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Abstract

In this paper, we study the properties of noetherian rings containing uniform local cohomological an-
nihilators. It turns out that all such rings should be universally catenary and locally equidimensional. We
will prove a necessary and sufficient condition for such rings, which enables us to show that if a locally
equidimensional ring R is the image of a Cohen—Macaulay ring, then R has a uniform local cohomologi-
cal annihilator. Moreover, we will give a positive answer to a conjecture of Huneke [C. Huneke, Uniform
bounds in noetherian rings, Invent. Math. 107 (1992) 203-223, Conjecture 2.13] about excellent rings with
dimension no more than 5.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Local cohomology; Cohen—Macaulay ring; Excellent rings

1. Introduction

Throughout this paper all rings are commutative, associative with identity, and noetherian.
For any unexplained notation and terminology we refer the reader to [Ma].

Recall that a local noetherian ring R is equidimensional if dim(R) = dim(R/ P) for all mini-
mal primes P of R, and thus a noetherian ring R is said to be locally equidimensional if Ry, is
equidimensional for every maximal ideal m of R. We will use R° to denote the complement of
the union of the minimal primes of R.

Let R be a noetherian ring and I be an ideal of R. For an R-module M, we will write HlI (M)
for the ith local cohomology module of M with support in V(I) = {P € Spec(R) | P D I}. We
will say an element x of R° is a uniform local cohomological annihilator of R, if for every
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maximal ideal m, x kills an(R) for all i less than the height of m. Moreover, we say that x
is a strong uniform local cohomological annihilator of R if x is a uniform local cohomological
annihilator of Rp for every prime ideal P of R.

It is well known that a nonzero local cohomology module is rarely finitely generated, even
the annihilators of it are not known in general. On the other hand, it has been discovered by
Hochster and Huneke that the existence of a uniform local cohomological annihilator is of great
importance in solving the problems such as the existence big Cohen—Macaulay algebras [HH2]
and a uniform Artin—Rees theorem [Hu]. So it is very interesting to find out more noetherian
rings containing uniform local cohomological annihilators.

A traditional way of studying uniform local cohomological annihilators is to make use of the
dualizing complex over a local ring. Roberts initiated this method in [Ro]. By means of this tech-
nique Hochster and Huneke [HH1] prove that if a locally equidimensional noetherian ring R is a
homomorphic image of a Gorenstein ring of finite dimension, then R has a strong uniform local
cohomological annihilator. It is known not every local ring has a dualizing complex, however,
by passing to completion, Hochster and Huneke [HH2] show that an unmixed, equidimensional
excellent local ring has a strong uniform local cohomological annihilator.

It is worth noting that a lot of results concerning the annihilators of local cohomology modules
have been established in recent years [BRS,Fal,Fa2,KS,Ragl,Rag2,Sc] and so on. Let us recall
some notions before we state some of these achievements. One can refer to [BS] for details.

Given ideals 7, J in a noetherian ring R and an R-module M, we set

A{ (M) = inf{depth(Mp) + ht(I + P/P) | P € Spec(R) \ V(J)},
f{ (M) =inf{i | J"H} (M) # 0 for all positive integers n}.

We will say that the Annihilator Theorem for local cohomology modules holds over R if
A{ M)y=f IJ (M) for every choice of the finitely generated R-module M and for every choice
of ideals 1, J of R. We also say that the Local—global Principle for the annihilation of local
cohomology modules holds over R if f, I/ (M) =inf{ f IJRIZP (Mp) | P € Spec(R)} holds for every
choice of ideals 7, J of R and for every choice of the finitely generated R-module M.

Faltings [Fal] established that the Annihilator Theorem for cohomology modules holds over
R if R is a homomorphic image of a regular ring or R has a dualizing complex. In [Ragl],
Raghavan proved that the Local-global Principle for the annihilation of local cohomology mod-
ules holds over R if R is a homomorphic image of a regular ring. More recently, Khashyarmanesh
and Salarian [KS] obtained that the Annihilator Theorem and the Local—global Principle for co-
homology modules hold over a homomorphic image of a (not necessarily finite-dimensional)
Gorenstein ring.

Clearly, if the Annihilator Theorem holds over a ring R, one can use it to prove the existence
of some annihilator x,, of the local cohomology modules H,’;Y(R) for each maximal ideal m.
However, the element x,,, may be dependent on the choice of the maximal ideal m. Raghavan
[Ral, Theorem 3.1] established an interesting uniform annihilator theorem of local cohomology
modules which states that if R is a homomorphic image of a biequidimensional regular ring
of finite dimension and M a finitely generated R-module, then there exists a positive integer k
(depending only on M) such that for any ideals 7, J of R, we have JkH", (M)=0fori < )»{ (M).

Note that, in all the results mentioned above, the ring considered must be, at least, a homomor-
phic image of a Gorenstein ring. In this paper, we first study the properties of the rings containing
uniform local cohomological annihilators. It turns out that all these rings should be universally
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catenary and locally equidimensional (Theorem 2.1). Due to this fact, we are able to show that
a power of a uniform local cohomological annihilator is a strong uniform local cohomological
annihilator (Theorem 2.2). We will establish a useful criterion for the existence of uniform lo-
cal cohomological annihilators. An easy consequence of one of our main results shows that if a
locally equidimensional noetherian ring R of positive dimension is a homomorphic image of a
Cohen—-Macaulay (abbrevation CM) ring of finite dimension or an excellent local ring, then R
has a uniform local cohomological annihilator. This greatly generalizes a lot of known results.
Especially, it gives a positive answer to a conjecture of Huneke [Hu, Conjecture 2.13] in the local
case.

