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where y varies over the homotopy classes of essential simple
closed curves and £(y) is the length of the geodesic representative
of y.
We prove that there is no reasonable analogue of McShane’s
identity for the Culler-Vogtmann outer space of a free group.
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1. Introduction

Let T be the one-punctured torus and let p be a complete finite-volume hyperbolic structure
on T. Let S be the set of all free homotopy classes of essential simple closed curves in T that are not
homotopic to the puncture. Denote

1
E(p):=Y_ LoD

yeS
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where £,(y) is the smallest p-length among all curves representing y. Thus E can be regarded as a
function on the Teichmiiller space of T. A remarkable result of McShane [8] shows that this function
is constant and that

1
Ep)=5 (%)

for every p. We refer to (x) as McShane’s identity for T. Since the thesis of McShane [8], other proofs
of McShane’s identity for the punctured torus have been produced (particularly, see the work of
Bowditch [3]) and McShane’s identity has been generalized to other hyperbolic surfaces and other
contexts [1,2,4,9,12,13]. Note that if i is an element of the mapping class group of T then ¢ per-
mutes the elements of S and hence, clearly, E(p) = E(yp). Thus E obviously factors through to a
function on the moduli space of T and (x) says that this function is identically equal to 1/2.

Let Fy = F(aq,...,ax) be a free group of rank k > 2 with a free basis A ={ay, ..., ax}. For Fy the
best analogue of the Teichmiiller space is the so-called Culler-Vogtmann outer space CV(Fy). Instead of
actions on the hyperbolic plane the elements of the outer space are represented by minimal discrete
isometric actions of Fy on R-trees. Equivalently, one can think about a point of the outer space
as being represented by a marked volume-one metric graph structure on Fy, that is, an isomorphism
¢ : Fp, — m1 (I, p), where I' is a finite graph without degree-one and degree-two vertices, equipped
with a metric structure £ that assigns to each non-oriented edge of I" a positive number called the
length of this edge. The volume of a metric structure on I" is the sum of the lengths of all non-oriented
edges of I'. As we noted, the metric structures that appear in the description of the points of the outer
space, given above, are required to have volume equal to one. If (¢ : Fy — m1(I", p), L) represents a
point of the outer space, the metric structure £ naturally lifts to the universal cover r, turning I into
an R-tree X. The group Fj acts on this R-tree X via ¢ by isometries minimally and discretely with
the quotient being equal to I'. Similarly to the marked length spectrum in the Teichmiiller space
context, a marked metric graph structure (¢ : F, — m(I', p), £) defines a hyperbolic length function
£:Cr — R where C; is the set of all non-trivial conjugacy classes in Fi. If g € F, then £([g]) is the
translation length of g considered as the isometry of the R-tree X described above. Alternatively, we
can think about £([g]) as follows: £([g]) is the £-length of the shortest free homotopy representative
of the curve ¢(g) in I', that is, the L-length of the “cyclically reduced” form of ¢(g) in I'. Two
volume-one metric graph structures on Fj represent the same point of CV(Fy) if and only if their
corresponding hyperbolic length functions are equal, or, equivalently, if the corresponding R-trees are
Fi-equivariantly isometric.

It is natural to ask if there is an analogue of McShane’s identity in the outer space context. The
(right) action of ¥ € Out(Fy) on CV(Fy) takes a hyperbolic length function ¢ to £o v, that is, ¢ simply
permutes the domain Cy of £. Therefore the real question, as in the Teichmiiller space case, is if there
is an analogue of McShane’s identity for the moduli space My = CV(Fy)/Out(Fy). The elements of M
are represented by unmarked finite connected volume-one metric graphs (I", £) without degree-one
and degree-two vertices and with 71 (") =~ F.

To simplify the picture, and also since our results will be negative, we will consider a subset A
of CV(Fy) consisting of all volume-one metric structures on the wedge W) of k circles wedged at

a base-vertex vg. We orient the circles and label them by ay, ..., a,. This gives us an identification
w1 (Wy, vo) =F(aq,...,a) of Fy =F(ay,...,a,) with mq(Wy, vg), so that indeed A, C CV(Fy).
A volume-one metric structure £ on Wy, is a k-tuple (L(ay), ..., L£(ax)) of positive numbers with

Z;‘:] L(a;) = 1. Thus Ay has the natural structure of an open (k — 1)-dimensional simplex in R¥. As
in the general outer space context, every L € Ay defines a hyperbolic length-function £, : Cy — R,
where for g € Fy, £,([g]) is the L-length of the cyclically reduced form of g in Fy = F(ay, ..., ax).
The open simplex Ay has a distinguished point £, := (%, e %). Note that for every [g] € C; we have
Lr.([g]) = lIgll/k, where ||g|| is the cyclically reduced length of g in F, = F(ay,...,ax).

