

Keeping the notation of Sect. 3, we consider S, T, T ∗ ⊂ Δ+ � Δ−
π′ three disjoint 

subsets and y =
∑

α∈S xα. We give in the Proposition below a sufficient condition which 
implies condition (v) of Proposition 6.2 for some roots α ∈ T ∗. Recall Sect. 3 that for 
all α ∈ Δ, we have fixed a nonzero root vector xα ∈ gα, that we will rescale if necessary, 
except those associated with the roots α ∈ S, since y =

∑
α∈S xα is fixed.

Lemma. Let γ1, γ2, γ3 ∈ S and γ′
1, γ

′
2, γ

′
3 ∈ (Δ− � Δ+

π′) \ S be such that

(1) γi + γ′
i ∈ (Δ+ � Δ−

π′) \ S, for all 1 ≤ i ≤ 3,
(2) γ2 + γ′

2 = γ1 + γ′
3,

(3) γ3 + γ′
3 = γ2 + γ′

1,
(4) γ1 + γ′

1 + γ2 ∈ Δ,
(5) γ1 + γ2 /∈ Δ, γ2 + γ3 /∈ Δ, γ1 + γ3 /∈ Δ.
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Then γ1 + γ′
1 = γ3 + γ′

2 and up to rescaling the nonzero root vectors xγ′
i
∈ pΛ for all 

1 ≤ i ≤ 3 and the nonzero root vectors xγi+γ′
i
∈ p∗Λ for all 1 ≤ i ≤ 3, we have that

(Σ)

⎧⎪⎪⎨
⎪⎪⎩

[xγ′
1
, xγ1 ] = [xγ′

2
, xγ3 ] = xγ1+γ′

1

[xγ′
2
, xγ2 ] = [xγ′

3
, xγ1 ] = xγ2+γ′

2

[xγ′
3
, xγ3 ] = [xγ′

1
, xγ2 ] = xγ3+γ′

3

Proof. The equality γ1 + γ′
1 = γ3 + γ′

2 comes directly from the equalities (2) and (3). 
Moreover the rescaling of the nonzero root vectors xγ′

i
and xγi+γ′

i
(which is possible since 

the roots γ′
i and γi+γ′

i do not belong to S) gives for example the last two equalities of (Σ). 
Then we obtain the first one, since we prove easily that [xγ′

1
, xγ1 ] = [xγ′

2
, xγ3 ]. Indeed by 

applying Jacobi identity several times, it is easy to prove, under the assumptions, that 
[[xγ′

1
, xγ1 ], xγ2 ] = [[xγ′

2
, xγ3 ], xγ2 ] and using (4) one can conclude. �

We then have directly the following proposition.

Proposition. Let γi and γ′
i, for 1 ≤ i ≤ 3, be roots satisfying the hypotheses of previous 

lemma. Recall that y =
∑

γ∈S xγ and let X, X ′, X ′′ be vectors in p∗Λ such that, after a 
possible rescaling of some suitable root vectors, we have

⎧⎪⎪⎨
⎪⎪⎩
ad xγ′

1
(y) = xγ1+γ′

1
+ xγ3+γ′

3
+ X

adxγ′
2
(y) = xγ1+γ′

1
+ xγ2+γ′

2
+ X ′

ad xγ′
3
(y) = xγ2+γ′

2
+ xγ3+γ′

3
+ X ′′

with ⎧⎪⎪⎨
⎪⎪⎩
X /∈ V ect(xγ1+γ′

1
, xγ3+γ′

3
) \ {0}

X ′ /∈ V ect(xγ1+γ′
1
, xγ2+γ′

2
) \ {0}

X ′′ /∈ V ect(xγ2+γ′
2
, xγ3+γ′

3
) \ {0}.

If X, X ′, X ′′ ∈ ad pΛ(y) + gT , then xγi+γ′
i
∈ ad pΛ(y) + gT for all 1 ≤ i ≤ 3.

Actually we will apply the previous proposition with X, X ′, X ′′ being vectors for 
which it will be immediate to verify that they belong to ad pΛ(y) + gT by direct compu-
tation. Moreover one of the γi + γ′

i will belong to the subset T ∗. See for example proof 
of Lemma 9.3.

6.4. The Kostant cascade in type A

Keep the notation of Sect. 3 and assume that g is a simple Lie algebra of type Bn, Cn

or Dn. We consider p = n−⊕h ⊕n
+
π′ the standard parabolic subalgebra of g containing the 
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negative Borel subalgebra b− = n− ⊕ h and associated to the subset π′ ⊂ π. Recall that 
we are interested in studying p which is equal to ps, �, resp. p�, resp. qs, � with s ∈ N∗

and � ∈ N, as defined in subsection 1.2. Then the subset π′ associated to p is π′ =
π \ {αs, αs+2, . . . , αs+2�} with 1 ≤ s ≤ n − 2�, resp. π′ = π \ {αn−1−2�, . . . , αn−1, αn}
and g of type Dn, resp. π′ = π \ {αs, αs+2, . . . , αs+2�, αn−1, αn} with s + 2� ≤ n − 2
and g of type Dn.

If s ≥ 2 and in the cases of ps, � or of qs, �, π′
1 = {α1, α2, . . . , αs−1} will denote the con-

nected component of π′ of type As−1 and in the case of p�, π′
1 = {α1, α2, . . . , αn−2−2�}

will denote the connected component of π′ of type An−2−2�, if n − 2 − 2� ≥ 1. To keep 
homogeneous notation we will set in this subsection s = n − 1 − 2� when we are in the 
latter case. We denote by βπ′

1
the Kostant cascade (see 6.1) of the simple Lie subalgebra 

gπ′
1

of the Levi subalgebra g′ of p which is of type As−1. We also denote by π′
1
∨ the 

subset of h′ formed by the coroots α∨ with α ∈ π′
1 and by Δ+

π′
1

:= Δ+ ∩Nπ′
1. We have 

that

βπ′
1

= {β′
i = εi − εs+1−i | 1 ≤ i ≤ [s/2]} ⊂ Δ+

π′
1
.

Set β0
π′
1

:= βπ′
1
\ (βπ′

1
∩ π′

1). If s is odd, then β0
π′
1

= βπ′
1

and if s is even, then β0
π′
1

= {β′
i |

1 ≤ i ≤ (s − 2)/2}. The following lemma will be useful for the next sections, notably to 
prove that, for a suitable subset S ⊂ Δ+ � Δ−

π′ , one has that S|hΛ is a basis for h∗Λ (see 
Lemma 8.2 or Lemma 10.2). If s is even, set t := [s/4] and if s is odd, set t := [(s +1)/4]. 
We consider the subset {h′

j}1≤j≤[(s−1)/2] ⊂ π′
1
∨, with the following order. If t = s/4 with 

s even, resp. t = (s + 1)/4 with s odd, then

{h′
j} = {h′

2j−1 = α∨
2j−1, h

′
2j = α∨

s−2j ; 1 ≤ j ≤ t− 1, h′
2t−1 = α∨

2t−1}.

If t = (s − 2)/4 with s even, resp. t = (s − 1)/4 with s odd, then

{h′
j} = {h′

2j−1 = α∨
2j−1, h

′
2j = α∨

s−2j ; 1 ≤ j ≤ t}.

Lemma. Let A be the square matrix of size [(s − 1)/2] which entries are −β′
i(h′

j) with 
1 ≤ i, j ≤ [(s − 1)/2]. Then A is a lower triangular matrix with −1 on the diagonal. 
Hence detA = (−1)[(s−1)/2].

Proof. Recall the construction of the Kostant cascade of gπ′
1

(see 6.1). Set Δ+
1 = Δ+

π′
1
, 

then set Δ+
2 = {α ∈ Δ+

1 ; (α, β′
1) = 0}. Here β′

1 is the highest root of gπ′
1

and β′
1 =

�′
1 + �′

s−1. Then Δ+
2 = Δ+

1 ∩ Nπ′
2 where π′

2 = π′
1 \ {α1, αs−1}. Continuing we set 

Δ+
i+1 = {α ∈ Δ+

i ; (α, β′
i) = 0} where β′

i is the highest root of Δ+
i . Then we have that 

Δ+
i+1 ⊂ Δ+

i ⊂ · · · ⊂ Δ+
1 and then (β′

i, α) = 0 for all α ∈ Δ+
j with j > i. Finally 

observe that, for all 1 ≤ j ≤ [(s + 1)/4], α2j−1 ∈ Δ+
2j−1, αs−2j ∈ Δ+

2j , β′
2j−1(α∨

2j−1) =
(β′

2j−1, α2j−1) = 1 and that β′
2j(α∨

s−2j) = (β′
2j , αs−2j) = 1 while 2j ≤ (s − 1)/2. Hence 

the lemma. �
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7. Some examples

Before stating the main result (see subsection 1.7), we give below two examples which 
will enlighten our construction of a Weierstrass section, each of these examples using 
a different method to obtain the latter from the adapted pair we construct. Thus case 
1c of subsection 1.7 (see also Sect. 9) is illustrated by the first example and case 3 of 
subsection 1.7 (see also Sect. 14) is illustrated by the second example. We keep the 
notation of Sect. 3.

7.1. Comparison of multiplicities

Assume that we have constructed an adapted pair (h, y) ∈ hΛ × p∗Λ for pΛ via Propo-
sition 6.2. Let λ ∈ k and set r = hΛ ⊕ gO ⊕ gS ⊕ gT∗ ⊂ p∗Λ (one has that r ⊕ gT = p∗Λ). 
Recall that the endomorphism ad h of p∗Λ, resp. of pΛ (with ad the coadjoint action, resp. 
the adjoint action) is semisimple. Then λ is an eigenvalue of ad h on p∗Λ if and only if −λ

is an eigenvalue of ad h on pΛ. Write m′
λ for the multiplicity of λ in r, mλ for the multi-

plicity of λ in pΛ and m∗
λ for the multiplicity of λ in p∗Λ. Then by the above m−λ = m∗

λ

and obviously m′
λ ≤ m−λ. Moreover since ad h(y) = −y and that p∗Λ = ad pΛ(y) ⊕ gT , 

we must have that

m′
λ ≤ mλ+1 (9)

(see also [8, 7.1]).
In the examples below, we will check that inequality (9) is satisfied.

7.2. First example

We assume that the Lie algebra g is simple of type B6 and we set π′ = π \ {α2, α4}. 
Then we consider the parabolic subalgebra p = p

−
π′ as defined in Sect. 3. We are then in 

case 1c of subsection 1.7. We take S = S+ � S− with

S+ = {ε1 + ε3, ε2, ε4 + ε5}, S− = {−β′′
1 = −ε5 − ε6}

where β′′
1 is an element of the Kostant cascade of g′,

T = {ε1 + ε2, ε1 − ε3, ε2 + ε4, ε4 − ε5, ε4 − ε3, ε6 − ε5},
T ∗ = {ε2 + ε6, ε2 + ε5, ε2 − ε1, ε2 − ε5, ε2 − ε4, ε2 − ε3, ε6, ε2 − ε6}.

We set

Γε1+ε3 = {ε1 + ε3, ε1 + ε4, ε3 − ε4, ε1 + ε5, ε3 − ε5,

ε1 + ε6, ε3 − ε6, ε1, ε3, ε1 − ε6, ε3 + ε6,

ε − ε , ε + ε , ε − ε , ε + ε , ε − ε , ε + ε },
1 5 3 5 1 4 3 4 1 2 2 3
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Γε2 = {ε2},
Γε4+ε5 = {ε4 + ε5, ε4 + ε6, ε5 − ε6, ε4, ε5, ε4 − ε6, ε5 + ε6},

Γ−ε5−ε6 = {−ε5 − ε6, −ε5, −ε6} = −Hβ′′
1

where Hβ′′
1

is the largest Heisenberg set with centre β′′
1 included in Δ+

π′ , as defined in 
6.1.

By setting y =
∑

γ∈S xγ one verifies (see for more details Sect. 9) that all conditions 
of Proposition 6.2 are satisfied (indeed it is more complicated than what we have to do 
in the second example). Then h ∈ h′ such that γ(h) = −1 for all γ ∈ S is:

h = ε1 − ε2 − 2ε3 + 2ε4 − 3ε5 + 4ε6 = α∨
1 − 2α∨

3 − 3α∨
5 + 1/2α∨

6 .

Hence the pair (h, y) is an adapted pair for pΛ. This adapted pair is not sufficient a priori 
to give a Weierstrass section for coadjoint action of pΛ, since there is one Γ ∈ E(π′) such 
that εΓ = 1/2. But we can easily check that (8) in Sect. 5 holds. Hence by Remark 3b 
of subsection 6.2 one has that y + gT is a Weierstrass section for coadjoint action of pΛ, 
and then Y (pΛ) is a polynomial algebra over k (result which was not yet known since 
the criterion that εΓ = 1 for all Γ ∈ E(π′) is here not satisfied).

To convince oneself that (h, y) given above is indeed an adapted pair for pΛ (although 
the inequality (9) of 7.1 is just a necessary condition), one gives in the table below the 
multiplicities m′

λ and m∗
λ = m−λ for all eigenvalue λ ∈ k of ad h on p∗Λ and one easily 

checks that inequality (9) of 7.1 holds.

λ -7 -6 -5 -4 -3 -2 -1 0
m′

λ 1 1 2 3 4 4 5 5
m−λ 1 1 2 3 4 4 5 6

λ 1 2 3 4 5 6 7
m′

λ 4 4 3 2 1 1 0
m−λ 5 4 4 3 2 1 1

7.3. Second example

Here we assume that g is simple of type D9 and consider π′ = π \{α1, α3, α5, α8, α9}
and the parabolic subalgebra p = p

−
π′ associated with π′. Here we are in case 3 of 

subsection 1.7. We take S = S+ � S− with

S+ = {β1 = ε1 + ε2, β2 = ε3 + ε4, β3 = ε5 + ε6, β̃4 = β4 − α8 = ε7 + ε9}
and S− = {−β′′

1 = ε8 − ε6}.

Here βi = ε2i−1+ε2i (1 ≤ i ≤ 4) are elements of the Kostant cascade βπ of g and β′′
1 is 

an element of the Kostant cascade βπ′ of g′. More precisely setting β0
π′ = βπ′ \ (βπ′ ∩π′), 

we have that S− = −β0
π′ . We also set
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T = {ε1 − ε2, ε3 − ε4, ε5 − ε6, ε7 + ε8, ε7 − ε9, ε8 − ε9, ε3 − ε2, ε5 − ε4}

and T ∗ = ∅.
For all 1 ≤ i ≤ 3, we take Γβi

= Hβi
where Hβ is the largest Heisenberg set with 

centre β ∈ βπ which is included in Δ+ as defined in subsection 6.1. We set Γβ̃4
=

{β̃4, ε7 − ε8, ε8 + ε9} and Γ−β′′
1

= −Hβ′′
1

where Hβ′′
1
⊂ Δ+

π′ is the largest Heisenberg set 
with centre β′′

1 which is included in Δ+
π′ . Since Hβ4∪Hα7 = Γβ̃4

�(T ∩Hβ4), Lemma 6.1 i)
gives condition (iv) of Proposition 6.2. Moreover Lemma 6.1 ii) and iii) gives conditions 
(ii) and (iii) of Proposition 6.2. Finally we verify by hand that conditions (i) and (vi)
of Proposition 6.2 are satisfied, noting that hΛ = h′ ⊕ k(α∨

9 − α∨
8 ). Setting

h = −α∨
2 − 2α∨

4 − 3α∨
6 + 4α∨

7 − 4(α∨
9 − α∨

8 ) ∈ hΛ

and y =
∑

α∈S xα, one checks that (h, y) is an adapted pair for pΛ. Moreover one checks 
easily that both bounds in (4) of Sect. 4 coincide, then Y (pΛ) is a polynomial algebra 
and by what we said in Remark 3a of subsection 6.2, y + gT is a Weierstrass section for 
coadjoint action of pΛ. In the table below we give the multiplicities m′

λ and m∗
λ = m−λ

for all eigenvalue λ ∈ k of ad h on p∗Λ and one easily checks that inequality (9) of 7.1
holds.

λ -12 -11 -10 -9 -8 -7 -6 -5 -4 -3
m′

λ 1 2 2 2 2 3 3 3 3 4
m−λ 1 2 2 2 2 3 3 3 3 4

λ -2 -1 0 1 2 3 4 5 6 7
m′

λ 5 7 7 5 4 3 3 3 3 2
m−λ 5 7 7 6 5 5 5 4 3 2

λ 8 9 10 11 12 13 14 15
m′

λ 2 2 2 1 0 0 0 0
m−λ 2 2 2 1 0 0 0 1

8. Cases 1a and 1b for type B or D

In this Section we consider truncated parabolic subalgebras described in 1a and in 
1b of subsection 1.7. More precisely (with the notation of Sect. 3 and of subsection 
1.2) let p = ps, � = n− ⊕ h ⊕ n

+
π′ be a parabolic subalgebra associated to the subset 

π′ = π \ {αs, αs+2, . . . , αs+2�} with � ∈ N and s an odd integer, 1 ≤ s ≤ n − 2�, in a 
simple Lie algebra g of type Bn, resp. Dn, with n ≥ 2, resp. n ≥ 4.

If � = 0, then the parabolic subalgebra p is maximal and this case was already treated 
in [13]. Thus we will assume from now on that � ≥ 1. Note that hΛ = h′, in type Bn but 
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also in type Dn with the above hypotheses, by what we said in Sect. 3 (since it is not 
true that αn−1 and αn are both deleted from π′).

