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1. Introduction
1.1. Background

When a linear algebraic group G acts on an affine variety V over a field k, the orbit of x € V is
the set

G-x={g-x|geG}.

Applications of invariant theory, such as computer vision, dynamical systems, and structural chem-
istry, demand constructive and efficient techniques to distinguish the orbits of a group action. Much
recent work to distinguish orbits has employed functions in the invariant ring,

KIVI®={f eklV]| f(g-x = f(x) Vg G}.
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In fact, for any linear algebraic group G, the invariant ring contains a finitely generated subalgebra S
with the following property: Let p,q € V have disjoint orbits, and suppose there exists f € k[V]¢ such
that f(p) # f(q). Then there exists h € S such that h(p) # h(q) (see [1]). We say that the function h
(and the algebra S) separates the orbits of p and q. Hence the functions in S, called separating invariant
polynomials, separate as many orbits as do the polynomials in k[V]°. Note that G - p = G - q implies
G- p =G -q, because the orbits of a linear algebraic group are open in their closures.

A subalgebra S of separating invariant polynomials has several weaknesses. For one, existence
proofs for S may not be constructive for all groups G. One can classify a linear algebraic group by its
radical R(G): its largest connected normal solvable subgroup. Kemper’s 2003 algorithm [2] computes
a separating subalgebra S C k[V]% but assumes that G is reductive, that is, that the unipotent part
of R(G) is trivial. Now, generating sets for k[V]° do have polynomial degree bounds for semisim-
ple groups (where R(G) is trivial) [3], tori [4], and linearly reductive groups (whose representations
decompose uniquely into irreducibles) [5]. By contrast, for general G, algorithms to compute orbit-
separating, invariant polynomials do not have good complexity bounds. Nor do they have good bounds
on the size of a separating subset or the degrees of its elements. Kemper’s algorithm [2], for example,
requires two Grobner basis calculations, a normalization algorithm, and an inseparable closure algo-
rithm. Some facts are known in special cases. If V is a representation of G, Domokos in 2007 showed
there exists a separating set S for the action on V™ such that each f € S involves variables from no
more than 2dim(V) of the copies of V [6]. When G is finite, Kemper in 2009 provided a bound [7],
polynomial in |G|, on the size of a separating set.

As a more serious limitation, the invariant ring k[V]¢ will usually fail to separate orbit closures.
So any subalgebra S C k[V]¢ will usually fail as well.

Example 1.1. Let the multiplicative group G = k* act on V = k% by scaling: for g € k*, define
g - (a,b) = (ga, gb). On the one hand, there are infinitely many orbits: the origin and, for each
(v1,vy) € k2 — (0,0), the sets {(tvq,tvy) | t € k*} of punctured lines through the origin. Thus every
orbit closure includes the origin. The invariant polynomials, which are continuous functions under
the Zariski topology, will then have the same value on each orbit as at the origin. Hence the ring
of invariant polynomials is k[x, y]® =k, the constants, and the functions here can detect none of the
infinitely many orbits. This phenomenon occurs in any representation where two points p,q have
G -pNG-q+ 9. Thus separating orbits with invariant functions requires functions sensitive to locally
closed sets.

The goal of this paper is to compute invariant, orbit-separating functions V — k without re-
strictions on the algebraic group. It is worth noting that the orbit-membership decision problem
can already be solved in polynomial time. The orbit-membership decision problem asks, “Given,
x,y € V, does there exist g € G such that gx = y?” One solution employs an “effective nullstellen-
satz” algorithm that checks if ideals are proper, as follows. For a representation V = k" of G, choose
k[G] =k[z1, ..., z¢]/I(G) for some ideal [(G), and consider a representation p : G — GL(V). Note that
two points x = (X1,...,%1), Y = (¥1,...,¥n) € V lie in the same G-orbit if and only if the ideal J
in k[G] generated by the expressions Zj,o(zl,...,zz)ij -Xj — yi, 1 <i<n, is a proper ideal. Giusti,
Heintz, and Sabia in 1993 [8] produced a randomized algorithm that can check the properness of |
in sequential time polynomial in n but exponential in .

One can also solve the orbit-membership decision problem via quantifier elimination. Choose gen-
erators hi,...,hs for the ideal I(G) defining G in Af. For 1 <i<n, let Fi(x,y,2) € k[X x X x G]
be the polynomial F; = Zj,o(z1, ..., Z0)ij - Xj — ¥i, and let F,,; =h; among the chosen generators
of I(G). Then x and y lie in the same orbit if and only if they satisfy the formula

P, y)=3z1---3zg(F1(X, ¥, 21, ...,20) =0 A+ A Fnys(X, ¥, 21, ..., 20) = 0).

In 1998, Puddu and Sabia produced a well-parallelizable algorithm [9] without divisions that can elim-
inate the block of quantifiers in P with sequential complexity polynomial in the number of equations
and their degree, but exponential in ¢. That is, their algorithm finds a formula equivalent to P but
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only involving the vanishing and nonvanishing of polynomials in the coordinates of x and y, over an
algebraically closed field. For an approach over the integers Z or Z/pZ, see the 1983 paper [10] of
Heintz.

1.2. Separating orbits with the quasi-inverse

Alternatively, the new algorithm below produces invariant functions V — k that separate orbits in
the style of classical invariant theory, without restrictions on the linear algebraic group. To overcome
the limitations of the polynomial functions on V, though, we introduce the quasi-inverse f* of a
regular function f e k[V]:

F(p) = {Uf(p) }“gia_éo

Define the a ring EV\] of functions on V formally as follows. Putting R = k[V], let I/ﬁ denclt\e the
ring generated by the set R U {f* | f € R}. Of course, relations arise among the generators of R!: for
example, the definition of the quasi-inverse on V implies that for every f € R, one has fzf* =f

and f(f*)? = f*. Continuing in this way, define Ri to be the rmg generated by the set Ri~ Ri—T U{f*|

f € Ri=1}. Note that for every i < ] there are inclusions Ri <> RJ. In conclusion, define the ring R of
functlons on V as the direct limit R = lim R' Since each f € R lies in some R!, we can compute f
via a straight line program with inputs m R, that is, with a finite list of sums, products, and quasi-
inverses of elements of R. We discuss straight line programs in Section 2.1 below. For now, note the
following, for elements f,h € k[V]:

o 1— ff*e R1 is a characteristic function for the set V(f) €V where f vanishes: i.e, 1 — ff* has
the value 1 on V(f) and the value zero elsewhere. .

o If D(f) denotes the complement of V(f), then ff*(1 —hh*) € R is a characteristic function for
the locally closed set D(f) NV (h) C V.

So functions in R can identify more complicated sets than can the polynomials. The definition of the
quasi-inverse and the ring R appear to be new. If R is an arbitrary commutative ring with 1, the
thesis [11] of the author describes an alternative construction of R, its commutative algebra, and the
structure of Specﬁ.