There is no perfect analogue for the notion of a simple closed curve in the free group context. The
closest such analogue is given by primitive elements, that is, elements belonging to some free basis
of Fj. Let P, be denote the set of conjugacy classes of primitive elements of Fy. We will consider
two versions of possible generalizations of McShane’s identity for free groups: the first involving all
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conjugacy classes in Fy and the second involving the conjugacy classes of primitive elements of Fj.
We will see that, under some reasonable assumptions, there are no analogues of McShane’s identity
in either context.

Definition 1.1 (McShane-type functions on Ay). Let f : (0, 00) — (0, c0) be a monotone non-increasing
function and let k > 2. Define

Cr:Mr— (0,00l Cp(Ly= Y f(ec(w)) where Le A,

WECk

and

Pp:Ar— (0.00l,  Pr(L)= Y f(tc(w)) where L€ A

wePy

Obviously, 0 < Py < Cy < oo on Ay.

Motivated by McShane’s identity, it is interesting to ask if there exist functions f such that either
Cy or Py is constant on Ag. To make the question meaningful we need to require P (or, correspond-
ingly, Cr) be finite at some point £ € Ag. Thus it is necessary to assume that limy_, o f(x) =0 and
that this convergence to zero is sufficiently fast.

We establish the following negative results regarding the existence of analogues of McShane’s
identity in the outer space context:

Theorem A. Let k > 2 be an integer and let F = F(aq, ..., ax). Let f : (0, 00) — (0, 00) be a monotone non-
increasing function such that:

: 1/x
(1) ll,r(ris;p fx 7" < 7(2k— T

2) liminf f(x)/* > 0.
X—00
Then:

(a) We have Py < Cg < oo on some neighborhood U on L, in Ay (moreover, only the assumption (1) on f
above is required for this conclusion).

(b) We have C¢ # const on Ay.

(c) Ifk > 3 then Py # const on Ay.

The assumptions on f(x) in Theorem A require f(x) to decay both at least and at most expo-
nentially fast; condition (1) assures that the value of C¢ is finite near L. The idea of the proof of
parts (b) and (c) of Theorem A uses the notion of volume entropy for a metric structure £ on Wy
(see [6,7,10]). Roughly speaking, there are points £ near the boundary of A, where the exponential
growth rate, as R — oo, of the number of conjugacy classes with £.-length at most R is bigger than
the exponential rate of decay of the function f. This forces Cy to be equal to oo at L.

For k = 2 the set of conjugacy classes of primitive elements has quadratic rather than exponential
growth. Therefore we modify the assumptions on f(x) accordingly and obtain a somewhat stronger
conclusion then in part (c) of Theorem A. For k = 2 the open 1-dimensional simplex A, C R? consists
of all pairs L; := (t,1 —t) where t € (0, 1). Therefore we may identify A, with (0,1) and define
Pg(t) := Py (Ly). With this convention we prove:

Theorem B. Let k =2 and F = F(a, b). Let f : (0, 00) — (0, o0) be a monotone non-increasing function such
that:
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(1) We have f”(x) > 0 for every x > 0.
(2) There is some € > 0 such that limy_, o X3¢ f (x) = 0.

Then the following hold:

(a) We have 0 < Pf(t) < oo foreveryt € (0, 1).
(b) The function P (t) is strictly convex on (0, 1) and achieves a unique minimum at to = 1/2. In particular,
P¢(t) is not a constant locally near to = 1/2 and thus P # const on (0, 1).

The proof of Theorem B uses convexity considerations as well as some results about the explicit
structure of primitive elements in F(a, b) [5,11].
Finally, we combine the volume entropy and the convexity ideas to obtain:

Theorem C. Let k > 2 and let f : (0, o0) — (0, o0) be a monotone decreasing function such that the following
hold:

(1) The function f (x) is strictly convex on (0, co).

: 1/x
(2) limsup f ()™ < o 1

Then there exists a convex neighborhood U of L, in Ay such that 0 < Py < Cy < oo on U and both C¢
and P are strictly convex on U. In particular, Cy # const on U and Py # const on U.