Here we will show (see Lemma 8.5) that the lower and upper bounds for ch (Y (pΛ)) in 
(4) of Sect. 4 coincide, and then the algebra of symmetric invariants Y (pΛ) is polynomial. 
By Remark 3a of subsection 6.2 the existence of an adapted pair for pΛ is sufficient to 
give a Weierstrass section for coadjoint action of pΛ. Our construction of an adapted pair 
for pΛ generalizes the construction of an adapted pair in [13, Sect. 4 and 5] in case of a 
maximal parabolic subalgebra.

We will use Proposition 6.2, which here is quite easy to apply. Indeed it suffices to 
take S ∪ T to be the union of the Kostant cascade in g and the opposite of the Kostant 
cascade in g′. Moreover for each γ ∈ S+, resp. γ ∈ S−, we take the Heisenberg set Γγ

to be equal, resp. to be the opposite, to Hγ , resp. of H−γ , where Hγ , resp. H−γ , is the 
largest Heisenberg set with centre γ, resp. −γ, included in Δ+, resp. Δ+

π′ , as defined 
in 6.1. Here moreover we set T ∗ = ∅. Then Lemma 6.1 will give most of conditions of 
Proposition 6.2.

8.1. The Kostant cascades

Recall 6.1 the Kostant cascade βπ of g and set β0
π = βπ \ (βπ ∩ π). If g is of type Bn

then we have that

β0
π = {βi = ε2i−1 + ε2i | 1 ≤ i ≤ [n/2]},

and if g is of type Dn then

β0
π = {βi = ε2i−1 + ε2i | 1 ≤ i ≤ [(n− 1)/2]}.

Moreover if g is of type Bn, then we have that

βπ ∩ π = {α2i−1 | 1 ≤ i ≤ [(n + 1)/2]}.

If g is of type Dn and n odd, then we have that

βπ ∩ π = {α2i−1 | 1 ≤ i ≤ (n− 1)/2},

and if g is of type Dn and n even, then we have that

βπ ∩ π = {αn, α2i−1 | 1 ≤ i ≤ n/2}.

Now for the Kostant cascade βπ′ of g′, set similarly β0
π′ = βπ′ \ (βπ′ ∩ π′). If g is of type 

Bn, then we have that
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β0
π′ =

{
β′
i = εi − εs+1−i | 1 ≤ i ≤ (s− 1)/2,

β′′
j = εs+2�+2j−1 + εs+2�+2j | 1 ≤ j ≤ [(n− s− 2�)/2]

}
and

βπ′ ∩ π′ =
{
αs+2�+2i−1, αs+2j−1 | 1 ≤ i ≤ [(n− s− 2� + 1)/2], 1 ≤ j ≤ �

}
.

Now suppose that g is of type Dn and that s + 2� ≤ n − 2. Then we have that

β0
π′ =

{
β′
i = εi − εs+1−i | 1 ≤ i ≤ (s− 1)/2,

β′′
j = εs+2�+2j−1 + εs+2�+2j | 1 ≤ j ≤ [(n− s− 1 − 2�)/2]

}
.

If moreover n is odd then

βπ′ ∩ π′ =
{
αn, αs+2�+2i−1, αs+2j−1 | 1 ≤ i ≤ (n− s− 2�)/2, 1 ≤ j ≤ �

}
and if n is even then

βπ′ ∩ π′ =
{
αs+2�+2i−1, αs+2j−1 | 1 ≤ i ≤ (n− s− 2�− 1)/2, 1 ≤ j ≤ �

}
.

Now assume that g is of type Dn and that s + 2� ∈ {n − 1, n}. Since the case π′ =
π \ {αs, αs+2, . . . , αs+2�−2, αn−1} and the case π′ = π \ {αs, αs+2, . . . , αs+2�−2, αn} are 
symmetric, one may suppose that we are in the latter case. More precisely if n is odd 
then we assume that π′ = π \ {αs, αs+2, . . . , αn−2, αn} and if n is even then we assume 
that π′ = π \ {αs, αs+2, . . . , αn−3, αn}. If n is odd then

β0
π′ =

{
β′
i = εi − εs+1−i ; 1 ≤ i ≤ (s− 1)/2

}
and βπ′ ∩ π′ =

{
αs+2i−1 = εs+2i−1 − εs+2i ; 1 ≤ i ≤ � = (n− s)/2

}
.

If n is even then

β0
π′ =

{
β′
i = εi − εs+1−i, β

′′
1 = εn−2 − εn ; 1 ≤ i ≤ (s− 1)/2

}
and βπ′ ∩ π′ =

{
αs+2i−1 = εs+2i−1 − εs+2i ; 1 ≤ i ≤ �− 1 = (n− 3 − s)/2

}
.

8.2. Conditions (i) to (v) of Proposition 6.2

For g of type Dn with n even and s + 2� ≤ n − 2, we set

S+ = β0
π � {βn/2 := αn = εn−1 + εn}.

Otherwise we set S+ = β0
π.
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For g of type Dn with n odd and s + 2� ≤ n − 2, we set

S− = −β0
π′ � {−β′′

(n−2�−s)/2 := −αn = −(εn−1 + εn)}.

Otherwise we set S− = −β0
π′ .

For g of type Dn with n even and s + 2� ≤ n − 2, we set

T+ = (βπ ∩ π) \ {αn}.

For g of type Dn with n odd and s + 2� ≤ n − 2, we set

T− = −(βπ′ ∩ π′) \ {−αn}.

Otherwise we set T+ = βπ ∩ π and T− = −(βπ′ ∩ π′). Finally we set S = S+ � S−, 
T = T+ � T− and T ∗ = ∅. Then S+, T+ ⊂ Δ+ and S−, T− ⊂ Δ−

π′ . In all cases we have 
that βπ = S+ � T+ and −βπ′ = S− � T−.

Then for all γ ∈ S+, resp. γ ∈ S−, we choose Γγ = Hγ , resp. Γγ = −H−γ , where Hγ , 
resp. H−γ , is the largest Heisenberg set with centre γ ∈ βπ, resp. −γ ∈ βπ′ , included in 
Δ+, resp. Δ+

π′ , as defined in 6.1. Observe also that, if α ∈ βπ ∩ π, resp. α ∈ βπ′ ∩ π′, 
then Hα = {α}.

By Lemma 6.1 i) we have that Δ+ = �γ∈S+ Γγ � T+, resp. Δ−
π′ = �γ∈S− Γγ �

T−, hence condition (iv) of Proposition 6.2 is satisfied. Conditions (ii) and (iii) of 
Proposition 6.2 follow from Lemma 6.1 ii). Moreover condition (v) of Proposition 6.2 is 
empty since T ∗ = ∅. Below we check condition (i) of Proposition 6.2.

Lemma. S|hΛ is a basis for h∗Λ.

Proof. Recall that hΛ = h′ and remark that |S| = dim h′ = n − � − 1.
Assume first that g is of type Dn with n odd and that s + 2� = n. Then |S| =

(n − 1)/2 + (s − 1)/2 = n − � − 1 and one may order the elements su of S as

β1, β2, . . . , β(n−1)/2, −β′
1, −β′

2, . . . , −β′
(s−1)/2

and choose the following (ordered) basis hv of h′:

hi = α∨
2i, 1 ≤ i ≤ (n− 1)/2,

h(n−1)/2+2j−1 = h′
2j−1 = α∨

2j−1, h(n−1)/2+2j = h′
2j = α∨

s−2j ,

1 ≤ j ≤ [(s + 1)/4]

without repetition for the h′
j ’s. Then observe that, for all 1 ≤ i ≤ (n − 3)/2, one has 

βi = ε2i−1 + ε2i = �2i − �2i−2 if we set �0 = 0 and β(n−1)/2 = εn−2 + εn−1 =
�n−1 + �n −�n−3. It follows that the matrix (su(hv))1≤u, v≤(n−�−1) has the form
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(
A 0
∗ B

)

where A = (βi(hj))1≤i, j≤(n−1)/2 is a (n −1)/2 × (n −1)/2 lower triangular matrix with 1
on the diagonal, and B = (−β′

i(h′
j))1≤i, j≤(s−1)/2 is a (s −1)/2 ×(s −1)/2 lower triangular 

matrix with −1 on the diagonal by Lemma 6.4. Hence det(su(hv))1≤u, v≤(n−�−1) �= 0 and 
we are done in this case.

Assume now that g is of type Dn with n even and that s +2� = n −1. Then consider the 
parabolic subalgebra p of g associated to π′ = π\{αs, αs+2, . . . , αn−3, αn} (1 ≤ s ≤ n −3
is still an odd integer). Then |S| = (n − 2)/2 + (s − 1)/2 + 1 = n − � − 1 and one may 
order the elements su of S as

β1, β2, . . . , β(n−2)/2, −β′
1, −β′

2, . . . , −β′
(s−1)/2, εn − εn−2

and choose the following (ordered) basis hv of h′:

hi = α∨
2i, 1 ≤ i ≤ (n− 2)/2,

h(n−2)/2+2j−1 = h′
2j−1 = α∨

2j−1, h(n−2)/2+2j = h′
2j = α∨

s−2j ,

1 ≤ j ≤ [(s + 1)/4],
hn−�−1 = α∨

n−1

without repetition for the h′
j ’s. Similarly as above one obtains that the matrix 

(su(hv))1≤u, v≤(n−�−1) has the form

(
A 0
∗ B

)

where A = (βi(hj))1≤i, j≤(n−2)/2 is a (n − 2)/2 × (n − 2)/2 lower triangular matrix with 
1 on the diagonal, and B is a (s + 1)/2 × (s + 1)/2 lower triangular matrix with −1 on 
the diagonal by Lemma 6.4. Hence det(su(hv))1≤u, v≤(n−�−1) �= 0 and we are done in 
this case.

Assume that g is of type Bn. Then one may order the elements su of S as follows:

si = βi, 1 ≤ i ≤ [n/2],
s[n/2]+j = −β′

j , 1 ≤ j ≤ (s− 1)/2,
s[n/2]+(s−1)/2+k = −β′′

k , 1 ≤ k ≤ [(n− s− 2�)/2]

and choose the following (ordered) basis hv of h′:

hi = α∨
2i, 1 ≤ i ≤ [n/2]

h[n/2]+2j−1 = h′
2j−1 = α∨

2j−1, h[n/2]+2j = h′
2j = α∨

s−2j , 1 ≤ j ≤ [(s + 1)/4]
h = α∨ , 1 ≤ k ≤ [(n− 2�− s)/2]
[n/2]+(s−1)/2+k s+2�+2k
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without repetition for the h′
j’s. Now if g is of type Dn with s + 2� ≤ n − 2, we take the 

same set S ordered as above and the same basis of h′, up to replacing α∨
n by 2εn. Then 

by what we explained before, the matrix (su(hv))1≤u, v≤(n−�−1) has the form

(
A 0 0
∗ B 0
∗ ∗ C

)

where A is a [n/2] × [n/2] lower triangular matrix with one on the diagonal (except for 
the case n even where 2 is the last entry of the diagonal), B is a (s −1)/2 ×(s −1)/2 lower 
triangular matrix with −1 on the diagonal (by Lemma 6.4) and C is a [(n − s − 2�)/2] ×
[(n − s − 2�)/2] lower triangular matrix with −1 on the diagonal (except for the case 
n odd where −2 is the last entry of the diagonal). Hence det(su(hv))1≤u, v≤(n−�−1) �= 0
and the proof is complete. �
8.3. Condition (vi) of Proposition 6.2

Lemma. One has that |T | = ind pΛ.

Proof. Recall (1) of Sect. 4, that ind pΛ = |E(π′)| where E(π′) is the set of 〈ij〉-orbits 
in π. Assume first that g is of type Dn and that s + 2� ∈ {n − 1, n}. If n is odd, then

E(π′) =
{

Γu = {αu, αs−u}, 1 ≤ u ≤ (s− 1)/2,

Γv = {αv}, s ≤ v ≤ n− 2, Γn−1 = {αn, αn−1}
}
.

If n is even, assuming that π′ = π \{αs, αs+2, . . . , αs+2�−2, αn}, with s +2� −2 = n −3, 
then

E(π′) =
{

Γu = {αu, αs−u}, 1 ≤ u ≤ (s− 1)/2,

Γv = {αv}, s ≤ v ≤ n− 3, Γn−1 = {αn−2, αn−1}, Γn = {αn}
}
.

Hence ind pΛ = |E(π′)| = n − (s + 1)/2.
On the other hand, one has that: for n even, |T+| = n/2 + 1 and |T−| = � − 1 =

(n − 3 − s)/2, and for n odd, |T+| = (n − 1)/2, |T−| = � = (n − s)/2. Then |T | = ind pΛ
in both cases.

Now assume that g is of type Bn. Then

E(π′) =
{

Γu = {αu, αs−u}, 1 ≤ u ≤ (s− 1)/2,

Γv = {αv}, s ≤ v ≤ n
}
.

Hence ind pΛ = |E(π′)| = n − (s − 1)/2 and one checks that this is also equal to |T |.
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Finally assume that g is of type Dn and that s + 2� ≤ n − 2. Then

E(π′) =
{

Γu = {αu, αs−u}, 1 ≤ u ≤ (s− 1)/2,

Γv = {αv}, s ≤ v ≤ n− 2, Γn−1 = {αn−1, αn}
}
.

Hence ind pΛ = |E(π′)| = n − (s + 1)/2 and one checks that this is also equal to |T |. �
8.4. All conditions of Proposition 6.2 are satisfied, thus one can deduce the following 

corollary.

Corollary. Set y =
∑

α∈S xα. Then y is regular in p∗Λ and more precisely ad pΛ(y) ⊕gT =
p∗Λ. Moreover since S|hΛ is a basis for h∗Λ, there exists a uniquely defined element h ∈ hΛ
such that α(h) = −1 for all α ∈ S. Thus the pair (h, y) is an adapted pair for pΛ.

8.5. Coincidence of bounds of Sect. 4

Recall Remark 3a of subsection 6.2 that it suffices to show that both bounds in (4)
of Sect. 4 coincide to obtain a Weierstrass section for coadjoint action of pΛ. This is the 
following lemma.

Lemma. For all Γ ∈ E(π′), one has that εΓ = 1. Then Y (pΛ) is a polynomial algebra 
over k.

Proof. Recall subsection 4.3. We will show, for all Γ ∈ E(π′) such that j(Γ) = Γ, that 
dΓ /∈ Bπ or d′Γ /∈ Bπ′ , hence εΓ = 1. Recall the 〈ij〉-orbits in E(π′) given in the proof of 
Lemma 8.3.

For all 1 ≤ u ≤ (s − 1)/2, one has that dΓu
= �u + �s−u /∈ Bπ since u and s − u are 

of different parity. Hence εΓu
= 1.

For s ≤ v ≤ n − 2, (with the restriction that v ≤ n − 3 if n even and g of type Dn

with s + 2� = n − 1) one has that dΓv
= �v /∈ Bπ if v is odd and d′Γv

= �′
v /∈ Bπ′ if v is 

even. Hence εΓv
= 1.

Now if g is of type Dn, s +2� = n −1 and n even, one has that dΓn−1 = �n−2+�n−1 /∈
Bπ and dΓn

= �n /∈ Bπ. Hence εΓn−1 = εΓn
= 1.

If g is of type Dn, s + 2� = n and n odd, then dΓn−1 = �n−1 + �n ∈ Bπ, but 
d′Γn−1

= �′
n−1 /∈ Bπ′ . Hence εΓn−1 = 1.

If g is of type Dn, s + 2� ≤ n − 2, then dΓn−1 = �n−1 +�n, and d′Γn−1
= �′

n−1 +�′
n. 

One of them does not belong to Bπ, resp. Bπ′ , since g′ is of type Dn−s−2�, and since n
and n − s − 2� are of different parity. Hence εΓn−1 = 1.

Finally assume that g is of type Bn and take v ∈ {n − 1, n}. Then dΓv
= �v /∈ Bπ if 

n is even. If now n is odd then dΓn
= �n /∈ Bπ while dΓn−1 = �n−1 ∈ Bπ. But since n is 

odd, αn−1 ∈ π′ and d′Γ = �′
n−1 /∈ Bπ′ . Hence εΓv

= 1. This completes the proof. �

n−1
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8.6. A Weierstrass section

Summarizing the above results, we obtain by Remark 3a of subsection 6.2 the following 
Theorem.

Theorem. Let g be a complex simple Lie algebra of type Bn, resp. Dn with n ≥ 2, resp. 
n ≥ 4, and let p = n− ⊕ h ⊕ n

+
π′ be a parabolic subalgebra associated to π′ = π \

{αs, αs+2, . . . , αs+2�} where s, � ∈ N∗ and 1 ≤ s ≤ n − 2�, s odd. Then there exists a 
Weierstrass section for coadjoint action of pΛ.

8.7. Weights and degrees

For completeness we give below the weights and degrees of a set of homogeneous 
and h-weight algebraically independent generators of Y (pΛ). Since both bounds in (4) of 
Sect. 4 coincide then, for all Γ ∈ E(π′), each homogeneous and h-weight generator has 
δΓ as a weight given by (2) of Sect. 4 and a degree ∂Γ given by (5) of Sect. 4 (since here 
for all Γ ∈ E(π′), we have that j(Γ) = Γ).