The technique of the paper is different from the technique used by Roberts [Ro]. The point of
our technique is that a uniform local cohomological annihilator of a ring R may be chosen only
dependent on the dimension of R and the multiplicity of each minimal prime ideal of R. One
of our main results of the paper is the following theorem, which essentially reduces the property
that a ring R has a uniform local cohomological annihilator to the same property for R/ P for all
minimal prime P of R. Explicitly:

Theorem 3.2. Let R be a noetherian ring of finite dimension d. Then the following conditions
are equivalent:

(i) R has a uniform local cohomological annihilator.
(1) R is locally equidimensional, and R/ P has a uniform local cohomological annihilator for
each minimal prime ideal P of R.

In Section 4, we discuss the uniform local cohomological annihilators for excellent rings. The
main result of this section is the following, which shows that the conjecture of Huneke [Hu,
Conjecture 2.13] is valid if the dimension of the ring considered is no more than 5.

Theorem 4.6. Let R be a locally equidimensional excellent ring of dimension d. If d < 5, then
R has a uniform local cohomological annihilator.

2. Basic properties

Now we begin with studying the properties of a noetherian ring R containing a uniform local
cohomological annihilator. Quite unexpectedly, it turns out that R must be locally equidimen-
sional and universally catenary.

Let R be a noetherian ring. For a maximal ideal m of R, one can see easily from the definition
of local cohomology that

H, . (Ry)=H,,(R)
fori > 0.

Theorem 2.1. Let R be a noetherian and x € R° a uniform local cohomological annihilator
of R. Then

(1) R is locally equidimensional.
(i1) R is universally catenary.

Proof. (i) Suppose that, on the contrary, R is not locally equidimensional. It implies that there
exists a maximal ideal m of R, and a minimal prime ideal P contained in m such that ht(m/P) <
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ht(m). Replacing R by R,,, we can assume R is a local ring and m is the unique maximal ideal
of R. Let

0=gNgN---Ng,

denote a shortest primary decomposition of the zero ideal of R, where g is P-primary. By the
choice of P and m, it is clear, » > 1. So we can choose an element y ¢ P such that yg = 0.
Consequently yH!, (¢) =0 for i > 0.

Consider the short exact sequence

0—-g— R—>R/q—0.

It induces the following long exact sequence
-.—>H (R) = H! (R/q) = H T (q) > ---.

Since fon (R) =0 for i < ht(m), we conclude xnyn (R/q) =0 for i < ht(m). In particular, we

have
xyH;, (R/q) =0, 2.1
where e = ht(m/q). As xy is a non zero-divisor for R/q, the sequence

0— R/q > R/q— R/(q+ (xy)) =0

is a short exact sequence of R-modules. So we have an exact sequence
H;, (R/q) = Hy, (R/q) — Hy, (R/ (g + (1))

Note that dim(R/(g + (xy))) = e — 1. Hence H?, (R/(q + (xy))) = 0 by [Gr, Proposition 6.4]. It
shows the morphism HY, (R/q) LEN H{,(R/q) is surjective. Thus

H;, (R/q)=0

by (2.1), but this is impossible by [Gr, Proposition 6.4] again. Therefore, R is locally equidimen-
sional.

(i1) To prove the conclusion, it suffices to prove Ry, is universally catenary for every maximal
ideal m. So we can assume that R a local ring and m is the unique maximal ideal of R. By a
theorem of Ratliff (see [Ma, Theorem 15.6]), it is enough to prove R/P is universally catenary
for every minimal prime ideal P.

For a fixed minimal prime ideal P, let

O=gnNgN---Ng,

denote a shortest primary decomposition of the zero ideal of R, where g is P-primary. If r =1,
x is a nonzero-divisor of R. Clearly, x is also a uniform local cohomological annihilator of Ié,
where R is the m-adic completions of R. Hence by (i), R is equidimensional. It follows from
another theorem of Ratliff (see [Ma, Theorem 31.7]) that R is universally catenary.

If r > 1, choose an element y ¢ P as in the proof (i) such that xy is a non zero-divisor of R /g
and so the image of xy in R/q is a uniform local cohomological annihilator of R/q. Just as in
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the case r = 1, we assert that R/q is universally catenary, and consequently, R/ P is universally
catenary. This proves (ii). O

It is easy to see that a strong uniform local cohomological annihilator of a noetherian R is
also a uniform local cohomological annihilator. Conversely, we have:

Theorem 2.2. Let R be a noetherian ring of finite dimension d and x be a uniform local cohomo-
logical annihilator of R. Then a power of x is a strong uniform local cohomological annihilator
of R.

