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1.1.  Let g be a simple Lie algebra over k and p be a standard parabolic subalgebra
of g, acting by coadjoint action on its dual space p*. Denote by Sy(p) the vector space
generated by the semi-invariant polynomial functions on p*. This is a subalgebra of the
symmetric algebra S(p) of p. Moreover there exists a canonically defined subalgebra py of
p, called the canonical truncation of p or the truncated parabolic subalgebra associated
with p, such that the algebra Y (ps) of invariant polynomial functions on p% coincides
with the algebra Sy(p) (see 2.3 for more details). For some parabolic subalgebras p which
we define below, we will study whether Sy(p) is isomorphic to a polynomial algebra over
k and whether one can linearize generators of Sy(p).

1.2.  Now we consider g simple of type B,,, C,, or D,, and integers £ € N and s € N*
with s + 20 < n.

Using Bourbaki’s labelling [2] for a chosen set m = {a1, ..., an} of simple roots of
g with respect to some Cartan subalgebra h, we focus on several standard parabolic
subalgebras p of g associated with a particular subset ©’ of m, where roughly speaking
every second root in a chain of simple roots is deleted.

More precisely we consider the parabolic subalgebra ps , of g associated with the
subset 7' C 7 such that

7' =m\ {as, ast2, ..., Qsior}

with s +2¢ < n.

When g is of type D,,, we also study some parabolic subalgebras associated with a
subset 7' C 7 which does not contain the last two roots o, _1 and «,, and also does not
contain every second root in a chain of simple roots. Indeed we consider two other cases
of parabolic subalgebras in g of type D,, which we define below.

The first case consists in deleting «,,, a,—1 and then possibly every second simple
root preceding avy,—1 until a,—1_g9p with 0 < ¢ < (n — 2)/2. Thus we denote by p, the
parabolic subalgebra of g of type D,, associated with the subset 7’ C 7 such that

ud :’/T\{an—l—2ka Qn | 0<k< 6}

with 0 < £ < (n—2)/2.

The second case consists in deleting «,, a,,—1 and then every second simple root from
some simple root o until as9¢ with s+2¢ < n—2. Thus we denote by g, ¢ the parabolic
subalgebra of g of type D,, associated with

7TI =TT \ {as; Q42 - ooy Ogp2p, A1, an}

with s +2¢ <n —4 or s + 2 = n — 2. Note that, if s + 2 =n — 3, then q, (n,_3-5)/2 =
p(nflfs)/2 or Simpler An—3—20,¢ = Pr41-

Roughly speaking, identifying g with a Lie subalgebra of some gl,,, and adopting the
conventions in [3, Chap VIII] the Levi factor of every parabolic subalgebra p as defined
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above is composed, on each side of the second diagonal, by ¢ successive blocks of size
two, a first block and possibly a last block (in type D,,, when «,, € 7' but a,,_1 ¢ 7/,
we may notice that we have a pair of blocks along the second diagonal, symmetric with
respect to the first diagonal). In other words the Levi subalgebra of such p is of type
A1 X A{ x R,., where

s=n—1-20and R, = {0} for p,

Rr = An—2—s—2é for Us, ¢
R, =B, _s_o¢ for p,, ¢ and g of type B,
R, =Dy, 52 for Ps, e and g of type D,

with the convention that Ag = By = Dy = A) = {0}, By = D; = A; and Dy = A; x A}
(here, for any k € N*, type {0} x Ay, or Ay, x {0}, resp. {0} x By, resp. {0} x Dy, simply
means type Ag, resp. Bg, resp. D).

Note that the parabolic subalgebra ps ¢ is a maximal parabolic subalgebra and it has
already been treated in [8], [13] and [14]. Thus we will not consider this case. This work
is a continuation and a generalization of [8], [13] and [14].

1.3.  Let X be a finite dimensional vector space on which a reductive Lie algebra a
acts linearly. Denote by S(X*) the symmetric algebra of the dual space X* of X, which
may be identified with the algebra of polynomial functions k[X] on X. Let S(X*)®
denote the algebra of invariants in S(X™*) under the action of a (induced by the action
of a on X), which is also the algebra of invariant polynomial functions on X. By a
Hilbert’s theorem (see [28, II, Thm. 3.5] for an exposition), the algebra of invariants
S(X*)¢ is finitely generated and Popov considered in [27, 2.2.1] the problem of linearizing
invariant generators in S(X*)® by introducing the so-called Weierstrass sections for the
action of a on X. Now assume that a is a finite dimensional Lie algebra, not necessarily
reductive. We may extend Popov’s notion for X = a* the dual space of a, on which a
acts by coadjoint action, and define a Weierstrass section for coadjoint action of a as
an affine subspace . of a* such that restriction of functions to . induces an algebra
isomorphism between the algebra of symmetric invariants Y (a) = S(a)® and the algebra
of polynomial functions k[.] on .. Then the existence of a Weierstrass section for
coadjoint action of a implies the polynomiality of Y (a), and the restriction map gives
a linearization of invariant generators of Y (a). More details on Weierstrass sections are
given in 2.5.

In the semisimple case (that is, when a = g a semisimple Lie algebra, see 2.7), a
Weierstrass section . was constructed by Kostant in [23] using a principal sly-triple.
This particular Weierstrass section is called the Kostant slice, or Kostant section in [27].
The Kostant slice is also an affine slice in the sense that, if G is the adjoint group of g,
then G..# is dense in g* and every coadjoint orbit in g* meets . in at most one point,
and transversally. In 2.6 are more details on affine slices.
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In this article, our aim is to construct Weierstrass sections for coadjoint action of
the canonical truncation p of the standard parabolic subalgebra p whenever p is either
equal to ps ¢ or py or g5, defined in the previous subsection.

1.4. Similarly to the Kostant slice, a Weierstrass section for coadjoint action of py
is also an affine slice to the coadjoint action of py by [12]. In particular if there exists a
Weierstrass section . C p} for coadjoint action of pa, then every coadjoint orbit in p}
meets . in at most one point.

1.5.  Unlike the reductive case where a principal sly-triple exists, a Weierstrass sec-
tion in the non reductive case cannot be given by such a triple, since the latter does not
exist. To fill in this lack, the notion of an adapted pair was introduced in [21]. Denote
by bha := hNpy the Cartan subalgebra of the truncated parabolic subalgebra p, and by
ad the coadjoint action of py on p}. An adapted pair for py is a pair (h, y) € ha X p}
such that:

(1) adh(y) = —y and
(2) y is regular in p} that is, there exists a subspace V' of p} of minimal dimension
(called the index of pp and denoted by indpa) such that adpa(y) ®V = p}.

More details on adapted pairs are given in 2.4. Unfortunately adapted pairs do not
always exist and are quite hard to construct. They may not exist even when Weierstrass
sections for coadjoint action exist, as it was shown in [20, Thm. 9.4] for the truncated
Borel subalgebra by in type Ba,y1, D, E and Ga. However in [20, 11.4 Example 2],
although Sy(b) = Y (by) is always a polynomial algebra by [15], it was also noticed that
a Weierstrass section for coadjoint action of b does not exist for g of type Cs since the
invariant generators cannot be linearized in this case. As in [8], [13] and [14] we are able
in our present cases to construct Weierstrass sections thanks to adapted pairs.

1.6. In [18] Weierstrass sections were constructed for coadjoint action of any trun-
cated (bi)parabolic subalgebra in a simple Lie algebra of type A. Thus we do not consider
this type.

1.7. Main result

Recall the notation of subsection 1.2. In this paper we prove that Weierstrass sections
exist for the following cases:

(1) for coadjoint action of the canonical truncation of ps , when:
(a) g is of type B,, with n > 2, s odd and ¢ > 1.
(b) g is of type D,, with n >4, s odd and ¢ > 1.
(c) gis of type B,, with n >4, s even and ¢ = 1.
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(d) g is of type D,, with n > 6, s even, s <n—4 and £ = 1.
(e) g is of type C, withn >3 and £ > 1;

(2) for coadjoint action of the canonical truncation of p, for g simple of type D,, when:
(a) n >4, and n even.
(b) n>5,n odd, and £ = 0.
(¢) n>5,no0dd, and £ = 1;

(3) for coadjoint action of the canonical truncation of qs ¢ when g is of type D,, with
n > 5, n odd and s odd.

1.8. The proof

The proof is in two steps and via a case by case consideration. Let p denote one of
the above parabolic subalgebras and p, its canonical truncation.

Step 1 consists of constructing explicitly an adapted pair for p,, thanks to Propo-
sition 6.2 which uses extensively the notion of Heisenberg sets, generalizing the sets of
roots of generators in Heisenberg Lie algebras, see subsection 6.1.

Step 2 is to prove that this adapted pair gives the required Weierstrass section. For
this purpose, two means are available. The simplest way is to check that the equality
of a lower and an upper bounds for the formal character of Sy(p) (see Sect. 4) holds.
This equality implies polynomiality of Sy(p) and then the existence of an adapted pair
for pa implies the existence of a Weierstrass section for coadjoint action of pa (see also
subsection 2.5). However in some of our cases the lower and upper bounds mentioned
above do not coincide and then the polynomiality of Sy(p) = Y (pa) was not yet known.
We then check that the lower bound and a so-called improved upper bound introduced
in [19] (see Sect. 5) coincide. The latter method concerns the cases 1c, 1d, 2b, 2c. The
Weierstrass section we obtain in these cases assures then the polynomiality of Sy(p).

2. Some definitions

In what follows, we specify the notions mentioned in Sect. 1. Let a be an algebraic
finite dimensional Lie algebra over k, which acts on its symmetric algebra S(a) by the
action (denoted by ad) which extends by derivation the adjoint action of a on itself given
by Lie bracket. We denote by A the adjoint group of a.

2.1. Algebra of symmetric invariants

An invariant of S(a) (symmetric invariant of a for short) is an element s € S(a) such
that, for all x € a, adx(s) = 0.

We denote by Y (a) = S(a)? the set of symmetric invariants of a: it is a subalgebra
of S(a), called the algebra of symmetric invariants of a. We may notice that the algebra
Y (a) also coincides with the centre of S(a) for its natural Poisson structure (and that is
why it is sometimes also called the Poisson centre of S(a) or of a for short). Moreover
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Y (a) also coincides with the algebra S(a)4 of invariants of S(a) under the action of A
by automorphisms.

2.2. Algebra of symmetric semi-invariants

An element s € S(a) is called a (symmetric) semi-invariant of a, if there exists A € a*
verifying that, for all z € a, adz(s) = A(z)s. We denote by S(a)yx C S(a) the space
of such symmetric semi-invariants. The vector space generated by all symmetric semi-
invariants of a will be denoted by Sy(a): it is a subalgebra of S(a), called the algebra of
symmetric semi-invariants of a. A linear form A € a* such that S(a)y # {0} is said to be
a weight of Sy(a). We denote by A(a) the set of weights of Sy(a). It is a semigroup. One
has that Sy(a) = @, (q) S(a)a- Since Y(a) = S(a)o, one always has that Y (a) C Sy(a).

We will say that a has no proper semi-invariants when all the semi-invariants of a are
invariant that is, when Sy(a) = Y (a).

For example, when a = g is a semisimple Lie algebra, then g has no proper semi-
invariants. Moreover if b is a Cartan subalgebra of g, we will say that s € S(g) is an
h-weight vector if there exists p € h* such that for all z € §, ada(s) = p(x)s. If p
is a (standard) parabolic subalgebra of g, then the set of weights A(p) of the algebra
of semi-invariants Sy(p) of p may be viewed as a subset of h* (see Sect. 3). Hence the
h-weight vectors of Sy(p) are exactly the semi-invariants of p.

A special case of a parabolic subalgebra is a Borel subalgebra b = n & b of g semi-
simple, where n denotes the nilpotent radical of b. By [15] the algebra of symmetric
semi-invariants Sy(b), resp. the algebra of symmetric invariants Y'(n) C Sy(b), is always
a polynomial algebra, the former having rank(g) = dim b generators. Moreover both
algebras have the same set of weights. (See [15, Tables I and II] and [10, Table] for an
erratum, for an explicit description of weights and degrees of generators.)

2.3. Canonical truncation

Since a is algebraic, there exists by [1] a canonically defined subalgebra of a, called
the canonical truncation of a and denoted by a,, such that Y(ay) = Sy(an) = Sy(a).
We also say that a, is the truncated subalgebra of a: it is the largest subalgebra of a
which vanishes on the weights of Sy(a). In particular, the canonical truncation of a has
no proper semi-invariants. By say [29, 29.4.3] a parabolic subalgebra p of a semisimple
Lie algebra is algebraic, hence one has that Sy(p) = Y (pa) = Sy(ps) where pp is the
canonical truncation of p. Moreover a result of Chevalley-Dixmier in [4, Lem. 7], also
known as a theorem of Rosenlicht, implies that

indpy = degtry (Fract(Y (pa))).

In other words the index indpy of pp that is, the minimal codimension of a coadjoint
orbit in p}, is also equal to the cardinality of a maximal set of algebraically independent
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elements in Sy(p) = Y(pa). It is not known in general whether Sy(p) is or not finitely
generated, but the transcendence degree of its field of fractions was shown to be finite
with an explicit formula given in (1) of subsection 4.1. By [16, 7.9] (see also [7, Chap.
I, Sec. B, 8.2]) the algebra of symmetric invariants Y (p) of a proper parabolic subal-
gebra p in a simple Lie algebra is always reduced to scalars, while by [5] its algebra of
symmetric semi-invariants Sy(p) is never. That is why we consider the algebra of sym-
metric semi-invariants Sy(p) = Y (pa) of a parabolic subalgebra p rather than its algebra
of symmetric invariants. Moreover the structure of Sy(p) may give information about
the field C(p) of invariant fractions of S(p). Specifically assume that Sy(p) =Y (ps) is a
polynomial algebra (freely generated by semi-invariants of p). Then, since we have equal-
ity Fract(Y (pa)) = C(pa), the latter is obviously a pure transcendental extension of k.
Moreover by [24, Thm. 66] so is also the field C(p), answering positively to Dixmier’s
fourth problem [6, Problem 4].

2.4. Adapted pairs

An adapted pair for a is a pair (h, y) € a x a* such that adh(y) = —y, where ad
denotes here the coadjoint action of a, h is a semisimple element of a and y is a regular
element in a*, that is, there exists a subspace V of a* of minimal dimension such that
ada(y) @V = a* (the dimension of V is called the index of a, denoted by ind a).

Call an element of a* singular if it is not regular and denote by a;,
elements in a*. The set of regular elements in a* is open dense in a* and the codimension
of a

the set of singular

*
sing

singular (nonsingular otherwise). The nonsingularity property is also called in [26, Def.

is always bigger or equal to one. When equality holds the algebra a is said to be

1.1] the “codimension two property”.

If (h, y) is an adapted pair for a, then y belongs to the zero set of the ideal of S(a)
generated by the homogeneous elements of Y(a) with positive degree. When a admits
an adapted pair and has no proper semi-invariants, then it follows by [22, 1.7] that the
algebra a is nonsingular. In particular if a is a truncated parabolic subalgebra of a simple
Lie algebra g and admits an adapted pair (h, y) then by the above, a is nonsingular.

2.5. Weierstrass sections

A Weierstrass section for coadjoint action of a (see [12]) is an affine subspace y + V
of a* (with y € a* and V' a vector subspace of a*) such that restriction of functions of
S(a) = k[a*] to y + V induces an algebra isomorphism between Y (a) and the algebra
of polynomial functions k[y + V] on y + V. Of course, since k[y + V] is isomorphic
to S(V*), the existence of a Weierstrass section for coadjoint action of a implies that
the algebra Y (a) is isomorphic to S(V*) and then that Y (a) is a polynomial algebra (on
dim V' generators). Moreover, under this isomorphism, a set of homogeneous algebraically
independent generators of Y (a) is sent to a basis of V*, hence each element of this set
is linearized. In [20] Weierstrass sections were called algebraic slices.



306 F. Fauquant-Millet / Journal of Algebra 580 (2021) 299-365

Assume that a has no proper semi-invariants, admits an adapted pair (h, y), and that
the algebra of symmetric invariants Y'(a) is polynomial. Then by [22, 2.3], for any ad h-
stable complement V' of ad a(y) in a*, the affine subspace y + V' is a Weierstrass section
for coadjoint action of a.

Suppose now that a = p, is the canonical truncation of a proper parabolic subalgebra
p in a simple Lie algebra. By [10] there exist a lower and an upper bounds for the formal
character of Sy(p) = Y (pa) (see also Sect. 4). Assume that these bounds coincide. This
implies by [10] that Y'(p,) is a polynomial algebra over k. Assume further that we have
constructed an adapted pair for pp. Thus by the above, this adapted pair provides a
Weierstrass section for coadjoint action of p,. This method will be used in roughly half
of the cases we will consider in this paper.

2.6. Affine slice

An affine slice to the coadjoint action of a is an affine subspace y + V of a* such that
A.(y+ V) is dense in a* and y + V meets every coadjoint orbit in A.(y + V') at exactly
one point and transversally. Assume that a has no proper semi-invariants. Then if there
exists a Weierstrass section y + V' C a* for coadjoint action of a, one has by [12, 3.2]
that y + V is an affine slice to the coadjoint action of a. The converse does not hold in
general, but if (y +V)sing := (y+ V) Naj,,, is of codimension at least two in y + V' then

it holds by [12, 3.3]. One may also find in [20] more details on affine slices.
2.7. The reductive case

Take a = g semisimple. Then there exists a principal slo-triple (z, h, y) of g with
h € g a semisimple element and x and y regular in g ~ g*, such that [h, y] = —y. Then
the pair (h, y) is an adapted pair for g. Denote by g* the centralizer of  in g. Then by
[23] y + ¢* is a Weierstrass section and also an affine slice to the coadjoint action of g.
It is called the Kostant slice or Kostant section.

2.8. Magic number and nonsingularity

The magic number of a is
1, .. .
c(a) = §(d1m a+ ind a).

It is always an integer. By [25, Prop. 3.1] one always has that c(ay) = c(a), where ay
is the canonical truncation of a. When a = g is semisimple, one has that ¢(g) = dim b
where b is a Borel subalgebra of g.

Assume that a has no proper semi-invariants and is nonsingular (which is the case by
2.4 when a admits an adapted pair for instance). Let f1, ..., f; be l = ind a homogeneous
algebraically independent elements of Y (a). Then by [26, Thm. 1.2]
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l
> deg(f:) = c(a). (deg)

i=1

Moreover by [22, 5.6] and [26, Thm. 1.2], equality holds in (deg) if and only if Y (a) is
generated by f1, ..., fi.

In particular when a = p, is the canonical truncation of a parabolic subalgebra p then
by the above the existence of a Weierstrass section for coadjoint action of p,, given by an
adapted pair for p,, implies that equality holds in (deg) for a set of ind pp homogeneous
algebraically independent elements of Y'(pa).

3. Notation

Let g be a semisimple Lie algebra over k and h be a fixed Cartan subalgebra of g. Let
A be the set of roots of g (or root system of g) with respect to h and 7 a chosen set of
simple roots. Denote by A* the subset of A formed by the positive, resp. negative, roots
of A, with respect to 7.