The authors are grateful to Paul Schupp for useful conversations.
2. Volume entropy

In this section we will prove Theorem A, which is obtained as a combination of Theorem 2.4 and
Theorem 2.5 below.

Convention 2.1. For the remainder of this section let k > 2 be an integer and Fy = F(ai,...,ax) be
free of rank k with a free basis A ={ay, ..., ar}. We identify F, with w1 (W, vo), as explained in the
introduction. For g € F, we denote by |g| the freely reduced length of g with respect to A and we
denote by ||g|| the cyclically reduced length of g with respect to A.

We denote by CRy the set of all cyclically reduced elements of Fy with respect to A.

Let £ be a metric graph structure on Wj. For every g € Fy there is a unique edge-path in Wy
labeled by the freely reduced form of g with respect to A. We denote the £-length of that path by
L(g). As before, we denote by £, : C, — R the hyperbolic length function corresponding to £. Thus
if g € F, then ¢, ([g]) = L(u) where u is the cyclically reduced form of g with respect to A.

Definition 2.2 (Volume entropy). Let £ be a metric structure on Wy. The volume entropy h, of L is
defined as

. log#{ge F: L(g) <R}
hy = lim .
R—o00 R

It is well known and easy to see that the limit in the above expression exists and is finite. We refer
the reader to [6,7,10] for a detailed discussion of volume entropy in the context of metric graphs.

Proposition 2.3. Let k > 2 and L be as in Definition 2.2.
Then the limits
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log#{g € CRy: L(g) <R}

, .
= lim
£ R—

) R
and
h’é _ lim log#{w € Cy: £ (W) < R}
R—o0 R
exist and
h,;:h/ﬂzh’é.
Proof. Let M :=max{|aj|z: i=1,...,k} and m:=min{|a;|z: i=1,...,k}.

For each g € F there exists a cyclically reduced word vg such that |g| = |vg| and such that g
and vg agree except possibly in the last letter. Then |£(g) — L(vg)| < M. Moreover, the function
Fix — CRy, g — Vg is at most 2k-to-one. Therefore for every integer R > 0

#{g e CR: L(g) <R} <#{geF: L(g) <R} <2k#{geCR: L(g) <R+ M}

and

#{weC: Lo(w) <R} <#{ge R L(g) <R} <

3=

#{w eyt Lo(w) <R}
This implies the statement of the proposition. 0O

Theorem 2.4. Let k > 2 be an integer and let F = F(aq, ..., ax). Let f : (0, 00) — (0, 0c0) be a monotone
non-increasing function such that:

i 1/ -
(1) llgsolip feol/* < TR
(2) liminf f(x)/* > 0.
X— 00
Then:

(a) We have 0 < C¢ < oo on some neighborhood U on L, in Ay (moreover, only the assumption (1) on f
above is required for this conclusion).
(b) We have Cy # const on Ay.

Proof. The assumptions on f(x) imply that there exist N> 0 and 0 <07y <03 < ﬁ such that for
every x > N

oy < f(x) <03

Let L, = (%, e, %) € Ay. For any g € F, we have £.(g) = |g|/k. Then an easy direct computation

shows that h, =klog(2k — 1), so that ehee = 2k — 1k < alz Since the volume entropy h is a contin-

1

uous function on Ay (see, for example, [6]), there exist a neighborhood U of £, in Ay and 0 <c < >

such that ez < ¢ for every £ € U.
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Observe now that Cy < oo on U. Let £ € U be arbitrary. There exist M > 0 and ¢; with ¢ <¢1 < alz

such that for every integer R > 0 we have
#lw el Lo(w) <R} <Mk
Therefore

CrLy= ) ftcw)) =i > Ftcw)

weCy i=0 weCy, i<l (w)<i+1

<Y > f() < ZMc'“f(i) <00

i=0 weCy, i<l (w)<i+1

where the last inequality holds since c1 < 0—2 and f(x) <o for all x> N. Thus indeed Cf(£) < oo,
so that Cy < oo on U.

