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A remarkable result of McShane states that for a punctured torus
with a complete finite volume hyperbolic metric we have

∑
γ

1

e�(γ ) + 1
= 1

2

where γ varies over the homotopy classes of essential simple
closed curves and �(γ ) is the length of the geodesic representative
of γ .
We prove that there is no reasonable analogue of McShane’s
identity for the Culler–Vogtmann outer space of a free group.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let T be the one-punctured torus and let ρ be a complete finite-volume hyperbolic structure
on T . Let S be the set of all free homotopy classes of essential simple closed curves in T that are not
homotopic to the puncture. Denote

E(ρ) :=
∑
γ ∈S

1

e�ρ(γ ) + 1
,
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where �ρ(γ ) is the smallest ρ-length among all curves representing γ . Thus E can be regarded as a
function on the Teichmüller space of T . A remarkable result of McShane [8] shows that this function
is constant and that

E(ρ) = 1

2
(∗)

for every ρ . We refer to (∗) as McShane’s identity for T . Since the thesis of McShane [8], other proofs
of McShane’s identity for the punctured torus have been produced (particularly, see the work of
Bowditch [3]) and McShane’s identity has been generalized to other hyperbolic surfaces and other
contexts [1,2,4,9,12,13]. Note that if ψ is an element of the mapping class group of T then ψ per-
mutes the elements of S and hence, clearly, E(ρ) = E(ψρ). Thus E obviously factors through to a
function on the moduli space of T and (∗) says that this function is identically equal to 1/2.

Let Fk = F (a1, . . . ,ak) be a free group of rank k � 2 with a free basis A = {a1, . . . ,ak}. For Fk the
best analogue of the Teichmüller space is the so-called Culler–Vogtmann outer space CV(Fk). Instead of
actions on the hyperbolic plane the elements of the outer space are represented by minimal discrete
isometric actions of Fk on R-trees. Equivalently, one can think about a point of the outer space
as being represented by a marked volume-one metric graph structure on Fk , that is, an isomorphism
φ : Fk → π1(Γ, p), where Γ is a finite graph without degree-one and degree-two vertices, equipped
with a metric structure L that assigns to each non-oriented edge of Γ a positive number called the
length of this edge. The volume of a metric structure on Γ is the sum of the lengths of all non-oriented
edges of Γ . As we noted, the metric structures that appear in the description of the points of the outer
space, given above, are required to have volume equal to one. If (φ : Fk → π1(Γ, p), L) represents a
point of the outer space, the metric structure L naturally lifts to the universal cover Γ̃ , turning Γ̃ into
an R-tree X . The group Fk acts on this R-tree X via φ by isometries minimally and discretely with
the quotient being equal to Γ . Similarly to the marked length spectrum in the Teichmüller space
context, a marked metric graph structure (φ : Fk → π1(Γ, p), L) defines a hyperbolic length function
� : Ck → R where Ck is the set of all non-trivial conjugacy classes in Fk . If g ∈ Fk , then �([g]) is the
translation length of g considered as the isometry of the R-tree X described above. Alternatively, we
can think about �([g]) as follows: �([g]) is the L-length of the shortest free homotopy representative
of the curve φ(g) in Γ , that is, the L-length of the “cyclically reduced” form of φ(g) in Γ . Two
volume-one metric graph structures on Fk represent the same point of CV(Fk) if and only if their
corresponding hyperbolic length functions are equal, or, equivalently, if the corresponding R-trees are
Fk-equivariantly isometric.

It is natural to ask if there is an analogue of McShane’s identity in the outer space context. The
(right) action of ψ ∈ Out(Fk) on CV(Fk) takes a hyperbolic length function � to �◦ψ , that is, ψ simply
permutes the domain Ck of �. Therefore the real question, as in the Teichmüller space case, is if there
is an analogue of McShane’s identity for the moduli space Mk = CV(Fk)/Out(Fk). The elements of Mk
are represented by unmarked finite connected volume-one metric graphs (Γ, L) without degree-one
and degree-two vertices and with π1(Γ ) � Fk .

To simplify the picture, and also since our results will be negative, we will consider a subset Δk
of CV(Fk) consisting of all volume-one metric structures on the wedge Wk of k circles wedged at
a base-vertex v0. We orient the circles and label them by a1, . . . ,ak . This gives us an identification
π1(Wk, v0) = F (a1, . . . ,ak) of Fk = F (a1, . . . ,ak) with π1(Wk, v0), so that indeed Δk ⊆ CV(Fk).