With each root o € A is associated a root vector space g, and a nonzero root vector
To € go. Forall A C A, set g4 = @ cp0a and —A = {y € A | —y € A}. We denote
by aV the coroot associated with the root & € A. Then (a")aex is a basis for the k-
vector space fj. We denote by n, resp. n—, the subalgebra of g such that n = ga+, resp.
n~ = ga-. We have the following triangular decomposition

g=ndhdn .

A standard parabolic subalgebra of g is given by the choice of a subset 7’ of 7. That is
why we may denote it by p,. Let Af, denote the subset of AT associated to 7/, namely
AL = £Nx' N A% Set n, = gp+ . Then pv = n@h®n_,. Moreover p, =nl, @hon~
is the opposite algebra of p,. )

Via the Killing form K on g, the dual space p}, of prs is isomorphic to p_, which is
then endowed with the coadjoint action of p,.

We denote by (, ) the non-degenerate symmetric bilinear form on h* x h*, induced
by the Killing form on § x b, and denote by H : h — bh* the isomorphism induced by
the latter. The form (, ) is invariant under the action of the Weyl group of (g, h). If g
is simple of type B,, C, or D, resp. A,,, we may also view the form (, ) as a scalar
product on R™, resp. on R™*!. For all v, 4 € b*, one has that v(H~1(v)) = (v, 7).
We have that H(a") = 2a/(«, «), for all & € A so that, for all o, 8 € A, we have that
Ble) = (20/(a; @), B).

We use Bourbaki’s labelling for the roots, as in [2, Planches I, resp. II, resp. 111,
resp. IV] when g is simple of type A, resp. B,, resp. C,, resp. D,,. We then set 7 =

{a1, ...,a,} and denote by w;, or sometimes w,,, 1 < i < n, the fundamental weight

associated with ;. Similarly, if 7" = {a;,, ..., @;,} C m we denote by w;_, or sometimes
/

w

w, » the fundamental weight associated with a;; with respect to 7’.
J



308 F. Fauquant-Millet / Journal of Algebra 580 (2021) 299-365

We denote by ¢;, 1 <7 < n, resp. 1 <i<n+1, the elements of an orthonormal basis
of R™, resp. R"™! with respect to the scalar product (, ) and according to which the
simple roots a;, 1 < i < n, are expanded as in [2, Planches II, III, TV, resp. I] for type
B,, C,, D, resp. A,,.

Recall the definition of the canonical truncation given in 2.3 and denote by p,/ A the
canonical truncation of p,/. Then one has that

Pra =@ by Dng

where hp C b is the largest subalgebra of h which vanishes on A(p,), the set of weights
of Sy(p,) which may be identified with a subset of h*. For an explicit description of by,
see [11, 5.2.2, 5.2.9 and 5.2.10] or [13, 2.2]. Denote by p’, the derived subalgebra of p,/
and set b’ = hNp’,. Then b’ is the vector space generated by the coroots o with o € 7/
and b’ C hy. Let wp be the longest element of the Weyl group of (g, h). If wg = —Id
then hp = b’. In particular if g is simple of type B,,, C,, or Da,,, then we have that
ha = b’. Now assume that g is simple of type D,, with n odd. Then if both a,,_1 and a,
do not belong to ', we have that

ba =0 SkH (wn — @p1) = @kH ' (en) = B k(o — ) _y),

otherwise hy = b’.

For convenience we will replace p,/ by its opposite algebra p_, (simply denoted by p
from now on) and we will consider the canonical truncation py = N of p=yp_. We
have that

pl\:p;yA:ni@hA@n:

and its dual space p} may be identified via the Killing form K on g with p,/ a (since by
[11, 5.2.2, 5.2.9] the restriction of K to hp x b is non-degenerate).
We will denote by g’ the Levi subalgebra of p (and of p), namely:

g=nohon,.
Then w{ will denote the longest element of the Weyl group of (¢, ).

4. Bounds for formal character

Keep the notation of previous Section. A h-module M is called a weight module
if M = ®,ep+M,, with finite dimensional weight subspaces M, := {m € M | Vh €
b, h.m = v(h)m}. For a weight module M one defines the formal character ch M of M
as follows:

ch M = Z dim M, e’
veh*
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where e# TV = ete” for all p, v € h*. Obviously the formal character is multiplicative on
tensor products that is, if M and N are weight modules, then

ch (M ® N)=chMch N.

Hence if & C S(p) is a polynomial algebra with algebraically independent h-weight
generators a;, 1 < i <[, each of them having a nonzero weight \; € h*, then

cha = H (1—eM)~h

1<i<l

Moreover for weight modules M and N, we write ch M < ch N if dim M,, < dim N,, for
all v € h*. Hence if M C N, then ch M < ch N and if equality holds then M = N.

We will specify below (see subsection 4.4) the lower and upper bounds for ch Y (py)
mentioned in subsection 2.5. For this, we have to summarize results in [9], [10], [11] and
[17].

4.1.  Let i and j be involutions of 7 defined as in [11, 5.1] or as in [13, 2.2]. More
precisely j = —wg and i(«) = —w{(«) for all @ € #’. If now a € 7\ 7', then i(«) = j()
if j(«) ¢ 7', and otherwise i(a) = j(ij)"(«) where r is the smallest integer such that
J(ij)"(a) ¢ 7'. Let E(n’) be the set of (ij)-orbits in 7. By [11, 2.5] and [9, 3.2], we have
that

indps = degtry (Fract(Y (pa))) = | E(x')]. (1)

4.2.  Following [11, 5.2.1] one may set, for each T € E(r’):

5p:—Zw7— Z w,y + Z @, + Z w!,. (2)

yel ~ej(T) yer'nz! ~yei(I'Nw’)

Note that, for all I € E(n’), one has that ¢(I' N «’) = j(I') N« by [10, 3.2.2].

4.3. LetI' € E(n’). Onesets dr =} pwy and dp. = > p,, @7, and one denotes
by Br := A(n®h) C bh*, resp. B := A(nt,@h’) C h’'* the set of weights of the polynomial
algebra of symmetric semi-invariants Sy(n & b), resp. Sy(n}, @ b’): generators of the set
B (and then also of B,/) are given in [15, Table I and II] and in [10, Table]. The set B,
resp. By, is equal to the set of weights of the polynomial algebra Y (n), resp. Y (nf,), see
below subsection 4.5.

Then following [10, 3.2.7] one sets

1/2 ifI'=j(I')anddr € Brand dj. € By
Er =
1 otherwise.
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Below we give some details on the set B, resp. B,/. For a real number x, denote by
[x] the integer such that z — 1 < [z] < .

Assume that g is simple of type B,,, with n > 2. Recall that j = Id;. Let a € .
If @« = ag, with 1 < k < [(n —1)/2|, then wy, € B,. Otherwise 2w, € B, but
Wy ¢ Br.

Now assume that g is simple of type D,,, with n > 4. Then the same as above is true
for the first n — 2 simple roots. Moreover if n is even then j = Id; and if n is odd, then
jlan—1) = a, and j is the identity if restricted to the n — 2 first simple roots. In both
cases, if a € {ap_1, an}, then wy + @j(a) € Br but w, ¢ By

If g is simple of type C,,, with n > 2, then, for all 1 <4 < n, 2w; € B, but w; ¢ B;,.

Finally if « belongs to a connected component of 7’ of type A, then w/, + w;(a) € B
but ‘ZD; ¢ Bﬂ-/.

4.4. Assume from now on that g is simple and that the parabolic subalgebra p is
proper that is, 7" C w. By [17, Thm. 6.7] (see also [10, 7.1]) one has that

[T (- <cn(vpa)< J[ (1-ein), (4)

TeE(n’) reE(n’)

Assume now that both bounds in (4) coincide that is, that ep = 1 for all T € E(7').
For example, it occurs when g is simple of type A or C. Then one deduces that Sy(p) =
Y (pa) is a polynomial algebra over k on |E(7’)| homogeneous and h-weight algebraically
independent generators. One generator corresponds to every I' € E(n’) and has a weight
dr given by (2) above (recall that one has assumed that the parabolic subalgebra p
contains the negative Borel subalgebra n~ @ h) and a degree dr which may be easily

=4

computed by [10, 5.4.2]. To explain how one may compute this degree (see (5) or (6)
below), we have to recall results in subsection below.

4.5. By [15] Y(n}) C Sy(nf, @ §'), resp. Y(n) C Sy(n @), is a polynomial alge-
bra whose set of homogeneous and h'-weight, resp. h-weight, algebraically independent
generators is formed by the elements Qpr, TESD. Qp their weight pfy, resp. p~, and their
degree are given in [15, Table T and II] and in [10, Table] and we precise them below.
Recall the sets B/, resp. B, of subsection 4.3 and that these sets are also the sets of
weights of Y(n:/), resp. of Y'(n). One has that, for all v € 7/, resp. v € 7,

pl, =, if @l € By, resp. py =w, if w,€ B,
Otherwise

Py = T, + Wiy, TESP. py = Wy + Wj(y)-
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Assume that g is simple of type By, resp. D,. For all 1 < u < [(n — 1)/2], resp.
1 <wu<[(n—2)/2], one has that

deg(apagu) = deg(aw,,) = u

and for all 1 <u < [n/2], resp. 1 <u <[(n—1)/2],

deg(apazuil) = deg(a2w,, ;) = 2u.

Moreover for g of type B,

deg(ap,, ) = deg(azw,) = [(n +1)/2].

For g of type D,,, then for o € {a,_1, @, }, one has that

deg(apa) = deg(awaJer(a)) = [77,/2}

Finally assume that g is simple of type A,, resp. C,. Then for all 1 < u < [(n +
1)/2], resp. for all 1 < u < n, one has that deg(a,,, ) = deg(tw, tw,1_,) = U, TeSP.
deg(ap, ) = deg(azew, ) = u.

4.6.  Assume now that, for all I' € E(n’), one has ep = 1.
Let T" € E(n’) be such that I' = j(I'). The degree Or of the homogeneous generator
of Y(pa) corresponding to I' verifies

or = Z 2deg(a,,) + Z deg(ap, )+

YET |py =104 YET | pyF#wy

> 2deglay)+ > deglap). (5)

yernm’|pl, =w!, yernm’|pl #w!,

Let I € E(n’) be such that I' = {a} with a € 7\ 7’ and i(a) # . Then necessarily
one has that I # j(I') (by [11, 5.2.6]) and there exist two homogeneous generators sp
and tr of Y (pa) corresponding to I' (more precisely one corresponds to I' and the other
to j(I')) whose weight dr = ¢;(r) is given by (2) and whose degree Jr, resp. 9;y, is
given by the formula:

Or = deg(sr) = deg(a,,) and Ory = deg(tr) = deg(a,, ) + 1. (6)

The latter situation can occur when g is simple of type D,, with n odd and when both
ap—1 and «;, do not belong to 7’ (see Sect. 14).
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5. Improved upper bound

Keep the notation and hypotheses of Section 3 and assume that p, admits an adapted
pair (h, y) € ha x pj. Since y is regular in p} there exists an ad h-stable complement
V to adpa(y) in p} of dimension indps. Moreover by [12, 2.2.4] we may assume that
V = gp with T'C AT U A, that is, adpa(y) ® gr = pj with |T| = indps. Assume
further that y = > ¢z, with S C AT U AL and that S}y, is a basis for h}. Then for
each v € T', there exists a unique element s(y) € QS such that v+ s(v) vanishes on bhj,.
By [19, Lem. 6.11], one has that

ch (Y(pa)) < [T (1 — e OO~ (7)

yeT

The right hand side of the above inequality is called an improved upper bound for

ch (Y(pa)).
Assume now that

H (1— eér)fl - H (1— ef(erS(v)))fl_ (8)

reE(n’) ~eT

Then by (4) of Sect. 4 equality holds in (7) and by [19, Lem. 6.11] the restriction map
gives an isomorphism Y (pa) — k[y + gr]. Then y + gr is a Weierstrass section for
coadjoint action of py as defined in 2.5.

This implies that Y (p,) is a polynomial algebra over k on |E(7’)| = |T| algebraically
independent homogeneous and h-weight generators, each of them having dr, for I' €
E(n'), as a weight, given by (2) of Sect. 4 (this weight is also equal to —(y + s(7v)), for
some v € T). Moreover the degree of each of these generators is equal to 1 + |s(v)],
v €T, where [s(7)] = > cgMay if 5(7) = D ncs Many @ (Ma,y € N, actually). For all
v € T, the integer |s(7)]| is also equal to the eigenvalue of x., with respect to ad h. (For
more details, see [19, 6.11].)

Conversely if y + g7 is a Welerstrass section for coadjoint action of py, then equality
holds in (7) by [19, Remark 6.11].

6. Construction of an adapted pair

As we already said in the previous sections, our Weierstrass sections require the con-
struction of an adapted pair. This construction uses the notions we already introduced
in [8], [13] and [14]. For convenience we recall some of them, notably the Heisenberg sets
and the Kostant cascades.

6.1. Heisenberg sets and Kostant cascades

A Heisenberg set with centre v € A ([8, Def. 7]) is a subset I'y of A such that v € T,
and for all @ € ', \ {7}, there exists a (unique) o € I'y \ {7} such that o + o/ = 7.
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We may take care to not be confused by the above notation of a Heisenberg set and
an element I' € E(x'), resp. I', € E(n’), which denotes an (ij)-orbit in =, resp. the
(1j)-orbit of a, € 7.

A typical example of Heisenberg set is given by the Kostant cascade of g (see also
[8, Example 8]). More precisely assume that the semisimple Lie algebra g admits a
set of roots A = | |;erA; with I C N*, each A; being a maximal irreducible root
system with highest root §;. Then take (A;)s, = {a € A, | (o, B;) = 0}. For every
i€ 1,set (Ay)p, = Ljes Aiy with J C N* and A;; being a maximal irreducible root
system with highest root 3;;. Continuing we obtain a subset IC(g) C N*U N*2U... with
Card K(g) < rankg, irreducible root systems Ax, K € K(g) and a maximal set 3, of
strongly orthogonal positive roots Bx, K € K(g), called the Kostant cascade of g. The
subset (g) admits a partial order < through K < Lif K = Lorif L ={K, Iy, ..., l;}
with [; € N*. In type A or C, this order is actually a total order, since the sets (Ax)a,
are already irreducible. So one can index the subset 8, of At simply by N in these types,
so that the roots in (8, are simply denoted by 3;, 1 < i < Card K(g). In type B or D,
the order is not total. In type B,, or Dg,41, resp. Da,, for the elements Sk, K € K(g),
we use the notation (3;, i/, resp. i, Bi/, Bi» with order relation ¢ < 7/, resp. ¢ < 7’ and
i < 4”. For more details, see for example [10, Table], [13, Table I}, [14, Sect. 7] or [15,
Tables I, II, I11].

Let Bk be an element of the Kostant cascade 3, of g and set

Hg, = {Oé € Ak ‘ (a, ﬂK) > 0}.

Then Hpg, is a Heisenberg set with centre Sk it is the largest Heisenberg set with centre
Br which is included in AT by #4) of Lemma below. Moreover the vector subspace g Ha,
of g associated with Hg, (with the notation in Sect. 3) is a Heisenberg Lie subalgebra of g
by iv) of Lemma below. Of course all the Heisenberg sets are not necessarily associated
with Heisenberg Lie subalgebras and even not with Lie subalgebras of g, since iv) of
Lemma below need not be true for a Heisenberg set in general.

By [15, Lem. 2.2] (see also [13, Lem. 3]) we have the following Lemma, which is very
useful to construct adapted pairs thanks to the Kostant cascade S, and to the largest
Heisenberg sets Hg, 8 € 3, which are defined above.

Lemma. [15, Lem. 2.2] Let B, denote the Kostant cascade of g. Then we have that:

i) AT = gep, Hp (disjoint union).

ii) If v, 6 € AT are such that v+ 6 = B € B, then v, § € Hg \ {B}.

ii) If v € Hp, and 6 € Hg, are such that v+ € Hg,, with K, L, M € K(g), then
K<L (resp. LK) and M =K (resp. M = L).

i) Ifv,d € Hg, B € Br, and v+ 0 € A then y+§ = 5.
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For an explicit description of Kostant cascades, see for example [13], [14] or [15]. The
Heisenberg sets (not only the largest Heisenberg sets Hg, 8 € ;) are very helpful for
the construction of an adapted pair. They were used in [18], resp. in [8], [13] and [14], to
build adapted pairs for every truncated biparabolic subalgebra in a simple Lie algebra of
type A, resp. for truncated maximal parabolic subalgebras. Below is a proposition where
Heisenberg sets appear to be crucial for constructing an adapted pair.

6.2. A proposition of regqularity

The following proposition (see [8, Prop. 9]) is a generalization of [18, Thm. 8.6]. We
keep the notation of Sect. 3 and consider S, T' and T* disjoint subsets of AT LA, and

set y = Z'}/ES Ty

Proposition. /8, Prop. 9] We assume that, for each v € S, there exists T, C AT UA_, a
Heisenberg set with centre v and that all the sets I, for v € S, together with T and T
are disjoint.

We also assume that we can decompose S into ST U S~ where ST, resp. S—, is the
subset of S containing those v € S with T, C AT, resp. T, C A_,.

Forally € S, set TS =T\ {7}, O = U es TS and OF = | ] c5=T9.

We assume further that:

(i) Sy, is a basis for b} .

(it) If o € T with v € ST, is such that there exists § € O, with a + € S, then
Bel‘g and o+ 3 = 7.

(iii) If a € FQ/ with v € S, is such that there exists 5 € O™, with a + 8 € S, then
BGF% and o+ 3 = 7.

(iv) ATUAL = ,es D, UTUT™.

(v) For alla € T*, go C adpa(y) + gr.

(vi) |T| = indpy.

Then y is regular in p and

adpa(y) © gr = pi-

Moreover we can uniquely define h € hp by v(h) = —1 for all v € S, and then (h, y) is
an adapted pair for py.

We give below the proof of the above proposition for the reader’s convenience.

Proof. Condition (iv) implies that py = ha @ g—0 B g—5 ® g—7- B g_7 and that p} =
br ® go @ gs ® g7+ © g

Let ®, denote the skew-symmetric bilinear form defined by ®,(z, 2') = K(y, [z, '])
for all x, 2’ € g where recall K is the Killing form on g.
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Conditions (¢%) and (4i¢) imply by [18, Lem. 8.5] that the restriction of ®, to g_oxg—_o
is non-degenerate. Then go C adg_o(y) + ba + g5 + 97 + g7+

But since ONS = @ one has that for all z € go and z’ € g_o, the element . —ad z'(y)
belongs to the orthogonal of b for the Killing form. Then go C ad g_o(y)+gs+gr+gr-.

Condition (7) implies that gs = ad h,(y) and that by C adg_s(y)+go+08s+gr+97+-
Condition (v) implies that gr- C adpa(y) + gr. Hence p} = ba @ go ® gs ® g7 ® gr C
adp(y)+ gr. Finally condition (vi) implies that the latter sum is direct, since dim gr =
indpa < codimadpa(y). O

Remarks.