Below are weights and degrees of a set of homogeneous and h-weight algebraically 
independent generators of Y (pΛ), each of them corresponding to an 〈ij〉-orbit Γr in 
E(π′).

Assume that g is of type Bn and that s + 2� < n: 

〈ij〉-orbit in E(π′) Weight Degree
Γu = {αu, αs−u}, −2�s s + 1 + 2u
1 ≤ u ≤ (s − 1)/2

Γv = {αv}, −2�v v + 1
v = s + 2k, 0 ≤ k ≤ �

Γv = {αv}, −�v−1 − �v+1 v + 1
v = s + 2k − 1, 1 ≤ k ≤ �

Γv = {αv}, −2�s+2� 2v + 1 − s − 2�
s + 2� + 1 ≤ v ≤ n − 1

Γn = {αn} −�s+2� n − � + (1 − s)/2

Assume that g is of type Bn and that s + 2� = n (hence n is odd):

〈ij〉-orbit in E(π′) Weight Degree
Γu = {αu, αs−u}, −2�s s + 1 + 2u
1 ≤ u ≤ (s − 1)/2

Γv = {αv}, −2�v v + 1
v = s + 2k, 0 ≤ k ≤ � − 1

Γv = {αv}, −�v−1 − �v+1 v + 1
v = s + 2k − 1, 1 ≤ k ≤ � − 1

Γn−1 = {αn−1} −�n−2 − 2�n n

Γn = {αn} −2�n (n + 1)/2
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Assume that g is of type Dn and that s + 2� ≤ n − 2:
〈ij〉-orbit in E(π′) Weight Degree
Γu = {αu, αs−u}, −2�s s + 1 + 2u
1 ≤ u ≤ (s − 1)/2

Γv = {αv}, −2�v v + 1
v = s + 2k, 0 ≤ k ≤ �

Γv = {αv}, −�v−1 − �v+1 v + 1
v = s + 2k − 1, 1 ≤ k ≤ �

Γv = {αv}, −2�s+2� 2v + 1 − s − 2�
s + 2� + 1 ≤ v ≤ n − 2

Γn−1 = {αn−1, αn} −2�s+2� 2n − s − 2� − 1

Assume that g is of type Dn and that s + 2� = n (hence n is odd):

〈ij〉-orbit in E(π′) Weight Degree
Γu = {αu, αs−u}, −2�s s + 1 + 2u
1 ≤ u ≤ (s − 1)/2

Γv = {αv}, −2�v v + 1
v = s + 2k, 0 ≤ k ≤ � − 1

Γv = {αv}, −�v−1 − �v+1 v + 1
v = s + 2k − 1, 1 ≤ k ≤ � − 1

Γn−1 = {αn−1, αn} −�n−2 − 2�n n

Assume that g is of type Dn and that s + 2� = n − 1. Hence n is even and we assume 
that π′ = π \ {αs, αs+2, . . . , αn−3, αn}:

〈ij〉-orbit in E(π′) Weight Degree
Γu = {αu, αs−u}, −2�s s + 1 + 2u
1 ≤ u ≤ (s − 1)/2

Γv = {αv}, −2�v v + 1
v = s + 2k, 0 ≤ k ≤ � − 1

Γv = {αv}, −�v−1 − �v+1 v + 1
v = s + 2k − 1, 1 ≤ k ≤ � − 1

Γn−1 = {αn−1, αn−2} −2(�n−3 + �n) 3n/2

Γn = {αn} −2�n n/2

8.8. 

Remark. Assume that the simple Lie algebra g is of type Bn or Dn and that π′ =
π\{αs, αs+4}, with s odd and consider the truncated parabolic subalgebra pΛ associated 
to π′. In this case the lower and upper bounds for ch (Y (pΛ)) in (4) of Sect. 4 do not 
coincide in general and then we do not know for the moment whether polynomiality of 
Y (pΛ) holds or not. However the adapted pair that we have constructed in subsection 8.2



F. Fauquant-Millet / Journal of Algebra 580 (2021) 299–365 329
using the set S = β0
π∪(−β0

π′) (at least for type Bn) does no more work in this case. Indeed 
one may notice that for all β ∈ β0

π, and for all β′ ∈ β0
π′ , one has β(α∨

s+2) = β′(α∨
s+2) = 0

while α∨
s+2 ∈ hΛ. It follows that the restriction of β0

π ∪ (−β0
π′) to hΛ cannot give a basis 

for h∗Λ.

9. Cases 1c and 1d for type B or D

Recall the notation of subsection 1.2 and Sect. 3. In this Section the Lie algebra g is 
simple of type Bn, n ≥ 4, resp. Dn, n ≥ 6, and we consider the parabolic subalgebra 
p = ps, 1 = p

−
π′ of g associated to the subset π′ = π \ {αs, αs+2} of simple roots, with s

an even integer, 2 ≤ s ≤ n − 2, resp. 2 ≤ s ≤ n − 4. We are then in the cases 1c and 1d 
of subsection 1.7.

The Levi subalgebra g′ of p is isomorphic to the product sls×sl2×som, with m ∈ N∗, 
and m ≥ 4 if g is of type Dn. More precisely if g is of type Bn one has that m = 2n −2s −3, 
and when g is of type Dn one has that m = 2n − 2s − 4. We adopt the convention that 
so1 = {0}, so3 = sl2, so4 = sl2 × sl2 and so6 = sl4.

In these cases the lower and upper bounds given by (4) of Sect. 4 do not coincide, 
hence we cannot conclude with this criterion that the algebra Sy(p) = Y (pΛ) is or 
not polynomial. However we will construct an adapted pair for the truncated parabolic 
subalgebra pΛ associated to p. We will then prove that the improved upper bound defined 
in Sect. 5 is equal to the lower bound (namely that equality (8) of Sect. 5 holds). This 
implies by Remark 3b of subsection 6.2 that there is a Weierstrass section for coadjoint 
action of pΛ and then that the algebra of symmetric invariants Y (pΛ) = Sy(p) is a 
polynomial algebra over k for which the weights and degrees of homogeneous and h-
weight generators may also be computed.

We will still use Proposition 6.2 but here the set S cannot be taken to contain β0
π ∪

(−β0
π′) as in Sect. 8. Indeed assume that S contains the elements β1, . . . , βs/2 of the 

Kostant cascade of g. Then the semisimple element h of the adapted pair should verify 
both equalities �s(h) = ((ε1 + ε2) + . . . + (εs−1 + εs))(h) = (−1) × s/2 and �s(h) = 0
by definition of hΛ (see Sect. 3) and since h ∈ hΛ and −2�s ∈ Λ(p) by (4) of Sect. 4. 
Hence we obtain a contradiction. Also for each γ ∈ S, a more complicated Heisenberg 
set Γγ with centre γ than the set Hγ used in previous section will be taken in general. 
We will also take T ∗ �= ∅.

9.1. Condition (i) of Proposition 6.2

For type Bn, we set

S+ =
{
εs, βi = ε2i−1 + ε2i, εs−1 + εs+1, ε2j + ε2j+1;

1 ≤ i ≤ s/2 − 1, s/2 + 1 ≤ j ≤ [(n− 1)/2]
}

and
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S− =
{
εs−i − εi, −β′′

j−(s+2)/2 = −ε2j−1 − ε2j ;
1 ≤ i ≤ s/2 − 1, s/2 + 2 ≤ j ≤ [n/2]

}
.

For type Dn, we set

S+ =
{
εs − εn, εs + εn, βi = ε2i−1 + ε2i, εs−1 + εs+1, ε2j + ε2j+1;

1 ≤ i ≤ s/2 − 1, s/2 + 1 ≤ j ≤ [(n− 2)/2]
}

and

S− =
{
εs−i − εi, −β′′

j−(s+2)/2 = −ε2j−1 − ε2j ;
1 ≤ i ≤ s/2 − 1, s/2 + 2 ≤ j ≤ [(n− 1)/2]

}
.

Remark that the above sets S± contain the same elements as those defined in [14]
or in [8] for maximal parabolic subalgebras, except for one of them which is missing, 
namely the element −εs+1 − εs+2, since it does no more belong to Δ−

π′ .
As we already noticed in Sect. 3 for type Bn, and also for type Dn (since s ≤ n − 4) 

we have that hΛ = h′. As in [14, Lem. 7.1], we prove the following lemma.

Lemma. Set S = S+ � S− as above. Then S|hΛ is a basis for h∗Λ.

Proof. The proof is quite similar to that of [14, Lem. 7.1]. We give it below for the 
reader’s convenience. First observe that |S| = n − 2. The elements of S will be denoted 
by si, with 1 ≤ i ≤ n −2. When g is of type Bn, we set sn−3 = εs and sn−2 = εn−1 +εn if 
n is odd, resp. sn−2 = −εn−1−εn if n is even. When g is of type Dn, we set sn−3 = εs−εn
and sn−2 = εs + εn. Then we set s′i = si for all 1 ≤ i ≤ n − 2 if g is of type Bn. If g is 
of type Dn, we set s′i = si for all 1 ≤ i ≤ n − 4, s′n−3 = εs and s′n−2 = εn. It suffices to 
verify that, if {hj}1≤j≤n−2 is a basis of hΛ = h′, then det(s′i(hj))1≤i, j≤n−2 �= 0.

To prove this, we order the basis {hj}1≤j≤n−2 of hΛ as

{
α∨

2i, 1 ≤ i ≤ s/2 − 1,
α∨
s−1, α

∨
2j−1, α

∨
s−2j−1, 1 ≤ j ≤ [s/4],

α∨
k , s + 1 ≤ k ≤ n, k �= s + 2

}
without repetitions. The elements s′i, 1 ≤ i ≤ n − 2, are ordered as

{
ε2i−1 + ε2i, 1 ≤ i ≤ s/2 − 1,

εs, εs−j − εj , 1 ≤ j ≤ s/2 − 1, εs−1 + εs+1,

ε2k + ε2k+1, −ε2k+1 − ε2k+2, s/2 + 1 ≤ k ≤ [(n− 3)/2],
(−1)n(εn−2 + εn−1), s′n−2

}
without repetitions.
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Then one verifies that (s′i(hj))1≤i, j≤n−2 =

⎛
⎜⎝
A 0 0 0
∗ B 0 0
∗ ∗ C 0
∗ ∗ ∗ D

⎞
⎟⎠ with A, resp. B, a 

(s/2 − 1) × (s/2 − 1), resp. s/2 × s/2, lower triangular matrix with 1, resp. −1, on its 
diagonal.

Moreover C = (1) and D =
(
D′ 0
∗ D′′

)
with D′ a (n − s − 4) × (n − s − 4) lower 

triangular matrix with alternating 1 and −1 on its diagonal, and D′′ an invertible 2 × 2
matrix. �
9.2. Conditions (ii), (iii) and (vi) of Proposition 6.2

To each γ ∈ S, we need now to associate a Heisenberg set Γγ with centre γ.
Recall that βi := ε2i−1 + ε2i, for all 1 ≤ i ≤ s/2 − 1, is a positive root which belongs 

to the Kostant cascade of g. We then set, for all 1 ≤ i ≤ s/2 − 1, Γβi
= Hβi

where Hβi

is the largest Heisenberg set with centre βi included in Δ+ as defined in 6.1.
For g of type Bn we set

Γεs−1+εs+1 = {εs−1 + εs+1, εs−1 ± εi, εs+1 ∓ εi ; s + 2 ≤ i ≤ n,

εs−1, εs+1, εs−1 − εs, εs + εs+1}.

For g of type Dn, Γεs−1+εs+1 is taken to be the same set as above but without εs−1 and 
εs+1 which are not roots in this type.

For s/2 +1 ≤ j ≤ [(n − 1)/2] for type Bn, resp. s/2 +1 ≤ j ≤ [(n − 2)/2] for type Dn, 
we set

Γε2j+ε2j+1 = {ε2j + ε2j+1, ε2j , ε2j+1,

ε2j ± εk, ε2j+1 ∓ εk ; 2j + 2 ≤ k ≤ n},

resp. the same set as above but without ε2j and ε2j+1.
For all 1 ≤ i ≤ s/2 − 1, we set

Γεs−i−εi = {εs−i − εi, εs−i − εj , εj − εi ; i + 1 ≤ j ≤ s− i− 1}.

For all s/2 + 2 ≤ j ≤ [n/2] for type Bn, resp. s/2 + 2 ≤ j ≤ [(n − 1)/2] for type Dn, 
we set Γ−ε2j−1−ε2j = −Hε2j−1+ε2j where Hε2j−1+ε2j is the largest Heisenberg set with 
centre β′′

j−(s+2)/2 := ε2j−1 + ε2j ∈ βπ′ included in Δ+
π′ , as defined in 6.1.

Finally for g of type Bn, we set Γεs = {εs} and for g of type Dn, we set Γεs+εn =
{εs + εn} and Γεs−εn = {εs − εn}.

By construction all the above sets Γγ , γ ∈ S, are Heisenberg sets with centre γ and 
they are pairwise disjoint.

Moreover the above sets Γγ , γ ∈ S, are chosen to be the same as in [8] (for type Bn), 
except for Γεs−1+εs+1 where here the roots εs−1 − εs and εs + εs+1 are added. However 
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the proofs of [8, Lem. 14 and 15], themselves based on Lemma 6.1 ii) and iii), can still 
be applied to show that conditions (ii) and (iii) of Proposition 6.2 are satisfied.

Now for the set T we take

T = {εs−1 + εs, εs−1 − εs+1, εs + εs+2,

ε2i−1 − ε2i, εs+2j − εs+2j+1, −εs+2k−1 + εs+2k ;
1 ≤ i ≤ s/2 − 1, 1 ≤ j ≤ [(n− s− 1)/2], 1 ≤ k ≤ [(n− s)/2]}.

One checks that T ⊂ Δ+ � Δ−
π′ and that T is disjoint from Γ = �γ∈S Γγ . Note also 

that this set T has the same elements as the set T in [8], except that αs−1 = εs−1 − εs
now belongs to Γεs−1+εs+1 , and is replaced by εs + εs+2. We check below that condition 
(vi) of Proposition 6.2 is satisfied.

Lemma. We have that |T | = ind pΛ.

Proof. One checks that |T | = n − s/2 + 1. Recall (1) of Sect. 4, that ind pΛ = |E(π′)|
where E(π′) is the set of 〈ij〉-orbits in π.

Denote by π′
1, π′

2, π′
3 the three irreducible components of π′. Then π′

1 is of type As−1, 
π′

2 is of type A1 and π′
3 is of type Bn−s−2, resp. Dn−s−2 if g is of type Bn, resp. Dn.

Then i|π′
1

exchanges αt and αs−t for all 1 ≤ t ≤ s/2 − 1 and fixes αs/2, i|π′
2

= Idπ′
2

and (ij)|π′
3

= Idπ′
3

since n and n − s − 2 are of the same parity (and n − s − 2 ≥ 2 if 
g is of type Dn). Moreover for all α ∈ π \ π′, i(α) = j(α) = α. Then the set E(π′) of 
〈ij〉-orbits in π is

E(π′) = {{αt, αs−t}, {αs/2}, {αu} ; 1 ≤ t ≤ s/2 − 1, s ≤ u ≤ n}.

They are n − s/2 + 1 in number. Hence the lemma. �
9.3. Condition (iv) and (v) of Proposition 6.2

If g is of type Bn, we take:

T ∗ = {εs − εi, εs + εj , (−1)nεn ; 1 ≤ i ≤ n, i �= s, s + 3 ≤ j ≤ n}.

If g is of type Dn, we take:

T ∗ = {εs − εi, εs + εj , (−1)n−1αn ; 1 ≤ i ≤ n− 1, i �= s, s + 3 ≤ j ≤ n− 1}.

In type Bn, note that this set T ∗ is the same as T ∗ in [8], except that two elements here 
are missing: εs + εs+1 which now belongs to Γεs−1+εs+1 and εs + εs+2 which now belongs 
to T . By construction T ∗ is disjoint from Γ � T .

Denote by Δ−
π̃′ the set of negative roots in the case when π̃′ = π \ {αs} (that is, the 

set of negative roots for the parabolic subalgebra pπ̃′ as considered in [8]) and recall 
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that we denote by Δ−
π′ the set of negative roots for pπ′ in our present case when π′ =

π \ {αs, αs+2}. Then one has that Δ−
π̃′ = Δ−

π′ � −Hεs+1+εs+2 , where Hεs+1+εs+2 is the 
largest Heisenberg set with centre εs+1 + εs+2 which is included in Δ+

π̃′ as defined in 
6.1. By a similar proof as in [8, Lem. 13] and using Lemma 6.1 i), one checks that 
Δ+ � Δ−

π′ = Γ � T � T ∗. Hence condition (iv) of Proposition 6.2 is satisfied. It remains 
to verify condition (v) of Proposition 6.2. The proofs of [8, Lem. 16, 17, 18, 19] can still 
be applied in type Bn. In type Dn they have to be adapted. For completeness, we give 
a proof below. Set y =

∑
γ∈S xγ .

Lemma. Let γ ∈ T ∗. Then gγ ⊂ ad pΛ(y) + gT .

Proof. Recall (Sect. 3) that pΛ = n−⊕h′⊕n
+
π′ and that we have chosen, for each α ∈ Δ, 

a nonzero root vector xα ∈ gα. Given γ, δ ∈ Δ± such that γ + δ ∈ Δ±, one has that 
ad xγ(xδ) = [xγ , xδ] ∈ gγ+δ \{0} by say [6, 1.10.7], then it is a nonzero multiple of xγ+δ.