Proof. First of all, we assume that R is a local ring with the maximal ideal m. Let R denote
the completion of R with respect to m. We will prove that x is also a uniform local cohomo-
logical annihilator of R. It is well known that Hi (R) = (R) for all i, and consequently
xH! R(R) =0 for i <d. To prove that x is a uniform local cohomologlcal annihilator of R, it
suffices to prove that x is not contained in any minimal prime ideal of R.Let Q be an arbitrary
minimal prime ideal of R.Put P = Q N R. Itis clear P is a prime ideal of R. Since R is flat
over R, we have

ht(Q) = ht(P) +dim(Rg/(PRp))

by [Ma, Theorem 15.1]. Note that ht(Q) = 0. It implies ht(P) = 0. Since x is not contained in
any minimal prime ideal of R, it follows that x does not lie in P. Consequently, x ¢ Q. So x is
not contained in any minimal prime ideal of R. Therefore, we conclude that x is a uniform local
cohomological annihilator of R.

According to Cohen Structure Theorem for complete ring, one can write R=S /1, where S
is a Gorenstein local ring of dimension d. By local duality, we have x Extis(lé, S)=0fori > 0.
Hence

xExty, (Rg, Sp) =0

for every prime ideal Q of S and i > 0. By local duality again, we conclude that for every
nonminimal prime ideal Q of R,

xH"Q(RQ) =0

for i <ht(Q).
Let P be an arbitrary nonminimal prime ideal of R. Set ht(P) = r. By Theorem 2.1, R is
equidimensional, so we can choose elements x1, x2, ..., X, contained in P such that

ht(x;, x2,...,x)=r and dim(R/(x1,...,x,))=d —r.

Set I = (x1,x2,...,x,). Since dlm(R/IR) =dim(R/I), 1t is clear that dnn(R/IR) —r.
By Theorem 2.1 again, R is equidimensional, and so ht(IR) = r. It follows from [HH1, Theo—
rem 11.4(b)] that for every i > 1 and for all t > 0

~

xzdle,-(xi,xé,...,xﬁ; R) =0,

where H; (xi , xé, e, ,, R) denotes the Koszul homology group.
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Since R is faithfully flat over R, we have xzd_lHl- (x{,x5,...,x}; R) =0 forevery i > 1 and
for all ¢+ > 0. Hence, we obtain x2d’1 H"I(R) =0 fori < r. In particular,
24 —1yyi _ 241 i _
X Hpg,(Rp) =x (HI(R))P_O.
Therefore, xlisa strong uniform local cohomological annihilator of R.
Secondly, we assume that R is not a local ring. By the above proof of the local case, we have
for any maximal ideal m of R and any prime ideal P C m,

dm—1_ _:
x> Hpg,(Rp) =0

for i < ht P, where d,, stands for the dimension of the local ring R,,. Since d,,, < d for every
maximal ideal m, we conclude that x2° ! is a strong uniform local cohomological annihilator

of R, and this ends the proof of the theorem. O

Before the end of this section, we present a necessary condition for an element to be a uniform
local cohomological annihilator.

Corollary 2.3. Let x be a uniform local cohomological annihilator of a noetherian ring R. Then
Ry is a CM ring.

Proof. By Theorem 2.2, there exists a positive integer n such that x" is a strong uniform local
cohomological annihilator of R. So we have for any prime ideal P of R, x"H, rp (RP) =0 for
i < ht(P). Hence for any prime ideal P with x ¢ P, Rp is CM, and consequently R, is CM. O

3. Equivalent conditions

In this section, we will prove one of our main result, which essentially reduces the property
that a ring R has a uniform local cohomological annihilator to proving the same property for
R/ P for all minimal primes of R. This reducing process is very useful, it enables us to find
a uniform local cohomological annihilator more easily and directly. Now, before we prove the
main result of this section, we need a lemma which will play a key role in the rest of the section.

Lemma 3.1. Let (R, m) be a noetherian local ring of dimension d, and P be a minimal prime
ideal of R. Let

0—R/P—-R— N —0,
0— R/P—> Ny — N, — 0,

0—-R/P—> N;i_1—> N —0 3.1

be a series of short exact sequences of finitely generated R-modules. Let y be an element of R
such that yN; = 0.
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(i) If there is an element x of R such that xHi,l(R) =0fori <d, then (xy)tdlei,l(R/P) =0
fori <d. ‘ .

(ii) If there is an element x of R such that xH!,(R/P) =0 for i <d, then x"yH!, (R) =0 for
i<d.

Proof. Clearly, the conclusions are trivial for d = 0, and so we assume d > 0 in the following
proof.
(i) By the choice of y, it implies

yH,, (N) =0 (3.2)
for all i > 0. We will use induction on i to prove
(xy)'H,(R/P)=0

holds for 0 <i < d.
For i =0, it is trivial because HS1 (R/P) =0. Now, for 0 <i < d. Suppose that we have
proved

(' HL(R/P) =0 (3.3)

Set k =¢'~!. Let us consider the long exact sequence of local cohomology derived from the
last short exact sequence in (3.1):

o= H N R/P) — H (N2 —» H N (ND — -

By (3.2) gmd (3.3), it follows (xy)knyn’l(N,_l) = (. Continue the process, one can prove
(xy)/kyHin_l(N,_j) =0for j=1,2,...,t — 1. Hence by the long exact sequence of local co-
homology derived from the first short exact sequence in (3.1):