(1) Notice that [18, Thm. 8.6] is a special case of the above Proposition, with T* = (.
Here we need to take sometimes a set T* # () as in [3].

(2) In [14, Lem. 3.2 and Lem. 6.1] lemmas were given to insure condition (v) in the
above Proposition. In this paper, as in [8], we verify by hand that condition (v) of
the above Proposition is satisfied, using if necessary Lemma and Proposition 6.3
below.

(3) Assume that there exists an adapted pair (h, y) for pp and denote by gr a comple-
ment of adpy(y) in pi, with T C AT UA,.

(a) Assume further that ep = 1 for all I' € E(n’) (as defined in (3) of Sect. 4).
Then Y (pa) is a polynomial algebra and by what we said in subsection 2.5 one
has that y + gr is a Weierstrass section for coadjoint action of pa (since gr is
ad h-stable).

(b) Assume now that there exists I' € E(n’) such that ep = 1/2. Assume further
that (8) of Sect. 5 holds. Then by what we said in Sect. 5, y+ gr is a Weierstrass
section for coadjoint action of py.

6.3. Condition (v) of Proposition 6.2

Keeping the notation of Sect. 3, we consider S, T, T* C AT LU A, three disjoint
subsets and y = ) g To. We give in the Proposition below a sufficient condition which
implies condition (v) of Proposition 6.2 for some roots o € T*. Recall Sect. 3 that for
all & € A, we have fixed a nonzero root vector x4 € g, that we will rescale if necessary,

except those associated with the roots o € S, since y = > Zq is fixed.

a€cs

Lemma. Let v1, Y2, v3 € S and v}, 74, 74 € (A~ UAL)\ S be such that

(1) v+ € (ATUA)\S, forall1 <i<3,
(2) 2472 =m+%,

(3) v3+v5 =12+,

(4) m+1+r2 €A,

(5) m+72¢EA 2+13¢A 1+y3EA.
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Then v1 + 791 = v3 + ¥4 and up to rescaling the nonzero root vectors Ty € pp for all
1 <i < 3 and the nonzero root vectors Tty € pi for all 1 <4 <3, we have that

[Ty15 @] = [Tag, Tys] = Ty 4y
(Z) [x'Yé’ .1372] = [q"“/{ﬂ x'yl] = xvz-i-vé
[.”L'%’, 1'73] = [m“/{7 1‘72] = Tyg+4

Proof. The equality 1 + 7] = 73 + 74 comes directly from the equalities (2) and (3).
Moreover the rescaling of the nonzero root vectors z.,; and x., ,,» (which is possible since
the roots 7, and ~y; +; do not belong to S) gives for example the last two equalities of (X).
Then we obtain the first one, since we prove easily that [z, 2.,] = [z, 7,,]. Indeed by
applying Jacobi identity several times, it is easy to prove, under the assumptions, that
[[2y; s T4, ]5 #4,] = [[T4s, 5], 2+,] and using (4) one can conclude. O

We then have directly the following proposition.

Proposition. Let v; and v, for 1 < i < 3, be roots satisfying the hypotheses of previous
lemma. Recall that y =3 g xy and let X, X', X" be vectors in p} such that, after a
possible rescaling of some suitable root vectors, we have

ad Ty; (Y) = Ty g + Ty + X
ad Ty (Y) = Toyy ) + Ty + X

— "
ad x5 (Y) = Tty + Tyspny + X

with

X ¢ Vect(y, 4yp5 Tyaayy) \ {0}
X' & Vect(xy, 4y1s Tyyqqyy) \ {0}
X" ¢ Vect(Tyyqrys Tyyiry) \ {0}

If X, X', X" € adpa(y) + o7, then x, € adpp(y) + g7 for all 1 <i < 3.

Actually we will apply the previous proposition with X, X', X" being vectors for
which it will be immediate to verify that they belong to adpa(y) + gr by direct compu-
tation. Moreover one of the 7; 4+ v/ will belong to the subset T*. See for example proof
of Lemma 9.3.

6.4. The Kostant cascade in type A

Keep the notation of Sect. 3 and assume that g is a simple Lie algebra of type B,,, C,,
or D,,. We consider p =n~ @h@n;’r‘, the standard parabolic subalgebra of g containing the
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negative Borel subalgebra b~ = n~ @ § and associated to the subset 7’ C 7. Recall that
we are interested in studying p which is equal to pg ¢, resp. pg, resp. g, ¢ with s € N*
and ¢ € N, as defined in subsection 1.2. Then the subset 7’ associated to p is «’ =

m\{as, Qsq2y oy Qspar} with 1 < s <n—20 resp. 7’ =7\ {an-1-2¢, - .., A1, an}
and g of type Dy, resp. 7' = 7\ {as, asta, ..., Qspa0, Ano1, @pt with s +20 < n —2
and g of type D,,.

If s > 2 and in the cases of ps ¢ or of q5 ¢, 7] = {a1, ag, ..., as_1} will denote the con-
nected component of 7’ of type A;_1 and in the case of py, 7] = {1, a9, ..., ap_2_2¢}

will denote the connected component of 7’ of type A, _o_op, if n —2 — 2¢ > 1. To keep
homogeneous notation we will set in this subsection s = n — 1 — 2¢ when we are in the
latter case. We denote by 3., the Kostant cascade (see 6.1) of the simple Lie subalgebra
gx; of the Levi subalgebra g’ of p which is of type A, ;. We also denote by 7" the
subset of b’ formed by the coroots " with o € 7} and by Ajr_i := AT N N7j. We have

that
ﬁﬂ-i = {ﬁ; =€; — Es1—i ‘ 1 << [8/2]} - Aj"_i

Set 621 := B \ (B N7p). If s is odd, then ,6’21 = B and if s is even, then Bgi = {3
1 <i < (s—2)/2}. The following lemma will be useful for the next sections, notably to
prove that, for a suitable subset S C AT U A, one has that Sy, is a basis for b} (see
Lemma 8.2 or Lemma 10.2). If s is even, set ¢ := [s/4] and if s is odd, set ¢t := [(s+1)/4].
We consider the subset {h} }1<j<[(s—1)/2 C 7", with the following order. If t = s/4 with
s even, resp. t = (s + 1)/4 with s odd, then

{h;} = {hl2j—1 = O‘2vj—1: /2]‘ = aZ_Qj 1<j<t-—1, hl2t—1 = Ofgt—1}-
If t = (s — 2)/4 with s even, resp. t = (s — 1)/4 with s odd, then
{hi} ={hh; =y, 1, by =) 5,51 < j <t}

Lemma. Let A be the square matriz of size [(s — 1)/2] which entries are —p{(h}) with
1<4,5 <[(s=1)/2]. Then A is a lower triangular matriz with —1 on the diagonal.
Hence det A = (—1)l(s=1)/2],

Proof. Recall the construction of the Kostant cascade of g/ (see 6.1). Set Af = A;,
then set Ay = {a € AT; (a,]) = 0}. Here B} is the highest root of g, and 3] =
@) + @ _,. Then Ay = Af N N7} where 7, = 7} \ {a1, as_1}. Continuing we set
Al ={a € Af; (a, 8]) = 0} where 3] is the highest root of Af. Then we have that
Al c AF < --- c Af and then (8], a) = 0 for all @ € A] with j > i. Finally
observe that, for all 1 < j < [(s+1)/4], agj_1 € A;j_l, Qg_9; € A;j, By (g _q) =
(Bh;_1, azj—1) = 1 and that fy;(ay 5;) = (By;, as—2;) = 1 while 2j < (s —1)/2. Hence
the lemma. O
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7. Some examples

Before stating the main result (see subsection 1.7), we give below two examples which
will enlighten our construction of a Weierstrass section, each of these examples using
a different method to obtain the latter from the adapted pair we construct. Thus case
lc of subsection 1.7 (see also Sect. 9) is illustrated by the first example and case 3 of
subsection 1.7 (see also Sect. 14) is illustrated by the second example. We keep the
notation of Sect. 3.

7.1. Comparison of multiplicities

Assume that we have constructed an adapted pair (h, y) € ha x pj for ps via Propo-
sition 6.2. Let A € k and set v = hy © go @ g5 ® gr- C p (one has that t & gr = p}).
Recall that the endomorphism ad h of p}, resp. of p (with ad the coadjoint action, resp.
the adjoint action) is semisimple. Then A is an eigenvalue of ad h on p} if and only if —A
is an eigenvalue of ad h on p,. Write m/, for the multiplicity of X in v, my for the multi-
plicity of A in ps and m3 for the multiplicity of A in p}. Then by the above m_, = mj
and obviously m) < m_,. Moreover since ad h(y) = —y and that p} = adpa(y) @ gr,
we must have that

my < maga (9)

(see also [8, 7.1]).
In the examples below, we will check that inequality (9) is satisfied.

7.2. First example

We assume that the Lie algebra g is simple of type Bg and we set ©’ = 7 \ {aq, ay}.
Then we consider the parabolic subalgebra p = p_, as defined in Sect. 3. We are then in
case lc of subsection 1.7. We take S = ST LU S~ with

ST ={e1 +e3,60,e4+e5}, ST ={-B = —e5 —¢6}
where 8 is an element of the Kostant cascade of g/,

T ={e1+e2, 61 —€3, 62 +€4, €4 — €5, €4 — €3, €6 — €5},

>k
T* = {e3 + €6, €2 + €5, €2 — €1, €2 — €5, €2 — E4, E2 — €3, €6, E2 — £6}-
We set

Peives = {e1+e3, 61464, 63 —€4, 61+ 65, €3 — €5,
€1+ €6, €3 — €6, €1, €3, €1 — €6, €3 + €6,

€1 — €5, €3+ €5, €1 — €4, €3 + €4, €1 — €2, €2 + €3},
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F€2 = {52}»
Ieytes = {€a+65, €4 + €6, €5 — €6, €4, €5, €4 — €6, €5 + €6},
I oy e =1{—e5—¢6, —€5, —€6} = —Hpgy

+

il

where Hpgr is the largest Heisenberg set with centre 37 included in A7, as defined in
6.1.

By setting y = > g * one verifies (see for more details Sect. 9) that all conditions
of Proposition 6.2 are satisfied (indeed it is more complicated than what we have to do

in the second example). Then h € §’ such that v(h) = —1 for all v € S is:
h=¢e1 —e9 —2e3+ 2e4 — 3e5 + 4eg :OéY —2045/ —304;4—1/20(%/.

Hence the pair (h, y) is an adapted pair for p,. This adapted pair is not sufficient a priori
to give a Weierstrass section for coadjoint action of pu, since there is one I € E(n’) such
that er = 1/2. But we can easily check that (8) in Sect. 5 holds. Hence by Remark 3b
of subsection 6.2 one has that y + gr is a Weierstrass section for coadjoint action of pu,
and then Y (py) is a polynomial algebra over k (result which was not yet known since
the criterion that ep = 1 for all T’ € E(n’) is here not satisfied).

To convince oneself that (h, y) given above is indeed an adapted pair for p, (although
the inequality (9) of 7.1 is just a necessary condition), one gives in the table below the
multiplicities m/ and m3 = m_, for all eigenvalue A € k of adh on p} and one easily
checks that inequality (9) of 7.1 holds.

A 7 6 -5 -4 -3 -2 -1
mh 11 2 5
mox 1 1 2 5
A 1 4 5 6
mh 4 4 2 1 0
m_x 5 4 4 2 1 1

7.8. Second example

Here we assume that g is simple of type Dg and consider 7’ = 7\ {a1, as, as, as, ag}
and the parabolic subalgebra p = p_, associated with 7’. Here we are in case 3 of
subsection 1.7. We take S = St U S~ with

ST ={B1=¢c1+¢e2, Bo=¢e3+¢4, B3 =¢5+¢6, o = Pa — g =7 + &9}
and ST = {—51/ =eg — &6}

Here 8; = €9;_1+¢c2; (1 <i < 4) are elements of the Kostant cascade 3, of g and 87 is
an element of the Kostant cascade ;- of g’. More precisely setting 8, = B/ \ (B N7’),
we have that S~ = —3%,. We also set
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T= {81 — €2, €3 — €4, €5 — E¢, €7 T €8, E7 — €9, €8 — E9, €3 — €2, €5 —54}

and T* = 0.

For all 1 < ¢ < 3, we take I'g, = Hp, where Hpg is the largest Heisenberg set with
centre B € S, which is included in AT as defined in subsection 6.1. We set Iz, =
{Ba, €7 — €8, €5 + €9} and I'_gy = —Hpgy where Hgy C A7, is the largest Heisenberg set
with centre 3} which is included in A¥,. Since Hg, UH,,, = I'5,U(T'NHpg,), Lemma 6.1 1)
gives condition (iv) of Proposition 6.2. Moreover Lemma 6.1 i7) and i¢) gives conditions
(73) and (7i7) of Proposition 6.2. Finally we verify by hand that conditions (i) and (vi)
of Proposition 6.2 are satisfied, noting that hy = b’ @ k(ay — o). Setting

h=—ay —2ay —3ay +4ad —4(ag — ay) € ha

and y = > g Ta, one checks that (h, y) is an adapted pair for p5. Moreover one checks
easily that both bounds in (4) of Sect. 4 coincide, then Y (py) is a polynomial algebra
and by what we said in Remark 3a of subsection 6.2, y 4+ gr is a Weierstrass section for
coadjoint action of pA. In the table below we give the multiplicities m/, and m3 = m_,
for all eigenvalue A € k of adh on p} and one easily checks that inequality (9) of 7.1
holds.

A 12 <11 -10 -9 -8 -7 -6 -5 -4 -3
mhy 1 2 2 2 2 3 3 3 3 4
m_x 1 2 2 2 2 3 3 3 3 4
A 2 -1 0 1 5 6 7
my 5 5 3 3 2
m_x 5 6 3 2
A 8 9 10 11 12 13 14 15
m 2 1 0 0 0 0

m_x 2 2 2 1 0 0 0 1

8. Cases 1a and 1b for type B or D

In this Section we consider truncated parabolic subalgebras described in la and in
1b of subsection 1.7. More precisely (with the notation of Sect. 3 and of subsection
12)letp=psr=n" &hH n;r, be a parabolic subalgebra associated to the subset
7 =7\ {as, @st2,..., 05120} with £ € N and s an odd integer, 1 < s < n —2¢, in a
simple Lie algebra g of type B,, resp. D,,, with n > 2, resp. n > 4.

If £ = 0, then the parabolic subalgebra p is maximal and this case was already treated
n [13]. Thus we will assume from now on that ¢ > 1. Note that h, = b’, in type B,, but
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also in type D,, with the above hypotheses, by what we said in Sect. 3 (since it is not
true that a,,—; and «,, are both deleted from 7).

Here we will show (see Lemma 8.5) that the lower and upper bounds for ch (Y (p,)) in
(4) of Sect. 4 coincide, and then the algebra of symmetric invariants Y (p, ) is polynomial.
By Remark 3a of subsection 6.2 the existence of an adapted pair for p, is sufficient to
give a Weierstrass section for coadjoint action of po. Our construction of an adapted pair
for pp generalizes the construction of an adapted pair in [13, Sect. 4 and 5] in case of a
maximal parabolic subalgebra.

We will use Proposition 6.2, which here is quite easy to apply. Indeed it suffices to
take S UT to be the union of the Kostant cascade in g and the opposite of the Kostant
cascade in g’. Moreover for each v € ST, resp. v € S~, we take the Heisenberg set T’
to be equal, resp. to be the opposite, to H., resp. of H_,, where H,, resp. H_,, is the
largest Heisenberg set with centre ~y, resp. —v, included in A™, resp. A:, as defined
in 6.1. Here moreover we set T* = (). Then Lemma 6.1 will give most of conditions of
Proposition 6.2.

8.1. The Kostant cascades

Recall 6.1 the Kostant cascade 3, of g and set 32 = 3, \ (B N). If g is of type B,
then we have that

BY ={Bi=c2i-1+e2|1<i<[n/2]},

and if g is of type D,, then
By = {Bi =21 +eai | 1 <i <[(n—1)/2]}.

Moreover if g is of type B,,, then we have that

BanNm={agi1|1<i<[(n+1)/2]}
If g is of type D,, and n odd, then we have that

BrNm={ag_1]1<i<(n—1)/2},
and if g is of type D,, and n even, then we have that

Br N ={an, agi—1 |1 <i<n/2}.

Now for the Kostant cascade 3,/ of g/, set similarly 89, = 8, \ (B N7'). If g is of type
B,,, then we have that
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BY = {Bl=ei—esp1-i |1 <i< (s—1)/2,
B = esrarroj1 + Esraerey | 1< <[(n—s—20)/2]}

and
B N7 = {ovgqa042i-1, Qogajor |1 <i<[(n—s—20+1)/2],1<j<{}.
Now suppose that g is of type D,, and that s + 2¢ < n — 2. Then we have that

V= {Bl=ei—c1-i | 1<i < (s—1)/2,
5;’ = 54204251 T Es420425 [1<j<[n—-s-1- 26)/2]}'

If moreover n is odd then

/BTI'/ N 7rl = {Oéna Qg4204+2i—1, as+2j—1 | 1 S 1 S (77, - S — 26)/27 1 S j S e}
and if n is even then

Bo N’ = {asioeq2i-1, Qsp2jo1 |1 <1< (n—s—20—1)/2,1<j < (}.
Now assume that g is of type D,, and that s + 2¢ € {n — 1, n}. Since the case ' =
m\{as, Qsi2,...,Qsy20—2, ap_1} and the case 7’ = 7\ {as, ast2,. .., @s120—2, @, } are
symmetric, one may suppose that we are in the latter case. More precisely if n is odd

then we assume that 7' = 7\ {as, asta, ..., @n_2, a,} and if n is even then we assume
that 7’ = 7\ {as, @sya, ..., An_3, an}. Iif n is odd then

Bl ={Bj=ei—esq1-i ; 1<i < (s—1)/2}

and ﬂﬂ./ 07'('/ = {as+2i—1 = €s+2i—1 7854_21‘ N 1 S Z S 6 = (n — S)/2}

If n is even then

Bo ={Bi=ci—esr1-i, B =en2—en; 1 <0 < (s - 1)/2}

and B N7 = {Qey2i-1 = €sp2i-1 — Esq2i; 1 <i<l—1=(n—3-15)/2}.
8.2. Conditions (i) to (v) of Proposition 6.2
For g of type D,, with n even and s 4+ 2¢ < n — 2, we set

S+ = B?r u {ﬂn/Q = =Ep-1+ En}~

Otherwise we set ST = 39,
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For g of type D,, with n odd and s+ 2¢ < n — 2, we set

ST = _62/ U {_/BE{H—QZ—S)/Q = —an = —(en-1+&n)}-
Otherwise we set S~ = —32,.

For g of type D,, with n even and s 4+ 2¢ < n — 2, we set

T" = (ﬁﬂ N 77) \ {an}

For g of type D,, with n odd and s + 2¢ < n — 2, we set

T7 = (B Na')\ {—an}.

Otherwise we set Tt = 8, N7 and T~ = — (B N7’). Finally we set S = ST U S™,
T=T"UT" and T* = (. Then ST, Tt C At and S~, T~ C A_,. In all cases we have
that B, = ST UTt and -3, =S~ UT".