Assume that g is of type Bn and rescale if necessary the nonzero root vectors xγ, 
γ ∈ Δ \ S.

Let s + 3 ≤ j ≤ n − 1 and j odd. Then one has that

{
ad xεj (y) = xεs+εj + x−εj+1

ad x−εs−εj+1(y) = x−εj+1 .

Hence xεs+εj = ad (xεj − x−εs−εj+1)(y) ∈ ad pΛ(y). If j = n is odd, then xεs+εn =
ad xεn(y) ∈ ad pΛ(y). Let s + 4 ≤ j ≤ n and j even. Then xεs+εj = ad (xεj −
x−εs−εj−1)(y) ∈ ad pΛ(y).

Let 1 ≤ i ≤ s − 3 and i odd, or s + 2 ≤ i ≤ n − 1 and i even. Then

{
xεs−εi = ad (x−εi − xεi+1−εs + x−εs−i−2−εs)(y) if i ≤ s/2 − 2
xεs−εi = ad (x−εi − xεi+1−εs)(y) otherwise.

Hence xεs−εi ∈ ad pΛ(y). Let 2 ≤ i ≤ s − 2 and i even, or s + 3 ≤ i ≤ n and i odd. Then
⎧⎪⎪⎨
⎪⎪⎩
xεs−εi = ad (x−εi − xεi−1−εs + x−εs−i+2−εs)(y) if 4 ≤ i ≤ s/2
xεs−εi = ad (x−ε2 − xε1−εs + x−εs−εs+1)(y) if i = 2
xεs−εi = ad (x−εi − xεi−1−εs)(y) otherwise.

Hence xεs−εi ∈ ad pΛ(y). If i = s − 1 then

xεs−εs−1 = ad (x−εs−1 − xεs+1−εs)(y) ∈ ad pΛ(y).

If i = s + 1 then

xεs−εs+1 = ad (x−εs+1 − xεs−1−εs)(y) ∈ ad pΛ(y).
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If i = n is even, then

xεs−εn = ad x−εn(y) ∈ ad pΛ(y).

Finally, if n is odd, then x−εn = ad x−εs−εn(y) ∈ ad pΛ(y) and if n is even, then xεn =
ad x−εs+εn(y) ∈ ad pΛ(y). Hence the lemma for g of type Bn.

Assume now that g is of type Dn.
Let s + 3 ≤ j ≤ n − 2 and j odd. One may apply Lemma 6.3 with γ1 = εs + εn ∈ S, 

γ′
1 = εj − εn /∈ S, γ2 = −εj − εj+1 ∈ S, γ′

2 = εj + εn /∈ S, γ3 = εs − εn ∈ S, 
γ′
3 = −εs − εj+1 /∈ S. Then up to rescaling the nonzero root vectors xεj−εn , x−εs−εj+1 , 

xεj+εn in pΛ and x−εj+1−εn , xεn−εj+1 , xεs+εj in p∗Λ, one has that, by Lemma 6.3
⎧⎪⎪⎨
⎪⎪⎩

[xεj−εn , xεs+εn ] = [xεj+εn , xεs−εn ] = xεs+εj

[xεj−εn , x−εj−εj+1 ] = [x−εs−εj+1 , xεs−εn ] = x−εj+1−εn

[x−εs−εj+1 , xεs+εn ] = [xεj+εn , x−εj−εj+1 ] = xεn−εj+1 .

It follows that⎧⎪⎪⎨
⎪⎪⎩
xεs+εj + x−εj+1−εn = ad xεj−εn(y) ∈ ad pΛ(y)
x−εj+1−εn + xεn−εj+1 = ad x−εs−εj+1(y) ∈ ad pΛ(y)
xεn−εj+1 + xεs+εj = ad xεj+εn(y) ∈ ad pΛ(y).

Hence xεs+εj ∈ ad pΛ(y).
Now if j = n − 1 is odd, then xεs+εn−1 = ad xεn−1−εn(y) ∈ ad pΛ(y). Let s + 4 ≤ j ≤

n −1 and j even. Then similarly as above (by Lemma and Proposition 6.3), one has that
⎧⎪⎪⎨
⎪⎪⎩
xεs+εj + x−εj−1−εn = ad xεj−εn(y) ∈ ad pΛ(y)
x−εj−1−εn + xεn−εj−1 = ad x−εs−εj−1(y) ∈ ad pΛ(y)
xεn−εj−1 + xεs+εj = ad xεj+εn(y) ∈ ad pΛ(y).

Hence xεs+εj ∈ ad pΛ(y).
Let 1 ≤ i ≤ s − 3 and i odd, or s + 2 ≤ i ≤ n − 2 and i even. Again, up to rescaling 

some nonzero root vectors, Lemma and Proposition 6.3 imply that
⎧⎪⎪⎨
⎪⎪⎩
xεs−εi + xεi+1−εn = ad x−εi−εn(y) ∈ ad pΛ(y)
xεi+1+εn + xεs−εi = ad xεn−εi(y) ∈ ad pΛ(y)
xεi+1−εn + xεi+1+εn ∈ ad pΛ(y)

since {
xεi+1−εn + xεi+1+εn = ad (xεi+1−εs − x−εs−i−2−εs)(y) if i ≤ s/2 − 2
x + x = ad x (y) otherwise.
εi+1−εn εi+1+εn εi+1−εs
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Hence xεs−εi ∈ ad pΛ(y). For i = n − 1 even, one has that xεs−εn−1 = ad xεn−εn−1(y) ∈
ad pΛ(y). For 2 ≤ i ≤ s − 2 and i even, or s + 3 ≤ i ≤ n − 1 and i odd, a similar 
computation shows that one also has that xεs−εi ∈ ad pΛ(y) in these cases. Let i = s −1. 
Then Lemma 6.3 implies that

⎧⎪⎪⎨
⎪⎪⎩
xεs−εs−1 + xεs+1−εn = ad x−εs−1−εn(y)
xεs+1−εn + xεs+1+εn = ad xεs+1−εs(y)
xεs+1+εn + xεs−εs−1 = ad xεn−εs−1(y).

Hence xεs−εs−1 ∈ ad pΛ(y). A similar computation shows that xεs−εs+1 ∈ ad pΛ(y).
Finally assume that n is even. Then ad x−εs−εn−1(y) = x−αn

+ x−αn−1 ∈ ad pΛ(y)
and x−αn−1 ∈ gT . Thus x−αn

∈ ad pΛ(y) + gT . If n is odd, then ad xεn−1−εs(y) =
xαn

+ xαn−1 ∈ ad pΛ(y) and xαn−1 ∈ gT . Thus xαn
∈ ad pΛ(y) + gT . The proof is 

complete. �
9.4. All conditions of Proposition 6.2 are satisfied. Thus one has the following corol-

lary.

Corollary. Keep the above notation. One has that

ad pΛ(y) ⊕ gT = p∗Λ

with dim(gT ) = ind(pΛ) that is, y is regular in p∗Λ. Moreover, by Lemma 9.1, there exists 
a uniquely defined element h ∈ hΛ such that γ(h) = −1 for all γ ∈ S. Then (h, y) is an 
adapted pair for pΛ.

9.5. The semisimple element of the adapted pair

By direct computation, one may give the expansion of the semisimple element h of 
the adapted pair for pΛ obtained in Corollary 9.4.

Lemma. In terms of the elements εi, 1 ≤ i ≤ n, the semisimple element h ∈ hΛ of the 
adapted pair (h, y) obtained in Corollary 9.4 has the following expansion. Set u = 0 in 
type Dn, resp. u = 1 in type Bn.

h =
∑[s/4]

k=1 (s/2 + 2k − 1)ε2k−1 +
∑s/2−1

k=[s/4]+1(3s/2 − 2k)ε2k−1

−
∑[s/4]

k=1 (s/2 + 2k)ε2k −
∑s/2−1

k=[s/4]+1(3s/2 + 1 − 2k)ε2k

+(s/2)εs−1 − εs − (s/2 + 1)εs+1

+
∑[(n−s−1+u)/2]

k=1 (2k − 1 + s/2)εs+2k

−
∑[(n−s+u)/2](2k − 2 + s/2)ε .
k=2 s+2k−1
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In terms of the coroots α∨
k , 1 ≤ k ≤ n, k /∈ {s, s + 2}, the element h has the following 

expansion. Set

H = −
∑s/2−1

k=1 kα∨
2k +

∑[s/4]
k=1 (s/2 + k)α∨

2k−1

+
∑s/2

k=[s/4]+1(3s/2 + 1 − 3k)α∨
2k−1

+
∑[(n−2+u)/2]

k=s/2+1 (k − 1 − s/2)α∨
2k

−
∑[(n−1+u)/2]

k=s/2+1 kα∨
2k−1.

Then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h = H + (n− s− 2)/4α∨
n if g is of type Bn with n even

h = H − (n + 1)/4α∨
n if g is of type Bn with n odd

h = H − n/4(α∨
n−1 + α∨

n) if g is of type Dn with n even
h = H + (n− s− 3)/4(α∨

n−1 + α∨
n) if g is of type Dn with n odd.

9.6. Computation of the improved upper bound and the lower bound

Recall the notation of Sect. 4 and 5. One obtains the following Lemma.

Lemma. If g is of type Bn, resp. Dn, then

∏
Γ∈E(π′)

(1 − eδΓ)−1 =
∏
γ∈T

(1 − e−(γ+s(γ)))−1

More precisely one has the following.

(i) If g is of type Bn and s + 2 < n, then

ch (Y (pΛ)) = (1 − e−2�s)−s/2(1 − e−�s)−1(1 − e−2�s+2)−(n−s−2)

(1 − e−�s+2)−1(1 − e−(�s+�s+2))−1.

(ii) If g is of type Bn and n = s + 2, then

ch (Y (pΛ)) = (1 − e−2�s)−s/2(1 − e−�s)−1

(1 − e−2�s+2)−1(1 − e−(�s+2�s+2))−1.

(iii) If g is of type Dn, then

ch (Y (pΛ)) = (1 − e−2�s)−s/2(1 − e−�s)−1(1 − e−2�s+2)−(n−s−3)

(1 − e−�s+2)−2(1 − e−(�s+�s+2))−1.
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Proof. Recall the set E(π′) given in the proof of Lemma 9.2 and set for all 1 ≤ t ≤ s/2 −1, 
Γt = {αt, αs−t}, Γs/2 = {αs/2} and Γu = {αu} for all s ≤ u ≤ n. Observe that j(Γ) = Γ
(and then i(Γ ∩ π′) = j(Γ) ∩ π′ = Γ ∩ π′) for all Γ ∈ E(π′), except in type Dn, with n
odd, for Γ = {αn−1} or Γ = {αn}. Recall for all Γ ∈ E(π′) the weight δΓ defined in (2)
of Sect. 4. One checks that:

∀ 1 ≤ t ≤ s/2 − 1, δΓt
= 2(�′

t −�t + �′
s−t −�s−t) = −2�s.

Moreover δΓs/2 = 2(�′
s/2 − �s/2) = −�s, δΓs

= −2�s and δΓs+2 = −2�s+2. Finally 
δΓs+1 = 2(�′

s+1 −�s+1) = −(�s +�s+2), for type Dn and for type Bn if s + 2 < n. For 
type Bn with s + 2 = n one checks that δΓs+1 = −(�s + 2�s+2).

If s + 3 ≤ u ≤ n − 1 for type Bn, resp. s + 3 ≤ u ≤ n − 2 for type Dn, then one checks 
that δΓu

= −2�s+2. If u = n for g of type Bn (and s + 2 < n), resp. u = n − 1 or u = n

for g of type Dn, then one checks that δΓu
= −�s+2. Thus 

∏
Γ∈E(π′)(1 − eδΓ)−1 is equal 

to the right hand side of (i), (ii) or (iii).
It remains to check that 

∏
Γ∈E(π′)(1 − eδΓ)−1 =

∏
γ∈T (1 − e−(γ+s(γ)))−1. Recall the 

set T given before Lemma 9.2.
For γ = εs−1 + εs, one checks that

s(γ) = (ε1 + ε2) + . . . + (εs−3 + εs−2)

so that γ + s(γ) = �s.
For γ = εs−1 − εs+1, one checks that, if g is of type Bn,

s(γ) = 2((ε1 + ε2) + . . . + (εs−3 + εs−2)) + (εs−1 + εs+1) + 2εs

and if g of type Dn, then

s(γ) = 2((ε1 + ε2) + . . . + (εs−3 + εs−2)) + (εs−1 + εs+1) + (εs + εn) + (εs − εn)

and for both types that γ + s(γ) = 2�s.
For γ = εs + εs+2, one checks that

s(γ) = (ε1 + ε2) + . . . + (εs−3 + εs−2) + (εs−1 + εs+1)

so that γ + s(γ) = �s+2 for g of type Dn or g of type Bn with s + 2 < n, and that 
γ + s(γ) = 2�s+2 for g of type Bn with s + 2 = n.

Let 1 ≤ i ≤ s/2 − 1 and set γ = ε2i−1 − ε2i. As in [14, Proof of Lem. 7.9], one checks 
that:
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– If s ≤ 4i − 2, then

s(ε2i−1 − ε2i) = 2
s−2i∑
j=1

(εs−j − εj) + 4
s/2−i∑
j=1

(ε2j−1 + ε2j)

+2
i−1∑

j=s/2−i+1

(ε2j−1 + ε2j) + (ε2i−1 + ε2i) + 2εs

in type Bn and the same as above in type Dn but with 2εs replaced by (εs + εn) +
(εs − εn).

– If s > 4i − 2, then

s(ε2i−1 − ε2i) = 2
2i−1∑
j=1

(εs−j − εj) + 4
i−1∑
j=1

(ε2j−1 + ε2j)

+2
s/2−i∑
j=i+1

(ε2j−1 + ε2j) + 3(ε2i−1 + ε2i) + 2εs

in type Bn and the same as above in type Dn but with 2εs replaced by (εs + εn) +
(εs − εn). In both cases one obtains that γ + s(γ) = 2�s.

Let 1 ≤ j ≤ [(n − s − 1)/2] and set γ = εs+2j − εs+2j+1. One checks that:

s(γ) = 2((ε1 + ε2) + . . . + (εs−3 + εs−2)) + 2(εs−1 + εs+1)
−2

∑j
k=2(εs+2k−1 + εs+2k) + 2

∑j
k=2((εs+2k−2 + εs+2k−1)

+(εs+2j + εs+2j+1) + 2εs

in type Bn, resp. in type Dn with n even (with 2εs replaced by (εs − εn) + (εs − εn)), so 
that γ + s(γ) = 2�s+2.

In type Dn with n odd, for all 1 ≤ j ≤ [(n − s − 1)/2] − 1, one also obtains that 
γ + s(γ) = 2�s+2. If g is of type Dn, with n odd, then for γ = εs+2j − εs+2j+1 with 
j = [(n − s − 1)/2] = (n − s − 1)/2, one has that

s(γ) = (ε1 + ε2) + . . . + (εs−3 + εs−2) + (εs−1 + εs+1)
+(εs+2 + εs+3) + . . . (εn−3 + εn−2)
−((εs+3 + εs+4) + . . . + (εn−2 + εn−1)) + (εs + εn)

so that γ + s(γ) = �s+2.
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Let 2 ≤ k ≤ [(n − s)/2] and set γ = −εs+2k−1 + εs+2k. One checks that

s(γ) = 2((ε1 + ε2) + . . . + (εs−3 + εs−2)) + 2(εs−1 + εs+1)
−2

∑k
�=3(εs+2�−3 + εs+2�−2) + 2

∑k
�=2((εs+2�−2 + εs+2�−1)

−(εs+2k−1 + εs+2k) + 2εs

in type Bn, resp. in type Dn with n odd (with 2εs replaced by (εs − εn) + (εs − εn)), so 
that γ+s(γ) = 2�s+2. If g is of type Dn, with n even, then for all 2 ≤ k ≤ [(n −s)/2] −1, 
one also obtains that γ + s(γ) = 2�s+2.

Now for g of type Dn, with n even and for γ = −εs+2k−1+εs+2k, with k = [(n −s)/2] =
(n − s)/2, one has that

s(γ) = (ε1 + ε2) + . . . + (εs−3 + εs−2) + (εs−1 + εs+1)
+(εs+2 + εs+3) + . . . (εn−2 + εn−1)
−((εs+3 + εs+4) + . . . + (εn−3 + εn−2)) + (εs − εn)

so that γ + s(γ) = �s+2.
Finally set γ = εs+2 − εs+1 = −αs+1 ∈ T . Then one has that

s(γ) = 2((ε1 + ε2) + . . . + (εs−3 + εs−2)) + 2(εs−1 + εs+1) + 2εs

so that γ + s(γ) = �s +�s+2 if s + 2 < n and if s + 2 = n (necessarily in type Bn) then 
γ + s(γ) = �s + 2�s+2.

It follows that the lower and the improved upper bounds for ch (Y (pΛ)) coincide, then 
equalities in (i), (ii) and (iii) hold. �
9.7. A Weierstrass section

By Sect. 5 we deduce from Corollary 9.4 and Lemma 9.6 that y + gT is a Weierstrass 
section for coadjoint action of pΛ. One can then write the following theorem.