ForO0<t < k1T1 let £; =(t,¢t,...,t,1—(k—1)t) € Ag. Then, as follows from the proof of Theorem B
of [6] (specifically the proof of Theorem 9.4 on p. 25 of [6]),

limh,, =
t—0 £

Indeed, let I" be the subgraph of W consisting of the loops labeled by a; and ai. The restriction
L; of Ly to I' is a metric structure on I" of volume 1 — (k — 2)t. Therefore mﬁ is a volume-
one metric structure on I" with respect to which the length of a; goes to 0 as t — 0. Therefore, as
established in the proof of Theorem 9.4 of [6],

limh 1 . =oo.
t—0 T-Gk-2t

However,

1
M = T o e

and therefore
limh, =o0
t—0 Le
It is obvious from the definition of volume entropy that h £ S h., and hence

llmhg =00,
t—0

as claimed.
Hence there exists to € (0, ;= 1) such that for every t € (0, tg) we have ehee > + 2. Let t € (0, tp)

be arbitrary. We claim that C¢(L;) =
Since efzc > ai] + 2, by Proposition 2.3 there is Rp > N > 0 such that for every R > Ry we have

1 R
#{w el Lo(w)<R}> ((7 +1) .
1
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For every R > Ry

CrLo=Y flLew)= > f(Lw)= Y f®

weCy weCy, Le(w)<R weCy, Lt (w)<R
1 R 1 R
> (— + 1) fFR) > (— +1) of =1 +on*.
01 01

Since this is true for every R > Ry, it follows that Cs(L;) = oo.
Thus Cf(Ly) < oo while Cf(L) = oo for all sufficiently small t > 0. Therefore Cy # const
on A,. O

Theorem 2.5. Let k > 3 be aninteger and let F = F(aq, ..., ay). Let f : (0, o0) — (0, oo) be as in Theorem 2.4.
Then:

(a) We have Py < Cy < oo on some neighborhood U on Ly in Ay.
(b) We have Py # const on Ay.

Proof. Again, by assumptions on f(x), there exist N > 0 and 0 < 07 < 03 < ——— such that for every

(2k—1)k
x>N

of < f(x) <oy

By Definition 0 < Py < Cy. By Theorem 2.4 we have Cy < oo on some neighborhood U on L, in
Ay and hence Py < Cp <ooon U.

Put Fi_1:=F(a1,....a_1) so that Fy = Fy_q * (ar). For 0 <t < 15 let
t t t 1
Li=(=,2,....,0,2—(k=2=,-|€A
t (2 3 ) ( ) ) k
and

Lo=(L Lt wnt)ela
t=\27 2722 2 k=1

Thus ZZt € Ag_1 is a volume-one metric structure on Wy_;. Since k > 3, we have k — 1> 2 and
hence, exactly as in the proof of Theorem 2.4, lim;_,¢ hzz\r = 00.

For R > 1
bre:=#{g e Fi_1: Li(g) <R}.
Then
. . logbg
St = Rleoo R =hz, = 2”227
and therefore
lim s; = oco.
t—0

Hence there exists 0 < tp < ﬁ such that for every t € (0, tp) we have eSt > UL] +2.
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Fix an arbitrary t € (0, tp). Since e% > al] + 2, by there is Ry > N > 0 such that for every R > Rg
we have

~ 1 R
bre=#{ge it Lig) <R} > (a + 1) .

Note that for every g € Fy_, the element gay € Fy is primitive in F. Moreover, if g # g are distinct
elements of Fy_; then gia, and g»ay are not conjugate in Fj. Recall that by definition of £; we have
Li(ag) = % For R > 1 denote

Pre:=#{we P L, (w) <R}

Then for every R > Rp + % we have

R,
PRt >bR_%,t > (U— + 1) .

Hence for every R > Ry + %

PrLo= Y f(Lew)= Y fLw)= > f®

wePy wePy,le, (W)KR wePy,le, (W)KR

1 1
1 R=2 1 R=2 o[ 1
>(—+1) fR=2(—+1) of=0+oDf(—+1
o1 o1 01

Since this is true for every R > Rg + % it follows that P (L) = oo.
Thus Pf(Ls) < oo while Pf(Ly) = oo for all sufficiently small t > 0. Therefore Py # const on
Ag. 0O

[SE

3. Primitive elements in F (a, b)

In this section we will prove Theorem B.

Convention 3.1. Throughout this section let F, = F(a, b) be a free group of rank two.
Let « : F(a, b) — Z? be the abelianization homomorphism, that is, «(a) = (1,0) and «(b) = (0, 1).
Then « is constant on every conjugacy class and therefore « defines a map g :C, — Z2.

Definition 3.2 (Visible points). A point (p,q) € Z? is called visible if gcd(p,q) = 1. We denote the set
of all visible points in Z2 by V.

