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Introduction

Let G be a finite group and � be a prime number. The �-modular representation theory of G is
somehow controlled by the representation theory of local subgroups, namely the �-subgroups of G
and their normalizers. Broué’s abelian defect conjecture is one of the major open problems in this
framework: it predicts that an �-block of G with abelian defect group is derived equivalent to its
Brauer correspondent. From the work of Rickard [24], we know that such an equivalence should be
induced by a perfect complex. Unfortunately, there is no canonical construction in general.

When G = GF is a finite reductive group, Broué suggested that the complex representing the coho-
mology of some Deligne–Lusztig variety should be a good candidate. Together with Michel in [3], they
made precise, which specific Deligne–Lusztig varieties should be associated to principal Φd-blocks,
when d is a regular number. They introduced the notion of good d-regular elements w ∈ W and con-
jectured that

• for i �= j, the groups Hi
c(X(w),Q�) and H j

c(X(w),Q�) have no irreducible constituents in com-
mon;

E-mail address: dudas@math.jussieu.fr.
1 At the time this paper was written, the author was supported by the EPSRC, Project No. EP/H026568/1 and by Magdalen

College, Oxford.
0021-8693/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jalgebra.2013.07.013

http://dx.doi.org/10.1016/j.jalgebra.2013.07.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:dudas@math.jussieu.fr
http://dx.doi.org/10.1016/j.jalgebra.2013.07.013


O. Dudas / Journal of Algebra 392 (2013) 276–298 277
• the irreducible constituents of H•
c (X(w),Q�) are exactly the unipotent characters lying in the

principal Φd-block;
• the endomorphism algebra EndGF (H•

c (X(w),Q�)) is a d-cyclotomic Hecke algebra.

As for now, these statements have been verified in very few cases only. Computing the cohomology
of a Deligne–Lusztig variety is a difficult problem, and the only results in this direction have been
obtained by Lusztig in [20] when d is the Coxeter number (that is when w is a Coxeter element
of W ), for groups of rank 2 by Digne, Michel and Rouquier in [11] and for d = n in type An and
d = 4 in type D4 by Digne and Michel in [9]. The purpose of this paper is to provide new examples
for exceptional groups and in the spirit of Broué’s conjecture, to deduce structural properties of the
corresponding Φd-block.

We shall adapt Lusztig’s strategy: if a character is non-cuspidal then it should appear in the coho-
mology of a certain quotient of the Deligne–Lusztig variety X(w). In the Coxeter case, Lusztig proved
that this quotient can be expressed in terms of a Deligne–Lusztig variety associated to a “smaller”
Coxeter element, providing an inductive method to compute the cohomology of X(w). The first step
towards our main result is to show an analogous property for the d-regular elements we are inter-
ested in. To this end we will make extensive use of [14]. Unfortunately, this will not give enough
information to deal with non-principal series. In order to compute the cuspidal part of the cohomol-
ogy of X(w), we shall, as in [20], introduce compactifications of X(w). Unlike the Coxeter case, the
cuspidal part of H•

c (X(w),Q�) might not be concentrated in degree �(w) since some of the divisors
of X(w) might provide cuspidal characters. However, the results in [11] are sufficient to determine
explicitly in which groups they actually appear and we obtain the following result:

Theorem. Let w be a good d-regular element. Then the contribution of the principal series and the discrete
series to the cohomology of the Deligne–Lusztig variety X(w) is explicitly known in the following cases:

• (G, F ) has type F4 and d = 8;
• (G, F ) has type E6 and d = 9;
• (G, F ) has type E7 and d = 14;
• (G, F ) has type E8 and d = 24.

We will also obtain partial results for the other series, as well as predictions on their contribution,
in line with the formula given by Craven in [6].

Using Lusztig’s results in the Coxeter case, Hiss, Lübeck and Malle have conjectured that the Brauer
tree of the principal Φh-block can be read off the cohomology of the Coxeter variety [19]. Using the
existing Brauer trees and the previous theorem, we propose conjectural planar embedded Brauer trees
for the principal Φ14-block of E7 and for the principal Φ24-block of E8 (see Figs. 3 and 4). We believe
that a further study of the cohomology of the corresponding Deligne–Lusztig varieties as in [12,13,15]
should give credit to these predictions.