Theorem. Let g be a complex simple Lie algebra of type Bn, resp. Dn, with n ≥ 4, resp. 
n ≥ 6 and let p = n−⊕h ⊕n

+
π′ be a parabolic subalgebra associated with π′ = π\{αs, αs+2}, 

s even, 2 ≤ s ≤ n − 2, resp. 2 ≤ s ≤ n − 4. Then there exists a Weierstrass section 
y+gT for coadjoint action of the canonical truncation pΛ of p. It follows that the algebra 
of symmetric invariants Y (pΛ) = Sy(p) is a polynomial algebra over k on n − s/2 + 1
algebraically independent homogeneous and h-weight generators.

9.8. Weights and degrees

One may associate with each γ ∈ T an homogeneous generator pγ ∈ Y (pΛ) so that 
the set {pγ ; γ ∈ T} is a set of algebraically independent and h-weight generators of the 
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polynomial algebra Y (pΛ). By what we said in Sect. 5, for each γ ∈ T , the weight of pγ
is wt(pγ) = −(γ + s(γ)) and the degree of pγ is deg(pγ) = 1 + |s(γ)| (also equal to the 
eigenvalue plus one of xγ with respect to ad h, where recall h is the semisimple element 
of the adapted pair for pΛ that we have constructed, see 9.5). It suffices then to use the 
proof of Lemma 9.6 to compute all these weights and degrees, since there all the s(γ), 
for γ ∈ T , have been computed. Set, for all 1 ≤ i ≤ s/2 − 1, γi = ε2i−1 − ε2i.

Assume first that g is simple of type Bn, with s + 2 < n or g is of type Dn, where 
recall s + 2 ≤ n − 2.

γ ∈ T wt(pγ) deg(pγ)
γi, 1 ≤ i ≤ [s/4] −2�s s + 4i

γi, [s/4] + 1 ≤ i ≤ s/2 − 1 −2�s 3s − 4i + 2

γ = εs−1 − εs+1 −2�s s + 2

γ = εs−1 + εs −�s s/2

γ = εs + εs+2 −�s+2 s/2 + 1

γ = (−1)n(εn − εn−1), g of type Dn −�s+2 n − s/2 − 1
γ = (−1)n(εn − εn−1), g of type Bn −2�s+2 2n − s − 2

εs+2j − εs+2j+1, 1 ≤ j ≤ [(n − s − 2)/2] −2�s+2 s + 4j

εs+2k − εs+2k−1, 2 ≤ k ≤ [(n − s − 1)/2] −2�s+2 s + 4k − 2

γ = εs+2 − εs+1 −(�s + �s+2) s + 3

Assume now that g is of type Bn, with n = s + 2.

γ ∈ T wt(pγ) deg(pγ)
γi, 1 ≤ i ≤ [s/4] −2�s s + 4i

γi, [s/4] + 1 ≤ i ≤ s/2 − 1 −2�s 3s − 4i + 2

γ = εs−1 − εs+1 −2�s s + 2

γ = εs−1 + εs −�s s/2

γ = εs + εs+2 −�s+2 s/2 + 1

γ = εs+2 − εs+1 −(�s + 2�s+2) s + 3 = n + 1

9.9. 

Remark. Assume that g is simple of type Bn with n ≥ 6 and that π′ = π \
{αs, αs+2, αs+4} with s an even integer and consider the parabolic subalgebra p =
n−⊕h ⊕n

+
π′ associated to π′. Then one may easily check as in the proof of Lemma 9.2 that 

ind pΛ = n −s/2 +1. Take the same set S+ as this chosen for the case π′ = π\{αs, αs+2}
in subsection 9.1 and the same set S− but without the element −εs+3 − εs+4 which does 
no more belong to Δ−

π′ . Then restriction to h′ = hΛ of S = S+ � S− is still a basis 
for h∗Λ. Take also the same sets T and T ∗ as in subsections 9.2 and 9.3, which still lie 
in Δ+ � Δ−

π′ . Unfortunately condition (v) of Proposition 6.2 is no more satisfied since 
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xεs+εs+3 and xεs+εs+4 in T ∗ do no more belong to ad pΛ(y) + gT . Thus our construction 
cannot be generalized to the more general case of ps, � with s even and � ≥ 2.

10. Case 1e for type C

In this Section, we consider a parabolic subalgebra p = ps, � = p
−
π′ = n− ⊕ h ⊕ n

+
π′

associated to the subset π′ = π \ {αs, αs+2, . . . , αs+2�} with � ∈ N and s an even or an 
odd integer, 1 ≤ s ≤ n − 2�, in a simple Lie algebra g of type Cn, with n ≥ 3. Hence we 
are in the case 1e of subsection 1.7.

If � = 0, such a parabolic subalgebra is maximal and this case was already treated in 
[13]. Thus we will assume that � ≥ 1. By subsection 4.4, the lower and upper bounds 
for ch (Y (pΛ)) in (4) of Sect. 4 always coincide and then Y (pΛ) is a polynomial algebra. 
However Weierstrass sections were not yet exhibited. As we said in Remark 3a of sub-
section 6.2, it suffices to construct an adapted pair to obtain a Weierstrass section for 
coadjoint action of pΛ in the present case. Our construction generalizes the construction 
of an adapted pair in case of a maximal parabolic subalgebra in type C (see [13, Sect. 
6]).

10.1. The Kostant cascades

The Kostant cascade βπ for g simple of type Cn is given by

βπ = {βi = 2εi ; 1 ≤ i ≤ n}.

The Kostant cascade βπ′ of g′ is given by

βπ′ = {β′
i = εi − εs+1−i, αs+2j−1, β

′′
k = 2εs+2�+k ;

1 ≤ i ≤ [s/2], 1 ≤ j ≤ �, 1 ≤ k ≤ n− s− 2�}.

We want to construct an adapted pair for pΛ = n−⊕h′⊕n
+
π′ . (Recall that here hΛ = h′.)

For this purpose we will use Proposition 6.2. First we give a set S = S+�S− ⊂ Δ+�Δ−
π′

such that S|hΛ is a basis for h∗Λ.

10.2. Condition (i) of Proposition 6.2

Since, for all 1 ≤ k ≤ n − s − 2�, one has that β′′
k = βs+2�+k, we will not be able to 

take S = β0
π ∪ (−β0

π′) as we did for type Bn in Sect. 8.
Instead we will take elements which are a kind of deformation of roots of the Kostant 

cascade, by setting γi = βi − αi = εi + εi+1 for all 1 ≤ i ≤ n − 1. Assume first that s is 
odd. We set

S+ = {γ2i−1 = ε2i−1 + ε2i ; 1 ≤ i ≤ [n/2]}
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and

S− = {−β′
i = εs+1−i − εi, −γ2j = −(ε2j + ε2j+1) ;

1 ≤ i ≤ (s− 1)/2, (s + 2� + 1)/2 ≤ j ≤ [(n− 1)/2]}.

Assume now that s is even and set t := [s/4]. We set

S+ = {β2t+1, γ2i−1, γ2j ; 1 ≤ i ≤ t, t + 1 ≤ j ≤ [(n− 1)/2]}

and

S− = {−β′
i = εs+1−i − εi, −γ2j+1 = −(ε2j+1 + ε2j+2) ;

1 ≤ i ≤ (s− 2)/2, (s + 2�)/2 ≤ j ≤ [(n− 2)/2]}.

In both cases for S = S+ �S−, one easily checks that |S| = n − � − 1 = dim h′ = dim hΛ. 
The following lemma establishes condition (i) of Proposition 6.2.

Lemma. S|hΛ is a basis for h∗Λ.

Proof. Assume first that s is odd. Then we order the elements su of S as follows:

si = γ2i−1, 1 ≤ i ≤ [n/2],
s[n/2]+j = −γs+2�+2j−1, 1 ≤ j ≤ [(n− 1)/2] − (s + 2�− 1)/2,

sn−�−1−(s−1)/2+k = −β′
k, 1 ≤ k ≤ (s− 1)/2

and order the elements hv of a basis of h′ as follows:

hi = α∨
2i, 1 ≤ i ≤ [n/2],

h[n/2]+j = α∨
s+2�+2j , 1 ≤ j ≤ [(n− 1)/2] − (s + 2�− 1)/2,

hn−�−1−(s−1)/2+2k−1 = h′
2k−1 = α∨

2k−1, hn−�−1−(s−1)/2+2k = h′
2k = α∨

s−2k,

1 ≤ k ≤ [(s + 1)/4]

without repetitions for the h′
j ’s.

Set

A = (su(hv))1≤u, v≤[n/2],

B = (s[n/2]+u(h[n/2]+v))1≤u, v≤[(n−1)/2]−(s+2�−1)/2,

C = (−β′
i(h′

j))1≤i, j≤(s−1)/2.

By observing that γi = �i+1 − �i−1 for all 1 ≤ i ≤ n − 1 (with �0 = 0) one obtains 
that A, resp. B, is a lower triangular matrix with 1, resp. −1, on its diagonal. Moreover 
C is a lower triangular matrix with −1 on its diagonal by Lemma 6.4. Then one obtains 
that the matrix
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(su(hv))1≤u, v≤n−�−1 =
(
A 0 0
∗ B 0
∗ ∗ C

)

is such that det(su(hv))1≤u, v≤n−�−1 �= 0.
Assume now that s is even. Recall that t = [s/4]. We order the elements su of S as 

follows:

si = γ2i−1, 1 ≤ i ≤ t,

st+1 = β2t+1 = 2ε2t+1,

st+1+j = γ2(t+j), 1 ≤ j ≤ [(n− 1)/2] − t,

s[(n+1)/2]+k = −γs+2�+2k−1, 1 ≤ k ≤ [(n− 2)/2] − (s + 2�− 2)/2,
sn−�−1−(s−2)/2+r = −β′

r, 1 ≤ r ≤ (s− 2)/2.

We order the elements hv of a basis of h′ as follows:

hi = α∨
2i, 1 ≤ i ≤ t,

ht+1 = α∨
2t+1,

ht+1+j = α∨
2(t+j)+1, 1 ≤ j ≤ [(n− 1)/2] − t,

h[(n+1)/2]+k = α∨
s+2�+2k, 1 ≤ k ≤ [(n− 2)/2] − (s + 2�− 2)/2,

hn−�−1−(s−2)/2+2r−1 = h′
2r−1 = α∨

2r−1, hn−�−1−(s−2)/2+2r = h′
2r = α∨

s−2r,

1 ≤ r ≤ t

without repetitions. More precisely: if t = (s − 2)/4 then ht = α∨
2t = α∨

s/2−1 �= h′
2t =

α∨
s/2+1, then both are taken and if t = s/4 then h′

2t = α∨
s/2 = ht then one takes ht but 

not h′
2t. Then by the above one obtains that the matrix

(su(hv))1≤u, v≤n−�−1 =

⎛
⎜⎜⎜⎝
A 0 0 0 0
∗ 2 0 0 0
∗ ∗ B 0 0
∗ ∗ ∗ C 0
∗ ∗ ∗ ∗ D

⎞
⎟⎟⎟⎠

with

A = (su(hv))1≤u, v≤t,

B = (st+1+u(ht+1+v))1≤u, v≤[(n−1)/2]−t,

C = (s[(n+1)/2]+u(h[(n+1)/2]+v))1≤u, v≤[(n−2)/2]−(s+2�−2)/2,

D = (−β′
i(h′

j))1≤i, j≤(s−2)/2

is such that det(su(hv))1≤u, v≤n−�−1 �= 0. Indeed the above matrices are lower triangular 
matrices with 1 (for A and B), resp. −1 (for C and D), on their diagonal. �
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10.3. Conditions (ii) and (iii) of Proposition 6.2

For each γ ∈ S+, resp. γ ∈ S−, we will take a Heisenberg set Γγ with centre γ included 
in Δ+, resp. Δ−

π′ such that |(Δ+ �Δ−
π′) \ (�γ∈S Γγ)| = ind pΛ (here we will take T ∗ = ∅

in Proposition 6.2) and such that conditions (ii) and (iii) of Proposition 6.2 are satisfied.
For this purpose we use (see 6.1) the largest Heisenberg set Hβi

with centre βi ∈ βπ

included in Δ+, and −Hβ′
i
, resp. −Hβ′′

i
where Hβ′

i
, resp. Hβ′′

i
, is the largest Heisenberg 

set in Δ+
π′ with centre β′

i, resp. β′′
i , belonging to the Kostant cascade βπ′ of g′.

For each βi ∈ βπ, set H0
βi

= Hβi
\{βi} and each β′′

i ∈ βπ′ , H0
−β′′

i
= −Hβ′′

i
\{−β′′

i }. As 
in [13, Sect. 6], for each γ ∈ S+ ∩ βπ, we set Γγ = Hγ and for each γ ∈ S− ∩ (−βπ′), we 
set Γγ = −H−γ . Moreover for the roots γi = βi−αi ∈ S+, we set Γγi

= H0
βi
�Hβi+1 and 

for the roots −γ′′
i = −γs+2�+i = −(β′′

i −αs+2�+i) ∈ S−, we set Γ−γ′′
i

= H0
−β′′

i
�(−Hβ′′

i+1
).

As in [13, Sect. 6] one easily checks that, for each γ ∈ S, Γγ is a Heisenberg set with 
centre γ and these sets Γγ , γ ∈ S, are pairwise disjoint by Lemma 6.1 i). Below we will 
show that conditions (ii) and (iii) of Proposition 6.2 are satisfied. Recall that, for each 
γ ∈ S, we set Γ0

γ = Γγ \ {γ} and O± = �γ∈S± Γ0
γ .

Lemma. Let γ ∈ S+ and α ∈ Γ0
γ be such that there exists β ∈ O+ with α + β ∈ S. Then 

β ∈ Γ0
γ and α + β = γ.

Proof. Assume first that α + β ∈ S+ ∩ βπ. Then the assertion follows from Lemma 6.1
ii). Assume now that α + β = γi = βi − αi ∈ S+. We will show that γ = γi. We have 
that γi ∈ H0

βi
then by Lemma 6.1 iii), one has that α ∈ Hβi

or β ∈ Hβi
. Suppose that 

α ∈ Hβi
. Then α �= βi since β is a positive root and we have α ∈ H0

βi
⊂ Γγi

. Since the 
Heisenberg sets Γδ, δ ∈ S, are pairwise disjoint, one deduces that γ = γi. Since Γγ is a 
Heisenberg set, it follows that β ∈ Γ0

γ . Now if β ∈ Hβi
then for the same reason as before 

β ∈ H0
βi

⊂ Γγi
. But β ∈ O+ then there exists γ′ ∈ S+ such that β ∈ Γ0

γ′ . As before one 
deduces that γ′ = γi and then that α ∈ Γ0

γ′ hence γ = γ′ = γi. Since all roots in S+ are 
of the above form, we are done. �

Condition (iii) of Proposition 6.2 follows similarly.

10.4. Condition (vi) of Proposition 6.2

Here we will show that condition (vi) is satisfied, with T = (Δ+�Δ−
π′) \�γ∈S Γγ . Set 

T+ = Δ+ \�γ∈S+ Γγ and T− = Δ−
π′ \�γ∈S− Γγ . Then T = T+�T−. Recall Lemma 6.1

i) that Δ+ = �β∈βπ
Hβ and Δ−

π′ = �β∈βπ′ (−Hβ).
Assume first that s is odd. Then

T+ = {β2i−1 | 1 ≤ i ≤ [(n + 1)/2]}

and
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T− = {−αs+2i−1, −βs+2�+2j−1 | 1 ≤ i ≤ �, 1 ≤ j ≤ [(n + 1 − s)/2] − �}.

Assume that s is even. Then

T+ = {β2i−1, β2j | 1 ≤ i ≤ t, t + 1 ≤ j ≤ [n/2]}

and

T− = {−αs/2, −αs+2i−1, −βs+2�+2j−1 | 1 ≤ i ≤ �, 1 ≤ j ≤ [(n + 1 − s)/2] − �}.

Below we establish condition (vi) of Proposition 6.2.

Lemma. One has that |T | = ind pΛ.

Proof. Recall that ind pΛ is equal to the number |E(π′)| of 〈ij〉-orbits in π (see Sect. 4). 
Here, since j = Idπ, the set E(π′) of 〈ij〉-orbits in π is the following. If s is odd, then

E(π′) = {{αi, αs−i}, {αs−1+j} | 1 ≤ i ≤ (s− 1)/2, 1 ≤ j ≤ n− s + 1}.

If s is even, then

E(π′) = {{αi, αs−i}, {αs/2}, {αs−1+j} | 1 ≤ i ≤ (s− 2)/2, 1 ≤ j ≤ n− s + 1}.

One checks that |T | = |E(π′)|. Hence the lemma. �
Finally if we set T ∗ = ∅, then by construction condition (iv) of Proposition 6.2 is also 

satisfied and condition (v) is empty.

10.5. A Weierstrass section

By the above, all conditions of Proposition 6.2 are satisfied. Set y =
∑

γ∈S xγ . Since 
S|hΛ is a basis for h∗Λ there exists a unique h ∈ hΛ such that for all γ ∈ S, γ(h) = −1. 
Then by Proposition 6.2 (h, y) is an adapted pair for pΛ. Moreover by subsection 4.4, 
for all Γ ∈ E(π′), εΓ = 1. Then by Remark 3a of subsection 6.2, one deduces that y+ gT

is a Weierstrass section for coadjoint action of pΛ. Summarizing we obtain the following 
theorem.