For a representation of any fixed linear algebraic group G, we seek to compute a finite set C C ﬁv\]
of invariant functions that separate orbits. That is, if p, q lie in different orbits, then some function
f eC has f(p) # f(q). Even better, we would like the evaluation of f at p to be reasonably simple.
Now, k[V] has a grading by degree, but Hv\] does not. So we measure the complexity, or length, of
the f as straight line programs over HV\] granting unit cost to all ring operations and the quasi-
inverse. Of course, the evaluation of such f at p € V requires branching, but counting the operations
needed to compute f serves as an analog of classical degree bounds for invariants.

Over an algebraically closed field k, fix an embedding of an m-dimensional linear algebraic group
G < Af, namely by choosing the ideal I(G) C k[z1, ..., z¢] of polynomials vanishing on G. Let k[V]=
k[x1,...,xn], let p: G <> GL,(k) be a representation, let r be the maximal dimension of an orbit, and
let N = max{deg(p;j)} be the degree of the representation.

Theorem 1.1. Let G be any linear algebraic group and V a representation. There is an algorithm to produce a
finite set C C k[V] of invariant functions with the following properties:

1. The set C separates orbitsin V.
2. The size of C grows as O (n2N2¢0+1D+3r+2y

3. The f € C can be written as straight line programs, such that the sum of their lengths is
0 (n3 N3[(T+1)+4r+3)'
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Corollary 1.1. Let G be any linear algebraic group and V a representation. The ring of functions HV\] is an ex-
tension of the ring k[ V] sufficient to produce separating, invariant functions with polynomial length as straight
line programs.

Example 1.2. Recall the action of the multiplicative group G =k* on V =k? via g - (a,b) = (ga, gh);
the only invariant polynomials are the constants. Nevertheless, the algorithm of Theorem 1.1 produces
a set C including, after some simplification, f;1 =1 — xx*, fo = —yx*, and f3 =1 — yy*(1 — xx*).
Consider the chart below of the values of the f; at various points, where a, b # 0:

fi fo | f3
0,0) 1 0 1
@0) | 0 0 0
(0, b) 1 0 0
(@b) | 0 | =bja | 1

Recall that the orbits of this action are the origin and, for each (vi,vy) € k? — (0,0), the sets
{(tvq,tvy) | t € k*}. Thus f1, f2, f3 are constant on orbits, i.e. invariant, and separate the orbits as
well.

To see the main idea of the algorithm of Theorem 1.1, choose p € V =k" and consider the orbit
map oy : G — V defined by o, : g+ g - p. Note that G- p is defined by the polynomials in the
kernel of O‘; 1 k[X1,...,X%] = k[G]. In the choice of the ideal I(G) = (hy,...,hs) C k[z1,...,z/] of
polynomials vanishing on G, let M = max{deg(h;)}. Then recalling the parameters N,r, and ¢ above,
there is a degree bound N"M¢™ = §(N), such that G- p is defined by the vanishing of polynomials
in k[x1,...,xn] up to degree §(N); see Section 3 below. Choosing a basis for k[V], we may compute
kera; in degrees up to §(N) via Gaussian elimination. Now, the entries of the kernel vectors vary
with p, but they canncii\n general be written as regular functions of p. We may nevertheless write
them as functions in k[V]; these functions form the set C. The functions in C are invariant and
separate orbits because the algorithm computes the reduced row echelon form of a matrix for o,
up to degree §(N): points p,q € V lie in the same G-orbit if and only if keroy = keroq* if and only
if, upon fixing a basis of monomials for k[V], matrices for o and o/ have the same reduced row
echelon form.

The polynomial length of the functions in C arises (1) from the degree bound §(N), which is
polynomial in N, and (2) because the algorithm looks in k[G] for algebraic relations among products
of the 0; (x;): thus the Hilbert function of k[G] controls how many such products the algorithm must
consider. As a result, this new algorithm has complexity polynomial in the parameters n and N of
the representation and exponential in £ - dim G. Recall that the effective nullstellensatz and quantifier
elimination algorithms for the orbit membership problem had complexity at least exponential in £.
So the ability to write separating functions from the ring HV\] comes at the cost of a factor of dimG
in the exponent.

We proceed as follows. In Section 2, we first define straight line programs in k-algebras with a
quasi-inverse. Next, given a matrix A(p) whose entries are functions in k[V], we provide straight
line programs for the reduced row echelon form and kernel of A(p), such that the entries of the
kernel vectors will be functions of p in HV\] (Recall that in practice, A(p) will be a nBtiiX for
G;,‘. and the entries of vectors in ker A(p) are the invariant, orbit-separating functions in k[V] that
we seek.) In Section 3 we prove the degree bound §(N) for the defining polynomials of an orbit
closure. In Section 4, we provide an algorithm that computes invariant, orbit-separating functions
in HV\] We show that these functions have polynomial length as straight line programs in HV\]
and we establish the polynomial bound for their number in terms of n and the degree N of the
representation.
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2. Matrix computations using the quasi-inverse
2.1. Straight line programs

Before describing functions for the kernel of a matrix, we introduce a scheme to measure the
complexity of such functions. Indeed, the degree of a polynom/ial\in k[V] provides a measure of the
polynomial’s complexity, but there is no grading by degree in k[V]. Instead, we adapt the framework
of straight line programs over a F-algebra, F any field. For a deeper, traditional treatment, see the
book [12]. Let V be a vector space, and let R = F[V]. First define A= (a_g,...,a_1) € (ﬁ)s to be an
input of length s. A straight line program I" is a finite, ordered list of instructions I" = (Jp, ..., [t—1).
Each instruction I is of the form (x; j, k) or (x; j), where = is an operation (see below) and j, k are
positive integers. The program I' is executable on input A with output (a_s, ..., a) if, for i >0,

ai_j+aip if=(+;j,k),
ai—j—aji_ ifi=(=;jk),

ai_j-ai— if I =(x;j,k),

a; = where j,k <i+s.

a_; if It = (qi; ),
c if I = (const; ¢) forc € F,
aj_j if I7 = (recall; j)

Thus a program is executable if and only if each instruction Ii = (x; j, k) or I; = (x; j) references
entries with i — j, i —k > —s. The length t of the list I" is the length of the program, which measures
its computational complexity. The “recall” instruction serves to collect relevant computations in the
last entries of the output. The definition of a straight line program in [12] over a F-algebra does
not include the “recall” instruction (which collects computations at the end of the output list) or the
quasi-inverse “qi” operation. After including the “qi” operation, we can write straight line programs
for functions in R.

Define the order-d output of I" by Outy(I", A) = (@;—gd,...,0r—1) € (E)d, where t = |I"|. We omit the
d where convenient. Write I'® o ') for the composition of two straight line programs, in which the
input of I'® is Outy(I'V, A) for some d depending on I'®. Then I'® o I'D has input A, and we
execute I'® o 'D by concatenating the instruction lists.