> HN(NY) > H (R/P) - HL (R) — -+

and the condition xHin(R) = 0, we have (xy)(t_l)k“Hin(R/P) = 0. It easy to check, >
(t — Dk + 1, so it follows that (xy)’l H;n (R/P) = 0. This completes the inductive proof. In

particular, we have proved (xy)’d7l an(R/P) =0fori <d.
(ii) By the condition, we have

xH (R/P)=0 (3.4)

fori <d. Set R = Ny.
Now, we will use induction on j to prove that

x! yHE (N,—j) =0 fori <d

hold for 0 < j < z.
For j =0, it is trivial by (3.2). For j > 0, suppose that we have proved

X/ yHE (N (j-1) =0 3.5

fori <d.
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Consider the (f — (j — 1))th short exact sequence in (3.1), it induces the following long exact
sequence

o= H, (R/P) — H.,(N;—j) = HL (Ni—(j—1)) = - -.
By (3.4) and (3.5), we conclude
! yH,, (Ni—j) =0

for i < d. This completes the inductive proof. In particular, we have x’ nyn(R) =0fori <d.
O

We are now ready to prove our main result of the section.

Theorem 3.2. Let R be a noetherian ring of finite dimension d. Then the following conditions
are equivalent:

(i) R has a uniform local cohomological annihilator.
(1) R is locally equidimensional, and R/ P has a uniform local cohomological annihilator for
each minimal prime ideal P of R.

Proof. (i) = (ii). The first conclusion of (ii) comes from Theorem 2.1. Let P be an arbitrary

minimal prime ideal of R. Let x be a uniform local cohomological annihilator of R. Put t =

[(Rp). It is easy to see that there exist finitely generated R-modules Ny, N3, ..., N; such that
(1) N1, Na, ..., N; fitinto a series of the following short exact sequences

0— R/P—-R— N —0,
0— R/P—> Ny — N, — 0,

00— R/P— N;_1 — Ny — Q. 3.6)

(2) There exists an element y € R\ P, yN, =0.

Clearly, (xy)td_] is not contained in P. We will show that the image of ()cy)’d_1 in R/Pisa
uniform local cohomological annihilator of R/P. Since R is locally equidimensional, we have
ht(m/ P) = ht(m) for every maximal ideal m with m D P. Thus it suffices to prove that, for every
maximal ideal m withm 2 P

d—1__-
@) H g ((R/P)w) =0
for i < ht(m).

Localizing the short exact sequences in (3.6) at m, we obtain the following the short exact

sequences

0— (R/P)y — Ry = (N1)m — 0,
0—> (R/P)n— (NDm —> (N2)m — 0,
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0— (R/P)m - (Nt—l)m - (Nt)m — 0.

By the choice of x, we have foan (Ry) =0 fori < ht(m). Clearly, y(N;), = 0. Hence by

Lemma 3.1(i), we conclude (xy)’gilean ((R/P)m) =0fori < e, where e = ht(m). Therefore,
for every maximal ideal m with m 2 P, we have

@) H g ((R/P)w) =0

for i < ht(m). Hence the image of (xy)tgH in R/ P is a uniform local cohomological annihilator
of R/ P, and this proves (i) = (ii).

(i) = (i). Let Py, P>, ..., P, be all the distinct minimal prime ideals of R. For each j, 1 <
J <r,putl(Rp;) =t;.Forafixed j,itis easy to see that there exist finitely generated R-modules

N l(j ), N2(j ), ey Nt(ij ) satisfying the following two properties:

(h)N ](j ), Nz(j ), R N,(jj ) fit into a series of the following short exact sequences

0—R/Pj—R—N" >0,

0— R/P; —>N1(j) — Nz(j) — 0,

0— R/P; — ij/j] N ijf) - 0. (3.7)

(2) There exists an element y; € R\ P such that y;N;; =0 and y; lies in all P except P;.
To prove the conclusion, it is enough to find an element x € R°, such that for every maximal
ideal m

xH, g (Ry) =0

for i < ht(m).

By the condition, for each j, there exists an element x; ¢ P; such that its image in R/P; is a
uniform local cohomological annihilator of R/P;. Set x =} x;j y;. Itis easy to check x lies in
no minimal prime ideal of R. We will prove that x is a uniform local cohomological annihilator
of R.

Let m be an arbitrary nonminimal prime ideal of R. Put ¢ = ht(m). For a fixed j, localizing
the short exact sequences (3.7) at m, we obtain the following short exact sequences

0= (R/P)m — Rm — (N\) —0,

0— (R/P)m— (N) — (N) -0,

m

m

0— (R/Pj))m — (Nt(jjll)m — (N,g.j)) -0

and it is clear yj(Nl(jj))m =0.
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If m contains P;, we have ht(m/P;) = e by the assumption that R is locally equidimensional.
Thus by the choice of x;,

xjHp g, (R/P))m) =0 (3.8)

fori < e. If m does not contain P}, the statement (3.8) holds trivially. Hence by Lemma 2.2(ii),
we conclude that

x'yjH e (Rp) =0 (3.9)
for i < e. Therefore, by the choice of x, we have
xH, p (Ry)=0 fori <ht(m)

holds for every maximal ideal m of R. So x is a uniform local cohomological annihilator of R.
This proves (ii)) = (i). O

Now, we end this section by an interesting corollary, which is not known in such an extent
even in the local case.