1. Methods for determining the cohomology

Let G be a connected reductive group, together with a Frobenius F defining an Fq-structure on G.
If H is any F -stable algebraic subgroup of G, we will denote by H the finite group of fixed points HF .
We fix a Borel subgroup B containing a maximal torus T of G such that both B and T are F -stable.
The associated Weyl group is W = NG(T)/T and the set of simple reflections will be denoted by S .
We will assume that (G, F ) is split, so that F acts trivially on W .

Recall from [7] that to any element w ∈ W one can associate a Deligne–Lusztig variety

X(w) = {
gB ∈ G/B

∣∣ g−1 F g ∈ BwB
}
.

It is a quasi-projective variety of pure dimension �(w), on which G acts by left multiplication. This
definition has been subsequently generalized in [3] to elements of the Artin–Tits monoid B+ . As in
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[11, §2.1.1], we will use bold letters to denote elements of this monoid, in such a way that w ∈ W �−→
w ∈ B+ defines a Tits section of B+ −→ W .

The �-adic cohomology of X(w) carries a lot of information on ordinary and modular represen-
tations of G . Throughout this paper, we will be interested in the case where w is a good d-regular
element, or equivalently when w is a dth root of π = w2

0 in the braid group of W . In that case, it is
conjectured that the cohomology of X(w) gives a good model for the unipotent part of the principal
Φd-block (see for example [3] and [2] or the introduction for more details).

1.1. Non-cuspidal characters

To any subset I ⊂ S one can associate a standard parabolic subgroup PI containing B and a stan-
dard Levi subgroup LI containing T. If UI denotes the unipotent radical of PI , the parabolic subgroup
decomposes as PI = LI UI and both LI and UI are F -stable. By [17, XVII, 6.2.5], the U I -invariant part of
the cohomology of X(w) is isomorphic to the cohomology of U I\X(w). Consequently, one can detect
the presence of non-cuspidal modules in the cohomology of X(w) by studying the quotient variety
U I\X(w) for various subsets I . In some specific cases, we can express such a quotient (or at least its
cohomology) by means of smaller Deligne–Lusztig varieties.

Let b = w1 · · ·wr ∈ B+ be an element of the braid monoid, written as a product of reduced
elements (i.e. wi ∈ W ). Recall from [14] that the decomposition of G/B into PI -orbits induces a de-
composition of X(b) into locally closed P I -subvarieties, called pieces

X(W I x1,...,W I xr)(b) = X(b) ∩ (PI x1B/B × · · · × PI xrB/B)

where the xi ’s are I-reduced elements of W . When I and b are clear from the context, we shall simply
denote this variety by X(x1,...,xr) . Throughout this paper, we will make extensive use of a particular
case of the main theorem of [14]. With the notation in [14], the following theorem is a consequence
of [14, Remark 3.12] with Ii = ∅, J = I and xi = x.

Theorem 1.1. Let b = w1 · · ·wr ∈ B+ with wi ∈ W , I be a subset of S and x be an I-reduced element of W .
We assume that each wi can be decomposed as wi = γi w ′

i with γi ∈ S ∪ {1} and w ′
i � wi such that

(a) if γi = 1 then vi = xwi x−1 ∈ W I ;
(b) if γi ∈ S then xγi x−1 /∈ W I , vi = xw ′

i x
−1 ∈ W I and �(w ′

i) = �(vi).

Let d be the number of wi ’s satisfying condition (b) and e = ∑
dim(Ux

I ∩ w ′
i U ∩ U−). Then we have the

following isomorphism of graded LI × 〈F 〉mon-modules:

H•
c (U I\X(x,...,x)) � H•

c

(
(Gm)d × XLI (v1 · · · vr)

)[−2e](e)

where [1] is the shift in the cohomological degree and (1) is a Tate twist (so that H•
c (A1) = Q�[−2](1)).

Remark 1.2. In the particular cases we will be interested in, b will always be reduced. In that case, it
corresponds to an element w ∈ W and we have w = w1 · · · wr with �(w) = �(w1)+ · · ·+ �(wr). Note
that in general the variety X(b) ⊂ (G/B)r can have many more pieces than X(w) ⊂ G/B, since

XW I x(w) =
⋃

x2,...,xr
I-reduced

X(W I x,W I x2,...,W I xr)(b).