We will need the following known facts about primitive elements in F(a,b) (see, for example,
[5,11]):

Proposition 3.3. The following hold:

(1) The restriction of B to P, is a bijection between P, and the set of visible elements V C Z>.
(2) Let w € F(a, b) be a cyclically reduced primitive element and let o (w) = (p, q) € Z2.

Then every occurrence of a in w has the same sign (either —1,0 or 1) as p and every occurrence of b in w has
the same sign (again either —1, 0 or 1) as q. Thus the total number of occurrences of a*' in w is equal to |p|
and the total number of occurrences of b*! in w is equal to |q|.
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Definition 3.4 (Admissible function). We say that a function f : (0,00) — [0, 00) is admissible if it
satisfies the following conditions:

(1) We have f”(x) > 0 for every x > 0.
(2) There is some € > 0 such that limxﬁoox3+ef(x) =0

The second condition means that f(x) converges to zero asymptotically faster than ){3% as x — o0.
Note that an admissible function must be strictly positive and monotone decreasing on (0, co).

Theorem 3.5. Let f be any admissible function. Then the following hold:
(1) We have 0 < P (t) < oo for every t € (0, 1).

(2) The function P (t) is strictly convex on (0, 1) and achieves a unique minimum at t = 1/2. In particular,
P¢(t) is not a constant locally near t = 1/2.

Proof. For every (p,q) € V and t € (0, 1) denote

Zp.q® = f(tlpl+ A =0lgl) + f(tlgl + 1 —O)Ipl).

Note that if (p,q) € V then gcd(p,q) =1 and hence |p| # |q|. We can therefore partition V as the
collection of pairs (p,q), (q, p) of visible elements and every such pair has a unique representative
where the absolute value of the first coordinate is bigger than that of the second coordinate.

Let w € P, be arbitrary and let (p, q) = B(w). Proposition 3.3 and the definition of £; imply that
for any t € (0, 1) we have

L, (W) =tlp|+ (1 -1D)lql.

Let V' :={(p,q) € V: |p| > |q|}. Then we have

Prty= Y f(tc,w)= > f(tlpl+1—0lql)
weP; (p,q) eV
= Y f{tpl+A=0lgl) + ftlgl+ A =0lpl)= > gpa(®.
(p.g)eV’ (p.q)eV’

Fix some t € (0, 1). We can also represent Pf(t) as
o0
Prt)y=> > f(tlpl+ = 0)lql).

N=1 (p,q)eV,max{|pl,|q]}=N

Since f(x) is a monotone non-increasing function, if (p, q) € V, max{|p|, |q|} = N, we have

f(tlpl+ (1 =lgl) < min{ f(EN), f((1 =ON)} = f(cN)

where ¢ = max({t, 1 —t}. For every integer N > 1 the number of points (p,q) € Z? with |p| <N
lgl < N is 2N + 1)2.
Therefore
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Prty=) > Flelpl+a=olal) < > feN)

N=1 (p,q)eV,max({|pl.lql}=N N=1 (p.q)eV,max{|p|,lql}=N

2N+ 1% f(cN) <00

¢

<
N

I
-

because of condition (2) in the definition of admissibility of f(x). Thus 0 < P¢(t) < oo for every
te(0,1).
Note that for each (p,q) € V’
gpq® = f'(tlpl+ A =0lal)(Ipl — 1) + f'(tlgl + (1 = O)Ipl)(lal — Ipl),

g o© = " (tlpl+ A =0lal) (1p] — lal)” + £ (tlal + (1 = 0)lpl) (lgl - 1p])°.

Since |p| > |q| and, by definition of admissibility, f”(x) > 0 for every x € R, we conclude that
gg.q(t) > 0 for every t € (0, 1). Hence gp ¢ is strictly convex on (0, 1). Moreover,

g;,q(%) =f'<% + |g—l)(lpl — lql) +f’(% + %)(m\ —Ipl)=0.

Since gg’q >0 on (0, 1), it follows that g, 4 is strictly convex on (0, 1) and achieves a unique mini-
mum on (0,1) att = %

Since 0 < Py < oo on (0,1) and Py =3, o\cys &p,q. it also follows that Py is strictly convex on
(0,1) and achieves a unique minimum on (0,1) at t = % O

4. Exploiting convexity

In this section we combine the ideas of the previous two sections and establish Theorem C from
the introduction.