A volume-one metric structure L on Wk is a k-tuple (L(a1), . . . , L(ak)) of positive numbers with∑k
i=1 L(ai) = 1. Thus Δk has the natural structure of an open (k − 1)-dimensional simplex in R

k . As
in the general outer space context, every L ∈ Δk defines a hyperbolic length-function �L : Ck → R,
where for g ∈ Fk , �L([g]) is the L-length of the cyclically reduced form of g in Fk = F (a1, . . . ,ak).
The open simplex Δk has a distinguished point L∗ := ( 1

k , . . . , 1
k ). Note that for every [g] ∈ Ck we have

�L∗ ([g]) = ‖g‖/k, where ‖g‖ is the cyclically reduced length of g in Fk = F (a1, . . . ,ak).
There is no perfect analogue for the notion of a simple closed curve in the free group context. The

closest such analogue is given by primitive elements, that is, elements belonging to some free basis
of Fk . Let Pk be denote the set of conjugacy classes of primitive elements of Fk . We will consider
two versions of possible generalizations of McShane’s identity for free groups: the first involving all



I. Kapovich, I. Rivin / Journal of Algebra 320 (2008) 3659–3670 3661
conjugacy classes in Fk and the second involving the conjugacy classes of primitive elements of Fk .
We will see that, under some reasonable assumptions, there are no analogues of McShane’s identity
in either context.

Definition 1.1 (McShane-type functions on Δk). Let f : (0,∞) → (0,∞) be a monotone non-increasing
function and let k � 2. Define

C f : Δk → (0,∞], C f (L) =
∑

w∈Ck

f
(
�L(w)

)
where L ∈ Δk,

and

P f : Δk → (0,∞], P f (L) =
∑

w∈Pk

f
(
�L(w)

)
where L ∈ Δk.

Obviously, 0 < P f < C f � ∞ on Δk .
Motivated by McShane’s identity, it is interesting to ask if there exist functions f such that either

C f or P f is constant on Δk . To make the question meaningful we need to require P f (or, correspond-
ingly, C f ) be finite at some point L ∈ Δk . Thus it is necessary to assume that limx→∞ f (x) = 0 and
that this convergence to zero is sufficiently fast.

We establish the following negative results regarding the existence of analogues of McShane’s
identity in the outer space context:

Theorem A. Let k � 2 be an integer and let F = F (a1, . . . ,ak). Let f : (0,∞) → (0,∞) be a monotone non-
increasing function such that:

(1) lim sup
x→∞

f (x)1/x <
1

(2k − 1)k
.

(2) lim inf
x→∞ f (x)1/x > 0.

Then:

(a) We have P f � C g < ∞ on some neighborhood U on L∗ in Δk (moreover, only the assumption (1) on f
above is required for this conclusion).

(b) We have C f 
= const on Δk.
(c) If k � 3 then P f 
= const on Δk.

The assumptions on f (x) in Theorem A require f (x) to decay both at least and at most expo-
nentially fast; condition (1) assures that the value of C f is finite near L∗ . The idea of the proof of
parts (b) and (c) of Theorem A uses the notion of volume entropy for a metric structure L on Wk
(see [6,7,10]). Roughly speaking, there are points L near the boundary of Δk where the exponential
growth rate, as R → ∞, of the number of conjugacy classes with �L -length at most R is bigger than
the exponential rate of decay of the function f . This forces C f to be equal to ∞ at L.

For k = 2 the set of conjugacy classes of primitive elements has quadratic rather than exponential
growth. Therefore we modify the assumptions on f (x) accordingly and obtain a somewhat stronger
conclusion then in part (c) of Theorem A. For k = 2 the open 1-dimensional simplex Δ2 ⊆ R

2 consists
of all pairs Lt := (t,1 − t) where t ∈ (0,1). Therefore we may identify Δ2 with (0,1) and define
P f (t) := P f (Lt). With this convention we prove:

Theorem B. Let k = 2 and F = F (a,b). Let f : (0,∞) → (0,∞) be a monotone non-increasing function such
that:
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(1) We have f ′′(x) > 0 for every x > 0.
(2) There is some ε > 0 such that limx→∞ x3+ε f (x) = 0.