Theorem. Let g be a complex simple Lie algebra of type Cn (n ≥ 3) and let p = n−⊕h ⊕n
+
π′

be a parabolic subalgebra of g associated to π′ = π \ {αs, αs+2, . . . , αs+2�} (s, � ∈ N∗) 
and 1 ≤ s ≤ n − 2�. Then y + gT is a Weierstrass section for coadjoint action of the 
canonical truncation pΛ of p.
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10.6. Weights and degrees

Here both bounds (see (4) in Sect. 4) for ch(Y (pΛ)) coincide and then Y (pΛ) is a poly-
nomial algebra whose homogeneous and h-weight generators have weights and degrees 
which can be easily computed. To each Γ ∈ E(π′) is associated an homogeneous and 
h-weight generator of Y (pΛ) which has weight δΓ given by (2) of Sect. 4 and a degree ∂Γ

given by (5) of Sect. 4.
Below we give for completeness weights and degrees of a set of homogeneous and 

h-weight algebraically independent generators of Y (pΛ), each of them corresponding to 
an 〈ij〉-orbit Γr in E(π′).

Assume first that s is odd:
〈ij〉-orbit in E(π′) Weight Degree
Γu = {αu, αs−u}, 1 ≤ u ≤ (s − 1)/2 −2�s s + 2u

Γv = {αv}, v = s + 2k, 0 ≤ k ≤ � −2�v v

Γv = {αv}, v = s + 2k − 1, 1 ≤ k ≤ � −�v−1 − �v+1 v + 1

Γv = {αv}, s + 2� + 1 ≤ v ≤ n −2�s+2� 2v − s − 2�

Assume now that s is even:
〈ij〉-orbit in E(π′) Weight Degree
Γu = {αu, αs−u}, 1 ≤ u ≤ (s − 2)/2 −2�s s + 2u

Γs/2 = {αs/2} −�s s

Γv = {αv}, v = s + 2k, 0 ≤ k ≤ � −2�v v

Γv = {αv}, v = s + 2k − 1, 1 ≤ k ≤ � −�v−1 − �v+1 v + 1

Γv = {αv}, s + 2� + 1 ≤ v ≤ n −2�s+2� 2v − s − 2�

11. Case 2a for type D

In this Section we consider the parabolic subalgebra p = p� of the simple Lie algebra g
of type Dn, with n ≥ 4, n even and � ∈ N, 0 ≤ � ≤ (n − 2)/2, associated with the subset 
π′ = π \ {αn−1−2k, αn | 0 ≤ k ≤ �}. This is the case 2a of subsection 1.7. Recall 8.1 the 
Kostant cascade βπ for g of type Dn. Recall 6.4 the Kostant cascade βπ′

1
⊂ βπ′ for the 

simple Lie subalgebra gπ′
1

of the Levi subalgebra g′ of p of type An−2−2� if � < (n −2)/2. 
One has

βπ′
1

= {β′
i = εi − εn−2�−i | 1 ≤ i ≤ [(n− 1 − 2�)/2]}.

We denote (as in 8.1) β0
π = βπ \ (βπ ∩ π) and β0

π′ = βπ′ \ (βπ′ ∩ π′).
Then we have that β0

π = {βi = ε2i−1 + ε2i | 1 ≤ i ≤ (n − 2)/2} and β0
π′ = βπ′

1
since n

is even.
We set S+ = β0

π = {βi | 1 ≤ i ≤ (n − 2)/2} and S− = −β0
π′ = {−β′

i | 1 ≤ i ≤
(n − 2 − 2�)/2}.
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For all γ ∈ S+, we set Γγ = Hγ the largest Heisenberg set with centre γ which is 
included in Δ+ as defined in subsection 6.1 and for all γ ∈ S−, we set Γγ = −H−γ where 
H−γ is the largest Heisenberg set with centre −γ which is included in Δ+

π′ . Finally we 
set T+ = βπ ∩ π, T− = −(βπ′ ∩ π′), T = T+ ∪ T− and T ∗ = ∅.

11.1. Conditions (i) to (v) of Proposition 6.2

By i) of Lemma 6.1 and since Hβ = {β} for all β ∈ βπ ∩ π, condition (iv) of Proposi-
tion 6.2 is satisfied. Moreover conditions (ii) and (iii) of Proposition 6.2 are satisfied by 
ii) of Lemma 6.1. Condition (v) is empty since T ∗ = ∅. Condition (i) follows from the 
following Lemma.

Lemma. Set S = S+ ∪ S−. Then S|hΛ is a basis for h∗Λ.

Proof. Here j = Idπ and then (see Sect. 3) we have that h′ = hΛ and we observe that 
|S| = n − 2 − � = dim h′ = dim hΛ. The proof is similar to the proof of Lemma 8.2. We 
order the elements su of S as

β1, β2, . . . , β(n−2)/2, −β′
1, −β′

2, . . . , −β′
(n−2−2�)/2

and we choose the following ordered basis (hv)1≤v≤n−2−� of h′:

hi = α∨
2i, 1 ≤ i ≤ (n− 2)/2,

h(n−2)/2+2j−1 = h′
2j−1 = α∨

2j−1, h(n−2)/2+2j = h′
2j = α∨

n−1−2�−2j ,

1 ≤ j ≤ [(n− 2�)/4]

without repetitions for the h′
j ’s.

Then the matrix (su(hv))1≤u, v≤n−2−� has the form

(
A 0
∗ B

)

Here A = (βi(hj))1≤i, j≤(n−2)/2 is a (n − 2)/2 × (n − 2)/2 lower triangular matrix with 
1 on its diagonal since βi = �2i − �2i−2. Moreover B = (−β′

i(h′
j))1≤i, j≤(n−2−2�)/2 is 

a (n − 2 − 2�)/2 × (n − 2 − 2�)/2 lower triangular matrix with −1 on its diagonal, by 
Lemma 6.4. Hence det(su(hv))1≤u, v≤n−2−� �= 0. �
11.2. Condition (vi) of Proposition 6.2

We obtain the following Lemma.

Lemma. We have that |T | = ind pΛ.
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Proof. Recall (1) of Sect. 4 that ind pΛ = |E(π′)|. Here the set E(π′) of 〈ij〉-orbits in π
is the following:

E(π′) = {Γu = {αu, αn−1−2�−u}, 1 ≤ u ≤ (n− 2 − 2�)/2,
Γv = {αv}, n− 1 − 2� ≤ v ≤ n}.

Hence ind pΛ = (n + 2 + 2�)/2.
On the other hand we have that T+ = βπ ∩ π = {αn, α2i−1; 1 ≤ i ≤ n/2} by 8.1, 

and T− = −(βπ′ ∩ π′) = {−α2i; (n − 2�)/2 ≤ i ≤ (n − 2)/2}. Hence |T+| = n/2 + 1 and 
|T−| = �. Thus |T | = ind pΛ. �

11.3. All conditions of Proposition 6.2 are satisfied. Thus one can deduce the fol-
lowing corollary.

Corollary. Keep the above notation and set y =
∑

α∈S xα. Then y is regular in p∗Λ and 
more precisely one has that ad pΛ(y) ⊕gT = p∗Λ. Moreover there exists a uniquely defined 
h ∈ hΛ such that α(h) = −1 for all α ∈ S. Thus the pair (h, y) is an adapted pair for 
pΛ.

11.4. Existence of a Weierstrass section

By Remark 3a of subsection 6.2, the existence of an adapted pair for pΛ is sufficient to 
produce a Weierstrass section for coadjoint action of pΛ provided one has the following 
Lemma.

Lemma. Keep the above hypotheses and notation. One has that εΓ = 1 for all Γ ∈ E(π′).

Proof. Recall subsection 4.3 and the 〈ij〉-orbits in E(π′) described in the proof of 
Lemma 11.2.

For Γu = {αu, αn−1−2�−u} for 1 ≤ u ≤ (n − 2 − 2�)/2, one has that dΓu
= �u +

�n−1−2�−u /∈ Bπ since u and n − 1 − 2� − u are not of the same parity.
Let n − 1 − 2� ≤ v < n. If v is even, then dΓv

= �v ∈ Bπ but d′Γv
= �′

v /∈ Bπ′ since 
αv belongs to a connected component of π′ of type A1. If v is odd, then dΓv

= �v /∈ Bπ. 
Finally dΓn

= �n /∈ Bπ. Hence the lemma. �
One can then deduce the following Theorem.

Theorem. Let g be a simple Lie algebra of type Dn, with n even, n ≥ 4. Let � ∈ N be 
such that 0 ≤ � ≤ (n − 2)/2 and p� be the parabolic subalgebra of g associated with the 
subset π′ = π \ {αn−1−2k, αn | 0 ≤ k ≤ �}. Then there exists a Weierstrass section for 
coadjoint action of the canonical truncation of p�.
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11.5. Weights and degrees

Here both bounds (see (4) in Sect. 4) for ch(Y (pΛ)) coincide by Lemma 11.4 and 
then Y (pΛ) is a polynomial algebra whose homogeneous and h-weight generators have 
weights and degrees which can be easily computed. To each Γ ∈ E(π′) is associated 
an homogeneous and h-weight generator of Y (pΛ) which has weight δΓ given by (2) of 
Sect. 4 and a degree ∂Γ given by (5) of Sect. 4.

Below we give for completeness weights and degrees of a set of homogeneous and 
h-weight algebraically independent generators of Y (pΛ), each of them corresponding to 
an 〈ij〉-orbit Γr in E(π′).

Assume first that � ≥ 1:

〈ij〉-orbit in E(π′) Weight Degree
Γu = {αu, αn−1−2�−u} −2�n−1−2� n − 2� + 2u
1 ≤ u ≤ (n − 2 − 2�)/2

Γv = {αv} −2�v v + 1
v = n − 1 − 2k, 1 ≤ k ≤ �

Γv = {αv} −�v−1 − �v+1 v + 1
v = n − 2k, 2 ≤ k ≤ �

Γn−2 = {αn−2} −�n−3 − �n−1 − �n n − 1

Γn−1 = {αn−1} −2�n−1 n/2

Γn = {αn} −2�n n/2

Finally assume that � = 0, that is, π′ = π \ {αn−1, αn}:

〈ij〉-orbit in E(π′) Weight Degree
Γu = {αu, αn−1−u}, 1 ≤ u ≤ (n − 2)/2 −2(�n−1 + �n) n + 2u

Γn−1 = {αn−1} −2�n−1 n/2

Γn = {αn} −2�n n/2

11.6. 

Remark. Assume now that g is simple of type Dn with n odd and consider the parabolic 
subalgebra p = p� with 0 ≤ � ≤ (n − 2)/2. Assume that we have found an adapted pair 
(h, y) for pΛ with y =

∑
γ∈S xγ , S ⊂ Δ+ � Δ−

π′ and h ∈ hΛ.
First assume that � = 0. Then by (4) of Sect. 4, −(�n−1 + �n) must be a weight 

of Sy(p), hence (�n−1 + �n)(h) = 0 by definition of the canonical truncation (see 
2.3). It follows that the set S cannot contain β0

π that is, cannot contain all βi, for 
1 ≤ i ≤ (n −1)/2, as in the case n even. Indeed one has that �n−1+�n = ε1+. . .+εn−1 =
β1 + . . . + β(n−1)/2 and then otherwise we would have both (�n−1 + �n)(h) = 0 and 
(�n−1 + �n)(h) = (−1) × (n − 1)/2, a contradiction.
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Assume now that � ≥ 1. Then by (4) of Sect. 4, for all 1 ≤ k ≤ �, −2�n−1−2k must 
be a weight of Sy(p), hence by the same argument as above, we cannot have that S
contains β1, . . . , β(n−1−2k)/2.

12. Case 2b for type D

Here we consider the parabolic subalgebra p0 of g of type Dn, with n ≥ 5, n odd. This 
is the parabolic subalgebra of g associated with the subset π′ = π \ {αn−1, αn}. Then it 
is the case 2b of subsection 1.7.

We set S = S+ � S− with

S+ = {βi = ε2i−1 + ε2i ; 1 ≤ i ≤ (n− 3)/2, β̃(n−1)/2 = εn−2 + εn,

β̃(n+1)/2 = εn−2 − εn}

and

S− = {−β′
1 = εn−1 − ε1, −β̃′

i = εn−i−1 − εi ; 2 ≤ i ≤ (n− 3)/2}.

For all 1 ≤ i ≤ (n −3)/2, we set Γβi
= Hβi

and we set Γ−β′
1

= −Hβ′
1
, where Hβi

, resp. 
Hβ′

1
, is the largest Heisenberg set with centre βi ∈ βπ, resp. β′

1 ∈ βπ′ , which is included 
in Δ+, resp. in Δ+

π′ , as defined in subsection 6.1.
We set

Γβ̃(n−1)/2
= {β̃(n−1)/2, εn−2 − εn−1, εn−1 + εn}, Γβ̃(n+1)/2

= {β̃(n+1)/2}.

For all 2 ≤ i ≤ (n − 3)/2, we set

Γ−β̃′
i
= {−β̃′

i, εn−i−1 − εj , εj − εi ; i + 1 ≤ j ≤ n− i− 2}.

We also set

T = {εn−2 − ε2, εn−2 + εn−1, εn−1 − εn, ε2i−1 − ε2i ; 1 ≤ i ≤ (n− 3)/2}

and

T ∗ = {εn−2 − εi ; 3 ≤ i ≤ n− 3}.

By construction for all γ ∈ S+, resp. γ ∈ S−, we have that Γγ ⊂ Δ+, resp. Γγ ⊂ Δ−
π′ , is 

a Heisenberg set with centre γ and all the sets Γγ , for γ ∈ S, together with the sets T
and T ∗ are disjoint. We easily verify that condition (iv) of Proposition 6.2 is satisfied, 
using i) of Lemma 6.1. Conditions (ii) and (iii) of Proposition 6.2 follow easily from ii), 
iii) and iv) of Lemma 6.1.
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12.1. Condition (i) of Proposition 6.2

This condition follows from the lemma below.

Lemma. S|hΛ is a basis for h∗Λ.

Proof. First we observe that hΛ = h′ ⊕ H−1(εn), where recall H : h −→ h∗ is the 
isomorphism induced by the Killing form on h × h by Sect. 3.

Then dim hΛ = dim h′ + 1 = n − 1. We have that |S| = n − 1.
Now set si = βi for 1 ≤ i ≤ (n − 3)/2, s(n−1)/2 = εn, s(n+1)/2 = εn−2, s(n+3)/2 = −β′

1
and then s(n+3)/2+j = −β̃′

j+1 for all 1 ≤ j ≤ (n − 5)/2 and we take the elements of S in 
this order.

For a basis (hj) of hΛ we take, in this order:

α∨
2i, 1 ≤ i ≤ (n− 3)/2, H−1(εn), α∨

n−2, α
∨
2j−1, α

∨
n−2−2j , 1 ≤ j ≤ [(n− 1)/4]

without repetitions. Then it suffices to prove that det(si(hj))1≤i, j≤n−1 �= 0.

We easily check that (si(hj)) =
(
A 0
∗ B

)
where A, resp. B, is a lower triangular 

matrix of size (n + 1)/2, resp. (n − 3)/2, with 1, resp. −1, on the diagonal. Hence the 
lemma. �
12.2. Condition (v) of Proposition 6.2

Set y =
∑

γ∈S xγ . Condition (v) of Proposition 6.2 follows from the lemma below.

Lemma. Let k ∈ N be such that 3 ≤ k ≤ n − 3. Then xεn−2−εk ∈ ad pΛ(y) + gT .

Proof. Suppose first that k is odd (3 ≤ k ≤ n − 4) and set γ1 = εn−2 + εn ∈ S, 
γ′
1 = εk+1−εn−2 ∈ Δ+

π′\S, γ2 = εn−2−εn ∈ S, γ′
2 = εn−εk ∈ Δ−\S, γ3 = εk+1+εk ∈ S, 

γ′
3 = −εk−εn ∈ Δ−\S. We will show that the hypotheses of Lemma and Proposition 6.3

are satisfied. We have that γ1 + γ′
1 = εk+1 + εn ∈ Δ+ \S, γ2 + γ′

2 = εn−2 − εk ∈ Δ−
π′ \S, 

γ3+γ′
3 = εk+1−εn ∈ Δ+\S. Moreover γ2+γ′

2 = γ1+γ′
3, γ3+γ′

3 = γ2+γ′
1, γ1+γ′

1+γ2 ∈ Δ
and γ1 + γ2 /∈ Δ, γ2 + γ3 /∈ Δ, γ1 + γ3 /∈ Δ. Hence, by Lemma 6.3, up to rescaling some 
root vectors in a complement of gS in g, we have that

⎧⎪⎪⎨
⎪⎪⎩
ad xεk+1−εn−2(y) = xεk+1+εn + xεk+1−εn + X

adxεn−εk(y) = xεk+1+εn + xεn−2−εk

ad x−εk−εn(y) = xεk+1−εn + xεn−2−εk

with X = xεn−2−k−εn−2 = ad x−εn−k−3−εn−2(y) ∈ ad pΛ(y) +gT if 3 ≤ k ≤ (n −5)/2, and 
X = 0 otherwise. Hence xεn−2−εk ∈ ad pΛ(y) + gT for k odd, 3 ≤ k ≤ n − 4. A similar 
computation shows that xεn−2−εk ∈ ad pΛ(y) + gT for k even, 4 ≤ k ≤ n − 3. �
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12.3. Condition (vi) of Proposition 6.2

It follows from lemma below.