Corollary 3.3. Let R be a locally equidimensional noetherian ring of finite positive dimension.
Then R has a uniform local cohomological annihilator in any one of the following cases:

(i) R is the homomorphic image of a CM ring of finite dimension.
(i1) R is an excellent local ring.

Proof. (i) Represent R as R = S/I, where S is a CM ring of finite dimension and / an ideal
of S. By Theorem 3.2, it suffices to prove that for any minimal prime ideal P of R, R/P has a
uniform local cohomological annihilator. Let Q be the prime ideal of S such that P = Q/I. It
suffices to prove that S/Q has a uniform local cohomological annihilator.

Set n = ht(Q). If n =0, then Q is a minimal prime ideal of S. Note that 1 is a uniform local
cohomological annihilator of S, the conclusion follows immediately from Theorem 3.2.

Assume that n > 0. Since S is CM, we can choose a regular sequence x1, X2, ..., X, contained
in Q. Thus S/(x1, x2, ..., xp) is still a CM ring. It is obvious that Q/(x1, x2, ..., X,) is a minimal
prime ideal of S/(x1, x2, ..., x,,). Thus from the case n = 0, we assert S/Q has a uniform local

cohomological annihilator by Theorem 3.2.

(i) By [HH2, Lemma 3.2], every excellent local domain has a strong uniform local co-
homological annihilator, and thus R has a strong uniform local cohomological annihilator by
Theorem 3.2. O

4. Uniform local cohomological annihilators of excellent rings

In this section, we restrict our discussion to the uniform local cohomological annihilators of
excellent rings. By two theorems of Hochster and Huneke [HH1, Theorems 11.3, 11.4], it is easy
to see that Huneke’s conjecture [Hu, Conjecture 2.13] is valid if every locally equidimensional
excellent noetherian ring R of finite dimension has a strong uniform local cohomological annihi-
lator. Since for each positive integer n, the Koszul complex of every sequence x{, x7, ..., x; in
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R with ht(xy, x2, ..., xx) = k is a complex satisfying the standard conditions on height and rank
in the sense of [Hu, (2.11)], it is easy to see that the converse of this result is also true. Due to
Theorems 2.2 and 3.2, Huneke’s conjecture is equivalent to the following:

Conjecture 4.1. Let R be an excellent noetherian domain of finite dimension. Then R has a
uniform local cohomological annihilator.

The conjecture is known to be true if R is an excellent normal domain of dimension d < 3 [Hu,
Proposition 4.5(vii)]. We will prove that Conjecture 4.1 is true for the ring R with dim(R) < 5.
In order to prove the main result of this section, we need the following result established by
Goto [Go, Theorem 1.1].

Proposition 4.2. Let (R,m) be a local ring of dimension d and x is an element of m with
(0: x) = (0: x?). Then the following conditions are equivalent.

(1) R/x"R is a CM ring of dimension d — 1 for every integer n > 0.
(ii) R/x*R is a CM ring of dimension d — 1.

Another important result we need is the following explicit version of Corollary 3.3(ii), which
follows from [HH2, Lemma 3.2].

Proposition 4.3. Let (R, m) be an excellent local domain of dimension d > 0 and x be a nonzero
element of R such that Ry is a CM ring. Then a power of x is a uniform local cohomological
annihilator of R.

Proof. Letxy, x3, ..., xg be an arbitrary system of parameters in m. By [HH2, Lemma 3.2], there
exists a positive integer n such that x” kills all the higher Koszul homology H; (x;” , xgz, ey
xZ", R), i > 0, for all positive integers n1, ny, ..., n4. Hence

x"H;,(R) = Jim Ha— (x{. x5, ...,x, R)=0
for i < d. It shows that x" is a uniform local cohomological annihilator of R. O

Let R be an excellent ring of dimension d > 0. For any prime ideal P of R, the regular locus
of R/P is a nonempty open subset of Spec(R/P), and so there exists a nonempty open subset
U of Spec(R/P) such that for any Q € U, (R/P)g is CM. By Nagata Criterion for openness,
we conclude that the CM locus of R is open in Spec(R) (see [Ma, Theorem 24.5]). Moreover, as
every minimal prime ideal P of R lies in the CM locus of R, we assert that the CM locus of R
is a nontrivial open set in Spec(R). Hence we can choose an element x € R° such that R, is a
CM ring. By Proposition 4.3, for any maximal ideal m of R, there exists a positive integer 7,
such that x"» an (R) =0 fori < ht(m). Clearly, the positive integer n,, may be dependent on m.
To solve Conjecture 4.1, it suffices to find a positive integer n such that it is independent on the
choices of the maximal ideals m. However, we have the following useful corollary.

Corollary 4.4. Let R be an excellent domain of dimension d > 0 and x be an element of R°
such that Ry is a CM ring. If T is a finite set of maximal ideals of R, then there exists a positive
integer n such that for any m € T, x"H}, (R) =0 for i < ht(m).
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To simplify the proof of the main result of this section, we need the following lemma, which
enable us to obtain the annihilators of local cohomology modules.

Lemma 4.5. Let (R, m) be a noetherian local ring of dimension d. Let x{, X2, ..., x, be a part
of system of parameters in m and x an element in m. Suppose that

(i) R/(x',x5%,....x") are CM;
(i) For1<i<r, x((x}',x3%, ..., ”’ xS (ot x "' 1

hold for all positive integers ny,ny, ..., n,. Then x’H,’;l(R) =0fori <d.