Then the following hold:

(a) We have 0 < P f (t) < ∞ for every t ∈ (0,1).
(b) The function P f (t) is strictly convex on (0,1) and achieves a unique minimum at t0 = 1/2. In particular,

P f (t) is not a constant locally near t0 = 1/2 and thus P f 
= const on (0,1).

The proof of Theorem B uses convexity considerations as well as some results about the explicit
structure of primitive elements in F (a,b) [5,11].

Finally, we combine the volume entropy and the convexity ideas to obtain:

Theorem C. Let k � 2 and let f : (0,∞) → (0,∞) be a monotone decreasing function such that the following
hold:

(1) The function f (x) is strictly convex on (0,∞).

(2) lim sup
x→∞

f (x)1/x <
1

(2k − 1)k
.

Then there exists a convex neighborhood U of L∗ in Δk such that 0 < P f < C f < ∞ on U and both C f
and P f are strictly convex on U . In particular, C f 
= const on U and P f 
= const on U .

The authors are grateful to Paul Schupp for useful conversations.

2. Volume entropy

In this section we will prove Theorem A, which is obtained as a combination of Theorem 2.4 and
Theorem 2.5 below.

Convention 2.1. For the remainder of this section let k � 2 be an integer and Fk = F (a1, . . . ,ak) be
free of rank k with a free basis A = {a1, . . . ,ak}. We identify Fk with π1(Wk, v0), as explained in the
introduction. For g ∈ Fk we denote by |g| the freely reduced length of g with respect to A and we
denote by ‖g‖ the cyclically reduced length of g with respect to A.

We denote by CRk the set of all cyclically reduced elements of Fk with respect to A.
Let L be a metric graph structure on Wk . For every g ∈ Fk there is a unique edge-path in Wk

labeled by the freely reduced form of g with respect to A. We denote the L-length of that path by
L(g). As before, we denote by �L : Ck → R the hyperbolic length function corresponding to L. Thus
if g ∈ Fk then �L([g]) = L(u) where u is the cyclically reduced form of g with respect to A.

Definition 2.2 (Volume entropy). Let L be a metric structure on Wk . The volume entropy hL of L is
defined as

hL = lim
R→∞

log #{g ∈ Fk: L(g) � R}
R

.

It is well known and easy to see that the limit in the above expression exists and is finite. We refer
the reader to [6,7,10] for a detailed discussion of volume entropy in the context of metric graphs.

Proposition 2.3. Let k � 2 and L be as in Definition 2.2.
Then the limits
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h′
L = lim

R→∞
log #{g ∈ CRk: L(g) � R}

R

and

h′′
L = lim

R→∞
log #{w ∈ Ck: �L(w) � R}

R

exist and

hL = h′
L = h′′

L.

Proof. Let M := max{|ai |L: i = 1, . . . ,k} and m := min{|ai |L: i = 1, . . . ,k}.
For each g ∈ F there exists a cyclically reduced word v g such that |g| = |v g | and such that g

and v g agree except possibly in the last letter. Then |L(g) − L(v g)| � M . Moreover, the function
Fk → CRk, g �→ v g is at most 2k-to-one. Therefore for every integer R > 0

#
{

g ∈ CRk: L(g) � R
}

� #
{

g ∈ Fk: L(g) � R
}

� 2k#
{

g ∈ CRk: L(g) � R + M
}

and

#
{

w ∈ Ck: �L(w) � R
}

� #
{

g ∈ CRk: L(g) � R
}

� R

m
#
{

w ∈ Ck: �L(w) � R
}
.

This implies the statement of the proposition. �
Theorem 2.4. Let k � 2 be an integer and let F = F (a1, . . . ,ak). Let f : (0,∞) → (0,∞) be a monotone
non-increasing function such that:

(1) lim sup
x→∞

f (x)1/x <
1

(2k − 1)k
.

(2) lim inf
x→∞ f (x)1/x > 0.

Then:

(a) We have 0 < C f < ∞ on some neighborhood U on L∗ in Δk (moreover, only the assumption (1) on f
above is required for this conclusion).

(b) We have C f 
= const on Δk.

Proof. The assumptions on f (x) imply that there exist N > 0 and 0 < σ1 < σ2 < 1
(2k−1)k such that for

every x � N

σ x
1 � f (x) � σ x

2 .