Lemma. We have that |T | = ind pΛ = |E(π′)|.

Proof. The set E(π′) of 〈ij〉-orbits in π is the following:

E(π′) =
{

Γu = {αu, αn−1−u}, 1 ≤ u ≤ (n− 3)/2, Γ(n−1)/2 = {α(n−1)/2},

Γn−1 = {αn−1}, Γn = {αn}
}
.

Then |E(π′)| = (n − 3)/2 + 3 = (n + 3)/2 and it is equal to |T |. �
12.4. The semisimple element of the adapted pair

All conditions of Proposition 6.2 are satisfied. Hence y =
∑

γ∈S xγ is regular in p∗Λ
and there exists a uniquely defined h ∈ hΛ such that (h, y) is an adapted pair for pΛ.

Below we give the semisimple element h:

h = −
∑(n−3)/2

k=1 kα∨
2k +

∑[(n−1)/4]
k=1 ((n− 1)/2 + k)α∨

2k−1+∑(n−3)/2
k=[(n−1)/4]+1(3(n− 1)/2 + 1 − 3k)α∨

2k−1 − ((n− 1)/2)α∨
n−2 ∈ h′ ⊂ hΛ.

12.5. Computation of the improved upper bound

However for n ≥ 7, both bounds in (4) of Sect. 4 do not coincide since for Γ =
{α2, αn−3} ∈ E(π′) one has dΓ = �2 + �n−3 ∈ Bπ and d′Γ = �′

2 + �′
n−3 ∈ Bπ′ , hence 

εΓ = 1/2. We then need to compute the improved upper bound mentioned in Sect. 5.

Lemma. We have that

ch(Y (pΛ)) =
(
1 − e−2(�n−1+�n)

)−(n−3)/2(
1 − e−(�n−1+�n)

)−3
.

Proof. It suffices to prove that (8) of Sect. 5 holds. Recall the 〈ij〉-orbits computed in 
the proof of Lemma 12.3 and the lower bound for ch(Y (pΛ)) given by (4) in Sect. 4, 
with the weights δΓ, for all Γ ∈ E(π′), given by (2). For 1 ≤ u ≤ (n − 3)/2, we have 
that δΓu

= −2(�u + �n−1−u) + 2(�′
u + �′

n−1−u) = −2(�n−1 + �n). Then δΓ(n−1)/2 =
−2�(n−1)/2 + 2�′

(n−1)/2 = −(�n−1 +�n). Finally observe that j(Γn−1) = Γn and then 
δΓn−1 = −(�n−1 + �n) = δΓn

. It follows that the lower bound for ch(Y (pΛ)) is equal 
to the right hand side of equality in the lemma. Now we have to compute the improved 
upper bound and for this purpose we have to compute, for all γ ∈ T , the s(γ) ∈ QS

such that γ + s(γ) vanishes on hΛ, that is, we have to determine s(γ) ∈ QS such that 



F. Fauquant-Millet / Journal of Algebra 580 (2021) 299–365 353
γ + s(γ) = k(�n−1 +�n) for some k ∈ Q (in fact k ∈ N). Recall the sets S and T given 
in the beginning of this Section. For 1 ≤ i ≤ (n − 3)/2, set γi = ε2i−1 − ε2i. Assume first 
that 1 ≤ i ≤ [(n − 1)/4]. Then one checks that

s(γi) = 2(εn−1 − ε1) + (εn−2 − εn) + (εn−2 + εn)+

2
∑2i−1

j=2 (εn−j−1 − εj) + 4
∑i−1

j=1(ε2j−1 + ε2j)+

2
∑(n−1)/2−i

j=i+1 (ε2j−1 + ε2j) + +3(ε2i−1 + ε2i) ∈ NS

so that γi + s(γi) = 2(�n−1 + �n).
Now assume that [(n − 1)/4] < i ≤ (n − 3)/2. Then one checks that

s(γi) = 2
∑n−1−2i

j=2 (εn−1−j − εj) + 4
∑(n−1)/2−i

j=1 (ε2j−1 + ε2j)+

2
∑i−1

j=(n−1)/2−i+1(ε2j−1 + ε2j) + (ε2i−1 + ε2i)+

2(εn−1 − ε1) + (εn−2 − εn) + (εn−2 + εn) ∈ NS

so that γi + s(γi) = 2(�n−1 + �n).
For γ = εn−2 − ε2 ∈ T , one checks that s(γ) = 2(ε1 + ε2) + (ε3 + ε4) + . . . + (εn−4 +

εn−3) + (εn−1 − ε1) ∈ NS so that γ + s(γ) = �n−1 + �n.
For γ = εn−2 + εn−1 ∈ T , one checks that s(γ) = (ε1 + ε2) + (ε3 + ε4) + . . .+ (εn−4 +

εn−3) ∈ NS so that γ + s(γ) = �n−1 + �n.
Finally for γ = εn−1 − εn ∈ T , one checks that s(γ) = (ε1 + ε2) + (ε3 + ε4) + . . . +

(εn−4 + εn−3) + (εn−2 + εn) ∈ NS so that γ + s(γ) = �n−1 + �n.
We deduce that the improved upper bound is equal to the right hand side of equality 

in the lemma. Hence the lemma, by what we said in Sect. 5. �
12.6. Existence of a Weierstrass section for coadjoint action

By what we said in Sect. 5 (see also Remark 3b of subsection 6.2) we have the following 
Theorem.

Theorem. Let g be a simple Lie algebra of type Dn, with n ≥ 5, n odd, and p be the 
standard parabolic subalgebra of g associated with the subset π′ = π \ {αn−1, αn} of the 
set π of simple roots of g. Then there exists a Weierstrass section for coadjoint action of 
the canonical truncation pΛ of p and it follows that the algebra of symmetric invariants 
Y (pΛ) is a polynomial algebra over k.

12.7. Weights and degrees of a set of generators

By what we said in Sect. 5 to each γ ∈ T is associated an element pγ such that 
{pγ ; γ ∈ T} is a set of algebraically independent homogeneous and h-weight generators 
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of the polynomial algebra Y (pΛ). Moreover for all γ ∈ T , pγ has a weight wt(pγ) equal 
to −(γ + s(γ)) and a degree deg(pγ) equal to 1 + |s(γ)|. Below we give the weight 
wt(pγ) and the degree deg(pγ) of pγ , for all γ ∈ T . Set, for all 1 ≤ i ≤ (n − 3)/2, 
γi = ε2i−1 − ε2i.

γ ∈ T wt(pγ) deg(pγ)
γi, 1 ≤ i ≤ [(n − 1)/4] −2(�n−1 + �n) n − 1 + 4i

γi, [(n − 1)/4] + 1 ≤ i ≤ (n − 3)/2 −2(�n−1 + �n) 3n − 4i − 1

γ = εn−2 − ε2 −(�n−1 + �n) (n + 3)/2

γ = εn−2 + εn−1 −(�n−1 + �n) (n − 1)/2

γ = εn−1 − εn −(�n−1 + �n) (n + 1)/2

13. Case 2c for type D

In this Section we consider a simple Lie algebra g of type Dn, n ≥ 5, n odd and the 
standard parabolic subalgebra p = p1 associated with π′ = π \ {αn−3, αn−1, αn}. It 
corresponds to the case 2c of subsection 1.7. As in previous case, both bounds in (4) of 
Sect. 4 do not coincide. Hence the existence of an adapted pair for pΛ will not produce 
immediately a Weierstrass section for coadjoint action of pΛ. We will have to compute 
the improved upper bound mentioned in Sect. 5 and show that the latter coincides with 
the lower bound in (4), namely that equality (8) holds. Then by Remark 3b of subsection 
6.2 this will produce a Weierstrass section for coadjoint action of pΛ.

Recall the elements βi = ε2i−1+ε2i of the Kostant cascade βπ of g. We set S = S+�S−

with

S+ = {βi, 1 ≤ i ≤ (n− 5)/2, εn−4 + εn−2, εn−3 + εn, εn−3 − εn}

and

S− = {εn−3−k − εk, 1 ≤ k ≤ (n− 5)/2}.

For all 1 ≤ i ≤ (n − 5)/2, we set Γβi
= Hβi

the largest Heisenberg set with centre βi

which is included in Δ+, as defined in subsection 6.1.
We also set

Γεn−4+εn−2 = {εn−4 + εn−2, εn−4 + εn−1, εn−2 − εn−1,

εn−4 + εn, εn−2 − εn, εn−4 − εn−1, εn−2 + εn−1,

εn−4 − εn, εn−2 + εn, εn−4 − εn−3, εn−2 + εn−3},
Γεn−3+εn = {εn−3 + εn, εn−3 − εn−1, εn−1 + εn},

Γεn−3−εn = {εn−3 − εn}

and for all 1 ≤ k ≤ (n − 5)/2,
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Γεn−3−k−εk = {εn−3−k − εk, εn−3−k − εj , εj − εk; k + 1 ≤ j ≤ n− 4 − k}.

Finally we set

T ∗ = {εn−3 − εk; 1 ≤ k ≤ n− 2, k �= n− 3}

and

T = {ε2i−1 − ε2i; 1 ≤ i ≤ (n− 5)/2, εn−4 + εn−3,

εn−4 − εn−2, εn−3 + εn−1, εn−1 − εn, εn−1 − εn−2}.

By construction for all γ ∈ S+, resp. γ ∈ S−, we have that Γγ ⊂ Δ+, resp. Γγ ⊂ Δ−
π′ , 

is a Heisenberg set with centre γ and all the sets Γγ , for γ ∈ S, together with the sets T
and T ∗ are disjoint. We easily verify that condition (iv) of Proposition 6.2 is satisfied, 
using i) of Lemma 6.1. Conditions (ii) and (iii) of Proposition 6.2 follow easily from ii), 
iii) and iv) of Lemma 6.1.

13.1. Conditions (i) of Proposition 6.2

We have the following lemma.

Lemma. We have that S|hΛ is a basis for h∗Λ.

Proof. First as in previous Section, one has that dim hΛ = dim h′ + 1 since hΛ = h′ ⊕
H−1(�n −�n−1) = h′ ⊕H−1(εn) by Section 3. We check that |S| = n − 2 = dim hΛ.

Set si = βi for all 1 ≤ i ≤ (n − 5)/2, s(n−3)/2 = εn−3, s(n−1)/2 = εn, s(n+1)/2 =
εn−4 + εn−2, s(n+1)/2+k = εn−3−k − εk, 1 ≤ k ≤ (n − 5)/2 and we take the elements of 
S in this order.

For a basis (hv) of hΛ, we take in this order,

α∨
2j ; 1 ≤ j ≤ (n− 5)/2, α∨

n−4, H−1(εn), α∨
n−2,

α∨
2k−1, α

∨
n−4−2k; 1 ≤ k ≤ [(n− 3)/4]

without repetitions for the last coroots.
Then it suffices to show that det(su(hv))1≤u, v≤n−2 �= 0.
One can easily verify that

(su(hv)) =

⎛
⎜⎜⎜⎝
A 0 0 0 0
∗ −1 0 0 0
∗ ∗ 1 0 0
∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ B

⎞
⎟⎟⎟⎠

where A, resp. B, is a lower triangular square matrix of size (n − 5)/2, with one, resp. 
−1, on its diagonal. Hence the lemma. �
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13.2. Condition (v) of Proposition 6.2

It follows from lemma below. Set y =
∑

α∈S xα.

Lemma. For all 1 ≤ k ≤ n − 2, k �= n − 3, we have that xεn−3−εk ∈ ad pΛ(y) + gT .

Proof. We will use Lemma and Proposition of subsection 6.3. First assume that k = n −2
and set ⎧⎪⎪⎨

⎪⎪⎩
γ1 = εn−4 + εn−2 ∈ S, γ′

1 = −εn − εn−2 /∈ S

γ2 = εn−3 + εn ∈ S, γ′
2 = εn−4 − εn−3 /∈ S

γ3 = εn−3 − εn ∈ S, γ′
3 = εn − εn−2 /∈ S.

One checks easily that all conditions of Lemma 6.3 are satisfied. Moreover since one 
can take the vectors X, X ′, X ′′ in Proposition 6.3 equal to zero, one deduces that 
xεn−3−εn−2 ∈ ad pΛ(y) + gT .

Assume now that k = n − 4 and set⎧⎪⎪⎨
⎪⎪⎩
γ1 = εn−3 + εn ∈ S, γ′

1 = −εn − εn−4 /∈ S

γ2 = εn−2 + εn−4 ∈ S, γ′
2 = εn − εn−4 /∈ S

γ3 = εn−3 − εn ∈ S, γ′
3 = εn−2 − εn−3 /∈ S.

One checks that all conditions of Lemma 6.3 are satisfied. Moreover since one can take 
the vectors X, X ′, X ′′ in Proposition 6.3 equal to zero, one deduces that xεn−3−εn−4 ∈
ad pΛ(y) + gT .

Assume that 1 ≤ k ≤ n − 6, k odd, and set
⎧⎪⎪⎨
⎪⎪⎩
γ1 = εn−3 + εn ∈ S, γ′

1 = −εk − εn /∈ S

γ2 = εk + εk+1 ∈ S, γ′
2 = εn − εk /∈ S

γ3 = εn−3 − εn ∈ S, γ′
3 = εk+1 − εn−3 /∈ S.

One checks that all conditions of Lemma 6.3 are satisfied. Moreover since one can 
take in Proposition 6.3, X = X ′ = 0 and X ′′ = xεn−4−k−εn−3 = ad x−εn−5−k−εn−3(y) if 
k ≤ (n − 7)/2, X ′′ = 0 otherwise, one deduces that xεn−3−εk ∈ ad pΛ(y) + gT .

A similar computation for 2 ≤ k ≤ n − 5, k even, shows that xεn−3−εk ∈ ad pΛ(y) +
gT . �
13.3. Condition (vi) of Proposition 6.2

It follows from lemma below.

Lemma. One has that |T | = ind pΛ = |E(π′)|.
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Proof. Recall that E(π′) is the set of 〈ij〉-orbits in π. One easily checks that

E(π′) =
{

Γu = {αu, αn−3−u}; 1 ≤ u ≤ (n− 5)/2, Γ(n−3)/2 = {α(n−3)/2},

Γn−3 = {αn−3}, Γn−2 = {αn−2}, Γn−1 = {αn−1}, Γn = {αn}
}
.

Hence ind pΛ = |E(π′)| = (n − 5)/2 + 5 = (n + 5)/2, which is equal to |T | (see beginning 
of this Section). �
13.4. The semisimple element of the adapted pair

All conditions of Proposition 6.2 are satisfied. Hence y =
∑

γ∈S xγ is regular in p∗Λ
and there exists a uniquely defined semisimple element h ∈ hΛ such that ad h(y) = −y, 
namely such that (h, y) is an adapted pair for pΛ. Below we give the semisimple element 
h:

h = −
∑(n−5)/2

k=1 kα∨
2k +

∑[(n−3)/4]
k=1 ((n− 3)/2 + k)α∨

2k−1+∑(n−5)/2
k=[(n−3)/4]+1(3(n− 3)/2 + 1 − 3k)α∨

2k−1+

α∨
n−4 − ((n− 1)/2)α∨

n−2 ∈ h′ ⊂ hΛ.

13.5. Computation of the improved upper bound

Here both bounds in (4) of Sect. 4 do not coincide since, for Γ = Γn−3 ∈ E(π′), we 
have that εΓn−3 = 1/2 (recall (3) of subsection 4.3). Indeed by subsection 4.3, we have 
that dΓn−3 = �n−3 ∈ Bπ and d′Γn−3

= 0 ∈ Bπ′ . Hence the existence of an adapted pair 
for pΛ is not sufficient to assure the existence of a Weierstrass section for coadjoint action 
of pΛ. We will show below that (8) of Sect. 5 holds and by what we said in Sect. 5 it will 
be sufficient to provide a Weierstrass section.

Lemma. We have that

ch (Y (pΛ)) = (1 − e−2�n−3)−(n−3)/2 × (1 − e−�n−3)−1×
(1 − e−(�n−3+�n−1+�n))−1 × (1 − e−(�n−1+�n))−2.

Proof. We will prove that the improved upper bound mentioned in Sect. 5 is equal to 
the lower bound appearing in left hand side of (4) of Sect. 4, namely that (8) of Sect. 5
holds.

Recall that the lower bound for ch (Y (pΛ)) is equal to 
∏

Γ∈E(π′)(1 − eδΓ)−1 where δΓ
is given by (2) of subsection 4.2.
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Recall the set E(π′) computed in the proof of Lemma 13.3 and that for all Γ ∈ E(π′)
one has that i(Γ ∩ π′) = j(Γ) ∩ π′ (by 4.2). Then for 1 ≤ u ≤ (n − 5)/2, and Γu =
{αu, αn−3−u}, one has that

δΓu
= −2(�u + �n−3−u) + 2(�′

u + �′
n−3−u)

= −2(ε1 + . . . + εu + ε1 + . . . + εn−3−u)+
2(ε1 − εn−3 + . . . + εu − εn−2−u)

= −2�n−3.

For Γ(n−3)/2 = {α(n−3)/2}, one has that

δΓ(n−3)/2 = −2�(n−3)/2 + 2�′
(n−3)/2

= −2(ε1 + . . . + ε(n−3)/2)+
2(ε1 − εn−3 + ε2 − εn−4 + . . . + ε(n−3)/2 − ε(n−1)/2)

= −(ε1 + . . . + εn−3) = −�n−3.