2.2. The reduced row echelon form program

Let A(p) = (a;;) be a matrix over k[V], whose entries are functions of p. Then the reduced row

—

echelon form (RREF) of A(p) also varies with p. This section constructs formulas in k[V] for the
entries of a matrix R4(p) such that for any choice of p € V, Ra(p) is the RREF of A(p). The lengths
of these functions as straight line programs are cubic in the dimensions of A. It is then easy to read
off the kernel of A from R4. Ultimately, in Section 4, we will take A(p) to be a matrix over k[V] for
the orbit map a;‘ :k[V] — k[G] up to degree §(N), as outlined above. The invariant, orbit-separating
functions that we seek will be the entries of the basis vectors for ker A(p). Henceforth we sometimes
write just A for A(p) and just R4 for Ra(p).

Now, Berkowitz in 1984 [13] and Mulmuley [14] in 1986 developed tools for well-parallelizable
linear algebra without divisions. We eschew those tools and instead compute the entries of R4
from A by imitating Gaussian elimination. This approach preserves a transparent connection between
the ideal in k[V] of an orbit closure (which ker A will ultimately represent) and the desired orbit-
separating functions in HV\] More generally, this approach also demonstrates how functions in the
ring k[V] can encode algorithms in linear algebra and algebraic geometry.

Finally, we do not compute the traditional reduced row echelon form of A, but instead a modified
version that assists in the identification of pivot entries. It becomes simpler to compute the kernel
of A when we know the locations of the pivots of the RREF of A. To this end, define the triangular
reduced row echelon form (tRREF) of an m x n matrix A to be the n x n matrix Ry = (rjj) whose jth
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row r; is nonzero if and only if the RREF of A has a pivot in column j. In that case, r; is the row of
the RREF of A containing that pivot. For example,

1 20

RREF(A):(O o1

120
) corresponds to tRREF(A) = (0 0 0) .

0 0 1
Note that the tRREF of A is a square matrix. When we ultimately compute the kernel of A, we will
exploit the following fact: the (traditional) RREF of A has a pivot in column j if and only if rj; =1 in
the tRREF.

Proposition 2.1. Let V be a vector space over any field k, and let A(p) = (ajj) be an m x n matrix with

entries in m Then there exists a straight line program IR over HV\] of length O (mn? + n3) such that
Ra(p) =Out,» (I'R, (aij)) is the tRREF of A(p) for every choiceof pe V.

Note that this proposition does not require k to be algebraically closed, but we impose this condi-
tion in Theorem 1.1 to perform the geometry in that theorem’s proof.

To prove Proposition 2.1, the following algorithm recursively computes the tRREEo\f a matrix A(p)
via Gaussian elimination. Following the algorithm are formulas for functions in k[V] that compute
the result of each step of the algorithm. Concatenating the straight line programs for these functions
produces the program I"tR,

Algorithm 2.1. INPUT: An m x n matrix A(p) = (a;j) over k[V].

—

OUTPUT: An n x n matrix Ra(p) over k[V] that is the tRREF of A(p).

1. For i =2,...,m, exchange the first row of A with row i if a;; # 0. Label the resulting matrix
B = (bjj). After these steps, either by #0, or bj; =0 for all i.

2. Multiply by1 by b};, and multiply the rest of the first row of B by (1—b11b}; +b7,). This operation
is equivalent to dividing the first row by by if b11 # 0. Label the resulting matrix C = (c;;).

3. If n=1, OUTPUT R = (c11)-

4. While n > 2,
(a) For i =2,...,m, subtract c;1 - (C11,...,C1n) from row i. Label the resulting matrix D = (d;;).

Then dj; =0 for all i > 2.

(b) Let D’ = (dij)j>2 and D" = (dyj);,j>2, illustrated below:

* *k *
0 D 0
D = =
: . D"
0 0

Let D be the m x (n — 1) matrix formed by appending a row of zeros to the bottom of D”;
then D’ and Dy have the same dimensions.

(c) Compute E = (1 —dy1)- D’ +di1 - Dy.

(d) Recursively compute the tRREF of E; call it Rg, an (n — 1) x (n — 1) matrix.

(e) Let R/, be the n x n matrix below:

dip - din
Ry=( 0 Rg .
0

(f) Let ry be the kth row of R, = (ryj). For k=2, ...,n, subtract dy - r; from the first row of R/,.
OUTPUT the result of these reductions as R4, which is the tRREF of A.
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Proof of correctness of Algorithm 2.1. If A is an m x 1 matrix, then Steps 1 through 3 of the algorithm
produce the tRREF of A. Now let A be an m x n matriX, and proceed by induction on n. Steps 1
through 4(a) of the algorithm follow Gaussian elimination to clear aaq,...,am1 if the first column
of A contains an nonzero entry. The result is the matrix D. If the first column of D contains all zeros,
then we should recursively compute the tRREF of the remaining columns, that is, of the submatrix D’
defined in Step 4(b). If instead di; = 1, then we should compute the tRREF only of rows i > 2 and
columns j > 2, that is, of the submatrix D”.

Now, our goal is to compute the tRREF of A with straight line programs whose inputs are the
entries of A. The programs must continue the elimination process whether D’ or D” is the correct
submatrix for recursion. To meet this requirement, we must first append a row of zeros to the bottom
of D” in Step 4(b), so that the result Dj has the same dimensions as D’. Then we compute E =
(1 —dq1) - D’ +dq1 - Dy. Note that E = D’ precisely when dy; is zero. Otherwise, E = Dy, as required.
Thus in Step 4(d) we can recursively compute the tRREF Rg of the m x n — 1 matrix E using straight
line programs. By the induction hypothesis, Rg is an (n — 1) x (n — 1) matrix.

With Rg in tRREF, it remains to reduce the first row of the matrix R/, defined in Step 4(e). In
Step 4(f), we let r; be the kth row of R/,. Since R is in tRREF, we know that for k > 2, r; # 0 if and
only if Rg has a pivot in column k, if and only if r, =1, if and only if the tRREF of A should have a
pivot in column k as well.

There are two cases. If d11 # 0, then there is a pivot in the first row of R4, the tRREF of A. In this
case, in Step 4(f) we subtract dqy - ry from the first row of R/, for all k > 2, to clear the entries of r
in precisely the columns k where R4 has a pivot.

If di1 =0, then the first row of R4 should be zero. Recall that when di; =0, in fact Rg is the
tRREF of D’, and the first row of D’ is (d12, ..., d1n). Since we compute Rg by Gaussian elimination,
the vector (diz,...,d1n) is in the span of the rows of Rg. Therefore, subtracting dyy - ry, k > 2, from
r; yields that R4 will have all zeros in its first row as required. The induction is complete. O

—

Below are formulas that give rise to straight line programs for functions in k[V] that compute
each step of the above algorithm. That is, if the input to a step is the matrix (x;;) over k[V], then

we provide formulas for functions y;; € m such that the matrix (y;;) is the output of that step.
Concatenating these programs provides the straight line program "R, and we verify its length.

Step 1: For i =2, ..., m, the first step exchanges the first row of (a;;) with the ith row if a;; =0.
Hence for an m x n input matrix X, this step requires m — 1 programs E; such that Y = Outp (E;, X)
exchanges the first and ith rows if necessary. The following formulas describe the entries of Y = (y;;):

yi1 =x11 + (1 — x11x7xi1,

yij=x1j+ (1 =x11x}7) - (xij —x1;) forall j>1,
Vit =Xi1 - X11X] 1,

Yij =X1j +X11X]; - (X —xq15) forall j > 1,

Yij =X forallk##1,i,and forall j.