Then for all v € S, resp. v € S~, we choose I', = H,, resp. I', = —H_.,, where H.,,
resp. H_., is the largest Heisenberg set with centre v € 3, resp. —vy € B/, included in
AT, resp. A;,, as defined in 6.1. Observe also that, if & € 8, N, resp. a € B N7,
then H, = {a}.

By Lemma 6.1 i) we have that AT = ||, cg+ Iy UTT, resp. A, = | ] es- Ty U
T—, hence condition (iv) of Proposition 6.2 is satisfied. Conditions (i¢) and (éii) of
Proposition 6.2 follow from Lemma 6.1 i7). Moreover condition (v) of Proposition 6.2 is
empty since T* = (). Below we check condition (7) of Proposition 6.2.

Lemma. S)y, is a basis for b}.

Proof. Recall that hy = b’ and remark that |S| =dimb' =n — £ — 1.
Assume first that g is of type D,, with n odd and that s + 2¢ = n. Then |S| =
(n—1)/24 (s—1)/2=n—£—1 and one may order the elements s, of S as

ﬂh 527 LN B(nfl)/27 _ﬁ17 _ﬂé7 EERE _62571)/2
and choose the following (ordered) basis h,, of b’:

hi=aY, 1<i<(n—1)/2

h(n-1)/24+2j-1 = hIQj—l = agj—lv hn-1)/24+25 = h/2j = asv—%’
1<j<[(s+1)/4]

without repetition for the h’’s. Then observe that, for all 1 <4 < (n — 3)/2, one has
Bi = €2i-1 + €2; = wa — wai—2 if we set wp = 0 and B,_1)2 = €n—2 + En—1 =
Wn—1 + @Wp — @Wn—3. It follows that the matrix (sy(hv))1<u, v<(n—r—1) has the form
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(* 5)

x B

where A = (8i(hj))1<i, j<(n-1)/2 8 a (n—1)/2x (n—1)/2 lower triangular matrix with 1
on the diagonal, and B = (—{(h}))1<i, j<(s—1)/2 isa (s—1)/2x (s—1)/2 lower triangular
matrix with —1 on the diagonal by Lemma 6.4. Hence det(sy(hy))1<u, v<(n—t—1) 7 0 and
we are done in this case.

Assume now that g is of type D,, with n even and that s+2¢ = n—1. Then consider the
parabolic subalgebra p of g associated to 7’ = 7\ {as, @st2, - .., 3, @y} (1 < s <n-3
is still an odd integer). Then |S| = (n —2)/2+ (s —1)/2+1 =n —{ — 1 and one may
order the elements s, of S as

Bl?ﬂ% vﬂn 2)/2 517 Bév ceey _52571)/27571_57172
and choose the following (ordered) basis h, of b’:

hi=ay;, 1<i<(n-2)/2,
hn—2)/242j-1 = h/2j—1 = agj—l’ hin—2)/242; = h,2j = asv—2j’
1<j<[(s+1)/4],

— AV
hn,g,1 =0, 1

without repetition for the h;-’s. Similarly as above one obtains that the matrix

A 0
* B
where A = (8;(hj))1<i, j<(n—2)/2 is a (n —2)/2 x (n —2)/2 lower triangular matrix with

1 on the diagonal, and B is a (s 4+ 1)/2 x (s + 1)/2 lower triangular matrix with —1 on
the diagonal by Lemma 6.4. Hence det(sy(hy))i<u,v<(n—t—1) 7 0 and we are done in

(5u(hwv))1<u, v<(n—t—1) has the form

this case.
Assume that g is of type B,,. Then one may order the elements s, of S as follows:

s; = Bi, 1 <i<[n/2],
Stnj2+j = =B, 1<j < (s-1)/2,
Sin/2+(s—1)/2+k = —Bg, 1 <k < [(n—s—20)/2]

and choose the following (ordered) basis h, of h’:
hi=ay;,1<i<[n/2|

Pinj2iaj—1 = hoj1 = g1, Rinjojray = Ry = oo 1 < j < [(s +1)/4]
Pl yo(s—1)/24k = O oppop, 1<k < [(n—20—s)/2]
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without repetition for the h;’s. Now if g is of type D,, with s + 2¢ < n — 2, we take the
same set S ordered as above and the same basis of b, up to replacing o,/ by 2¢,. Then
by what we explained before, the matrix (su(hv))1<u, v<(n—¢—1) has the form

A 0 O
* B 0
* x (C

where A is a [n/2] x [n/2] lower triangular matrix with one on the diagonal (except for
the case n even where 2 is the last entry of the diagonal), Bisa (s—1)/2x (s—1)/2 lower
triangular matrix with —1 on the diagonal (by Lemma 6.4) and C'is a [(n — s — 2¢) /2] x
[(n — s — 2£)/2] lower triangular matrix with —1 on the diagonal (except for the case
n odd where —2 is the last entry of the diagonal). Hence det(sy(hy))i<u, v<(n—t—1) 7# 0
and the proof is complete. 0O

8.3. Condition (vi) of Proposition 6.2
Lemma. One has that |T| = indpy.

Proof. Recall (1) of Sect. 4, that indpy = |E(n’)| where E(n’) is the set of (ij)-orbits
in 7. Assume first that g is of type D,, and that s + 2¢ € {n — 1, n}. If n is odd, then

B(r') = {Tu={aw asuh, 1 <u< (s 1)/2,
Iy =Aay}, s<v<n—2T,_1 ={an, an,l}}.
If n is even, assuming that 7' = 7\ {as, @syo, ..., Qsio0-2, @}, with s+20—2 =n—3,
then
BE(r') = {ru = {0y Gsu}, 1 < u < (s —1)/2,
r,= {av}a s<v<n-—-3,I,_1= {O‘n—Za an—l}a r, = {an}}-

Hence indpp = |E(7')|=n— (s +1)/2.

On the other hand, one has that: for n even, |T7| =n/2+ 1 and [T |=/¢—-1 =
(n—3—15)/2,and for n odd, |T%| = (n—1)/2, |T~| =€ = (n—s)/2. Then |T| = ind pa

in both cases.
Now assume that g is of type B,,. Then

E(r) = {ru = {Q, su}, L <u < (5—1)/2,

Ty ={ay}, s<v < n}

Hence indpp = |E(n’)| = n — (s — 1)/2 and one checks that this is also equal to |T7|.
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Finally assume that g is of type D,, and that s + 2¢ < n — 2. Then

E(n) = {ru = {Q, s}, 1 <u < (s—1)/2,

Iy ={ay}, s<v<n—2T,_1 ={an_1, an}}.
Hence indpp = |E(7")] = n — (s +1)/2 and one checks that this is also equal to |T'|. O

8.4.  All conditions of Proposition 6.2 are satisfied, thus one can deduce the following
corollary.

Corollary. Sety = g Za. Then y is regular in pjy and more precisely adpa(y) Dgr =
pr- Moreover since Sy, is a basis for b}, there exists a uniquely defined element h € ha
such that a(h) = —1 for all & € S. Thus the pair (h, y) is an adapted pair for py.

8.5. Coincidence of bounds of Sect. /

Recall Remark 3a of subsection 6.2 that it suffices to show that both bounds in (4)
of Sect. 4 coincide to obtain a Weierstrass section for coadjoint action of p,. This is the
following lemma.

Lemma. For allT' € E(n'), one has that epr = 1. Then Y (pa) is a polynomial algebra
over k.

Proof. Recall subsection 4.3. We will show, for all I' € E(n’) such that j(I') = T, that
dr ¢ By or di ¢ By, hence epr = 1. Recall the (ij)-orbits in E(n’) given in the proof of
Lemma 8.3.

For all 1 <wu < (s —1)/2, one has that dr, = wy, + ws—., ¢ Br since v and s — u are
of different parity. Hence ep, = 1.

For s < v < n — 2, (with the restriction that v < n — 3 if n even and g of type D,,
with s + 20 =n — 1) one has that dr, = @, ¢ B, if v is odd and d}. = w,, & By if v is
even. Hence er, = 1.

Now if g is of type D, s+2¢ = n—1 and n even, one has that dr, , = wp_o+wn_1 ¢
B and dr, = w, ¢ B:. Hence er, _, =ep, = 1.

If g is of type Dy, s +2¢ = n and n odd, then dr, , = wn_1 + w, € B, but
L, =wy_1 ¢ B Henceer, , =1.

If g is of type Dy, s+2¢ <n—2, then dr, , = w,_1 + @x, and d}nil
One of them does not belong to By, resp. By, since g’ is of type D,,_s_2¢, and since n

dr

— / /
=w,_1 tw,.

and n — s — 2¢ are of different parity. Hence er, , = 1.
Finally assume that g is of type B,, and take v € {n — 1, n}. Then dr, = @, ¢ B, if
n is even. If now n is odd then dr, = w,, ¢ B, while dr,_, = w,_1 € B,. But since n is

odd, a1 € 7’ and d, | = w,,_; ¢ By Hence ep, = 1. This completes the proof. O

1
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8.6. A Weierstrass section

Summarizing the above results, we obtain by Remark 3a of subsection 6.2 the following
Theorem.

Theorem. Let g be a complex simple Lie algebra of type B,,, resp. D,, with n > 2, resp.
n>4 andletp =n" Ohd njr', be a parabolic subalgebra associated to ©' = 7\
{as, sy, ..., asyo0} where s, £ € N* and 1 < s <n—2{, s odd. Then there exists a
Weierstrass section for coadjoint action of py.

8.7. Weights and degrees

For completeness we give below the weights and degrees of a set of homogeneous
and h-weight algebraically independent generators of Y (pa ). Since both bounds in (4) of
Sect. 4 coincide then, for all T' € E(x’), each homogeneous and h-weight generator has
dr as a weight given by (2) of Sect. 4 and a degree Jr given by (5) of Sect. 4 (since here
for all T € E(n’), we have that j(I') =T).

Below are weights and degrees of a set of homogeneous and h-weight algebraically
independent generators of Y (pa), each of them corresponding to an (ij)-orbit I, in
E(n").

Assume that g is of type B,, and that s + 2¢ < n:

(ij)-orbit in E(x") Weight Degree

Ty ={au, as_u}, —2w; s+142u
1<u<(s=—1)/2

Iy ={aw}, —21, v+ 1
v=s5+2k, 0<k </

r, ={aw}, —Wy—1 — Wy+1 v+1
v=s+2k—-1,1< k<’

Iy, ={as}, —2w, 120 20+1—s—20
s+20+1<v<n—1

Fn:{an} —Ws+2¢0 n—€+(1—s)/2

Assume that g is of type B,, and that s + 2¢ = n (hence n is odd):

(ij)-orbit in E(7T/) Weight Degree
Ly = {ow, as—u}, —2w, s+1+2u
1<u<(s—=1)/2

r, = {04'0}1 —2w, v+1
v=s5+2k, 0<k<{-1

ry ={a}, —Wy—1 — Wy+1 v+1
v=s+2k—-1,1<k<{-1

Tno1 = {07171} —TWnp—2 — 2Ty n

r, = {an} —2wy, (n + 1)/2
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Assume that g is of type D,, and that s + 2/ <n — 2:

(ij)-orbit in E(n) Weight Degree

Iy ={au, as—u}, —2w, s+ 14+ 2u
1<u<(s—1)/2

I, ={ay}, —27, v+1
v=s5s+2k 0< k<Y

ry, :{av}7 —Wy—1 — Wy+1 v+1
v=s+2k—-1,1<k</

I, ={aw}, —2wgtor 204+ 1—5—2¢

s+204+1<v<n-—2

Fno1 ={an_1, an} —2w a0

2n —s—20—1

Assume that g is of type D,, and that s + 2¢ = n (hence n is odd):

(ij)-orbit in E(x") ‘Weight Degree
I, = {0‘1“ asfu}v —2w, s+ 1+ 2u
1<u<(s—1)/2

r, = {av}7 —2w, v+1
v=s+2k, 0<k<{l-1

Iy ={av}, —TWy—1 — Woy+1 v+ 1

v=s4+2k—1,1<k</{-1

Ino1 ={an_1, an} —Wn_2 — 2wy

Assume that g is of type D,, and that s+ 2¢ = n — 1. Hence n is even and we assume

/ .

that 7' = 7\ {as, asyo, ..., an_3, an}:
(ij)-orbit in E(x) Weight Degree
Ty = {ow, as—u}, —2w, s+1+2u
1<u<(s—1)/2
Iy, ={as}, —270, v+1
v=s+2k 0<k<l—1
Iy ={aw}, —TWy—1 — Wot1 v+1
v=s4+2k—-1,1<k<{-1
Fpo1 ={an—1, an—2} —2(wn—3 + @n) 3n/2
r, ={an} —2wp, n/2

8.8.

Remark. Assume that the simple Lie algebra g is of type B, or D, and that «’ =
m\{as, @st4}, with s odd and consider the truncated parabolic subalgebra p, associated
to 7’. In this case the lower and upper bounds for ch (Y (pa)) in (4) of Sect. 4 do not
coincide in general and then we do not know for the moment whether polynomiality of
Y (pa) holds or not. However the adapted pair that we have constructed in subsection 8.2
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using the set S = B2U(—32,) (at least for type B,,) does no more work in this case. Indeed
one may notice that for all 8 € 82, and for all 3’ € 82,, one has B(a),,) = #'(ay,,) =0
while ay, , € ha. It follows that the restriction of B2 U (—82,) to ha cannot give a basis
for b3 .

9. Cases 1c and 1d for type B or D

Recall the notation of subsection 1.2 and Sect. 3. In this Section the Lie algebra g is
simple of type B,, n > 4, resp. D, n > 6, and we consider the parabolic subalgebra
p =ps,1 =P, of g associated to the subset 7’ = 7\ {as, asy2} of simple roots, with s
an even integer, 2 < s < n — 2, resp. 2 < s < n —4. We are then in the cases 1c and 1d
of subsection 1.7.

The Levi subalgebra g’ of p is isomorphic to the product sl x sly X 50,,,, with m € N*,
and m > 4 if g is of type D,,. More precisely if g is of type B, one has that m = 2n—2s—3,
and when g is of type D,, one has that m = 2n — 2s — 4. We adopt the convention that
s01 = {0}, so3 = sly, s04 = sly x sly and sog = sly.

In these cases the lower and upper bounds given by (4) of Sect. 4 do not coincide,
hence we cannot conclude with this criterion that the algebra Sy(p) = Y (pa) is or
not polynomial. However we will construct an adapted pair for the truncated parabolic
subalgebra p, associated to p. We will then prove that the improved upper bound defined
in Sect. 5 is equal to the lower bound (namely that equality (8) of Sect. 5 holds). This
implies by Remark 3b of subsection 6.2 that there is a Weierstrass section for coadjoint
action of pp and then that the algebra of symmetric invariants Y (py) = Sy(p) is a
polynomial algebra over k for which the weights and degrees of homogeneous and h-
weight generators may also be computed.

We will still use Proposition 6.2 but here the set S cannot be taken to contain 32 U
(—BY) as in Sect. 8. Indeed assume that S contains the elements fi, ..., Bsy2 of the
Kostant cascade of g. Then the semisimple element h of the adapted pair should verify
both equalities ws(h) = ((e1 +¢€2) + ...+ (es—1 +¢€5))(h) = (—1) x s/2 and ws(h) =0
by definition of h, (see Sect. 3) and since h € hp and —2w; € A(p) by (4) of Sect. 4.
Hence we obtain a contradiction. Also for each v € S, a more complicated Heisenberg
set I'y, with centre v than the set H, used in previous section will be taken in general.
We will also take T* # (.

9.1. Condition (i) of Proposition 0.2
For type B,,, we set

ST = {es, Bi =¢2i-1 + €2, Es—1 + Est1, €25 + E2j11;
1<i<s/2—1,s/2+1<j<[(n—-1)/2]}

and
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S™ = {6571' — &4y _B;'/_(s_t,_g)/g = —&2j-1 — €253
1<i<s/2-1,s/2+2<j<[n/2).

For type D,,, we set

St = {55 —En, €s + En, Bi = €2i—1 + €2i, €51 + €511, €25 + E2511;
1<i<s/2—1,s/2+1<j<[(n-2)/2]}

and

ST = {5571 €is ﬂj_(s_;,_g)/g = —€25-1 €253

1<i<s/2-1,s/2+2<j<[(n—1)/2]}.

Remark that the above sets S* contain the same elements as those defined in [14]
or in [8] for maximal parabolic subalgebras, except for one of them which is missing,
namely the element —e,41 — €442, since it does no more belong to A_.

As we already noticed in Sect. 3 for type B, and also for type D,, (since s < n —4)
we have that hy = b’. As in [14, Lem. 7.1], we prove the following lemma.

Lemma. Set S = ST U S~ as above. Then S|y, 18 a basis for b .

Proof. The proof is quite similar to that of [14, Lem. 7.1]. We give it below for the
reader’s convenience. First observe that |S| = n — 2. The elements of S will be denoted
by s;, with 1 < i < n—2. When g is of type B,,, we set s,,_3 = €5 and s,,_3 = €1 +¢, if
n is odd, resp. sp_2 = —€,_1—¢&y, if n is even. When g is of type D,,, we set s,,_3 = e5—¢€p,
and $,—2 = €5 + &,. Then we set s, = s; for all 1 <i <n—2if gis of type B,. If g is
of type Dy, weset s, =s; forall 1 <i<mn-—4, s, 5 =c¢,and s,_, = ¢&,. It suffices to
verify that, if {h;}1<;j<n—2 is a basis of hx = b’, then det(s;(h;))1<s, j<n—2 # 0.
To prove this, we order the basis {h;}1<;j<n—2 of hp as

{ay;, 1<i<s/2-1,
af_y, o g, ) o5, 1< 5 < [s/4],

ay, s+1§k§n,k7és+2}
without repetitions. The elements s;, 1 <i<n-—2, are ordered as

{e2ic1 +e2, 1 <i<s/2-1,
€6y €55 — €5, 1 <j<5/2—1, 651 +€541,
Eak + E2k+1, —E€2k+1 — E2k+2, 5/2+ 1 <k < [(n—3)/2],
(=1)™(en—2+en-1), S/n—z}

without repetitions.
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A
*
*

Then one verifies that (s)(h;))i<i, j<n—2 = with A, resp. B, a

* * Jo
Jooco

0

0

C
* *
(s/2=1) x (s/2 = 1), resp. s/2 x s/2, lower triangular matrix with 1, resp. —1, on its
diagonal.

D0
Moreover C' = (1) and D = N D//)

triangular matrix with alternating 1 and —1 on its diagonal, and D" an invertible 2 x 2

with D" a (n —s—4) x (n — s — 4) lower

matrix. 0O
9.2. Conditions (ii), (iii) and (vi) of Proposition 6.2

To each v € S, we need now to associate a Heisenberg set I',, with centre .

Recall that §8; := e9;_1 + €9;, for all 1 <i < /2 — 1, is a positive root which belongs
to the Kostant cascade of g. We then set, for all 1 <i < s/2— 1, I'g, = Hg, where Hg,
is the largest Heisenberg set with centre 3; included in AT as defined in 6.1.