Proof. We will use induction on j (0 < j < r) to assert that for any positive integers
nl,nz,...,n.,'

x’_/(Hin(R/(x'fl,xgz,...,x;-lj))) =0

fori <d — j, and then the lemma follows if we set j = 0.

By the assumption, for arbitrary fixed integers ni, na, ..., n,, R/(x1 ,)c2 ..., x) is CM,
so the conclusion is trivial in this case. Suppose that we have proved the conclusion forr+ 1<
j <r.Forafixed i withi <d —t, let z be an arbitrary element in H! (R/(x1 ,x2 v X)),
Choose a positive integer n,4 such that x;jj' z=0.Put
(1) Ry =R/(x}" ,xz s X0
() Rip1= R/(x] L X52, . fgl)

n
3) Ut—((ljcl X2, XD/ g x )
@) Ny=x"3' (R/(x}" ,x2 ,--.,x?’))-

Let us consider the short exact sequences
0— Ny —> R — R;41 — 0,
0—)Ut—)Rt—)Nt—)0,
we have the following long exact sequences of local cohomology
- Hy, ' (Riv1) — H), (Nt) = H,, (Ry) — -
-— H},(U) —> H, (R > ~> H,, (N;) — -

It is easy to see that the composition ¢; ¥; of ¥; and ¢; is the morphism

sy

H!, (R,) ~“ HI,(R)

and thus ¢; (¢ (z)) = 0. By the induction hypothesis, Xl (an_l (R:+1)) =0, so from the first
long exact sequence above, we conclude that (; (x"'=1z)) = 0. The condition (ii) implies
that xU; =0, so xH!, (U;) = 0. Hence from the second long exact sequence above, we have
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r

x" 7'z = 0. By the choice of z, we have proved x” ~/(H!, (R;)) = 0. This ends the inductive proof
of the lemma. 0O

In the rest of the paper, we will make use of Proposition 4.2, Corollary 4.4 and Lemma 4.5 to
prove the following main result of this section.

Theorem 4.6. Let R be a locally equidimensional excellent ring of dimension d. If d < 5, then
R has a uniform local cohomological annihilator.

Proof. By Theorem 3.2, we may assume that R is an excellent domain. Moreover, let S be the
integral closure of R in the field of fractions of R. Since R is excellent, it follows that § is
a finitely generated R-module. We first conclude that if S has a uniform local cohomological
annihilator y, then R also has a uniform local cohomological annihilator.

In fact, as y is integral over R, we have

ys_i_a]ys—l_i_”._i_as=0

for some elements ay, ..., as; contained in R with a; # 0. So it is clear a; is a uniform local
cohomological annihilator of S. Consider the following natural short exact sequence

0O—-R—->S—>M-—0, “.1)

where M is a finitely generated R-module. It is easy to find a nonzero element x of R such that
xM = 0. Now, for an arbitrary maximal m of R, all the minimal prime ideals Q1, Q», ..., O;
of mS are maximal. Thus by the Mayer—Vietoris sequence of local cohomology, we conclude
that

H,, () ~Hy, ()@ --- @ Hy (5)

and consequently astn (S) =0 for i < ht(m). From the long exact sequence of local cohomol-
ogy induced from (4.1), we have astfn(R) =0 for i < ht(m). Thus a,x is a uniform local
cohomological annihilator of R. So in the following proof we assume R is a normal domain.

If d <2, then R is CM, and there is nothing to prove. So we assume d > 2. Set V ={P €
Spec(R) | Rp isnota CM ring}. As R is an excellent ring, the CM locus of R is open in
Spec(R), so there exists an ideal I of R such that V = V (I). Clearly, ht(/) > 3. Choose elements
X1, X2, x3 contained in / such that ht((x;, x;)) =2 for i # j, and ht((x1, x2, x3)) = 3.

Claim 1. The union Ty of the sets of associated prime ideals Assg(R/ ()c;’l , x;z)) is a finite set,
where the union is taken over all positive integers ny, n.

Proof. It is well known the union T of the sets of associated prime ideals Assg(R/(x1, xgz))
is a finite set, where the union is taken over all positive integers n,. We assert that 7o = 77. By
induction on n1, this follows easily from the short exact sequences

0— R/(xl,xgz) N R/(x?‘,xgz) — R/(x;”_l,x;z) -0

for n; > 1. This proves the claim. O
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Let 7> denote the union of 7 and the set of minimal prime ideals of (x1, x2, x3). Clearly, 7> is
a finite set. Since R,, is CM, by [HH2, Lemma 3.2], we can choose a positive number n such
that, for all positive integers n1, ny, the following holds

(e 252) x5) p = (" 43%) 51 4.2)

for every prime ideal P lies in the set 7>.

For any prime ideal P with (x1,x2,x3) € P and P ¢ Tp, it is clear ht(P) > 4 and
depth(Rp/ (xl ,xzz) p) = 1. Localizing at P if necessary, we may assume P is a maximal ideal.
Giving an element ¢ € R satlsfymg Pc c (()c1 ,x22) x3) it follows Px3 cC ()c1 ,xzz) By the
choice of P, we have x3 ce (xl s x2 %), and so we conclude that P is not an associated prime
of R/ (()c1 ,x22) x3) Therefore, the associated prime ideals R/ (()c1 ,xzz) X ) are contained
in 7». Thus by (4.2), we conclude that

(e 252) ) = (¢ 3%) 5™

hold for all positive integers ny, n;.
Similarly, enlarging n if necessary, one can prove

(6% 5%) i) = (3% %) ™),

(%) ) = (] %) ™).