For example, the straight line program for y11 in E; takes inputs x17 in position —2 and x;; in position
—1, and then performs the following steps:
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The formulas for the other y;; have similarly obvious representations as straight line programs. If
we concatenate these programs within E;, so that all the entries of Y appear in various (known!)
positions in the output, then we can save the recall steps for the end, and we need only compute xj;,
x11X];, (1 —=x11x7;), and (x;; —x1;) once. With these efficiencies, the program E; introduces one quasi-
inverse, one call to k, 3n additions, and 2n multiplications. Thus the concatenation of E;, ..., E;_q
requires 2n(m — 1) multiplications, 3n(m — 1) additions, n — 1 constants from k, n — 1 quasi-inverses,
and mn recalls to collect the entries of Y in the last mn cells of the tape. Call this concatenation I'E;
we will use it later to collect nonzero rows of a matrix.

Step 2: of the algorithm requires one quasi-inverse, one subtraction, one addition, n multiplications,
and n recalls.

Step 4(a): is achieved with the following formulas on an m x n input matrix (x;;):

yi1=0 foralli>1

Yij =Xij —X1j - X1 - x11Xj; foralli, j>1.

These programs require (m—1)(n—1) additions, (n—1)(m— 1) multiplications, and mn recalls. Step (5)
next requires one subtraction, m(n — 1) additions, 2m(n — 1) multiplications, and m(n — 1) recalls.
Step 4(c): has formulas that are clear from the algorithm, requiring one constant call, one subtrac-
tion, 2mn multiplications, and mn additions.
Step 4(f): requires the following formula for rqj, j > 2:

riji= (0 =rj) - (rij+ (=ra2 - T12r2,j — 133 - T13733,j — -+ - = Tj_1,j—1-T1,j-1Tj-1.))),

This formula sets ri; = 0 if there is a pivot in column j, that is, if r;; = 1. Otherwise, the formula
subtracts from rq; the effects of clearing columns < j. The reduction of rq; requires one call to k, j
additions/subtractions, 2(j — 2) + 1 multiplications (since j > 2), and n? recalls, so reducing the first
row has total complexity O (n2).

Given an m x n matrix, Algorithm 2.1 performs the above computations n times, since each recur-
sion handles a matrix with one fewer column. Reviewing the counts of operations in each step on
an m x t matrix X, we see that the fastest growing quantities are mt and 2, for t =1,...,n. So for
large t, the number of operations is O (mt + t2) for each recursion. Recalling the formulas

n n
1 1
tE_]t:En(n—H) and ;t2:En(n+1)(2n+2),

we estimate that for a large m and n, the total length of I'*R is 0 (mn? +n3).

Example 2.1. Recall the action of the multiplicative group G =k* on V =k? via g - (a,b) = (ga, gb).
We can choose k[G] =k[t, %] > k[z1,22]1/(1 —2122) via t — z1, and hence choose £ =2 to put G C A2
Then

p(g) = p(z1,22) = <ZO1 0 ) ,

21

so writing p = (a,b) € V, we obtain o,(z1, z2) = (z1a, z1b). Thus a;‘ 1 k[x, y] — k[G] sends x +— az;
and y — bz;. A matrix for o} in degree 1 is

p
A(p) = (g g)
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Let us follow Algorithm 2.1 and write functions for the tRREF of A(p). To make this example as
illuminating as possible, we will skip steps like Step 1 that have a trivial effect on the output. Step 2
yields

aa* b(1 —aa* +a*)
0 0 ’

For simplicity we skip Step 4(a), because the second row is already zero. In Step 4(b), D’ = (b(1 —
aa* + a*),0)T, where T denotes transpose, D” = (0) and D/ = (0,0)T. Thus E = (1 —aa*) - D' =
((1 — aa*)b(1 — aa* + a*), 0)T. Now apply the algorithm again to E to obtain a 1 x 1 matrix

Re = ((1 - aa)b(1 —aa” +a%) - [(1 —aa)b(1 — aa* +a)]") (1)
= ((1 - aa")b(1 - aa* +a*) - (1 — aa*")*'b*(1 — aa” + a*)") )
= ((1 — aa*)bb). )

Of course, the algorithm writes down only line (1) for Rp. To keep this example clear, we obtain line
(2) by noting (fg)* = f*g* for f,g e k[V], noting (1 —aa*)(1 —aa*)* = (1 — aa*) Va € k, and noting
(1 —aa*+a*)(1 —aa* +a*)* =1 Va ek. In Step 4(e) we write

A=\ 0 (1-aabb*

, <aa* b1 — aa* +a*)>
Finally, the reduction in Step 4(f) yields

Ry— (aa* b(1 —aa* +a*) —b(1 —aa* +a*)- (1 — aa*)bb*)

0 (1 — aa*)bb*
_ (aa* ab
“\ 0 (1-aa*)bb*

after simplifying and recalling b2b* = b. It is now straightforward to check that R4(p) is the tRREF
of A(p) for all p € k.

2.3. The kernel of a matrix in tRREF

Finding the kernel of a matrix R in RREF is equivalent to solving the system of equations R -
x1,....x)T =0: for every pivot rj, write an equation

Xj = =Ti,j+1Xj+1 = Ii j42Xj+2 =+ = TinXn.

Set each free variable equal to 1 in turn, set the other free variables to 0, and read off the vector of
values in the pivot variables. These vectors give a basis for the kernel of R.

To compute the kernel of an m x n matrix A, we use the n x n tRREF matrix R4 containing the
rows of the RREF of A: recall there is a pivot in the jth column of the RREF if and only if the row
containing that pivot is jth row of R4 = (ryj), if and only if r;; = 1. Otherwise, rj; = 0.

Lemma 2.1. Let V be a vector space, and let R4(p) = (rij) be the n x n tRREF overm of a matrix A(p) over
K[V ]. Then there exists a straight line program I"'X of length O (n?) such that Out,2 (I'X, R 4) computes a basis
for the kernel of A(p), forany p e V.
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Proof. The kernel of A is given by the vectors ¢1, ..., ¢y, in terms of R4 = (ry;), as follows:
jth place
~ =
oj = (l—rjj)-(—ru,—rzj,..., 1 ,...,—Tnj).

First recall that the kernel of a RREF matrix has one basis vector for each non-pivot column. So ¢; =0
if and only if column j of the RREF has a pivot. Otherwise, ¢; # 0, as follows: Put the free variable
xj :=1. Now, ri; = 0 unless there is a pivot in column k of the RREF. Set each pivot variable x, equal
to the negation of the jth entry of the row containing that pivot.