Let L∗ = ( 1
k , . . . , 1

k ) ∈ Δk . For any g ∈ Fk we have L∗(g) = |g|/k. Then an easy direct computation

shows that hL∗ = k log(2k − 1), so that ehL∗ = (2k − 1)k < 1
σ2

. Since the volume entropy h is a contin-

uous function on Δk (see, for example, [6]), there exist a neighborhood U of L∗ in Δk and 0 < c < 1
σ2

such that ehL < c for every L ∈ U .
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Observe now that C f < ∞ on U . Let L ∈ U be arbitrary. There exist M > 0 and c1 with c < c1 < 1
σ2

such that for every integer R > 0 we have

#
{

w ∈ Ck: �L(w) � R
}

� McR
1 .

Therefore

C f (L∗) =
∑

w∈Ck

f
(
�L(w)

) =
∞∑

i=0

∑
w∈Ck, i<�L(w)�i+1

f
(
�L(w)

)

�
∞∑

i=0

∑
w∈Ck, i<�L(w)�i+1

f (i) �
∞∑

i=0

Mci+1
1 f (i) < ∞

where the last inequality holds since c1 < 1
σ2

and f (x) � σ x
2 for all x � N . Thus indeed C f (L) < ∞,

so that C f < ∞ on U .
For 0 < t < 1

k−1 let Lt = (t, t, . . . , t,1−(k−1)t) ∈ Δk . Then, as follows from the proof of Theorem B
of [6] (specifically the proof of Theorem 9.4 on p. 25 of [6]),

lim
t→0

hLt = ∞.

Indeed, let Γ be the subgraph of Wk consisting of the loops labeled by a1 and ak . The restriction
L′

t of Lt to Γ is a metric structure on Γ of volume 1 − (k − 2)t . Therefore 1
1−(k−2)t L′

t is a volume-
one metric structure on Γ with respect to which the length of a1 goes to 0 as t → 0. Therefore, as
established in the proof of Theorem 9.4 of [6],

lim
t→0

h 1
1−(k−2)t L′

t
= ∞.

However,

hL′
t
= 1

1 − (k − 2)t
h 1

1−(k−2)t L′
t

and therefore

lim
t→0

hL′
t
= ∞.

It is obvious from the definition of volume entropy that hL′
t
� hLt and hence

lim
t→0

hLt = ∞,

as claimed.
Hence there exists t0 ∈ (0, 1

k−1 ) such that for every t ∈ (0, t0) we have ehLt > 1
σ1

+ 2. Let t ∈ (0, t0)

be arbitrary. We claim that C f (Lt) = ∞.
Since ehLt > 1

σ1
+ 2, by Proposition 2.3 there is R0 > N > 0 such that for every R � R0 we have

#
{

w ∈ Ck: Lt(w) � R
}

�
(

1

σ
+ 1

)R

.

1
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For every R � R0

C f (Lt) =
∑

w∈Ck

f
(

Lt(w)
)
�

∑
w∈Ck,Lt (w)�R

f
(

Lt(w)
)
�

∑
w∈Ck,Lt (w)�R

f (R)

�
(

1

σ1
+ 1

)R

f (R) �
(

1

σ1
+ 1

)R

σ R
1 = (1 + σ1)

R .

Since this is true for every R � R0, it follows that C f (Lt) = ∞.
Thus C f (L∗) < ∞ while C f (Lt) = ∞ for all sufficiently small t > 0. Therefore C f 
= const

on Δk . �
Theorem 2.5. Let k � 3 be an integer and let F = F (a1, . . . ,ak). Let f : (0,∞) → (0,∞) be as in Theorem 2.4.

Then:

(a) We have P f � C f < ∞ on some neighborhood U on L∗ in Δk.
(b) We have P f 
= const on Δk.

Proof. Again, by assumptions on f (x), there exist N > 0 and 0 < σ1 < σ2 < 1
(2k−1)k such that for every

x � N

σ x
1 � f (x) � σ x

2 .

By Definition 0 � P f � C f . By Theorem 2.4 we have C f < ∞ on some neighborhood U on L∗ in
Δk and hence P f � C f < ∞ on U .