For g of type B,, we set

F5571+65+1 = {53—1 + €541, €s—1 = €st1 FE 5 s+ 2<i<n,

Es—1y Es4+1y Es—1 — Es,y €5 + Eerl}-

For g of type Dy, I'c,_, 4¢ is taken to be the same set as above but without £,_1 and

s+1
€s+1 which are not roots in this type.
For s/24+1 < j <[(n—1)/2] for type By, resp. s/2+1 < j < [(n—2)/2] for type D,,

we set

Lepivenjin = 1825 + 2511, €25, €2541,

€25 T €k, €241 Fexs 27 +2 <k <n},

resp. the same set as above but without e2; and €3;1.
Forall 1 <i<s/2—1, we set

ngii_ai = {85_1'—81‘, €s—i — €5, €5 — &4 1+1<73 §s—i—1}.

For all s/2+4 2 < j < [n/2] for type By, resp. s/2+2 < j < [(n —1)/2] for type D,,
weset I' ¢, | c,, = —He,, ,4e,; Where He,. .., is the largest Heisenberg set with
centre B;.’_(s+2)/2 = €9;_1 + €25 € B included in A:,, as defined in 6.1.

Finally for g of type B, we set I'._ = {e,} and for g of type D,,, we set I'c ;. =
{es+entand e . ={e; —en}

By construction all the above sets I',, v € S, are Heisenberg sets with centre v and
they are pairwise disjoint.

Moreover the above sets Iy, v € S, are chosen to be the same as in [8] (for type B,,),
except for I'c,_, 4., , where here the roots e,_1 — &, and €, + €541 are added. However
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the proofs of [8, Lem. 14 and 15|, themselves based on Lemma 6.1 i7) and i), can still
be applied to show that conditions (i4) and (¢i7) of Proposition 6.2 are satisfied.
Now for the set T" we take

T = {55—1 + Esy €s—1 — Es+1, €s + Es+2,

€2i—1 — €2, €s+2j — €s+2j+1, —Es+2k—1 T Es+2k ;
1<i<s/2-1,1<j<[(n—s—=-1)/2],1<k<[(n—s)/2]}

One checks that 7' C AT LUA, and that T is disjoint from I' = | |, g I';. Note also
that this set T' has the same elements as the set T in [8], except that as_1 =51 — &5
now belongs to I'c,_, 4., ,, and is replaced by &, + €54.2. We check below that condition
(vi) of Proposition 6.2 is satisfied.

Lemma. We have that |T| = ind py.

Proof. One checks that |T| = n — s/2 4+ 1. Recall (1) of Sect. 4, that indpy = |E(7')]
where E(n’) is the set of (ij)-orbits in .

Denote by 71, 75, 74 the three irreducible components of 7. Then 7} is of type As_1,
74 is of type Ay and 7} is of type B, _s_2, resp. Dy,_s_o if g is of type By, resp. Dj,.

Then i), exchanges a; and as—¢ for all 1 <t < s/2 — 1 and fixes a2, ijxy, = Idny
and (ij) |, = Idy, since n and n — s — 2 are of the same parity (and n —s —2 > 2 if
g is of type D,,). Moreover for all a € 7\ 7/, i(a) = j(a) = . Then the set E(x’) of
(ij)-orbits in 7 is

B(r") = {{as, as—i}, {ase}, {au}; 1<t <s/2-1,5s <u<n}.
They are n — s/2 + 1 in number. Hence the lemma. O
9.3. Condition (iv) and (v) of Proposition 0.2
If g is of type B,,, we take:
T ={es—¢ei,es+¢€j, (—1)"en; 1 <i<n, i #s,5+3<j<n}
If g is of type D,,, we take:
T ={es—ei,es+ej, ()" ta,; 1<i<n—1,i#s s+3<j<n—1}
In type B, note that this set 7* is the same as T™* in [8], except that two elements here
are missing: €5 +&,41 which now belongs to I'c,_, y.,,, and €, +&,42 which now belongs
to T. By construction 7™ is disjoint from I' U T

Denote by AZ, the set of negative roots in the case when 7’ = 7 \ {c,} (that is, the
set of negative roots for the parabolic subalgebra pzs as considered in [8]) and recall
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that we denote by A_, the set of negative roots for p,/ in our present case when 7’ =
7\ {a, asy2}. Then one has that AL, = A, U—H.  yc,,,, where H. (. ., is the
largest Heisenberg set with centre €541 + €542 which is included in A;, as defined in
6.1. By a similar proof as in [8, Lem. 13] and using Lemma 6.1 7), one checks that
AT UA_, =T UT UT*. Hence condition (iv) of Proposition 6.2 is satisfied. It remains
to verify condition (v) of Proposition 6.2. The proofs of [8, Lem. 16, 17, 18, 19] can still
be applied in type B,. In type D,, they have to be adapted. For completeness, we give
a proof below. Set y =35 7.

Lemma. Let v € T*. Then g, C adpa(y) + gr.

Proof. Recall (Sect. 3) that pp =n~ @b’ ean;“, and that we have chosen, for each o € A,
a nonzero root vector o € go. Given v, § € A* such that v+ € A*, one has that
adx~(zs5) = [T+, 5] € gy+5 \ {0} by say [6, 1.10.7], then it is a nonzero multiple of x-5.
Assume that g is of type B,, and rescale if necessary the nonzero root vectors x.,
vyeA\S.
Let s+3<j<n-—1and j odd. Then one has that

{admsj (y) = Te,e; + T—eji11

adm*€s*€j+1 (y) = x*5j+1 .

Hence ., 1o, = ad(xe; —x_c,—c;,,)(y) € adpa(y). If j = n is odd, then z. 4., =
adx., (y) € adpa(y). Let s +4 < j < n and j even. Then z. 4., = ad(z;, —

x*«‘:s*Ejfl)(y) € a’dpA(y)
Let 1 <i<s—3andiodd,or s+2<¢<n-—1and+? even. Then

{xésﬁi =ad (‘/'U*Ei — Leipr—es + 1',5571.72,55)(:[/) if i < 8/2 -2

Te,—e;, =ad (e, — Tey -, )(Y) otherwise.

Hence z.,_., € adpa(y). Let 2 <i < s—2and i even, or s+ 3 <i <n and i odd. Then

Les—e; = ad ('T_Ei — Tei_1—es + x—Esfwz—Es)(y) if 4 S i S 5/2
Tey—e; = ad (Togy — Tey ¢, + x_55_53+1)(y) ifi=2

Te,—e; = ad (T_c, — e, _,—c.)(Y) otherwise.
Hence ze,_¢, € adpa(y). If i = s —1 then

Teye,y =ad(Toc, | — Te,y—c,)(y) € adpa(y).

If i = s+ 1 then

Leyg—egp1 = ad (x_55+1 - xssfl_es)(y) € adp/\(y)'
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If i = n is even, then

Ze,—e, =adz_c, (y) € adpa(y).

Finally, if n is odd, then x_. = adz_. ¢, (y) € adpa(y) and if n is even, then z., =
adx_._ye, (y) € adpa(y). Hence the lemma for g of type B,,.

Assume now that g is of type D,,.

Let s +3 < j <n—2and j odd. One may apply Lemma 6.3 with 74 =e5 +¢, € S,
VI =€j—€n €8, 72 = —€j—€j41 €S,V =¢j+e, ¢85, 73 =¢e5—¢e, €85,
V3 = —€s — €541 ¢ S. Then up to rescaling the nonzero root vectors e, o, T c, ¢,
Te;ve, MPrand T, ¢, Te, ey, Te,+e; D Pj, One has that, by Lemma 6.3

[Te;—ens Teoten] = [Tejtens Tey—en] = Te e,
[IE]'—Evm x_fj_5j+1] = [x_55_5j+17 xis—En] = x_5j+1_5n
[x_55_5j+1’ ‘rf:‘s-‘r&n] = [x5j+5n7 x—Ej—EjJrl] = Tep—ej41-

It follows that

-77£5+aj + 1"—6j+1—6n = adxfj—t?n (y) S adpA(@/)
x—EjJrl—E,,L + xEV,L—E]'Jrl = adm—85—€j+1 (y) E adpA(y)

x€n7€j+1 + x65+€]’ = adx€j+€n (y) S adpA(y)’

Hence z._4c; € adpa(y).
Now if j =n — 1is odd, then z._ 1., , =adz.,_,—c (y) € adpa(y). Let s +4 < j <
n—1 and j even. Then similarly as above (by Lemma and Proposition 6.3), one has that

Tegte; TTog; -2, = ad Lej—en (y) € adPA(y)
Tg;_1—ep + Te,—ej_1 = adw75575j71<y) € adPA(y)

Te,,—e;_1 + Tegte; = ad Lejten, (y) € adpA(y)

Hence z.,4c; € adpp(y).
Let 1 <i<s—3andiodd, or s+2<i<n-—2andieven. Again, up to rescaling
some nonzero root vectors, Lemma and Proposition 6.3 imply that

Teg—e; T Xeyfy—e, = adx—si—sn (y) € adpA(y)
Teyiyten, T Te,—e; = adTe, ¢, (y) € adpa(y)

Leip1—en + Tejp1te, € adp/\(y)

since

{x5i+1_5n + $€1’,+1+6n =ad (x€i+1—€s - x_ss—i—2_ss)(y) if 4 S 5/2 —2

Tepy—en + Tepprqe, = 0dTe,, o () otherwise.
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Hence z.,_¢, € adpa(y). For i = n — 1 even, one has that z.,_., , = adx., ., ,(y) €
adpa(y). For 2 < i < s—2and i even, or s+ 3 < i < n—1and i odd, a similar
computation shows that one also has that z.__., € adpa(y) in these cases. Let i = s —1.
Then Lemma 6.3 implies that

Te,—e, g+ Te,y—e, =0dT_c, ¢, (v)
Tegpr—en T Tegpr14e, = adx€s+1—55 (y)

Tegirten T Teg—eq = adze, ¢, ,(y)-

Hence @, _.,_, € adpa(y). A similar computation shows that z.,_. ., € adpa(y).

Finally assume that n is even. Then adz_.,—., ,(y) = T—q, + T—a, , € adpr(y)
and _o, , € gr. Thus x_,, € adpa(y) + gr. If n is odd, then adz., ,_. (y) =
Ze, + Ta,_, € adpp(y) and x,, _, € gr. Thus z,, € adpp(y) + gr. The proof is
complete. O

9.4.  All conditions of Proposition 6.2 are satisfied. Thus one has the following corol-
lary.

Corollary. Keep the above notation. One has that

adpa(y) © gr = p)

with dim(gr) = ind(pa) that is, y is regular in p. Moreover, by Lemma 9.1, there exists
a uniquely defined element h € b such that y(h) = —1 for all v € S. Then (h, y) is an
adapted pair for pa.

9.5. The semisimple element of the adapted pair

By direct computation, one may give the expansion of the semisimple element h of
the adapted pair for p, obtained in Corollary 9.4.

Lemma. In terms of the elements €;, 1 < i < n, the semisimple element h € hp of the
adapted pair (h, y) obtained in Corollary 9./ has the following expansion. Set uw = 0 in
type Dy, resp. u =1 in type B,.
s/4 s/2—1
h= YRI(s/24 2k — Dea1 + 2032 411 (35/2 — 2k)eak 1
P (s/2 + 2k)ean — 034 a4 (Bs/2+ 1 = 2k)eay

+(s/2)es—1 —es — (8/2+ 1)est1

+an s—14u)/2] (2]€ 1+ 5/2)53+2k

— e ok — 2 4 5/2)e oo
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In terms of the coroots o, 1 < k < n, k ¢ {s, s+ 2}, the element h has the following
expansion. Set
s/2—1 s/4
H= =507 kayy + S0 (s/2 + Bag,
s/2
+ Zk/:[s/4]+1(38/2 +1-3k)agy,_,
A2 2l Gy g /2)ay,

k=s/2+1
n—1+4+u)/2
- 25:3/2—&-1)/ ] ko -
Then
h=H+(n—s—2)/4a) if g is of type B, withn even
h=H—-(n+1)/4a) if g is of type B, withn odd
h=H—n/4(a)_; + ) if g is of type D,, with n even

h=H+ (n—s—3)/4(a),_1 + ) ifgis of type D,, withn odd.
9.6. Computation of the improved upper bound and the lower bound
Recall the notation of Sect. 4 and 5. One obtains the following Lemma.

Lemma. If g is of type B,,, resp. D,,, then

H (1- e‘sf)f1 = H (1-— e*(%s(v)))*l

TeE(n’) ~ET
More precisely one has the following.
(i) If g is of type B,, and s+ 2 < n, then

Ch (Y(p/\)) = (]_ —_ e—2wb)—5/2(1 _ e—ws)—l(l _ e—2w5+2)—(n—s—2)

(1 — e @st2)"1(1 — e~ (FeF@or2)) =1,
(ii) If g is of type B,, and n = s+ 2, then

ch(Y(pp)) = (1 —e2%s)=5/2(1 —e @)1

(1 _ e—2ws+2)—1(1 _ e—(ws+2ws+2))—l.
(iii) If g is of type Dy, then

ch(Y(p) = (1= 27) /(1 = )~ (1 — ¢ 27es2) ~(n=s-

(1= e 12)2(1 = (i),
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Proof. Recall the set E(7’) given in the proof of Lemma 9.2 and set for all 1 <t < s/2—1,
Iy = {ay, as—¢}, Tsjo = {2} and I'y = {a,} for all s < u < n. Observe that j(I') =T
(and then ¢(T'N7’') = j(T) N7’ =T Na') for all T € E(xn’), except in type D,,, with n
odd, for T' = {a,—1} or T = {a, }. Recall for all ' € E(n’) the weight dr defined in (2)
of Sect. 4. One checks that:

V1<t<s/2—1,6r, =2(w; — @i + @y — Ws_t) = —20s.

s42 72w3+2. Finally

Or,., = 2(why — Wst1) = —(ws + Wey2), for type Dy, and for type B,, if s +2 < n. For

Moreover dr,,, = 2(w;/2 — wWy/p) = —ws, Op, = —2w, and Op

type B,, with s + 2 = n one checks that dr_,, = —(w, + 2ws42).

If s+3 <u<n-—1for type By, resp. s+ 3 < u < n—2 for type D,,, then one checks
that dp, = —2wsyo. If u=n for g of type B,, (and s+2 < n),resp.u=n—loru=n
for g of type Dy, then one checks that dr, = —wwst2. Thus [[pc g (1 — e’m) 1 is equal
to the right hand side of (i), (éi) or (ii7).

It remains to check that J[pep (1 — )l = [Ler(— e~ (M) =1 Recall the
set T given before Lemma 9.2.

For v = €5_1 + €4, one checks that

s(v)=(e1+e2)+ ...+ (es—3 +e5-2)

so that v + s(y) = ws.
For v = €51 — €541, one checks that, if g is of type By,

s(v) =2((e1 +e2) + ...+ (e5—3 + 5-2)) + (Es—1 + €s4+1) + 25

and if g of type D,,, then

s(v)=2((e1+ea)+ ...+ (es—3F+es-2)) + (es—1 +es11) + (s +en) + (g5 —€n)

and for both types that v + s(y) = 2ws;.
For v = €5 + €542, one checks that

s(v)=(e14e2) +...+ (es—3+Es-2) + (Es—1 + E541)

so that v 4 s(y) = ws4e for g of type D,, or g of type B,, with s + 2 < n, and that
v+ s(y) = 2wsy2 for g of type B, with s+ 2 = n.

Let 1 <i<s/2—1and set vy =¢e9;—1 —€9;. As in [14, Proof of Lem. 7.9], one checks
that:



338 F. Fauquant-Millet / Journal of Algebra 580 (2021) 299-365

— If s < 4i— 2, then

s—2i s/2—1
s(€2i—1 — €2i) = 2 Z(Es—j —¢e;)+4 Z (€25-1 + €25)
j=1 j=1
i1
+2 Z (e2j—1 + €25) + (€2i-1 + €2;) + 2¢5
j=s/2—i+1

in type B,, and the same as above in type D,, but with 2e, replaced by (e5 +€,) +
(s — €n).
— If s > 4i — 2, then

2i-1 i—1
5(621_1 7621) = 2 Z(gs_j *€j)+42(82j_1 +€2j)
j=1 j=1
s/2—1i
+2 Z (€2j—1 + €25) + 3(e2i-1 + €2;:) + 265
j=it1

in type B, and the same as above in type D,, but with 2¢, replaced by (e5 +¢,) +
(s — €n). In both cases one obtains that v + s(v) = 2ws;.

Let 1 <j <[(n—s—1)/2] and set v = €4542j — €s42;+1. One checks that:

8(7) = 2((61 + 62) + s + (65—3 + 68—2)) + 2(55—1 + €s+1)
=237 o(eston—1 + €star) + 237 _o((est2k—2 + Est2k—1)
+(est2j + Es42j+1) + 2e5

in type By, resp. in type D,, with n even (with 2¢, replaced by (5 —e,) + (65 —€n)), SO
that v + s(v7) = 2wsyo.

In type D, with n odd, for all 1 < j < [(n — s — 1)/2] — 1, one also obtains that
v+ 5(7) = 2wsqo. If g is of type Dy, with n odd, then for v = e442; — €542j41 with
j=[(n—s-=1)/2] = (n—s—1)/2, one has that

s(v) =(er1+e2)+...+ (s—3+es—2) + (Es—1 + €s41)
+(5s+2 + €s+3) + ... (En—S + 671—2)
—((es43 +€s4a) + ...+ (En—2+ten-1)) + (es +€n)

so that v + s(y) = w2
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Let 2 <k <[(n—s)/2] and set 7 = —e512k—1 + €s42k. One checks that

s(y) =2((e1+e2) +... 4+ (es—3 +es-2)) +2(s5-1 + €s41)
—23F s(Est2e-3 + Esyae—2) + 205y ((Estav—2 + Esre-1)

_(Es+2k71 + 55+2k) + 255

in type B, resp. in type D,, with n odd (with 2e, replaced by (¢5 —&,,) + (€5 — €4)), S0
that v+s(v) = 2ws42. If g is of type Dy, with n even, then for all 2 < k < [(n—1s)/2] -1,
one also obtains that v + s(y) = 2w,a.

Now for g of type D,,, with n even and for v = —e54 951 +€542k, With k = [(n—s)/2] =
(n — s8)/2, one has that

8(7) = (51 + 62) +...+ (58—3 + 53—2) + (53—1 + Es—i-l)
+(Es+2 + 5s+3) +... (€n72 + €n,1)
_((€s+3 + Es+4) +.. .+ (5n—3 + 5n—2)) + (58 - 5n)

so that v + s(y) = wst2.
Finally set v = €549 — €541 = —@s4+1 € T. Then one has that

s(v) =2((e1 +e2) +... + (es—3 +es-2)) +2(e5-1 +E541) + 265

so that v+ s(y) = ws + wsyo if s+2 < n and if s+ 2 = n (necessarily in type B,,) then
7+ s(7) = @s + 2w 2.

It follows that the lower and the improved upper bounds for ch (Y (pa)) coincide, then
equalities in (), (z¢) and (44%) hold. O

9.7. A Weierstrass section

By Sect. 5 we deduce from Corollary 9.4 and Lemma 9.6 that y + gr is a Weierstrass
section for coadjoint action of ps. One can then write the following theorem.