Of course, rij =0 whenever i > j, but such simplifications complicate the formulas without im-
proving the asymptotic length of their straight line programs. As written, each ¢j, j=1,...,n,
requires two constants from k, one addition, n scalar multiplications, and n other multiplications.
Upon adding recall instructions, this straight line program computing the kernel has length 0 (n?). O

Example 2.2. In the running example of k* acting on V = k2, writing p = (a, b) we obtained the tRREF
matrix

aa* a*b
Ra(p) = ( 0 (1 —aa*)bb*)'
The formulas in the proof of Lemma 2.1 yield vectors

¢1=(1—ada") (1,0
=(1—aa*,0),

¢2=(1— (1 —aa*)bb*) - (—a*b, 1)
= (—a*b,1— (1 — aa*)bb*)

making repeated use of f2f* = f, f(f*)? = f* for all f eﬁv\]. It is easy to check that ¢q, ¢, give
generators for the kernel of R4 for all p = (a, b), which is the tRREF of

A:(g g).

Lastly, the main algorithm in Section 4 below that computes orbit-separating functions requires
functions to perform the following task: given a matrix A for a linear map, compute a basis for the
image of A from among the columns of A. One needs only to choose the columns j of A such that
the RREF of A has a pivot in column j, that is, the columns j such that the tRREF R4 = (ry;) of A has
rjj = 1. Hence the diagonal of R4 indicates which columns of A to choose. We now write a straight

2.4. Collecting nonzero rows

line program I'® over HV\] that collects among the columns of A a basis for the column space.

The input to I'B is an m x n input matrix X over m and an m-vector v over HV\] such that the
functions of v only take the values 0 and 1. (In application, the vector v will be the diagonal of the
tRREF R4.) Form a new matrix X’ by adjoining v as a column to the left side of X:

VioX11 e X
|2 X

Vm Xm1 - Xmn
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Recall the program I'E for functions that exchange the rows of an input matrix X to produce an
output matrix Y = (y;;) with yqq # 0 if possible. Let Y = Oout(I"E, X’); the first row of the output will
be the first row indicated by v. Record y) := (¥12, ..., ¥1,n+1). Then recursively apply I'E to the last
m — 1 rows of Y, to obtain row vectors yj,...,yy,. Let I'8 denote the resulting concatenation of the
I'E’s, so that the output of '3 on input v and X is an m x n matrix Y’ whose rows are Vi ¥
The rows of X indicated by v appear first in Y/, in their original order. Recall that the length of I'E
applied to an s x (n+ 1) matrix is O(sn). Summing sn for s=1,...,m yields that the program I'E
has length 0 (m?n).

3. Degree bounds for orbit closures

Let V € A" be an affine variety whose components all have codimension m. Define the degree of V
to be

deg(V)=#HNV,

where H is a generic linear subspace of dimension m. In this section we relate the degree of a variety
to degree bounds of polynomials that can define that variety. By then bounding the degree of an
orbit closure G - p, we can bound the degree of the defining polynomials. The following denotes the
vanishing sets, in a variety V, of polynomials or an ideal I in k[V]:

V(fi..... f={pe V| fi(p) = 0Vi},
Vih={peV|f(p)=0Vfell

The next lemma is well known.

Lemma 3.1. Let V =V (f1, ..., fr) have codimension m in A". Then there exist m generic linear combinations
gi =y _ajj fj such that

W:=V(g1,....gm) 2V
and W has codimension m.

Here, “generic” means that the set of coefficients a;; for which the lemma holds is Zariski dense
in the affine space over k of choices for all the coefficients. Heintz [10] proves a stronger version of
the following statement (his Proposition 3), as well as many related results.

Proposition 3.1 (Heintz). Let V € A" be an irreducible, Zariski closed subset of degree d. Then there exists an
ideal q, generated by polynomials of degree < d, such that V(q) = V.

Now consider a linear algebraic group G acting on affine n-space. When we can bound the de-
gree of an orbit closure G -x, then we can produce a degree bound for polynomials f; such that
G-x=V(f1,..., fr). For an overview of bounds for the degrees of orbits and the (polynomial) de-
grees of generating invariants, see Derksen [5]. The proof below follows the strategy of the proof of
his Proposition 1.2. Henceforth set the following constants:

m:=dimG.

Fix an embedding of G in A’.

Fix generators hy, ..., hs for the ideal I(G) of functions vanishing on G, and set M = max{deg(h;)}.
Let G act on V = k" with representation

p:G— GLy(k) definedby p: g+ (pij(g)). for pij €klz1, ..., 2],

o N :=max{deg(pij)}.
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Proposition 3.2. Let G be a linear algebraic group and m, £, M, N as above. If G - x is an orbit closure with
dimension r, then

deg(G -x) < N'M‘™™.

Proof. Let d = deg(G - x). For a generic (n — r)-dimensional linear subspace H C A", by definition
d=#(G-xNH). Let 0 : g+ g-x be the orbit map. Then the degrees of the polynomials defining o
are bounded by N. Hence o ~1(H) =V(uy,...,u;) € G has deg(u;) < N and has at least d irreducible
components.

By Lemma 3.1, there exist generic linear combinations f; of the generators of I(G) such that
V(f1,..., fe—m) is a complete intersection and contains G. Thus

o VH)CSV(ur,....up, fi,..., feom) C AL
Consider the vanishing of the homogenized polynomials
V@i, ..., by, f1,..., fe-m) CP

By a generalization of Bézout’s theorem (see Fulton’s book [15, Section 12.3.1]), the number of irre-
ducible components of this variety is (generously) bounded by

[ [deg(va@n) - [ Jdeg(V(Fp) =[] deg(@ - [ [deg(Fj) < N"M*™.
i j i j

This number then also bounds d. O

Corollary 3.1. With the hypotheses of Proposition 3.2, there exist polynomials fi, ..., f; such that G -x =
V(fi,..., ft) and

deg(f) < deg(G-x) <N'M*“™.
We denote this degree bound §(N) = N'M‘™,

Example 3.1. Return to the action of the multiplicative group k* on V =k? via g - (a,b) = (ga, gb).
We can choose k[G] = k[t, %] =Kk[z1,22]/(1 —z123) via t — z1, and hence choose £ =2 to put G C A2
Note m=1 and M = 2. Then

. _(z1 O
p(g) =p(z1,22) = ( 0 Z1>
and N = 1. The maximal dimension of an orbit is r = 1, so Corollary 3.1 yields a degree bound
of N'M®~™ =1.22-1 =2 for polynomials defining the orbits. Of course, since the orbits are the
origin and the lines through the origin, we can define the orbits with linear polynomials.