Replacing x1, x2, x3 by x|, xj, x respectively, we have proved

(257 s xa) = (", 252) 2 43),
(637, 25%) 1) = (52, 29°) 2 27),

(" x3%) ) = (7" x5%) 2 43) 4.3)

hold for all positive integers n1, no, n3.

If dim(R/(x1, x2, x3)) = 0, then there are only finite number of maximal ideals m such that
R, may not be a CM ring. So by Corollary 4.4, a power of x is a uniform local cohomological
annihilator of R. In particular, the conclusion of the theorem holds for d = 3.

Now, in the following we assume dim(R/(x1, x2,x3)) > 0. Since R is excellent, we can
choose an element x4 such that x4 is not contained in any minimal prime ideal of (x1, x, x3)
and (R/ (x1 , x2, )) p is CM for all prlme ideals P with x4 ¢ P. For such a prime ideal P, we
conclude by Proposmon 4.2 that (R/(x? i x2, x33)) p are all CM rlngs for all positive integers n3.
By (4.3) and by Proposition 4.2 again, we conclude that (R/ (x'fl , x2 ,x{)) p are all CM rings
for all positive integers ny, ny, n3.

Claim 2. Let m be a maximal ideal_of R such that m does not contain the ideal (x1, x, X3, X4).
Then for every xj (1 < j <3), x;H;n(R) =0 fori < ht(m).

Proof. Let m be an arbitrary maximal ideal with x4 ¢ m. If one of xy, x3, x3 does not lie in m,
then R, is CM, and the conclusion is trivial if one of them does not lie in m. So we may assume
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m 2 (x1, x2, x3). Clearly, we may also assume that R is a d-dimensional local ring with the
unique maximal ideal m

Note that R/ ()C'l1 ,x2 ,xf) is CM of dimension d — 3 for any positive integers ny, na, n3.
Moreover, x1,x2 is a regular sequence in R, so together with (4.3), we have for 1 <i <3,
X (Gt X sy € (T L x ) for each j with 1< j < 3. Hence the conclusion of
the claim follows immediately from Lemma 4.5, and this proves the claim. O

By Claim 2, we have proved that if a maximal ideal m does not contain the ideal
(x1, x2, x3,x4), then for each j (1 < j < 3), fo,il(R) = 0 for i < ht(m). Now, suppose
that dim(R/(xy, x2, x3,x4)) = 0. There are only a finite number of maximal ideals m with
(x1,x2, x3,x4) € m. So by Claim 2 and Corollary 4.4, a power of x; (1 < j < 3) is a uni-
form local cohomological annihilator of R. In particular, the conclusion of the theorem holds for
d = 4. In the following proof, we assume dim(R/(x1, x2, X3, x4)) > 0.

Claim 3. Let T3 be the set of all associated prime ideals of R/()c1 ,x2 X 3)for all positive inte-
gers iy, ip, i3 satisfying i i1 +ip +i3 < 6. Then for any positive integers ny, ny, n3, every associated
prime ideal of R/()c1 ,x2 ,x;) lies in T;.

Proof. We prove the conclusion by induction on n = n| 4+ ny + n3. Clearly, if n < 6, the conclu-
sion holds by the assumption. In the following we assume n > 6. Suppose we have proved the
conclusion for n1 4+ ny + n3 < n. It is easy to see there exists one of n1, na, n3, say n3, such that
n3 > 3.

Suppose that P is an associated prime ideal of R/ ()c1 ,x2 ,x33) and P ¢ T3. Localizing at
P if necessary, we may assume that R is a local ring with the unique maximal ideal P. Let
c ¢ (x}', x3%, x3°) be an element satisfying

PcC (x)",xy7, x37).

Then we can express ¢ = x| '¢| +x5°¢2 + x5 371 ¢5 by the induction hypothesis. For an arbitrary
element z € P, it implies that there exists ¢4 € R such that

(ZC3 —x3c4) € ( x| ,x';z).

By (4.3), we have zx3c3 € (x;Z ,x2 ,x3) Hence Pxszc3z C (x1 ,x2 ,x3) Since n; + ny +
2 < n, we conclude x3c3 € (xg' ,x2 ,x3) by the induction hypothesis again. Consequently
ce (x1 ,x2 ,x?), and this is a contradiction. Therefore, P € T3, and the proof of the claim
is complete. O

Let T4 be the set of the union of 73 and the set of all minimal prime ideal (x1, x3, x3, x4). Itis

clear that Ty is a finite set. By [HH2, Lemma 3.2], we can choose a positive integer n such that
for every prime ideal P € T

(s x7) g) p (0 357 x57) 2 xf)

for all positive integers ny, n2, n3, n4 and j < 3. Replacing x; by x}l, we have

(et xy?, x3%) 1 xf?) p € (", 0%, 257) 1) p (4.4)
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for all positive integers ny, na, n3, ng and j < 3.