Theorem. Let g be a complex simple Lie algebra of type By, resp. Dy, with n > 4, resp.
n > 6 and let p = n~Bhdnt, be a parabolic subalgebra associated with 7' = m\{cs, asi2},
seven, 2 < s <n—2, resp. 2 < s <n—4. Then there exists a Weierstrass section
y+gr for coadjoint action of the canonical truncation pp of p. It follows that the algebra
of symmetric invariants Y (pp) = Sy(p) is a polynomial algebra over k onn — s/2 + 1
algebraically independent homogeneous and h-weight generators.

9.8. Weights and degrees

One may associate with each v € T" an homogeneous generator p, € Y (py) so that
the set {p,; v € T} is a set of algebraically independent and h-weight generators of the
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polynomial algebra Y (pa). By what we said in Sect. 5, for each v € T, the weight of p,
is wt(py) = —(y + s(v)) and the degree of p, is deg(py) = 1+ |s(7)| (also equal to the
eigenvalue plus one of z., with respect to ad h, where recall h is the semisimple element
of the adapted pair for p, that we have constructed, see 9.5). It suffices then to use the
proof of Lemma 9.6 to compute all these weights and degrees, since there all the s(v),
for v € T, have been computed. Set, for all 1 < i < s/2—1, v; = €9;_1 — €9;.

Assume first that g is simple of type B,,, with s + 2 < n or g is of type D,,, where
recall s +2 <n— 2.

yET wi(py) deg(p~)
1< < [5/4] “2e, s+ i

v, [s/4]+1<i<s/2—1 —2w, 35— 4i+2
Y =Es—1 — Est1 —2w, s+ 2

Y =€s-1+¢€s —w, s/2

Y =¢€s+Est2 —Wet2 s/2+1
v=(=1)"(e, — €n—1), g of type D, —Wst2 n—s/2—1
vy =(—1)"(en —€n—1), g of type B, —2weyo 2n — s —2
€st2j — Est2j41, 1 £ J < [(n— s —2)/2] —2Ws42 s+4j
Es42k — Es42k—-1, 2 < k< [(n—s—1)/2] —2ws42 s+ 4k — 2
Y = €542 — €541 —(ws + wst2) s+ 3

Assume now that g is of type B,,, with n = s 4+ 2.

V€T wt(py) deg(p+)

i, 1 <4 < [s/4] —2w, s+ 4i

Yir [s/4]+1<i<s/2-1 —2w, 35— 4i+2
Y =Es—1 — €541 —2w, s+ 2

Y =¢€s—1+¢€s —Ws s/2

Y =¢Es T Es42 —TWst2 s/2+1

Y = €s42 — €s+41 — (s + 2ws42) s+3=n+1

9.9.

Remark. Assume that g is simple of type B, with n > 6 and that ' = =\
{as, asya, as1a}t with s an even integer and consider the parabolic subalgebra p =
n- @b@njr', associated to 7. Then one may easily check as in the proof of Lemma 9.2 that
indpy = n—s/2+1. Take the same set ST as this chosen for the case 7’ = 7\ {as, asia2}
in subsection 9.1 and the same set S~ but without the element —e4135 — €544 which does
no more belong to A-,. Then restriction to ' = hp of S = ST LS~ is still a basis
for b} . Take also the same sets 7" and 1T as in subsections 9.2 and 9.3, which still lie
in AT UAZ,. Unfortunately condition (v) of Proposition 6.2 is no more satisfied since
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Te te,s a0d Te 4e ., in T* do no more belong to adpa(y) + gr. Thus our construction
cannot be generalized to the more general case of ps ; with s even and ¢ > 2.

10. Case 1e for type C

In this Section, we consider a parabolic subalgebra p = ps ¢ =p_, =n" G hd n:
associated to the subset 7' = 7\ {«as, @st2,..., @512/} with £ € N and s an even or an
odd integer, 1 < s < n — 2/, in a simple Lie algebra g of type C,,, with n > 3. Hence we
are in the case le of subsection 1.7.

If £ = 0, such a parabolic subalgebra is maximal and this case was already treated in
[13]. Thus we will assume that ¢ > 1. By subsection 4.4, the lower and upper bounds
for ch (Y(pa)) in (4) of Sect. 4 always coincide and then Y (py) is a polynomial algebra.
However Weierstrass sections were not yet exhibited. As we said in Remark 3a of sub-
section 6.2, it suffices to construct an adapted pair to obtain a Weierstrass section for
coadjoint action of p, in the present case. Our construction generalizes the construction
of an adapted pair in case of a maximal parabolic subalgebra in type C (see [13, Sect.

6]).
10.1. The Kostant cascades
The Kostant cascade 8, for g simple of type C,, is given by
Br ={Bi =2¢;;1<i<n}
The Kostant cascade 3,/ of ¢’ is given by

B = {5£ =& — Es41—iy Ms425-1, 51;' = 2654204k ;
1§i§[s/2},1§j§€, 1§k§n—s—2€}.

We want to construct an adapted pair for py = n~ & b’ @n:,. (Recall that here hy = b'.)
For this purpose we will use Proposition 6.2. First we give a set S = STUS™ C ATUA,
such that S, is a basis for b}.

10.2. Condition (i) of Proposition 6.2

Since, for all 1 < k < n — s — 2¢, one has that 8} = Bst204k, we will not be able to
take S = B2 U (—BY,) as we did for type B,, in Sect. 8.

Instead we will take elements which are a kind of deformation of roots of the Kostant
cascade, by setting v; = 8; — a; = €; + 441 for all 1 <i < mn — 1. Assume first that s is
odd. We set

ST ={v2i-1 = €21 +e2:; 1 <i < [n/2]}
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and
ST = {=Bi =est1-i — €i, =725 = —(e2j + €2541);
1<i<(s—=1)/2,(s+20+1)/2<j<[(n—1)/2]}.
Assume now that s is even and set t := [s/4]. We set
ST ={Batr1, y2i-1, Y255 1 <i <t t4+1<j<[(n—1)/2]}
and

ST = {—5;' =Es41—i — Eiy TV254+1 = —(52j+1 + 82j+2);
1<i<(s-2)/2, (s+20)/2 < j <[(n—2)/2}.

In both cases for S = ST 1S, one easily checks that |S| =n—/¢—1=dimbp’ = dimb,.
The following lemma establishes condition (i) of Proposition 6.2.

Lemma. S|y, is a basis for b} .
Proof. Assume first that s is odd. Then we order the elements s, of S as follows:

Si = Y2i—1, 1 <i < [n/2],
S[n/2)+j = —Vs+2e+2i-1, 1 < j<[(n—1)/2] = (s +20—-1)/2,
Sp—t—1—(s—1)/24k = =B 1 <k < (s —1)/2

and order the elements h, of a basis of §’ as follows:

hi = Oégi, 1 S ) S [n/2},
h[n/2]+j = a;'/+2€+2j7 1<j<[(n—1)/2] = (s +20—-1)/2,

Pn—t—1—(s—1) /24261 = hypy_q = @1, Pnp1-(s—1) /2426 = hly = @) o,
1<k <[(s+1)/4]

without repetitions for the h;’s.
Set

A= (sulhv))1<u, v<n/2)s

B = (8[n/2)4+u(hn/240))1<u, v<[(n—1) /2] - (s+2¢—1) /25
C = (=Bi(M;)<i, j<(s—1)/2-

By observing that v; = w41 — w;—1 for all 1 < i < n — 1 (with wy = 0) one obtains
that A, resp. B, is a lower triangular matrix with 1, resp. —1, on its diagonal. Moreover
C is a lower triangular matrix with —1 on its diagonal by Lemma 6.4. Then one obtains
that the matrix
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A 0 O
(Su(hv))lgu,vgn_e_l = ( x B 0 )
* x (C

is such that det(sy(hv))1<u, v<n—t—1 7 0.
Assume now that s is even. Recall that ¢t = [s/4]. We order the elements s, of S as

follows:

s =72i-1, 1 <1< ¢,
St41 = Bary1 = 2241,
St4145 = Vat+5), L < J < [(n—1)/2] —t,
S{(n+1)/2+k = —Vs+2e+2k—1, L <k <[(n—2)/2] — (s +20-2)/2,
Sp—t—1—(s—2)/24r = =B, 1 <17 < (5 —2)/2.

We order the elements h, of a basis of §’ as follows:

hi=ay,1<i<t,
b1 = agyyq,
hit1+j = 0‘2v(t+j)+1» 1<j<[(n-1)/2] -t
h(n+1)/214k = O 4oppop L Sk < [(n—2)/2] = (s + 20— 2)/2,
hn—e—l—(s—z)/2+2r—1 =hy, 4 = aé/rfl? hn—f—l—(s—2)/2+2r = hj, = Oézfzra
1<r<t

without repetitions. More precisely: if ¢ = (s — 2)/4 then h; = a3, = O‘;//271 # hh, =

/.1, then both are taken and if ¢ = s/4 then hy, = o, = h; then one takes h; but
not hb,. Then by the above one obtains that the matrix

(su(hv))lgu, v<n—€—1 =

* ¥ % ¥
* ¥ ¥ DO
* ¥ oo
*» Qo oo
Joococo

with

( ( ))1<u v<t>
B = (5t+1+u(ht+l+ ) i<u, v<[(n—1)/2]—ts
C = (s(tnt1)/21+u(P(nt1)/2140))1<u, 0<[(n-2) /2]~ (s+20-2) /25
D= (*ﬂg(hj))lgi,jg(s—mm

is such that det(sy(hy))i1<u, v<n—r—1 # 0. Indeed the above matrices are lower triangular
matrices with 1 (for A and B), resp. —1 (for C' and D), on their diagonal. O



344 F. Fauquant-Millet / Journal of Algebra 580 (2021) 299-365

10.3. Conditions (i) and (iii) of Proposition 6.2

For each v € ST, resp. v € S~ we will take a Heisenberg set I', with centre ~ included
in A%, resp. A7, such that [(ATUAL)\ (LyesTy)| = indpa (here we will take T* = ()
in Proposition 6.2) and such that conditions (¢) and (4i7) of Proposition 6.2 are satisfied.

For this purpose we use (see 6.1) the largest Heisenberg set Hg, with centre 3; € S
included in AT, and —Hpg,, resp. —Hgy where Hg,, resp. Hgy, is the largest Heisenberg
set in AY, with centre 3, resp. 7, belonging to the Kostant cascade 8, of g'.

For each f; € By, set H) = Hp, \{f:} and each 3} € Bq, Hgﬁg, = —Hg \{-B/'}. As
in [13, Sect. 6], for each v € ST N B, we set I'y = H, and for each v € S~ N (=), we
set T, = —H_,. Moreover for the roots v; = f; —a; € ST, weset T, = Hy UHp,, and
for the roots —v;' = —ys1201i = — (B} —sy2044) € S™, weset I _ v = HEBZ' U(—Hgy,,)-

As in [13, Sect. 6] one easily checks that, for each v € S, I, is a Heisenberg set with
centre v and these sets I, v € S, are pairwise disjoint by Lemma 6.1 7). Below we will
show that conditions (¢) and (#¢) of Proposition 6.2 are satisfied. Recall that, for each
veS, weset I =T, \ {7} and OF = | g+ Y.

Lemma. Let v € ST and a € T'Y be such that there exists § € O with a + 8 € S. Then
BGFQY and o+ B = .

Proof. Assume first that o + 3 € ST N B,. Then the assertion follows from Lemma 6.1
i1). Assume now that o+ = v; = 8; — o; € ST. We will show that v = ;. We have
that ; € Hg then by Lemma 6.1 4i7), one has that « € Hg, or 5 € Hg,. Suppose that
a € Hg,. Then « # B; since f is a positive root and we have « € Hgi C I'y,. Since the
Heisenberg sets I's, 0 € .S, are pairwise disjoint, one deduces that v = ~y;. Since I, is a
Heisenberg set, it follows that g € va' Now if € Hg, then for the same reason as before
BeHj cT,,. ButfeOF then there exists v/ € ST such that 5 € T'),. As before one
deduces that v/ = v; and then that a € Fg, hence v = 4’ = ;. Since all roots in ST are
of the above form, we are done. O

Condition (#i7) of Proposition 6.2 follows similarly.
10.4. Condition (vi) of Proposition 6.2

Here we will show that condition (vi) is satisfied, with "= (ATUAZ )\ ||, cs T Set
T+ = A+\|_|,Yes+ Iyand T7 = A\l ,es- I'y. Then T' = THUT~. Recall Lemma 6.1

'L) that A+ = |—|,86B7r Hﬁ and A;/ = Uﬂeﬁﬂ_/(_HB)
Assume first that s is odd. Then

TH ={Bo_1 |1 <i<[(n+1)/2]}

and
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T ={—st2i-1, —Bstoer2j-1 |1 <i <L, 1<j<[(n+1—-5)/2] -1}

Assume that s is even. Then

T* = {Bai-1, Boj [ 1< i<t t+1 <5 < [n/2]}

and

T~ ={—ay2, —0sy2i-1, —Bstaeyoj1 |1 i< 1< j<[(n+1-5)/2] - L}
Below we establish condition (vi) of Proposition 6.2.
Lemma. One has that |T| = indpy.

Proof. Recall that indpy is equal to the number |E(7’)| of (ij)-orbits in 7 (see Sect. 4).
Here, since j = Id,, the set E(n’) of (ij)-orbits in 7 is the following. If s is odd, then

E(n') = {{ovi, as—i} {as—145} |1 <i<(s—1)/2,1<j<n—s+1}.

If s is even, then

E(r") = {{ou, as—i}, {ogyo}, {14} [1<i< (s —2)/2,1<j<n—s+1}.
One checks that |T'| = |E(n’)|. Hence the lemma. 0O

Finally if we set T* = (), then by construction condition (iv) of Proposition 6.2 is also
satisfied and condition (v) is empty.

10.5. A Weierstrass section

By the above, all conditions of Proposition 6.2 are satisfied. Set y = > Z~. Since

s
S|y, 1s a basis for b} there exists a unique h € h, such that for all v € Sje'y(h) = -1
Then by Proposition 6.2 (h, y) is an adapted pair for ps. Moreover by subsection 4.4,
for all T € E(n’), er = 1. Then by Remark 3a of subsection 6.2, one deduces that y+ gr
is a Weierstrass section for coadjoint action of p,. Summarizing we obtain the following

theorem.

Theorem. Let g be a complex simple Lie algebra of type C,, (n > 3) and letp = n’@b@n:
be a parabolic subalgebra of g associated to ' = 7\ {as, Qsy2y..., asyar} (s, £ € N*)
and 1 < s < n—20. Then y+ gr is a Weierstrass section for coadjoint action of the
canonical truncation pp of p.



346 F. Fauquant-Millet / Journal of Algebra 580 (2021) 299-365

10.6. Weights and degrees

Here both bounds (see (4) in Sect. 4) for ch(Y (pa)) coincide and then Y (py) is a poly-
nomial algebra whose homogeneous and h-weight generators have weights and degrees
which can be easily computed. To each T' € E(x’) is associated an homogeneous and
h-weight generator of Y (pa) which has weight dr given by (2) of Sect. 4 and a degree Or
given by (5) of Sect. 4.

Below we give for completeness weights and degrees of a set of homogeneous and
h-weight algebraically independent generators of Y (py ), each of them corresponding to

n (ij)-orbit T, in E(7').

Assume first that s is odd:

(ij)-orbit in E(n) Weight Degree
Tw={om a ol lSu<(s-1/2 2w, ¥ 2u

Iy ={a,}, v=s+2k,0<k</ —2to, v
I'y={ay}, v=s+2k—1,1<k</ —TWy—1 — Wyt1 v+1

Iy ={au}, s+20+1<v<n —2wWetar 2v—s— 20

Assume now that s is even:

(ij)-orbit in E(x") Weight Degree

Ty ={ow, as—u}, 1 <u<(s—2)/2 —2w, s+ 2u
Teso = {as/2} —wg s

Iy ={ay}, v=s+2k,0<k</ —2w0, v

My ={av}, v=54+2k-1,1<k </ —Wy—1 — Wyt v+41

Iy ={au}, s+20+1<v<n —2w 420 20— s — 20

11. Case 2a for type D

In this Section we consider the parabolic subalgebra p = p; of the simple Lie algebra g
of type D,,, withn >4, nevenand £ € N, 0 < £ < (n—2)/2, associated with the subset
7 =7\ {apn_1-2k, an | 0 < k < £}. This is the case 2a of subsection 1.7. Recall 8.1 the
Kostant cascade f3; for g of type D,,. Recall 6.4 the Kostant cascade fr; C B for the
simple Lie subalgebra g, of the Levi subalgebra g’ of p of type A, _2_2¢ if £ < (n—2)/2.
One has

Bri ={Bi =ei —en-20—i | 1 <i < [(n—1—-20)/2]}.

We denote (as in 8.1) 8 = B, \ (B-N7) and B2, = B \ (Bxr N 7).

Then we have that 8 = {8; = e2i—1 +e2; | 1 <@ < (n—2)/2} and 2, = B since n
is even.

We set ST =) = {8 [1<i<(n-2)/2}and S~ = —p), = {-fj |1 <i<
(n—2-—20)/2}.
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For all v € ST, we set 'y = H,, the largest Heisenberg set with centre v which is
included in A™ as defined in subsection 6.1 and for all v € S~, we set I, = —H_., where
H_., is the largest Heisenberg set with centre —y which is included in Ajr',. Finally we
set TV =8, Nm, T~ =B Na'), T=TTUT™ and T* = .

11.1. Conditions (i) to (v) of Proposition 6.2

By i) of Lemma 6.1 and since Hg = {8} for all 5 € S, N, condition (iv) of Proposi-
tion 6.2 is satisfied. Moreover conditions (i¢) and (4ii) of Proposition 6.2 are satisfied by
1) of Lemma 6.1. Condition (v) is empty since T* = (. Condition (i) follows from the
following Lemma.

Lemma. Set S = ST US™. Then Sy, s a basis for b .

Proof. Here j = Id, and then (see Sect. 3) we have that b’ = h, and we observe that
|S| =n—2—¢=dimbh’ = dimbh,. The proof is similar to the proof of Lemma 8.2. We
order the elements s, of S as

/Gla ﬂ27 RN ﬁ(n72)/27 _ﬁia _6éa EERE _Bén—2—2é)/2
and we choose the following ordered basis (hy)1<y<n—2-¢ Of h’:

hi=a, 1<i<(n—2)/2,

hin—2)/2+2j-1 = hyj_1 = a3 1, hn—2) /2125 = hoj = a1 9o,
1<) <[(n—20)/4]

without repetitions for the A}’s.
Then the matrix (s, (hy))1<u, v<n—2—¢ has the form

A 0
* B
Here A = (Bi(hj))i<i, j<(n—2)/2 is a (n —2)/2 x (n — 2)/2 lower triangular matrix with

1 on its diagonal since 8; = wy; — wai—a. Moreover B = (—B{(h}))1<i, j<(n—2-20)/2 18

a(n—2—20)/2x (n—2—2¢)/2 lower triangular matrix with —1 on its diagonal, by
Lemma 6.4. Hence det (s, (hy))i<u, v<n—2—¢ # 0. O
11.2. Condition (vi) of Proposition 6.2

We obtain the following Lemma.