4. The algorithm for orbit-separating functions

Fix G — Af and let G £ GLy(k) act on V = k" with constants m, ¢, M, and N as in Section 3.
Write down the map 0, : G — V for any p € V and the ring map o; :k[V] — k[G]. Then the orbit
closure G- p is defined by polynomials of degree bounded by §(N) = N"M‘~™ inside kero,. Below,
we write straight line programs for the set C of invariant, orbit-separating functions by computing a
k-vector space basis for kero; up to degree §(N). The length of these programs will be polynomial
in the dimension n and the degree N of the representation.
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4.1. Pre-computations for fixed G

The algorithm to write straight line programs for orbit-separating functions requires the following
preliminary calculations related to the fixed linear algebraic group G. Since we are interested in how
the length of our separating functions depend on the representation, we ignore the computational
complexity of these pre-computations, which we perform once and utilize for all representations
of G. First, for the fixed embedding G < A¢, choose a monomial order for the monomials spanning
klzi,...,z¢]. Compute a Grobner basis for I(G). Now, we will compute elements in kero;‘ by iden-
tifying relations among images oy (u) of monomials u € k[V]. To perform this linear algebra in k[G],
we will require bounds for the k-vector space dimension of k[G]<q4, which is the space of functions
in k[G] of degree <d.

Lemma 4.1. Let m = dim G. There exists a function H(d), computable from a Grobner basis for 1(G), such that
H(d) = dimy k[G]<q foralld > 0, and H(d) < O (d™).

Proof. Suppose R = k[G] is generated as a k-algebra by fi,..., fr of degree 1. Define S =
k[ f1t, ..., frt,t] € R[t], and claim Sy = R¢qg . t9, where S is graded by t-degree. The inclusion 2
is clear, and if h € S4 is a homogeneous polynomial in t, then the coefficients of t¢ can have R-degree
no greater than d (less, for example, in the term fit - t~1). Let H(d) be the dth coefficient of the
Hilbert series of S, which we may compute from a Grébner basis for I(G); see, for example, Eisen-
bud’s book [16, p. 359]. Then H(d) = dimy Rgy. Since S has dimension bounded by m + 1, the Hilbert
polynomial for S has degree bounded by m. Thus H(d) < 0(d™). O

4.2. Description of the algorithm

With the Grébner basis for I(G) and function H(d) in hand, now choose a representation p :
G — GLy(k), so that G acts on V =k". Recall we will compute elements in kerol;k by identifying
relations among images in k[G] of monomials u € k[V] = k[xq, ..., X;]. The maximal degree among
ag(xl), ey a;‘(xn) is N = max{deg p;j}, because op(g) = p(g) - p. Thus to compute relations among
o,j‘(u) € k[G] for monomials u € k[x1,...,X;] up to the degree bound §(N), we require a k-vector
space basis of I(G) up to degree N -§(N) = N'TIM!~™, Let B(d) denote a basis for I(G) up to degree
i, written as vectors of coefficients relative to the monomial basis for k[z1, ..., z¢]. So after choosing
a representation of G, the first step of the algorithm to write separating functions will be to compute
B(Nr+1 Mli—m).

The idea of the algorithm to write separating functions is as follows; we present pseudo-code for
the algorithm further below, and we discuss computational complexity in Section 4.2 below. We re-
gard the embedding G < Af, the generators (h1, ..., hs) =I(G), and the function H(d) as fixed, with
parameters £,m = dimG, and M = max{degh;}. The input is the representation map p : G — GL,(k)
with parameters n, N, and r; the latter is the maximal dimension of an orbit. Note that if we
cannot predict r, we may take r = m. First compute B(N"t1M®~™). Next, considering the n coordi-
nates (p1,...,pn) of p € V =k" as indeterminates, compute the n-vector p(z1,...,2z¢) - p. Then for
i=1,...,n, we have f;:= a;‘(x,-) as the ith entry of p(z1,...,2¢) - p. Let w; be the vector of coeffi-
cients of f; relative to the monomial basis for k[zq,...,z/], and let wgo :=(1,0,...,0) represent the
constant 1. Let W1 be the ordered list (wg, ..., wy). Since we leave p indeterminate, the entries of
the w; are elements of k[V].

We first compute kero; in degree one. The degree one polynomials in kerop correspond to lin-
ear dependence relations among the f; and 1 in k[G], that is, linear combinations of the f; and 1
(which have degree < N) that lie in I(G). To find these combinations, let X; be a matrix whose first
s1:=n+1 columns are the w; and whose remaining columns are the vectors (over k) in B(N). The
kernel of X; would give a basis for the dependence relations among the columns of X, that is, linear
combinations of the w; that (a) equal zero or (b) equal elements of I(G) of degree < N. As X7 is a
matrix over k[V], we have an algorithm in Section 2 to write straight line programs for the tRREF

of X; over m and from the tRREF write functions in HV\] for the vectors in ker X;. These functions
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on V for ker X; make up the first elements of our set C of separating functions. Now, since we only
care about relations among the w; (the elements of B(N) are independent, anyway), we need only
record in C the first n entries of the vectors in ker X;.

To find degree two polynomials in kero;, the naive next step is to compute the n? products f;- f |
for all i, j and find linear combinations of these and the original f; that lie in I(G). So in degree 2 we
would compute relations among 1+n +n? polynomials, in degree 3 we would obtain 1+ n+n? +n3

polynomials, and in degree d we would obtain 1 +n+n? +---+nd = ”d;% polynomials. Hence
the number of columns in our matrices and the length of our straight line programs would grow
exponentially in the degree d, up to d = §(N) = N"M‘ ™. Consequently, to ensure the length of the
straight line programs remains polynomial in n and N, we must control the growth of the products
of the f; in high degree.

To do so, we use the function H(d) = dimyk[G]<q: Because deg f; < N for all i, no more than
H(N) of the w; are linearly independent. Let D be the diagonal of the tRREF of Xj, and let Y be the
matrix whose rows are wp, ..., wy,. Recalling the program I'® from Section 2.4 that collects matrix
rows indicated by a vector D, we have Y’ = Out(I"B, D, Y) is a matrix whose first ¢, := min{n, H(N)}
rows have the same span as {wy,..., wp}. Let L1 := {Wil,...,w,'fz} denote these first t; rows of Y’.
Thus to compute the degree-two polynomials in ker o, it suffices to start with the set

L]U{f,'r~fj|T:1...t2, j=1...n}

Let W, be set of vectors of coefficients of these polynomials relative to the monomial basis for
k[z1,...,z¢] up to degree 2N. The size of the set W, is bounded by H(N) +n - H(N), which is
polynomial in n and N as desired.

Let X, be the matrix whose first s, := |W>| columns are the vectors in W» and whose remaining
columns are the vectors in B(2N). As above, we write down straight line programs for functions in
HV\] that compute the tRREF and kernel of X,. We next adjoin to C the first s, entries of each kernel
vector. We use the diagonal of the tRREF of X, and the program I'B to again identify a spanning
set L, among the polynomials represented by W;. We then proceed with L; and with the products
{f-fil felayi=1,...,n} to find the degree-three polynomials in keroy. The algorithm iterates in
this way through degree §(N).

The pseudo code below describes precisely the algorithm to compute orbit-separating functions

in m Notice the algorithm adds detail ensuring various matrices and vectors are the appropriate
size. Here, if v is a vector of length t > s, then m5(v) is the projection to the first s entries of v. The
algorithm for the fixed algebraic group G has built-in parameters m and ¢ for the embedding of G,
generators for the ideal of I(G), and the function H(d). Further comments follow.