Then for Γn−3 = {αn−3}, one has that δΓn−3 = −2�n−3. For Γn−2 = {αn−2}, one has 
that

δΓn−2 = −2�n−2 + 2�′
n−2

= −2(ε1 + . . . + εn−2) + (εn−2 − εn−1)
= −2(ε1 + . . . + εn−3) − εn−2 − εn−1

= −(�n−3 + �n−1 + �n).

Finally for Γn−1 = {αn−1} and for Γn = {αn} = j(Γn−1), one has that δΓn−1 = δΓn
=

−(�n−1 +�n). Hence the right hand side of equality of the lemma is equal to the lower 
bound for ch (Y (pΛ)).

Now the improved upper bound for ch (Y (pΛ)) is equal to 
∏

γ∈T (1 − e−(γ+s(γ)))−1, 
where we have that ad pΛ(y) ⊕ gT = p∗Λ with dim gT = ind pΛ and where, for all γ ∈ T , 
s(γ) ∈ QS is such that γ+s(γ) vanishes on hΛ, that is, γ+s(γ) = k�n−3+k′(�n−1+�n), 
with k, k′ ∈ Q.

Set, for all 1 ≤ i ≤ (n − 5)/2, γi = ε2i−1 − ε2i ∈ T .
Assume first that 1 ≤ i ≤ [(n − 3)/4]. Then one has that

s(γi) = (εn−3 − εn) + (εn−3 + εn) + 2
∑2i−1

j=1 (εn−3−j − εj)+

4
∑i−1

j=1(ε2j−1 + ε2j) + 2
∑(n−3)/2−i

j=i+1 (ε2j−1 + ε2j) + 3(ε2i−1 + ε2i)

so that γi + s(γi) = 2�n−3.
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Now for [(n − 3)/4] + 1 ≤ i ≤ (n − 5)/2, one has that

s(γi) = (εn−3 − εn) + (εn−3 + εn) + 2
∑n−3−2i

j=1 (εn−3−j − εj)

+4
∑(n−3)/2−i

j=1 (ε2j−1 + ε2j) + 2
∑i−1

j=(n−3)/2−i+1(ε2j−1 + ε2j)

+(ε2i−1 + ε2i)

so that γi + s(γi) = 2�n−3.
For γ = εn−4 + εn−3 ∈ T , one has that s(γ) = (ε1 + ε2) + . . .+ (εn−6 + εn−5), so that 

γ + s(γ) = �n−3.
For γ = εn−4 − εn−2 ∈ T , one has that s(γ) = 2((ε1 + ε2) + . . . + (εn−6 + εn−5)) +

(εn−4 + εn−2) + (εn−3 + εn) + (εn−3 − εn) so that γ + s(γ) = 2�n−3.
For γ = εn−3 +εn−1 ∈ T , one has that s(γ) = (ε1 +ε2) + . . .+(εn−6 +εn−5) +(εn−4 +

εn−2) so that γ + s(γ) = ε1 + ε2 + . . . + εn−3 + εn−2 + εn−1 = �n−1 + �n.
For γ = εn−1 − εn ∈ T , one has that s(γ) = (ε1 + ε2) + . . .+ (εn−6 + εn−5) + (εn−4 +

εn−2) + (εn−3 + εn) so that γ + s(γ) = �n−1 + �n.
Finally for γ = εn−1 − εn−2 ∈ T , one has that s(γ) = 2((ε1 + ε2) + . . . + (εn−6 +

εn−5)) + 2(εn−4 + εn−2) + (εn−3 + εn) + (εn−3 − εn) so that γ + s(γ) = 2(ε1 + . . . +
εn−3) + εn−2 + εn−1 = �n−3 + �n−1 + �n. Thus we obtain that the improved upper 
bound is also equal to the right hand side of the equality in the lemma, which gives the 
lemma, by what we said in Sect. 5. �
13.6. Existence of a Weierstrass section

By the above (see also Remark 3b of subsection 6.2) one can deduce the following 
Theorem.

Theorem. Let g be a simple Lie algebra of type Dn, with n ≥ 5, n odd, and let p be 
a standard parabolic subalgebra of g associated with the subset of simple roots π′ =
π \{αn−3, αn−1, αn}. Then there exists a Weierstrass section for coadjoint action of the 
canonical truncation pΛ of p and it follows that Sy(p) = Y (pΛ) is a polynomial algebra 
over k.

13.7. Weights and degrees of a set of generators

As in subsection 12.7 we give below the weights and degrees of each element of a set 
{pγ ; γ ∈ T} of homogeneous and h-weight algebraically independent generators of the 
polynomial algebra Y (pΛ). Recall that the weight wt(pγ) of pγ is equal to −(γ + s(γ))
and the degree deg(pγ) of pγ is equal to 1 + |s(γ)| and that we set γi = ε2i−1 − ε2i for 
all 1 ≤ i ≤ (n − 5)/2.
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γ ∈ T wt(pγ) deg(pγ)
γi −2�n−3 n − 3 + 4i
1 ≤ i ≤ [(n − 3)/4]

γi −2�n−3 3n − 4i − 7
[(n − 3)/4] + 1 ≤ i ≤ (n − 5)/2

γ = εn−4 + εn−3 −�n−3 (n − 3)/2

γ = εn−4 − εn−2 −2�n−3 n − 1

γ = εn−3 + εn−1 −(�n−1 + �n) (n − 1)/2

γ = εn−1 − εn −(�n−1 + �n) (n + 1)/2

γ = εn−1 − εn−2 −(�n−3 + �n−1 + �n) n

14. Case 3 for type D

Here we consider the parabolic subalgebra p = qs, � of g simple of type Dn with n
odd, n ≥ 5, s odd and � ∈ N such that s + 2� ≤ n − 2 (note that in this case one 
has that s + 2� �= n − 3, hence it does not coincide with some p�′). This corresponds to 
the case 3 of subsection 1.7 that is, the parabolic subalgebra qs, � of g associated with 
π′ = π \ {αs, αs+2, . . . , αs+2�, αn−1, αn}.

When s +2� < n −2, there exists a connected component of π′ of type An−2−s−2� which 
we denote by π′

2. Then, when moreover s ≥ 3, there exist two connected components of 
π′ of type Ak with k ≥ 2, namely π′

1 of type As−1 and π′
2 above. Denote by βπ′

k
⊂ βπ′

the Kostant cascade of the simple factor of g′ associated with π′
k for k ∈ {1, 2}. We have 

that βπ′
1

= {β′
i = εi − εs+1−i | 1 ≤ i ≤ (s − 1)/2} and βπ′

2
= {β′′

i = εs+2�+i − εn−i | 1 ≤
i ≤ (n − s − 2� − 2)/2}. Recall that β0

π′ = βπ′ \ (βπ′ ∩π′). Then β0
π′ = βπ′

1
∪βπ′

2
. We also 

have that (see subsection 8.1) β0
π = βπ \ (βπ∩π) = {βi = ε2i−1 +ε2i | 1 ≤ i ≤ (n −1)/2}. 

We set

S+ = {βi; 1 ≤ i ≤ (n− 3)/2, β̃(n−1)/2 = β(n−1)/2 − αn−1 = εn−2 + εn},

S− = −β0
π′

and S = S+ ∪ S−.

14.1. Conditions (i) to (v) of Proposition 6.2

For all βi ∈ S+ with 1 ≤ i ≤ (n − 3)/2, we set Γβi
= Hβi

⊂ Δ+ and for all 
γ ∈ S−, we set Γγ = −H−γ ⊂ Δ−

π′ with the notation of subsection 6.1. Finally we set 
Γεn−2+εn = {εn−2 + εn, εn−2 − εn−1, εn−1 + εn}, T+ = {β(n−1)/2, εn−2 − εn, εn−1 −
εn, ε2i−1 − ε2i; 1 ≤ i ≤ (n − 3)/2} and T− = −(βπ′ ∩ π′). By construction every set 
Γγ , for γ ∈ S, is a Heisenberg set with centre γ such that, if γ ∈ S+, then Γγ ⊂ Δ+

and if γ ∈ S−, then Γγ ⊂ Δ−
π′ . Moreover, for all 1 ≤ i ≤ (n − 1)/2, we have that 

ε2i−1 − ε2i = α2i−1 ∈ βπ ∩ π (see subsection 8.1) and Hα2i−1 = {α2i−1}. We observe 
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that Hβ(n−1)/2 �Hαn−2 = Γεn−2+εn � (T+∩Hβ(n−1)/2). Then by i) of Lemma 6.1, the sets 
T+, T− and the Γγ ’s, γ ∈ S, are disjoint and one has that Δ+ = �γ∈S+Γγ � T+ and 
Δ−

π′ = �γ∈S−Γγ � T−. Then by setting T ∗ = ∅, condition (iv) of Proposition 6.2 holds, 
with T = T+ � T−. One also deduces by ii), iii) and iv) of Lemma 6.1 that conditions 
(ii) and (iii) of Proposition 6.2 are satisfied. Condition (i) follows from the following 
Lemma.

Lemma. S|hΛ
is a basis for h∗Λ.

Proof. First we observe that hΛ = h′ ⊕ kH−1(εn) by what we said in Sect. 3. Hence 
dim hΛ = dim h′ + 1 = n − � − 3 + 1 = n − � − 2. We first verify that |S| = (n − 3)/2 +
1 + (s − 1)/2 + (n − s − 2� − 2)/2 = n − � − 2 = dim hΛ.

Then we order the elements su of S as follows:

β1, . . . , β(n−3)/2, −β′
1, . . . , −β′

(s−1)/2, −β′′
1 , . . . , −β′′

(n−s−2�−2)/2, εn−2 + εn.

Set t = [(s +1)/4] and t′ = [(n − s − 2�)/4]. For a basis (hv) of hΛ we take, in this order,

α∨
2 , α

∨
4 , . . . , α

∨
n−3,

h′
1 = α∨

1 , h
′
2 = α∨

s−2, . . . , h
′
2t−1 = α∨

2t−1, h
′
2t = α∨

s−2t,

h′′
1 = α∨

n−2, h
′′
2 = α∨

s+2�+2, . . . , h
′′
2t′−1 = α∨

n−2t′ , h
′′
2t′ = α∨

s+2�+2t′ ,

H−1(εn)

without repetitions for the h′
j ’s and the h′′

j ’s. Recall that βi = �2i − �2i−2 (where 
�0 = 0) and Lemma 6.4. Then we obtain that

(su(hv))1≤u, v≤n−2−� =

⎛
⎜⎝
A 0 0 0
∗ B 0 0
∗ ∗ C 0
∗ ∗ ∗ 1

⎞
⎟⎠

with A = (βu(α∨
2v))1≤u, v≤(n−3)/2, resp. B = (−β′

u(h′
v))1≤u, v≤(s−1)/2, and C =

(−β′′
u(h′′

v))1≤u, v≤(n−s−2�−2)/2, which are lower triangular matrices with 1, resp. −1 on 
their diagonal. Hence the lemma. �
14.2. Condition (vi) of Proposition 6.2

Condition (vi) of Proposition 6.2 follows from the following Lemma.

Lemma. We have that |T | = ind pΛ.
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Proof. One easily checks that

E(π′) =
{

Γu = {αu, αs−u}, 1 ≤ u ≤ (s− 1)/2,
Γs+2�+v = {αs+2�+v, αn−1−v}, 1 ≤ v ≤ (n− s− 2�− 2)/2,

Γs+k = {αs+k}, 0 ≤ k ≤ 2�,

Γn−1 = {αn−1}, Γn = {αn}
}

hence ind pΛ = |E(π′)| = (s − 1)/2 +(n − s − 2� − 2)/2 +2� +1 +2 = (n − 3)/2 + � +3 =
|T+| + |T−| = |T |. �

14.3. All conditions of Proposition 6.2 are satisfied, hence setting y =
∑

γ∈S xγ and 
h ∈ hΛ such that for all γ ∈ S, γ(h) = −1, we obtain that (h, y) is an adapted pair for 
pΛ. This is sufficient by Remark 3a of subsection 6.2 to provide a Weierstrass section for 
coadjoint action of pΛ, by the following Lemma.

Lemma. For every Γ ∈ E(π′), we have that εΓ = 1.

Proof. Recall the set E(π′) given in the proof of Lemma 14.2. Recall subsection 4.3. Set 
1 ≤ u ≤ (s − 1)/2. Then dΓu

= �u +�s−u /∈ Bπ since u and s −u are of different parity. 
For the same reason, for 1 ≤ v ≤ (n − s −2� −2)/2, we have that dΓs+2�+v

/∈ Bπ. Now for 
0 ≤ k ≤ 2� and k odd, dΓs+k

= �s+k ∈ Bπ, but d′Γs+k
= �′

s+k /∈ Bπ′ since αs+k belongs 
to a connected component of π′ of type A1. If 0 ≤ k ≤ 2� and k even, then αs+k /∈ π′

and d′Γs+k
= 0 ∈ Bπ′ but dΓs+k

= �s+k /∈ Bπ. Finally dΓn−1 /∈ Bπ and dΓn
/∈ Bπ. Hence 

the lemma. �
We then obtain the following Theorem.

Theorem. Let g be a simple Lie algebra of type Dn, with n ≥ 5, n odd and let s, � be 
integers such that s is odd and s + 2� ≤ n − 2. Let qs, � be the parabolic subalgebra of g
associated with the subset π′ = π \ {αs, αs+2, . . . , αs+2�, αn−1, αn}. Then there exists a 
Weierstrass section for coadjoint action of the canonical truncation of qs, �.

Proof. Indeed (with the notation in Proposition 6.2) y + gT is a Weierstrass section for 
coadjoint action of the canonical truncation of qs, � by Remark 3a of subsection 6.2. �
14.4. Weights and degrees

Here both bounds (see (4) in Sect. 4) for ch(Y (pΛ)) coincide and then Y (pΛ) is a 
polynomial algebra whose homogeneous and h-weight generators have weights and de-
grees which can be easily computed. To each Γ ∈ E(π′) is associated an homogeneous 
and h-weight generator of Y (pΛ) which has weight δΓ given by (2) and a degree ∂Γ given 
by (5) or by (6) of Sect. 4.



F. Fauquant-Millet / Journal of Algebra 580 (2021) 299–365 363
Below we give for completeness weights and degrees of a set of homogeneous and 
h-weight algebraically independent generators of Y (pΛ), each of them corresponding to 
an 〈ij〉-orbit Γr in E(π′).

〈ij〉-orbit in E(π′) Weight Degree
Γu = {αu, αs−u} −2�s s + 1 + 2u
1 ≤ u ≤ (s − 1)/2

Γs+2�+v = {αs+2�+v, αn−1−v} −2(�n−1 + �n) n + 3s + 6� + 2v
1 ≤ v ≤ (n − s − 2� − 2)/2

Γs+k = {αs+k} −2�s+k s + k + 1
0 ≤ k ≤ 2�, k even

Γs+k = {αs+k} −�s+k−1 − �s+k+1 2(s + k)
1 ≤ k ≤ 2� − 1, k odd

Γn−1 = {αn−1} −�n−1 − �n (n − 1)/2

Γn = {αn} −�n − �n−1 (n + 1)/2

14.5. 

Remarks. 

(1) Consider now the parabolic subalgebra p = qs, � in g of type Dn, with s an even 
integer and assume that we have found an adapted pair (h, y) ∈ hΛ × p∗Λ for pΛ. 
Then the set S cannot contain, as in the case s odd and n odd, the set {βi | 1 ≤
i ≤ [(n − 3)/2]}, at least for s/2 ≤ [(n − 3)/2]. Indeed by (4) of Sect. 4, one has that 
−2�s ∈ Λ(p) then necessarily �s(h) = 0 ⇐⇒ β1 + . . . + βs/2 = 0 in contradiction 
with the fact that, for all 1 ≤ i ≤ [(n − 3)/2], one should have also that βi(h) = −1. 
Moreover for s = n − 2 (with s even), the set S = {βi; 1 ≤ i ≤ (n − 4)/2, β̃(n−2)/2 =
εn−3 + εn−1} ∪ (−β0

π′) is such that S|hΛ is not in general a basis for h∗Λ (since for all 
s ∈ S, s(α∨

n/2−1) = 0 for n ≥ 8).
(2) Now consider in g simple of type Dn, the parabolic subalgebra p = qs, � with s

odd and n even, and take for S a similar set as in case s odd and n odd, namely 
S = {βi; 1 ≤ i ≤ (n − 4)/2, β̃(n−2)/2 = εn−3 + εn−1} ∪ (−β0

π′). Then either S|hΛ

is not a basis for h∗Λ or in case it is, then take the Heisenberg sets similar as those 
taken in case n and s odd (with Γβ̃(n−2)/2

= {β̃(n−2)/2, εn−3 ± εn, εn−1 ∓ εn, εn−3 −
εn−2, εn−2 + εn−1}). Take also T and T ∗ disjoint sets such that conditions (iv) and 
(vi) of Proposition 6.2 hold. But then condition (v) of Proposition 6.2 is not satisfied.

(3) Finally consider a parabolic subalgebra p of g simple of type Bn or Cn, associated 
with the subset π′ = π \{αs, αs+2, . . . , αs+2�, αn} for s +2� ≤ n −1. Then a similar 
construction as this made for qs, � for g simple of type Dn with n and s odd does not 
give a regular element y in p∗Λ.
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