Lemma. We have that |T'| = ind py.



348 F. Fauquant-Millet / Journal of Algebra 580 (2021) 299-365

Proof. Recall (1) of Sect. 4 that indpa = |E(x’)|. Here the set E(n’) of (ij)-orbits in 7
is the following:

E(r") ={Ty = {aw, an_1-20—v}, 1 <u < (n—2—20)/2,
Iy ={ay},n—1-20<v<n}

Hence indpp = (n+ 2+ 2¢)/2.

On the other hand we have that Tt = 8, N7 = {an, agi—1; 1 < i < n/2} by 8.1,
and T~ = — (B N7') = {—ag;; (n—20)/2 <i < (n—2)/2}. Hence |TT|=n/2+1 and
|T~| =¢. Thus |T| =indpp. O

11.8.  All conditions of Proposition 6.2 are satisfied. Thus one can deduce the fol-
lowing corollary.

Corollary. Keep the above notation and set y = Y g To. Then y is reqular in p} and
more precisely one has that adpa(y) ® gr = pjy. Moreover there exists a uniquely defined
h € ba such that a(h) = —1 for all a € S. Thus the pair (h, y) is an adapted pair for
Pa-

11.4. FExistence of a Weierstrass section

By Remark 3a of subsection 6.2, the existence of an adapted pair for py is sufficient to
produce a Weierstrass section for coadjoint action of p provided one has the following
Lemma.

Lemma. Keep the above hypotheses and notation. One has that ey = 1 for all T € E(x’).

Proof. Recall subsection 4.3 and the (ij)-orbits in E(x') described in the proof of
Lemma 11.2.

For Ty = {aw, ap_1-20—y} for 1 < u < (n— 2 — 20)/2, one has that dr, = w, +
Wp—1-20—u & Br since v and n — 1 — 2¢ — u are not of the same parity.

Let n — 1 —2¢ <wv < n. If v is even, then dr, = w, € B, but d}u = w) ¢ B, since
o, belongs to a connected component of 7’ of type A;. If v is odd, then dr, = w, ¢ Bs.
Finally dr, = w, ¢ B:. Hence the lemma. O

One can then deduce the following Theorem.

Theorem. Let g be a simple Lie algebra of type Dy, with n even, n > 4. Let £ € N be
such that 0 < £ < (n—2)/2 and py be the parabolic subalgebra of g associated with the
subset ™ = 7w\ {ap_1-2k, an | 0 < k < £}. Then there exists a Weierstrass section for
coadjoint action of the canonical truncation of .
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11.5. Weights and degrees

Here both bounds (see (4) in Sect. 4) for ch(Y (pa)) coincide by Lemma 11.4 and
then Y'(pa) is a polynomial algebra whose homogeneous and h-weight generators have
weights and degrees which can be easily computed. To each ' € E(n’) is associated
an homogeneous and h-weight generator of Y (pa) which has weight dr given by (2) of
Sect. 4 and a degree Jr given by (5) of Sect. 4.

Below we give for completeness weights and degrees of a set of homogeneous and
h-weight algebraically independent generators of Y (py ), each of them corresponding to
an (ij)-orbit I, in E(n').

Assume first that £ > 1:

(ij)-orbit in E(x’) Weight Degree

Ty ={au, @n_1-20-u} —2wWn 120 n— 20+ 2u
1<u<(n—2-20)/2

T, ={av} —2w, v+1
v=n—1-2k, 1< k</

T, ={ay,} —Wy—1 — Wyt v+1
v=n—2k,2<k</{

I'y_2 = {an72} —TWn—-3 — Wn—-1 — Wn n—1
Tpo1 ={an-1} —2wp, 1 n/2
Tp ={an} —2w,, n/2

Finally assume that ¢ = 0, that is, 7/ = 7 \ {an—1, an}:

(ij)-orbit in E(7’) Weight Degree
Ty ={au, @n—1-u}, 1 <u< (n-2)/2 —2(wWn_1 + wn) n+ 2u
Fno1={an-1} —2w,_1 n/2
Iy ={an} —2w, n/2

11.6.

Remark. Assume now that g is simple of type D,, with n odd and consider the parabolic
subalgebra p = p, with 0 < ¢ < (n — 2)/2. Assume that we have found an adapted pair
(h, y) for pa withy =3>° g@y, S CATUAL and h € hy.

First assume that ¢ = 0. Then by (4) of Sect. 4, —(w,—1 + @,) must be a weight
of Sy(p), hence (w,—1 + w@n)(h) = 0 by definition of the canonical truncation (see
2.3). It follows that the set S cannot contain SY that is, cannot contain all j3;, for
1 <14 < (n—1)/2, as in the case n even. Indeed one has that w, _1+w, =e1+...+e,_1 =
B1+ ...+ Bm—1)/2 and then otherwise we would have both (ww,_1 + w@,)(h) = 0 and
(wWn-1+wn)(h) = (1) x (n — 1)/2, a contradiction.
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Assume now that £ > 1. Then by (4) of Sect. 4, for all 1 < k < ¢, —2w,,_1_9; must
be a weight of Sy(p), hence by the same argument as above, we cannot have that S

contains f1,. .., Bn_1-2k)/2-
12. Case 2b for type D

Here we consider the parabolic subalgebra pg of g of type D,,, with n > 5, n odd. This
is the parabolic subalgebra of g associated with the subset 7’ = 7\ {a,—1, @, }. Then it

is the case 2b of subsection 1.7.
We set S = ST 1L1S~ with

St ={Bi=e2i—1+e2; 1<i<(n—3)/2, B(nq)/z =€n—2 T €n,

B(n-l—l)/Q =Ep_2 —En}
and
ST ={-Bl=¢cp1—¢1, B =en—i1—&;2<i<(n—3)/2}.
Forall1 <i<(n—3)/2, weset I's, = Hg, and we set I'_g = —Hg,, where Hg,, resp.

Hpg,, is the largest Heisenberg set with centre f; € 3, resp. ] € B/, which is included
+

il

in AT, resp. in AY,, as defined in subsection 6.1.

We set
Lssys = {Bm-1)/2 En2 —en-1, enr+enk, T 0= {Bmtr) 2}
For all 2 < ¢ < (n — 3)/2, we set
F_/;; Z{—Bz{, En—ic1 —€j, €5 — &3 1+ 1<j<n—i-—2}
We also set
T={en2—62,6n2+En1,6n1—6n,E2i-1— €25 1<1< (n—3)/2}
and
T :{En_Q*Ei; 3§z§n73}
By construction for all v € ST, resp. v € S~, we have that ', C At resp. 'y C A, is
a Heisenberg set with centre v and all the sets I'y, for v € S, together with the sets T'
and T™ are disjoint. We easily verify that condition (iv) of Proposition 6.2 is satisfied,

using 4) of Lemma 6.1. Conditions (i7) and (#i7) of Proposition 6.2 follow easily from 1),
141) and iv) of Lemma 6.1.
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12.1. Condition (i) of Proposition 6.2
This condition follows from the lemma below.
Lemma. S|y, is a basis for b} .

Proof. First we observe that hy = b’ & H~!(e,), where recall H : h — bh* is the
isomorphism induced by the Killing form on b x § by Sect. 3.

Then dimhy = dim b’ + 1 = n — 1. We have that |S| =n — 1.

Now set s; = 3; for 1 §~ 1< (n—-3)/2, S(n—1)/2 = Ens S(n+1)/2 = En—2, S(n+3)/2 = -5
and then s, y3)/24; = =B}, forall 1 <j < (n—5)/2 and we take the elements of S in
this order.

For a basis (h;) of hy we take, in this order:

ag;, 1<i < (n—3)/2, H ' (en), )l s, Q3 1, g 95, 1 <j<[(n—1)/4]

without repetitions. Then it suffices to prove that det(s;(h;))1<s, j<n—1 # 0.

We easily check that (s;(h;)) = (f g,) where A, resp. B, is a lower triangular

matrix of size (n + 1)/2, resp. (n — 3)/2, with 1, resp. —1, on the diagonal. Hence the
lemma. 0O

12.2. Condition (v) of Proposition 6.2
Set y =3 cg 2. Condition (v) of Proposition 6.2 follows from the lemma below.
Lemma. Let k € N be such that 3 <k <n —3. Then z.,_,—., € adpp(y) + gr.

Proof. Suppose first that k is odd (3 < kK < n—4) and set 11 = ep_2 + &, € S,
V| =cehs1—En—2 EALN\S, Y2 =cn_2—en €5,7 =cn—er € AT\S, 13 = ep1ter €S,
¥4 = —ep—en € A7\ S. We will show that the hypotheses of Lemma and Proposition 6.3
are satisfied. We have that v1 +7] = ep41+e, E AT\ S, Yo+ =ep_2—cr € A\ S,
V375 = Ext1—En € AT\S. Moreover va-+75 = v1+75, v3+75 = Y2 +71, i Hyi+2 € A
and v1 + 72 € A, 2+ 93 ¢ A, y1 + 73 ¢ A. Hence, by Lemma 6.3, up to rescaling some
root vectors in a complement of gg in g, we have that

ad Lepi1—en_2 (y) = Tepyq1+te, =+ Lepy1—en + X
ad e, -, (y) = Tejprten T Ten_o—es

adm,sk,en (y) = x€k+1*€n + Lep_p—ep

with X =z, , e, ,=0dT_¢, , .—c, ,(y) €adpp(y)+9rif3 <k <(n-5)/2, and
X = 0 otherwise. Hence z., ,—¢, € adpa(y) + gr for k odd, 3 <k <n —4. A similar
computation shows that z., ,_., € adpa(y) +gr for keven, 4 <k<n-3. O
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12.3. Condition (vi) of Proposition 6.2
It follows from lemma below.
Lemma. We have that |T| = indpy = |E(7')].

Proof. The set E(n’) of (ij)-orbits in 7 is the following:

E(r') = {Tu = {au, an-1-u}, 1 S0 < (0= 38)/2, Tuo1yj2 = {an1y2},
Lpoy={ap-1}, T = {an}}.

Then |E(7")] = (n —3)/2+ 3 = (n+ 3)/2 and it is equal to |T|. O
12.4. The semisimple element of the adapted pair

All conditions of Proposition 6.2 are satisfied. Hence y = Zﬂ/es x is regular in pj}
and there exists a uniquely defined h € b, such that (h, y) is an adapted pair for py.

Below we give the semisimple element h:

h=—0 0 kay, + ST (- 1)/2 + K)o, +
e [(i/21>/4+1<3<n— 1)/2+1-3k)ay,_, — (n—1)/2)a¥_, €5 C hy.

12.5. Computation of the improved upper bound

However for n > 7, both bounds in (4) of Sect. 4 do not coincide since for T' =
{ag, an_3} € E(r’) one has dr = ws + wp—3 € B; and d. = wh + w),_4 € By, hence
er = 1/2. We then need to compute the improved upper bound mentioned in Sect. 5

Lemma. We have that

ch(Y(pa)) = (1 - e’Q(W”*IW")) e (1 - e*(w"*ﬁw")) -

Proof. Tt suffices to prove that (8) of Sect. 5 holds. Recall the (ij)-orbits computed in
the proof of Lemma 12.3 and the lower bound for ch(Y'(py)) given by (4) in Sect. 4,
with the weights dr, for all T' € E(n’), given by (2). For 1 < u < (n — 3)/2, we have
that or, = —2(@wy + @n-1-u) + 2(w, + @,_1_,,) = —2(@n—1 + @,). Then ér,_, , =
—2wW(n—1)/2 + 2w(n_1)/2 = —(wp_1 + @y). Finally observe that j(I';,_1) =T, and then
or, , = —(@Wn—1 + wy) = op,. It follows that the lower bound for ch(Y (p,)) is equal
to the right hand side of equality in the lemma. Now we have to compute the improved
upper bound and for this purpose we have to compute, for all v € T, the s(y) € QS
such that v + s(vy) vanishes on by, that is, we have to determine s(y) € QS such that
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v+ () = k(wp—1 + wy) for some k € Q (in fact k € N). Recall the sets S and T given
in the beginning of this Section. For 1 <14 < (n—3)/2, set v; = €2;,_1 — €2;. Assume first
that 1 < ¢ < [(n —1)/4]. Then one checks that

s(vi) = 2(ep—1—¢€1)+ (en—2 —en) + (En—2o +en)+
2 T (Enj1 — &) H A1 (6251 + 895)+
2Z§Z;i)1/2_i(52j—1 +e9;) + +3(e2i—1 + €2;) € NS

so that v; + s(v;) = 2(wp—1 + @y).
Now assume that [(n — 1)/4] < i < (n — 3)/2. Then one checks that

s() = 230 en—1-j — &) + AN TP ey +egy)+
223 (n—1)/2— z+1(€2.7 1+ €25) + (e2i—1 +€2i)+

2(ep—1 —€1) + (En—2 —€n) + (En—2 +&n) €NS

so that v; + s(v;) = 2(wp—1 + @n).

For v =¢,_9 — &5 € T, one checks that s(y) =2(e1 +&2) + (e3+¢e4)+ ...+ (En_a +
€n—3) + (en—1 —€1) € NS so that v+ s(v) = wp—1 + wn.

For v =e,_9+¢&,-1 € T, one checks that s(v) = (e1 +e2) + (es+ea)+... + (n—a+
en—3) € NS so that v+ s(v) = wp—1 + wn.

Finally for v = ¢,,_1 — &, € T, one checks that s(y) = (e1 +e2) + (3 +e4) + ... +
(en—a + €n—3) + (En—2 +€n) € NS so that v+ s(7) = wp—1 + @x.

We deduce that the improved upper bound is equal to the right hand side of equality
in the lemma. Hence the lemma, by what we said in Sect. 5. O

12.6. Existence of a Weierstrass section for coadjoint action

By what we said in Sect. 5 (see also Remark 3b of subsection 6.2) we have the following
Theorem.

Theorem. Let g be a simple Lie algebra of type D,,, with n > 5, n odd, and p be the
standard parabolic subalgebra of g associated with the subset ©' = 7\ {an_1, an} of the
set m of simple roots of g. Then there exists a Weierstrass section for coadjoint action of
the canonical truncation pa of p and it follows that the algebra of symmetric invariants
Y (pa) is a polynomial algebra over k.

12.7. Weights and degrees of a set of generators

By what we said in Sect. 5 to each v € T is associated an element p, such that
{py; 7 € T} is a set of algebraically independent homogeneous and h-weight generators
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of the polynomial algebra Y (pa). Moreover for all v € T', p, has a weight wt(p,) equal
to —(y + s()) and a degree deg(p,) equal to 1 + |s(v)|. Below we give the weight
wt(py) and the degree deg(py) of py, for all v € T. Set, for all 1 < ¢ < (n — 3)/2,

Yi = €2i—1 — €2;.

YET wt(py) deg(py)
Yi, L<i < [(n—1)/4] —2(@n-1+@n) n—1+4i
vi, [(n=1)/4] +1 < i< (n—3)/2 —2(@Wn_1 + @) 3n —4i—1
Y =En—2 —€2 —(@n-1+ @) (n+3)/2
Y =€n-—2tEn-1 —(@Wn-1+ @n) (n—1)/2
Y =€n-1—¢n —(@n—1+ @n) (n+1)/2

13. Case 2c for type D

In this Section we consider a simple Lie algebra g of type D,,, n > 5, n odd and the
standard parabolic subalgebra p = p; associated with 7’ = 7\ {an_3, an—1, an}. It
corresponds to the case 2c of subsection 1.7. As in previous case, both bounds in (4) of
Sect. 4 do not coincide. Hence the existence of an adapted pair for py will not produce
immediately a Weierstrass section for coadjoint action of py. We will have to compute
the improved upper bound mentioned in Sect. 5 and show that the latter coincides with
the lower bound in (4), namely that equality (8) holds. Then by Remark 3b of subsection
6.2 this will produce a Weierstrass section for coadjoint action of py.

Recall the elements 3; = €9;_1 +¢c9; of the Kostant cascade 5, of g. Weset S = STLIS™
with

St ={Bi,1<i<(n—5)/2, €n—a+En—2, En—3 + Eny En—3 — En}
and
ST ={epn—3-r —€k, 1 <k <(n-5)/2}.

For all 1 <i < (n—>5)/2, we set I'g, = Hg, the largest Heisenberg set with centre f;
which is included in AT, as defined in subsection 6.1.
We also set

Fen,4+sn,2 = {gn—4 +En—2, En—a +En_1, En—2 —En_1,
En—4 1 Eny En—2 —En, En—a —En—1, En—2 + En—1,
En—4 —E€n, En—2 T €n, En—4 —En—3, En—2 + 577,—3}’
Fen,g—&-an = {gn—B +Eny, En—3 —En—1, En—1 + 57;},

e e, = {en—3 —¢en}

and for all 1 <k < (n—15)/2,
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Loy pmer ={€n—3-k — €k En—s—k—€j, 65 —€p; k+1<j<n—4—k}.
Finally we set
T ={en-3—¢ep; 1 <k<n—-2k#n-—3}
and

T={eg;1—¢2;;1<i<(n—05)/2, €n_g+en_s,

En—4 —En—2, En-3 + €n—1y €n—1 —En, En—1 — 5n—2}-

By construction for all v € ST, resp. v € S~, we have that I’y C AT, resp. T’y C A,
is a Heisenberg set with centre v and all the sets ', for v € S, together with the sets T'
and T™ are disjoint. We easily verify that condition (iv) of Proposition 6.2 is satisfied,
using 7) of Lemma 6.1. Conditions (i) and (i) of Proposition 6.2 follow easily from i),
i4i) and iv) of Lemma 6.1.

13.1. Conditions (i) of Proposition 6.2
We have the following lemma.
Lemma. We have that S|y, is a basis for b} .

Proof. First as in previous Section, one has that dimhy = dimb’ + 1 since hy = ' &
H Y wn — @wn_1) =h & H (e,) by Section 3. We check that |S| =n — 2 = dim h,.
Set s; = f; for all 1 < i < (n —5)/2, 5(,—3)/2 = En—3, S(n-1)/2 = €n> S(n+1)/2 =
En—4 + En—2, S(n41)/2+k = En—3-k — €k, 1 <k < (n —5)/2 and we take the elements of
S in this order.
For a basis (h,) of b, we take in this order,

O‘;j; 1< ] < (TL - 5)/2’ a,\{74, H_1(€H)7 04%727
g1y Oy L Sk < [(n—3)/4]
without repetitions for the last coroots.

Then it suffices to show that det(sy(hy))1<u, v<n—2 # 0.
One can easily verify that

A 0 0 0 O
*x —1 0 0 O
(su(hp))=1=* =+ 1 0 O
* x *x 1 0
* *x x x B

where A, resp. B, is a lower triangular square matrix of size (n — 5)/2, with one, resp.
—1, on its diagonal. Hence the lemma. O
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13.2. Condition (v) of Proposition 6.2
It follows from lemma below. Set y = g Za-
Lemma. For all1 <k <n—2, k#n— 3, we have that x.,_,_., € adpa(y) + gr.