Put Fk−1 := F (a1, . . . ,ak−1) so that Fk = Fk−1 ∗ 〈ak〉. For 0 < t < 1
k−2 let

Lt :=
(

t

2
,

t

2
, . . . ,

t

2
,

1

2
− (k − 2)

t

2
,

1

2

)
∈ Δk

and

L̂t :=
(

t

2
,

t

2
, . . . ,

t

2
,

1

2
− (k − 2)

t

2

)
∈ 1

2
Δk−1.

Thus 2L̂t ∈ Δk−1 is a volume-one metric structure on Wk−1. Since k � 3, we have k − 1 � 2 and
hence, exactly as in the proof of Theorem 2.4, limt→0 h2L̂t

= ∞.
For R � 1

bR,t := #
{

g ∈ Fk−1: L̂t(g) � R
}
.

Then

st := lim
R→∞

log bR,t

R
= hL̂t

= 2h2L̂t

and therefore

lim
t→0

st = ∞.

Hence there exists 0 < t0 < 1
k−2 such that for every t ∈ (0, t0) we have est > 1

σ + 2.

1
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Fix an arbitrary t ∈ (0, t0). Since est > 1
σ1

+ 2, by there is R0 > N > 0 such that for every R � R0

we have

bR,t = #
{

g ∈ Fk−1: L̂t(g) � R
}

�
(

1

σ1
+ 1

)R

.

Note that for every g ∈ Fk−1 the element gak ∈ Fk is primitive in F . Moreover, if g1 
= g2 are distinct
elements of Fk−1 then g1ak and g2ak are not conjugate in Fk . Recall that by definition of Lt we have
Lt(ak) = 1

2 . For R � 1 denote

pR,t := #
{

w ∈ Pk: �Lt (w) � R
}
.

Then for every R � R0 + 1
2 we have

pR,t � bR− 1
2 ,t �

(
1

σ1
+ 1

)R− 1
2

.

Hence for every R � R0 + 1
2

P f (Lt) =
∑

w∈Pk

f
(

Lt(w)
)
�

∑
w∈Pk,�Lt (w)�R

f
(

Lt(w)
)
�

∑
w∈Pk,�Lt (w)�R

f (R)

�
(

1

σ1
+ 1

)R− 1
2

f (R) �
(

1

σ1
+ 1

)R− 1
2

σ R
1 = (1 + σ1)

R
(

1

σ1
+ 1

)− 1
2

.

Since this is true for every R � R0 + 1
2 , it follows that P f (Lt) = ∞.

Thus P f (L∗) < ∞ while P f (Lt) = ∞ for all sufficiently small t > 0. Therefore P f 
= const on
Δk . �
3. Primitive elements in F (a, b)

In this section we will prove Theorem B.

Convention 3.1. Throughout this section let F2 = F (a,b) be a free group of rank two.
Let α : F (a,b) → Z

2 be the abelianization homomorphism, that is, α(a) = (1,0) and α(b) = (0,1).
Then α is constant on every conjugacy class and therefore α defines a map β : C2 → Z

2.

Definition 3.2 (Visible points). A point (p,q) ∈ Z
2 is called visible if gcd(p,q) = 1. We denote the set

of all visible points in Z
2 by V .

We will need the following known facts about primitive elements in F (a,b) (see, for example,
[5,11]):

Proposition 3.3. The following hold:

(1) The restriction of β to P2 is a bijection between P2 and the set of visible elements V ⊆ Z
2 .

(2) Let w ∈ F (a,b) be a cyclically reduced primitive element and let α(w) = (p,q) ∈ Z
2 .

Then every occurrence of a in w has the same sign (either −1,0 or 1) as p and every occurrence of b in w has
the same sign (again either −1,0 or 1) as q. Thus the total number of occurrences of a±1 in w is equal to |p|
and the total number of occurrences of b±1 in w is equal to |q|.
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Definition 3.4 (Admissible function). We say that a function f : (0,∞) → [0,∞) is admissible if it
satisfies the following conditions:

(1) We have f ′′(x) > 0 for every x > 0.
(2) There is some ε > 0 such that limx→∞ x3+ε f (x) = 0.

The second condition means that f (x) converges to zero asymptotically faster than 1
x3+ε as x → ∞.

Note that an admissible function must be strictly positive and monotone decreasing on (0,∞).

Theorem 3.5. Let f be any admissible function. Then the following hold:

(1) We have 0 < P f (t) < ∞ for every t ∈ (0,1).
(2) The function P f (t) is strictly convex on (0,1) and achieves a unique minimum at t = 1/2. In particular,

P f (t) is not a constant locally near t = 1/2.