Algorithm 4.1 (Separating functions for a representation of fixed G). PRE-COMPUTATIONS: Generators
(hi, ..., hy) =1(G), the function H(d), constants m = dim G and ¢ from the embedding G < A’.
INPUT: Representation map p : G — GL,(k), parameters n = dim V, N = max{deg p;j}, and r = maxi-
mal orbit dimension,/if\known, otherwise r =m.

OUTPUT: A set C C k[V] of invariant, orbit-separating functions.

1. Compute B(N"T1ME—m),

2. Ford=2tod=NM"™ set ty:= min{’;d%;, H(dN)}, or set t; =min{1 +d, H{dN)} if n=1.

3. Fori=1,...,n, compute fj:= o;‘(x,-), where the coordinates (p1, ..., pn) = p are indeterminates.

4, Fori=1,...,n, let w; be the vector of coefficients of o; (x;) with respect to the monomial basis
of k[z1 ..., z¢], where 1 is represented by wo = (1,0, ..., 0). The coefficients lie in k[V].

5. Co:=0, Wy :={wp,..., wp}, s1:=n+1.

6. FORd=1TO d=N"M*"™, DO

(a) Let X4 be he matrix whose first columns are the vectors of W4 and whose remaining columns
are the vectors of B(dN).

(b) Compute Ry := Out(I"*R, X,), the tRREF of Xg.

(c) Compute 8 :=Out(I"¥, Ry), a basis for ker X.
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(d) Let Cq :=Cy—1 U {ms,(v) | v € B}.

(e) Let Y be the matrix whose rows are the vectors in W,. Let D be the first sy entries on the
diagonal of the tRREF Xj.

(f) Compute Y’ :=Out(I'8, (Y, D}), collecting together the rows of Y indicated by D.

(g) Let Lg ={wy,, ..., Wizd} be the first t; rows of Y’.
(h) sgi1:=tg+n-(tg—t4-1)-
(i) For j=tq_1+1,...,t4, compute the product of the polynomial represented by wi; with each
of f1,..., fn. Label the vectors of coefficients of these products we, 1, ..., Ws,, ;.
() Wapr =A{wi,, ..., Wi s Wigt1s -+ Wiy )
7. C:=0C4.
8. OUTPUT C.

In Step 2, we compute in advance the maximal number t; of image vectors wj € Wy that can
be linearly independent, that is, the number of vectors the algorithm should preserve from W, in
Steps (e)-(i). This number is bounded by H(dN), but |W4| may be less than H(dN). Indeed, recall from
the discussion above that at first the number of image vectors is sq = |Wq4|=1+n+n?+---+né =

”dnﬂ]’]. While sy follows this pattern we use ty = sg, and Steps (e)-(i) just carry over all the images
vectors to the next iteration. Once H(dN) =ty > |Wy|, we know that at most H(dN) vectors in Wy can
be linearly independent, and Steps (e)-(i) carry over only a spanning set for the images of monomials
in degree <d.

Note also that Step (i) multiplies only the polynomials represented by the most recent image vec-
tors in k[z1, ..., z¢], those with indices greater than tg_1, by the f; to obtain new image polynomials
in higher degree. The coefficients of all the polynomials that arise remain functions of the indetermi-
nate coordinates p = (p1, ..., pn). We will discuss algorithms for efficient polynomial multiplication
in the next section. Now we present proof of the correctness of the output of Algorithm 4.1.

Proposition 4.1. The functions defined by the set C C ﬁv\] are constant on the orbit of any p € V and separate
the orbits of G.

Proof. We first show that the functions in C are constant on orbits, that is, invariant under the
action g- f(x) = f(g~!-x) for g G. Choose p eV and q € G- p. Let X4(p) be the matrix X4 of the
algorithm, with its entries evaluated at p. Let Xé’v (p) be the first |Wy| = s4 columns of X,(p), that
is, those containing the vectors in W4(p). Now, X;’V (p) and X}’V (q@) have the same kernel, because (1)
as maps k[x1, ..., Xn]<1 = k[G]n they are written relative to same basis X1, ..., X, for their domain,
and because (2) the kernel of each matrix must span I(G - p) in degree one and smaller. Thus X{’V (p)
and X}’V (g¢) have the same tRREF and so have the same linearly independent columns in the same
locations.

So letting Cy4(p) denote the kernel vectors obtained on input p € V in the dth iteration, we
conclude C1(p) =C1(q). As well, let Lj(p) denote the set L; of the algorithm with functions eval-
uated at p, but for clarity we write the polynomials represented by the vectors in L(p). Hence
from the previous paragraph we also conclude that Li(p) = {1,a§(xj1),...,a;‘(xjr)} and L1(q) =
{1, 04 (xj,), ..., 04 (xj)} for the same indices ji,..., js.

Proceed by induction on d: we assume Xl‘i” (p) and Xt‘j’v (q) have the same tRREF and hence C4(p) =
C4(q). We may also assume the columns of X){V (p) and XL‘{V (q) represent the images of the same set
of monomials {x1, ..., xs}, for multi-indices I;. Then the lists Wy4q(p) and Wy, 1(q) also represent
the images of the same monomials under a; and o, respectively. Claim again that X(‘;‘j_l (p) and
Xﬂl(q) have the same tRREF. By the induction hypothesis, the two matrices are written relative to
the same basis for their domain, and the kernel of each must span I(G - p)4+1. These facts prove the
claim, as in the base case. Thus Cy4+1(p) = Cy+1(q), and the functions in C are invariant.

To show the functions in C separate orbits, we prove the converse of the paragraphs above: choose
p,q € V such that the functions in C take the same values at both points, and show that p € G - q.
The key is that the matrices X}’V (p) and X;” (q) are written relative to the same bases for their do-
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main space k[xq, ..., X;]1, namely, X1, ..., x. Therefore ker X;(p) = C1(p) =C1(q) = ker X1(q) implies
keroy =1(G-p) and keroj =1(G-q) agree in degree < 1. By proving this fact for all degrees d < §(N),

we will prove G- p =G -q. Since G is a linear algebraic group, it would follow G-p=G -q.
First observe that since ker X1(p) = ker X1(q), then in fact X;(p) and X;(q) have the same tRREF.
It follows, with notation as above, that

Li(p)={1,05(;).....,05x;)} and Li(q) ={1.05Xj}).....00 X))}

for the same indices ji,..., js, because X1(p) and X;(q) have linearly independent columns in the
same locations. Thus W3(p) and W3(q) list the images of the same set of monomials x;x; under
o, and o/, respectively. Proceeding by induction, assume Xq(p) and Xq(q) have the same tRREF and

list the images of the same monomials. Then Xé"fH (p) and Xﬂ1(q) also list the images of the same
monomials. This last fact and the assumption ker Xg(p) = Cq+1(p) = Cyq+1(q) = ker X4(q) together
yield that kera;f and kerac;“ agree in degrees through d + 1, completing the induction. It follows
G-p=G-q. O

4.3. Computational complexity bounds

The bookkeeping that follows confirms that the number and total length of the orbit-separating
functions in C is polynomial in n and N.