Proof. We will use Lemma and Proposition of subsection 6.3. First assume that k = n—2
and set

Y1 = En—4 +éepn—2 € 57 71 = —&np —Ep-—2 ¢ S
Y2 =€En-3t+En € Sa 'Vé =&n—4 —E€n-3 ¢ S
V3 =€En-3—En €S, V3 =€n —En—2¢S.

One checks easily that all conditions of Lemma 6.3 are satisfied. Moreover since one
can take the vectors X, X', X” in Proposition 6.3 equal to zero, one deduces that

Te, _s—cn_o € adpa(y) + gr.
Assume now that k = n — 4 and set

Y1 =¢€n-3+ten €S, v =—€n—€n—a &S
Yo =Ep—2 +En—4 € Sa ’Yé =&n —En—4 ¢ S

Y3 = En—3 —€n € 57 ’7{/3 =E&p—2 —&n-3 ¢ S.

One checks that all conditions of Lemma 6.3 are satisfied. Moreover since one can take
the vectors X, X', X" in Proposition 6.3 equal to zero, one deduces that ., _,_. _, €

adpa(y) + gr-
Assume that 1 < k <n — 6, k odd, and set

N=€n3ten €S,V =—¢cr—en ¢S
Ye=¢ck+ert1 €5, =cn—ex &S

Y3 =€En—3—En €S,V =¢Ept1 —En—3 ¢ S.

One checks that all conditions of Lemma 6.3 are satisfied. Moreover since one can
take in Proposition 6.3, X = X' =0and X" =, _, ., s =adx_. . ,—c _,(y)if
k< (n—71)/2, X" =0 otherwise, one deduces that z,_,_., € adps(y) + gr.

A similar computation for 2 < k < n — 5, k even, shows that z. _,_., € adpa(y) +
gr. O

13.3. Condition (vi) of Proposition 6.2

It follows from lemma below.

Lemma. One has that |T| = indpy = |E(7")|.
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Proof. Recall that E(n’) is the set of (ij)-orbits in m. One easily checks that

B(r') = {Tu = {aw, an-s-u}; 1 Su< (0= 5)/2, Tiu_sy = {agu_sy 2},
Fn—?; = {an—3}7 Fn—Z = {an—2}7 Fn—l = {an—l}y Fn = {an}}

Hence indpp = |E(7')] = (n—5)/2+5 = (n+5)/2, which is equal to |T'| (see beginning
of this Section). O

13.4. The semisimple element of the adapted pair

All conditions of Proposition 6.2 are satisfied. Hence y = > Jes Ty is regular in pj
and there exists a uniquely defined semisimple element h € h, such that ad h(y) = —y,
namely such that (h, y) is an adapted pair for p,. Below we give the semisimple element

h:

n—>5)/2 n—3 4
h==0" kay + Y10 (0= 3)/2 + K)oy, +
S e (B = 3)/2+1 = 3k)ay, ,+
aX 4 ((n—l)/2) ay_y €' Cha.

13.5. Computation of the improved upper bound

Here both bounds in (4) of Sect. 4 do not coincide since, for T' =T',,_3 € E(n’), we
= 1/2 (recall (3) of subsection 4.3). Indeed by subsection 4.3, we have
that dr, , = wp—3 € Br and dlrn,g = 0 € B,/. Hence the existence of an adapted pair

have that er,_,

for pp is not sufficient to assure the existence of a Weierstrass section for coadjoint action
of pp. We will show below that (8) of Sect. 5 holds and by what we said in Sect. 5 it will
be sufficient to provide a Weierstrass section.

Lemma. We have that

ch (Y(pA)) — (1 _ e—2‘zrm73)—(n—3)/2 % (1 _ e—wn,g)—lx
(1-— e*(w"—3+wn—l+wn))*1 x (1— e*(wn,_1+wn))72

Proof. We will prove that the improved upper bound mentioned in Sect. 5 is equal to
the lower bound appearing in left hand side of (4) of Sect. 4, namely that (8) of Sect. 5
holds.

Recall that the lower bound for ch (Y'(pa)) is equal to [[pe g (1 — e’r)~! where ép
is given by (2) of subsection 4.2.
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Recall the set F(n’) computed in the proof of Lemma 13.3 and that for all T' € E(7’)
one has that (' N 7") = j(I') N7’ (by 4.2). Then for 1 < u < (n—5)/2, and T, =
{aw, ap—3—y}, one has that

or, = —2(@Wy+ @n-3-u)+2(@, +@,_5_4)
= 2Ee1+...+eytert..oten—z_u)t
2(51 —Ep—3+ ...+ Ey— 5n—2—u)

= —2wn,3.

For I'(;,_3)/2 = {a(n—3)/2}, one has that
6F(n,—3)/2 = _27’7@*3)/2 + 2w2n73)/2

= 72(61 + ...+ 5(n—3)/2)+
2061 —en3t+e2—Enat ... FEm-3)/2 — E(n—1)/2)

= *(€1+...+6n_3) = —TWp—-3.
Then for I';,_3 = {@n—3}, one has that or,_, = —2w,_3. For I';,_2 = {a,,—2}, one has
that
Or, s —2wy—2 + 2w;,_,

= 72(61 + ...+ Sn_g) + (5n—2 — 511—1)

= _2(51 + ... +€n73) —E&p—2 —&n-1

= *(wn—S + w@wp-1 + wn)
Finally for T',_1 = {1} and for T, = {a,} = j(T',—1), one has that dp, _, = dr, =

—(wn—1+ wx). Hence the right hand side of equality of the lemma is equal to the lower
bound for ch (Y (pa)).

Now the improved upper bound for ch (Y (pa)) is equal to [[ c,(1 — e~ (rs()))—1
where we have that adpa(y) ® gr = pj with dim g7 = indpa and where, for all v € T,
s(y) € QS is such that y+s(y) vanishes on by, that is, v+s(y) = kwn—s+k' (wn—1+wn),
with &, &' € Q.

Set, forall 1 <i < (n—15)/2, vi =€9;—1 —e2, €T.

Assume first that 1 <4 < [(n — 3)/4]. Then one has that

5(vi) = (en—s —en) + (En— 3+5n)—|—2221 (Ens_j — &)+

437 (eaj1 +25) + 2 E]n P (eaj1 + £25) + Blenio1 + 22:)

so that v; + s(v;) = 2wy _3.
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Now for [(n — 3)/4] +1 < i < (n —5)/2, one has that

S(’Yi) = (sn—l} - En) + (5n 3+ €n) + QZn 3= 2Z(€n_3_]‘ — Ej)
n—3)/2—1
AT gyt e0g) + 28 gy o i (€251 + €2))

+(e2i—1 + €2;)

so that v; + s(v;) = 2w, —3.

For v =e,-4+¢e,-3 € T, one has that s(y) = (1 +¢e2) + ...+ (€n—¢ +€n—5), so that
v+ s(7y) = wp—s.

For v = e,_4 — €n—2 € T, one has that s(y) = 2((e1 +e2) + ...+ (en—6 + €n—s)) +
(en—a + En—2) + (En—3 +€n) + (n—3 — €p) so that v+ s(v) = 2w, 3.

Fory =e,_3+¢&,-1 € T, one has that s(y) = (e1+e2)+...+ (en—6+en-s5)+(En—a+
En—2) so that v+ s(y) =e1 +ea+ ... +epn_3+en—2+En_1 = w@n_1+ @n.

For v =e,_1 —en € T, one has that s(y) = (1 +e2)+ ...+ (€n—6 +En-s5) + (En—a +
En—2) + (en—3 + €5) so that v + s(y) = wp—1 + @n.

Finally for v = €,-1 — €én—2 € T, one has that s(y) = 2((e; +&2) + ... + (€n—¢ +
€n—s5)) + 2(en—a + €n—2) + (n—3 + €n) + (n—3 — &) so that v+ s(v) = 2(e1 + ... +
€n—3) + En—2 + En_1 = Wn—3 + Wn_1 + @y. Thus we obtain that the improved upper
bound is also equal to the right hand side of the equality in the lemma, which gives the
lemma, by what we said in Sect. 5. O

13.6. Existence of a Weierstrass section

By the above (see also Remark 3b of subsection 6.2) one can deduce the following
Theorem.

Theorem. Let g be a simple Lie algebra of type Dy, with n > 5, n odd, and let p be
a standard parabolic subalgebra of g associated with the subset of simple roots @' =
7\ {an_3, an_1, a,}. Then there exists a Weierstrass section for coadjoint action of the
canonical truncation py of p and it follows that Sy(p) = Y (pa) s a polynomial algebra
over k.

13.7. Weights and degrees of a set of generators

As in subsection 12.7 we give below the weights and degrees of each element of a set
{py; v € T} of homogeneous and h-weight algebraically independent generators of the
polynomial algebra Y (pa). Recall that the weight wt(p,) of p, is equal to —(y + s(v))
and the degree deg(py) of p, is equal to 1 + |s(7)| and that we set v; = €9;_1 — €9; for
all1 <i<(n-—5)/2.
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yeT wt(py) deg(p+)

Vi —2wn_3 n—3+4i
1<i<[(n—3)/4]

Vi —2wn_3 3n—4i— 7
[(n—=3)/4]+1<i< (n—5)/2

Y=¢€n_a+En_s —Wn_3 (n—3)/2
Y =€n—4— En—2 —2w,_3 n—1
Y=¢€n-3+¢En1 —(@wn—1+ @n) (n—1)/2
Y =€En—-1 —€En _(wnfl +wn) (n+1)/2
Y =€n—1—En—2 —(wn—3 + @Wn-1+ @n) n

14. Case 3 for type D

Here we consider the parabolic subalgebra p = q, ¢ of g simple of type D,, with n
odd, n > 5, s odd and ¢ € N such that s + 2¢ < n — 2 (note that in this case one
has that s + 2¢ # n — 3, hence it does not coincide with some p;). This corresponds to
the case 3 of subsection 1.7 that is, the parabolic subalgebra q; ¢ of g associated with
7 =\ {as, Asya, ., Qsto0, A1, Qn}

When s+2/¢ < n—2, there exists a connected component of 7’ of type A,,_o__2¢ which
we denote by m5. Then, when moreover s > 3, there exist two connected components of
7' of type Ay with k& > 2, namely 77 of type As_1 and 7 above. Denote by B, C B
the Kostant cascade of the simple factor of g’ associated with 7}, for k € {1, 2}. We have
that 8o = {8 =ei —€sp1-i | 1 <i < (s—1)/2} and By = {8} = est204i —n—i | 1 <
i < (n—s—20—2)/2}. Recall that 82, = B\ (Br N7’). Then 82, = B U Bry. We also
have that (see subsection 8.1) 8 = B, \ (B-N7) = {B;i = €2i_1+e2; | 1 <i < (n—1)/2}.
We set

ST ={Bi; 1<i<(n=3)/2, Brn_1)/2 = Bn-1y/2 — @n—1 = en—2 + n},
5™ =-pY

and S =StUS™.
14.1. Conditions (i) to (v) of Proposition 6.2

For all §; € ST with 1 < i < (n —3)/2, we set 'y, = Hz, C AT and for all
ve ST, weset I'y = —H_, C A_, with the notation of subsection 6.1. Finally we set
Lo gten, = {en—2+6n, en—2—en—1,en—1 +en}s T = {Bn-1)/2, En—2 — €n, En—1 —
€ny €2i—1 — €245 1 <1 < (n—3)/2} and T~ = — (B N 7’). By construction every set
I, for v € S, is a Heisenberg set with centre v such that, if v € S*, then I, C AT
and if v € S7, then 'y C A_,. Moreover, for all 1 < ¢ < (n — 1)/2, we have that
€9i—1 — €2; = Q2;—1 € PBr N7 (see subsection 8.1) and H,,, , = {ag;—1}. We observe
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that Hg,_,, ,UHa, , =T, _,4e, U(TT*NHg, _, ). Then by i) of Lemma 6.1, the sets
T+, T~ and the T'y’s, v € S, are disjoint and one has that A" = L, cg+I', UTT and
AL, = Uyes-I'y UT ™. Then by setting T* = (), condition (iv) of Proposition 6.2 holds,
with 7= T UT~. One also deduces by i), i) and iv) of Lemma 6.1 that conditions
(#4) and (éi7) of Proposition 6.2 are satisfied. Condition (i) follows from the following
Lemma.

Lemma. S|hA is a basis for b} .
Proof. First we observe that hy = h’ © kH 1(,) by what we said in Sect. 3. Hence
dimbhy =dimbh’'+1=n—¢—3+4+1=n—£¢— 2. We first verify that |S| = (n—3)/2 +

1+(s—1)/24+(n—s—20—2)/2=n—{—2=dimb,.
Then we order the elements s, of S as follows:

517 ey ﬂ(n—3)/2a 7/(31’ ey 7/8£s—1)/27 - 1/7 ey 7/82/”—3—26—2)/27 En—2 +5n-

Set t = [(s+1)/4] and t' = [(n — s —2¢)/4]. For a basis (h,) of h5 we take, in this order,

ay, oy, o, g,
hll = O‘:\L/v hl2 = O“\s/f% SR h/2t71 = aé/tfh h/2t = a}s/f%ﬁ
hi = ay_o,hy = O‘sv+2e+2’ oo Ry = ag gy, By = a;/+28+2t’7
H_l(en)

without repetitions for the h;»’s and the h;.”s. Recall that §; = we; — wai—2 (Where
wo = 0) and Lemma 6.4. Then we obtain that

(Su(hv))lgu, v<n—2—¢ —

T
* * go
* Qoo
_—o0 oo

with A = (Bu(a3y,))1<u, v<(n—3)/2, resp. B = (=f,(h},))1<u, v<(s—1)/2, and C =
(=B (M) 1<u, v<(n—s—20—2)/2, Which are lower triangular matrices with 1, resp. —1 on
their diagonal. Hence the lemma. 0O

14.2. Condition (vi) of Proposition 6.2
Condition (vi) of Proposition 6.2 follows from the following Lemma.

Lemma. We have that |T'| = ind py.
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Proof. One easily checks that

E(x) = {ru = {au, asu}, 1<u< (s —1)/2,
Dotorto = {Qsto0t0, @n_1-p}, L <0 < (n—s—20—2)/2,
Doir = {asqrt, 0 <k <20

Dot = {an 1} To = {an}}

hence indppy = |E(n')|=(s—1)/2+(n—5s—20—2)/2+20+14+2=(n—3)/2+(+3 =
TH+|T7|=1T|. O

14.3.  All conditions of Proposition 6.2 are satisfied, hence setting y = > ves Ty and
h € b such that for all v € S, v(h) = —1, we obtain that (h, y) is an adapted pair for
pa. This is sufficient by Remark 3a of subsection 6.2 to provide a Weierstrass section for
coadjoint action of pu, by the following Lemma.

Lemma. For every I' € E(n’), we have that ep = 1.

Proof. Recall the set E(n’) given in the proof of Lemma 14.2. Recall subsection 4.3. Set
1<u<(s—1)/2. Then dr, = wy + w@s—y ¢ By since u and s — u are of different parity.
For the same reason, for 1 <v < (n—s—2(—2)/2, we have that dr_,,,., ¢ Br. Now for
0<k<20and k odd, dr,, = wsir € By, but d}s+k = w, . ¢ Br since gy belongs
to a connected component of ' of type A;. If 0 < k < 2¢ and k even, then asyy ¢ 7'
and d}Hk =0¢€ By but dr,,, = wsyr ¢ By. Finally dr,_, ¢ B, and dr, ¢ B,. Hence
the lemma. 0O

s+k

We then obtain the following Theorem.

Theorem. Let g be a simple Lie algebra of type D,,, with n > 5, n odd and let s, ¢ be
integers such that s is odd and s +20 < n — 2. Let q5 ¢ be the parabolic subalgebra of g
associated with the subset 7’ = w\ {as, sya, ..., Qst20, An_1, an}. Then there exists a
Weierstrass section for coadjoint action of the canonical truncation of qs, ¢.

Proof. Indeed (with the notation in Proposition 6.2) y + gr is a Weierstrass section for
coadjoint action of the canonical truncation of q5 , by Remark 3a of subsection 6.2. O

14.4. Weights and degrees

Here both bounds (see (4) in Sect. 4) for ch(Y(pa)) coincide and then Y (py) is a
polynomial algebra whose homogeneous and h-weight generators have weights and de-
grees which can be easily computed. To each T' € E(x’) is associated an homogeneous
and h-weight generator of Y (p,) which has weight dr given by (2) and a degree Or given
by (5) or by (6) of Sect. 4.
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Below we give for completeness weights and degrees of a set of homogeneous and

h-weight algebraically independent generators of Y (py), each of them corresponding to
an (ij)-orbit T, in E(x’).

ij)-orbit in E(n")

Degree

{azu O‘sfu}

I, =
1<u<(s—1)/2

Csyoeto = {Qst204vs An—1-v}
1<v<(n—s—20—2)/2

s+ 1+ 2u

n + 3s + 64 + 2v

Dot = {astr} —2wayk s+k+1
0< k<2 k even

Dot = {asqrt —Wstk—1 — Tstk+1 2(s+ k)
1<k<20-1,kodd

Tpno1 ={an-1} —Wp_1 — Tn (n—1)/2
Ty = {an} —Tp — Wn—1 (n+1)/2

14.5.

Remarks.

(1)

Consider now the parabolic subalgebra p = g5 ¢ in g of type D,,, with s an even
integer and assume that we have found an adapted pair (h, y) € ha x p} for pa.
Then the set S cannot contain, as in the case s odd and n odd, the set {5; | 1 <
i <[(n—3)/2]}, at least for s/2 < [(n — 3)/2]. Indeed by (4) of Sect. 4, one has that
—2w, € A(p) then necessarily wy(h) =0 <= 1+ ...+ fB5/2 = 0 in contradiction
with the fact that, for all 1 <4 < [(n — 3)/2], one should have also that ;(h) = —1.
Moreover for s = n —2 (with s even), the set S = {8;; 1 <i < (n—4)/2, Brn_2)/2 =
En—3+en—1}U(—BY) is such that Sjp, is not in general a basis for b} (since for all
s €89, s(a, 5 1) =0forn>8).

Now consider in g simple of type D,, the parabolic subalgebra p = q, , with s
odd and n even, and take for S a similar set as in case s odd and n odd, namely
S={Bi; 1<i< (n—4)/2 Brnsy2 = en-3 + en_1} U (=B%). Then cither S,
is not a basis for h} or in case it is, then take the Heisenberg sets similar as those
oy {5(7172)/2, €n—3t€n, En—1FEn, En—3—
€n—2, En—2 +en—1}). Take also T and T* disjoint sets such that conditions (iv) and

taken in case n and s odd (with FB(

(vi) of Proposition 6.2 hold. But then condition (v) of Proposition 6.2 is not satisfied.
Finally consider a parabolic subalgebra p of g simple of type B,, or C,,, associated
with the subset 7’ = 7\ {as, as42, - .., sy, an} for s+2¢ < n—1. Then a similar
construction as this made for g5 , for g simple of type D,, with n and s odd does not

give a regular element y in pj}.
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