Proof. For every (p,q) ∈ V and t ∈ (0,1) denote

gp,q(t) = f
(
t|p| + (1 − t)|q|) + f

(
t|q| + (1 − t)|p|).

Note that if (p,q) ∈ V then gcd(p,q) = 1 and hence |p| 
= |q|. We can therefore partition V as the
collection of pairs (p,q), (q, p) of visible elements and every such pair has a unique representative
where the absolute value of the first coordinate is bigger than that of the second coordinate.

Let w ∈ P2 be arbitrary and let (p,q) = β(w). Proposition 3.3 and the definition of Lt imply that
for any t ∈ (0,1) we have

�Lt (w) = t|p| + (1 − t)|q|.

Let V ′ := {(p,q) ∈ V : |p| > |q|}. Then we have

P f (t) =
∑

w∈P2

f
(
�Lt (w)

) =
∑

(p,q)∈V

f
(
t|p| + (1 − t)|q|)

=
∑

(p,q)∈V ′
f
(
t|p| + (1 − t)|q|) + f

(
t|q| + (1 − t)|p|) =

∑
(p,q)∈V ′

gp,q(t).

Fix some t ∈ (0,1). We can also represent P f (t) as

P f (t) =
∞∑

N=1

∑
(p,q)∈V , max{|p|,|q|}=N

f
(
t|p| + (1 − t)|q|).

Since f (x) is a monotone non-increasing function, if (p,q) ∈ V ,max{|p|, |q|} = N , we have

f
(
t|p| + (1 − t)|q|) � min

{
f (tN), f

(
(1 − t)N

)} = f (cN)

where c = max{t,1 − t}. For every integer N � 1 the number of points (p,q) ∈ Z
2 with |p| � N ,

|q| � N is (2N + 1)2.
Therefore
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P f (t) =
∞∑

N=1

∑
(p,q)∈V , max{|p|,|q|}=N

f
(
t|p| + (1 − t)|q|) �

∞∑
N=1

∑
(p,q)∈V , max{|p|,|q|}=N

f (cN)

�
∞∑

N=1

(2N + 1)2 f (cN) < ∞

because of condition (2) in the definition of admissibility of f (x). Thus 0 < P f (t) < ∞ for every
t ∈ (0,1).

Note that for each (p,q) ∈ V ′

g′
p,q(t) = f ′(t|p| + (1 − t)|q|)(|p| − |q|) + f ′(t|q| + (1 − t)|p|)(|q| − |p|),

g′′
p,q(t) = f ′′(t|p| + (1 − t)|q|)(|p| − |q|)2 + f ′′(t|q| + (1 − t)|p|)(|q| − |p|)2

.

Since |p| > |q| and, by definition of admissibility, f ′′(x) > 0 for every x ∈ R, we conclude that
g′′

p,q(t) > 0 for every t ∈ (0,1). Hence gp,q is strictly convex on (0,1). Moreover,

g′
p,q

(
1

2

)
= f ′

( |p|
2

+ |q|
2

)(|p| − |q|) + f ′
( |q|

2
+ |p|

2

)(|q| − |p|) = 0.

Since g′′
p,q > 0 on (0,1), it follows that gp,q is strictly convex on (0,1) and achieves a unique mini-

mum on (0,1) at t = 1
2 .

Since 0 < P f < ∞ on (0,1) and P f = ∑
(p,q)∈V ′ gp,q , it also follows that P f is strictly convex on

(0,1) and achieves a unique minimum on (0,1) at t = 1
2 . �

4. Exploiting convexity

In this section we combine the ideas of the previous two sections and establish Theorem C from
the introduction.

Theorem 4.1. Let k � 2 and let f : (0,∞) → (0,∞) be monotone decreasing function such that the following
hold:

(1) The function f (x) is strictly convex on (0,∞).

(2) lim sup
x→∞

f (x)1/x <
1

(2k − 1)k
.

Then there exists a convex neighborhood U of L∗ in Δk such that 0 < P f < C f < ∞ on U and both C f
and P f are strictly convex on U . In particular, C f 
= const on U and P f 
= const on U .