For P ¢ Ty, if Pc - ((xl ,x2 ,x33) x;) for some element ¢ € R, then Pxc € (xl ,x2 ,x3 .
Thus x;c € ()c1 , xz , x33) by the ch01ce of P. This shows that, for all positive integers ny, n», n3,
the associated primes of R/ ((xl ,x2 ,x3 Y ix j) lie in T4. From this fact and (4.4), one can con-
clude easily that

n n nj . L n n n3 .
(O 29 x57) tag?) © (1 257, x57) ;) 4.5)
hold for all positive integers ny, ny, n3, nq4 and j < 3.

Claim 4. For every permutation iy, iz, 13 of 1,2, 3, we have

(e a2 24 ) = () iy ) 2 1)
hold for all positive integers ni, ny, n4.

Proof. We only prove the following case:

ny _np ngy., 2\ __ ny ny n4gy., 3
(G xg? xgt) sag) = (1 x5 2y t) 1 x3).
In fact, for any element ¢ € ((xi’ ,x2 ,x44) x3) WE may express
3 n n n
xye=xy"c1+xc+ x5y

for some elements cy, ¢z, ¢4 € R So by (4 5), there exists ¢3 € R such that xg (x3¢c — xZ403) €
(x1 ,x22) By (4.3), we have x3c € ()c1 , Xy ,x44) and this proves the claim. O

Replacing x1, x2, x3 by xlz, x%, x32 if necessary, we may assume

((xl."l',xgz,xg"‘) :xi3) = ((xfll,xgz,x:f“) :x%) (4.6)

for every permutation iy, i2, i3 of 1, 2, 3 and for all positive integers ny, na, n4.

Moreover, we can replace x4 by a power of x4 if necessary, and assume that ((x1 , xz, )
X4) = ((x1 , xz, ) X ) Since R is an excellent ring, we can choose an element x5 Wthh is
not contained in any minimal prime ideal of (xp, x2, x3,x4) such that (R/ (xl,xz,x3, )) P
is a CM ring for every prime ideal P with x5 ¢ P. By the choice of x4 and Prop031—
tion 4.2, we conclude that (R/(x%,x%,x%,xﬁ“))p is a CM ring for every prime ideal P with
(x1, x2, X3, x4) cP x5 ¢ P and all positive integers n4. It follows from (4.6) and Proposition 4.2
that (R/(x7! 1 ,x2 ,x3 ,x44))p are CM local rings for such prime ideals P and all positive inte-
gers ni, np, n3, n4.

Claim 5. Let m be a maximal ideal of R such that m does not contain the ideal (x1, X2, X3, X4, X5).
Then for every x; (1 < j <3), xSH’ (R) =0fori < ht(m).

Proof. Note that if m does not contain the ideal (x, x», x3, x4), then the conclusion of the claim
follows from Claim 2. So we may assume that (xp, x2, x3,x4) € m and x5 ¢ m. Replacing R
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by R,,, we assume that R is a local ring with the maximal ideal m. Observe that x, x; is a
regular sequence, (4.3) and (4.5). We have for 1 <i <4

(e ) 1) € ()

for each j with 1 < j < 3. Moreover, by the choice of m, R/(x]", x5, x3°, x;*) are CM lo-
cal rings for all positive integers ni, no, n3, nq. So the conclusion of the claim follows from
Lemma 4.5, and this ends of the proof of the claim. O

Now, if dim(R/(x1, x2, X3, X4, X5)) = 0, then there are only a finite number of maximal ideals
m with (x1, x2, x3, x4, x5) € m. So by Claim 5, and Corollary 4.4, a powerof x; (1 < j <3)isa
uniform local cohomological annihilator of R. In particular, we have proved the theorem in the
cased =5. O

Before the end of the paper, we give a remark on the technique used in this section.

Remark. In the proof of Theorem 4.6, we depend heavily on one of Goto’s results (Proposi-
tion 4.2). The condition (0 : x) = (0 : x2) in Proposition 4.2 is very restricted if one considers a
lot of local rings at the same time. We explain this more explicitly by means of the proof of The-
orem 4.6. Let R, x1, x2, x3, x4 and x5 be as chosen as in the proof of Theorem 4.6. Although we
can find an element x¢ such that for all maximal ideals m with x¢ ¢ m, R/(x]", x3%, x3°, x}*, x5)
are CM rings for all positive integers n1, na, n3, ng, it is very difficult to check that

(e o522, 2 xs) = (] 52 x5, x0) 1)

hold for all positive integers ny, na, n3, n4. So one cannot use Proposition 4.2 to conclude that
R/(x}"', x5, x5, xy*, x5°) are CM rings for all positive integers ny,na, n3,n4, ns. Thus the
method of this paper cannot be used to solve the remaining case of Conjecture 4.1. However,
with a little more effort, we can prove that, after replacing x1, x2, x3, x4, x5 by suitable powers
of them, for each j (1 < j < 3)

. ni ny n3 ng\ . _ns ni ny ns ng
o (et 0% g ) xgt) € (1 g% a7 xg )
hold for all positive integers n1, no, n3, na, n5. Due to this fact, one can prove easily that for any
excellent domain R and an element of x in R such that R, is CM, there exists a positive integer n,
x"H;, (R) = 0 for every maximal ideal m and i < min(5, ht(m)) — 1.
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