Theorem 4.1. Let k > 2 and let f : (0, o0) — (0, 00) be monotone decreasing function such that the following
hold:

(1) The function f (x) is strictly convex on (0, co).

: 1/x
(2) limsup (0™ < G 7%

Then there exists a convex neighborhood U of L, in Ay such that 0 < Py < Cy < oo on U and both C¢
and Py are strictly convex on U. In particular, C¢ # const on U and Py # const on U.

Proof. By Theorem 2.4 there exists a convex neighborhood U of L, in A, such that 0 < Py < Cy <00
on U. We will prove that Py and Cy are strictly convex on U.

Let D be the set of all k-tuples of integers m = (my,...,my) such that m; >0 fori=1,...,k and
mq+---+my > 0. For each m = (mq,...,my) € D let Q;; be the set of all w € C; such that w involves
exactly m; occurrences of a;—L1 fori=1,...,k and let qp := #(Qp;). Note that for every w € Qp, if
L=(x1,...,X) € Ay, then we have

Lo(w) =mix1 + - - + MXg.

Denote by fp : Ay — R the function defined as



1. Kapovich, 1. Rivin / Journal of Algebra 320 (2008) 3659-3670 3669
fm@r, o x) o= flmixg + -+ mexe), (X1, ..., X) € Ay

The function f(x) is convex on (0,00) and the function (x1,...,Xxg) > mixq + --- + myXx; is linear
on Ayg. Therefore fp; is convex on Ay.
Then for any £ = (xq,...,Xx) € A we have

CrL)y= dmfm(L).

meD

Since each f, is convex on Ay, it follows that Cy is convex on A. We claim that Cy is strictly convex
on U. Let D be the subset of D consisting of all the k-tuples having a single non-zero entry equal
to 1, that is, D; is the union of the k standard unit vectors in ZK. Let m; =(0,...,1,...,0) € Dq
where 1 occurs in the ith position. Then Qpn; = {[a;], [ai‘1]} and qm; = 2. Also, fm, (X1, ..., %) = f(x;)
for every (x1,...,Xy) € Ag.

Put g:= fin, +--- + fm, : Ak = R, so that

g1, X)) = fx1) + -4+ FX),  (X1,...,X) € Ag.

It is easy to see that g is strictly convex on Ay since f is strictly convex on (0, c0). We have

Cr=Y amfm=28+ Y. qufn

meD meD—Dq

Since Cy < oo on a convex set U and since g is strictly convex on U and Zm€D7D1 Gm fm is convex
on U, it follows that Cy is strictly convex on U as claimed.

The proof that Py is strictly convex on U is exactly the same as for Cy above. The only change
that needs to be made is to re-define Q,, for each m = (mq,...,my) € D as the set of all w € Py such
that w involves exactly m; occurrences of al.il fori=1,...,k. O

Remark 4.2. Let Z; be the set of all root-free conjugacy classes w € C, that is, conjugacy classes
of non-trivial elements of Fj that are not proper powers. It is not hard to show, similar to Proposi-
tion 2.3, that if £ is a metric structure on Wj, then

he =H£

where

~ . <
hpi= lim log#{w € Zy: £y(w) R}.
R—o0 R

If one now re-defines the McShane function Cy as Sy:

Sp:dk— (0,00l Sp(L)= Y f(ec(w)) where Le A,

weZy

then the proofs of the parts of Theorem A and Theorem C dealing with Cy go through verbatim
for Sy.
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Problem 4.3. The Outer Space CV(Fy) is Out(Fy)-equivariantly homeomorphic to the projectivization
Pcv(Fy) of the space cv(Fy) of all minimal free and simplicial actions of F; on R-trees. In this model
of Pcv(Fy) the normalization is chosen by the volume of the quotient graph for the action of Fj on
a tree T € cv(Fy). However, one can also consider another realization of Pcv(F;) where we normalize
by volume entropy instead. Namely, consider the subset CV} (Fy) € cv(Fy) consisting of all T € cv(Fy)
such that the quotient metric graph T/Fy has volume entropy equal to 1. It is easy to see that the
restriction to CVj(Fi) of the natural projection map cv(Fy) — Pcv(Fy) gives an Out(Fy)-equivariant
homeomorphism between CVp(Fy) and Pcv(Fi). It is thus natural to ask if there exist analogs of
McShane’s identity for the subset CV,(Fy) C cv(Fi). While we still expect the answer to be negative,
the methods of the present paper are insufficient to address this question, and more sophisticated
analutic arguments are needed.
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