Proof. By Theorem 2.4 there exists a convex neighborhood U of L∗ in Δk , such that 0 < P f < C f < ∞
on U . We will prove that P f and C f are strictly convex on U .

Let D be the set of all k-tuples of integers m = (m1, . . . ,mk) such that mi � 0 for i = 1, . . . ,k and
m1 +· · ·+mk > 0. For each m = (m1, . . . ,mk) ∈ D let Q m be the set of all w ∈ Ck such that w involves
exactly mi occurrences of a±1

i for i = 1, . . . ,k and let qm := #(Q m). Note that for every w ∈ Q m , if
L = (x1, . . . , xk) ∈ Δk , then we have

�L(w) = m1x1 + · · · + mkxk.

Denote by fm : Δk → R the function defined as
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fm(x1, . . . , xk) := f (m1x1 + · · · + mkxk), (x1, . . . , xk) ∈ Δk.

The function f (x) is convex on (0,∞) and the function (x1, . . . , xk) �→ m1x1 + · · · + mkxk is linear
on Δk . Therefore fm is convex on Δk .

Then for any L = (x1, . . . , xk) ∈ Δk we have

C f (L) =
∑
m∈D

qm fm(L).

Since each fm is convex on Δk , it follows that C f is convex on Δ. We claim that C f is strictly convex
on U . Let D1 be the subset of D consisting of all the k-tuples having a single non-zero entry equal
to 1, that is, D1 is the union of the k standard unit vectors in Z

k . Let mi = (0, . . . ,1, . . . ,0) ∈ D1
where 1 occurs in the ith position. Then Q mi = {[ai], [a−1

i ]} and qmi = 2. Also, fmi (x1, . . . , xk) = f (xi)

for every (x1, . . . , xk) ∈ Δk .
Put g := fm1 + · · · + fmk : Δk → R, so that

g(x1, . . . , xk) = f (x1) + · · · + f (xk), (x1, . . . , xk) ∈ Δk.

It is easy to see that g is strictly convex on Δk since f is strictly convex on (0,∞). We have

C f =
∑
m∈D

qm fm = 2g +
∑

m∈D−D1

qm fm.

Since C f < ∞ on a convex set U and since g is strictly convex on U and
∑

m∈D−D1
qm fm is convex

on U , it follows that C f is strictly convex on U as claimed.
The proof that P f is strictly convex on U is exactly the same as for C f above. The only change

that needs to be made is to re-define Q m for each m = (m1, . . . ,mk) ∈ D as the set of all w ∈ Pk such
that w involves exactly mi occurrences of a±1

i for i = 1, . . . ,k. �
Remark 4.2. Let Zk be the set of all root-free conjugacy classes w ∈ Ck , that is, conjugacy classes
of non-trivial elements of Fk that are not proper powers. It is not hard to show, similar to Proposi-
tion 2.3, that if L is a metric structure on Wk then

hL = h̃L

where

h̃L := lim
R→∞

log #{w ∈ Zk: �L(w) � R}
R

.

If one now re-defines the McShane function C f as S f :

S f : Δk → (0,∞], S f (L) =
∑

w∈Zk

f
(
�L(w)

)
where L ∈ Δk,

then the proofs of the parts of Theorem A and Theorem C dealing with C f go through verbatim
for S f .
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Problem 4.3. The Outer Space CV(Fk) is Out(Fk)-equivariantly homeomorphic to the projectivization
Pcv(Fk) of the space cv(Fk) of all minimal free and simplicial actions of Fk on R-trees. In this model
of Pcv(Fk) the normalization is chosen by the volume of the quotient graph for the action of Fk on
a tree T ∈ cv(Fk). However, one can also consider another realization of Pcv(Fk) where we normalize
by volume entropy instead. Namely, consider the subset CVh(Fk) ⊆ cv(Fk) consisting of all T ∈ cv(Fk)

such that the quotient metric graph T /Fk has volume entropy equal to 1. It is easy to see that the
restriction to CVh(Fk) of the natural projection map cv(Fk) → Pcv(Fk) gives an Out(Fk)-equivariant
homeomorphism between CVh(Fk) and Pcv(Fk). It is thus natural to ask if there exist analogs of
McShane’s identity for the subset CVh(Fk) ⊆ cv(Fk). While we still expect the answer to be negative,
the methods of the present paper are insufficient to address this question, and more sophisticated
analutic arguments are needed.
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