4.3.1. Polynomial multiplication

Step (i) of Algorithm 4.1 requires computing the products of polynomials via straight line programs
on their coefficients. In computations we will represent polynomials as vectors of coefficients relative
to the monomial basis of k[z1, ..., z¢]. So in this section we drop the distinction between polynomials
and their vector representations. Again we write f1 = G;‘ *1)y ..., fn= O'; (xn). Hence the products we
compute are of the form fj, --- fi,, and we consider them as polynomials in (k[V])[z1, ..., z¢], that is,
polynomials in variables z; with coefficients in k[V] that are functions of p € V. Since the matrices X4
include the coefficients in k[V] of the polynomials f;, --- fj,, the coefficients contribute to the length
of functions in the ker X; and hence of functions in C. Therefore we must bound the length of the
straight line programs for these coefficients as functions of p.

Recall that in the FOR loop of Algorithm 4.1, Steps (e)-(h) select a linearly independent subset
Ly = {wil,...,w,-rd} of the set of polynomials W, under consideration in iteration d. As |L4| = tg4,
each of the last tq —ty_q elements of Ly is a product fj, --- fj,. Step (i) then multiplies each of these
last elements with each of fy,..., fu.

Let f and g be polynomials in k[z1, ..., z.], each of degree (at most) d. Fast algorithms for com-
puting the coefficients of fg with no more than O (¢ - d*logd) steps exist by employing Fast Fourier
Transforms or evaluation homomorphisms; see Moenck [17] for a survey, Pan [18] for a fast method,
and the book [12] for a exploration of the univariate case. We instead employ the naive classical or
“grade school” approach for the sake of clarity; the 0 (d%¢) operations required for this procedure will
suit our goals for polynomial-length straight line programs

To outline the classical algorithm in £ variables, first consider the univariate case f, g € k[z1], each
of degree d. Then computing fg requires (d + 1)?> multiplications and d? additions. Now let f, g e
k(zq,...,z¢], but consider f and g as univariate polynomials in z; with coefficients in k[zy, ..., z¢],
that is, consider f, g € k[z1][z2,...,z¢]. Then apply the univariate case recursively; Moenck in [17]
yields that we obtain straight line programs of total length O (d?%) for the coefficients of fg.

In iteration d of the FOR loop of Algorithm 4.1, Step (i) performs n - (tg — t4—1) polynomial mul-
tiplications over (k[V])[z1, ..., z¢]. Recall that for large d, t; = H(dN) = O(d™N™). The degree of the
polynomials to multiply in iteration d is at most dN. Thus the length of the straight line programs to
perform the multiplications in iteration d is at most O (d™N™ - d2¢N2t)y = 0 (dm+2¢EN™+26),

4.3.2. Counting functions and their length
We now have a bound on the contribution of the polynomial multiplication steps to the length
of functions in C. The remaining straight line programs in Algorithm 4.1 perform linear algebra, and
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their length depends upon the dimensions of the input matrices. Throughout this section we employ
the fact Y°7_, d* = 0 (15 D¥*") for a fixed positive integer k.
We first bound the size of the matrices Xy that occur. Recall that for large d, t; = H(dN) <
O(d™N™), and
[Wgl =54 =tg_1 +n(tg—1 —tg—2)
=H((d —1)N) +n[H((d—1)N) — H(({d — 2)N)]
=0 (nd™N™).

The columns of Xy are the elements of Wy and of B(dN), the k-basis for I(G) through degree dN. To
bound |B(dN)|, we note that the space of degree-j monomials in k[z1, ..., z¢] has dimension

. _ . _ . _ e
(]+lé 1>:(2'+.E 1)!<(]+1Z 1) :o(jf).
(G —1)! 0

Summing this dimension from j=1 to j = dN yields |B(dN)| = 0@ N¢t1). Adding the bound
for |Wy|, we conclude Xy has O (nd™N™ + d**1N®*1) < 0 (nd+1N*1) columns, because m < £.

Likewise, X4 has O(d“*'N®*1) rows corresponding to the monomial basis for k[z1, ..., Z¢]<dn-
Now, the program I'*R in Section 2.2 for the tRREF of an s x t matrix has length O (st? +t3). Thus the
program for the tRREF of X, has length bounded by O ((nd®t1N¢t1)3).

Recall that the program I'X in Section 2.3 for the kernel of an t x t matrix in tRREF has length
0 (t?). Hence the above count of the columns of Xy also yields that the program for the kernel of
tRREF(Xy) has length O ((d‘F1N¢t1)2)

In Steps (e)-(g) of the algorithm, the program I'8 in Section 2.4 collects a spanning subset of Wj.
On an s x t matrix, this program has length O (s?t). The input Y is the matrix whose rows are the
elements of Wg4. Thus Y has O(nd™N™) rows and O (d*t'N¢*1) columns, and the length of I'® in
iteration d is O (n2g2m+t+1N2m+i+1y

In Section 4.3.1 we computed the bound 0 (d™+2¢N™+2¢) for the length of the programs for poly-
nomial multiplication in Step (i) of iteration d. After reviewing the above estimates, we observe that
the fastest-growing contribution to the length of the programs in iteration d comes from the tRREF
program 'R with length O (n3d3¢*3N3¢+3), This program dominates the polynomial multiplication
and vector selection I"B because m < £. So we conclude that the length of the programs for functions
in C computed in iteration d is O(n3d>*+3N3¢+3). Summing this length from d =1 to the degree
bound d = N"M%~™ yields that the total length of the functions in C as straight line programs is

0 (n3 (NTMZ*”’)“*“N”H) -0 (n3N3£(r+1)+4r+3M(3£+4)(57m)),

where as always, n =dim V, N is the maximum degree of the polynomials defining the representation
G — GLp, M is a degree bound for a generating set of I(G) C k[z1, ..., z¢], and under this embedding
G has dimension m. Since the embedding G < A’ is fixed, we omit the constant power of M from
the asymptotic complexity in Theorem 1.1.

Finally, we bound the number of separating functions in C that Algorithm 4.1 computes. These
functions are the entries in the kernel vectors of X; computed by I' in each iteration d. For a
t x t tRREF input matrix, the program I'X computes t vectors of dimension t. Since the tRREF of X
has O (nd**1N%*1) columns, it follows that iteration d of the algorithm computes O (n2d2¢+2N2¢+2)
separating functions. Summing this count from d =1 to the degree bound d = N"M‘~™ yields

0 (n2 (Ner—m)2f+3N2e+2) -0 (n2N24(r+1)+3r+2M(2K+3)(K—m))

functions in C. By omitting the powers of M, Theorem 1.1 follows.
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5. Conclusion

Given a representation of any fixed linear algebraic group, Algorithm 4.1 computes invariant func-

—

tions in the ring extension k[V] that separate the orbits of the group action. What is more, there
are polynomial bounds, in the parameters of the representation, for the number of the functions and
their total length as straight line programs. It emerges that the “quasi-inverse” provides an extension
of the polynomial functions sufficient to write separating functions with a polynomial measure of
their complexity.
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