However, in our specific examples we will observe that the piece X(W I x,W I x2,...,W I xr) will be empty
unless x2 = · · · = xr = x, so that Xx � X(x,x,...,x) .
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1.2. Cuspidal characters

By definition, cuspidal representations of G have no non-zero element invariant under the action
of U I unless I = S . In particular, the cohomology of the quotient variety U I\X(w) contains no infor-
mation on the cuspidal characters that can appear in X(w). In this section we shall briefly review
some methods developed in [9] and [11] in order to solve the problem of finding cuspidal characters
in the cohomology of Deligne–Lusztig varieties.

Let b = w1 · · ·wr with wi ∈ W . Recall that the variety X(b) has a nice compactification

X(w1 · · · wr) = {
(g0, g1, . . . , gr) ∈ (G/B)r+1

∣∣ g−1
i−1 gi ∈ BwiB and g−1

r F (g0) ∈ B
}

which has the following properties (see [9] and [11]):

Proposition 1.3. Let w1, . . . , wr be elements of W ,

(i) X(w1 · · · wr) is a projective variety of dimension �(w1) + · · · + �(wr);
(ii) X(w1 · · · wr) is smooth whenever each variety BwiB is;

(iii) X(w1 · · · wr) is rationally smooth whenever each variety BwiB is;
(iv) X(w1 · · · wr) has a filtration by closed subvarieties X(v1 · · · vr) where the vi ’s satisfy vi � wi .

Remark 1.4. A particular case is when each wi is a simple reflection si . Then the variety X(w1 · · · wr)

coincides with the smooth compactification introduced by Deligne and Lusztig in [7].

Let w ∈ W . In order to compute the cuspidal part of the cohomology of X(w) using the previous
compactifications, we will use the following results:

(C1) the cohomology of X(w) over Q� is zero outside the degrees �(w), . . . ,2�(w) [11, Corol-
laire 3.3.22];

(C2) the following triangle is distinguished in Db(Q�G-Mod):

RΓc
(
X(w),Q�

) −→ RΓc
(
X(w),Q�

) −→ RΓc

( ⋃
v<w

X(v),Q�

)
�;

(C3) when X(w) is rationally smooth, its cohomology as a graded G ×〈F 〉mon-module can be explicitly
computed using [11, Corollaire 3.3.8];

(C4) let ρ be a cuspidal representation of G that appears in the cohomology of a Deligne–Lusztig va-
riety associated to a Coxeter element of W . If w itself is not a Coxeter element, any eigenvalue
λ of F on H�(w)

c (X(w),Q�)ρ satisfies |λ| < |q�(w)/2|. This is a particular case of [11, Proposi-
tion 3.3.21].

Note finally that the property of being rationally smooth of X(w) can be read off the Kazdhan–
Lusztig polynomials of W [11, Proposition 3.2.5]. If X(w) happens to be not rationally smooth, we can
always decompose w into a product w = w1 · · · wr such that each variety BwiB is rationally smooth.

2. Some particular cases

For short-length regular elements, one can observe that only a small number of pieces Xx are
non-empty. In addition, they very often satisfy the assumptions of Theorem 1.1. For some of these el-
ements, we can therefore compute explicitly the cohomology of the quotient U I\X(w), and eventually
deduce the cohomology of X(w) using the results discussed in Section 1.2.

To make the computations easier, we shall use the notation introduced in [9]: the cohomology of
the Deligne–Lusztig variety X(w) as a graded G × 〈F 〉mon-module will be represented by a polyno-
mial HX(w)(t1/2,h) with coefficients in the semigroup N Irr G . By a theorem of Lusztig, when ρ is a
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unipotent character, any eigenvalue of F on the ρ-isotypic part of Hi
c(X(w),Q�) can be written as

λρq j/2, where λρ is a root of unity independent of w and i. The multiplicity of ρ in Hi
c(X(w),Q�)

with eigenvalue λρq j/2 will be encoded by the coefficient of hit j/2 in the polynomial HX(w)(t1/2,h).
For example, if X(s) is the Drinfeld curve for G = SL2(Fp) then HX(w) = h St +h2t Id.

Since we are dealing with exceptional Weyl groups, and more specifically with the combinatorics
of distinguished subexpressions, we will use the package CHEVIE in GAP. We have written a couple
of useful functions to determine whether a piece of a Deligne–Lusztig variety is non-empty, and to
describe in that case its quotient by a finite unipotent group. These functions can be found in [22] (or
will be soon available) under the name deodhar.g.

2.1. 8-regular elements for groups of type F4

Let (G, F ) be a split group of type F4. To fix the notation we will consider the following Dynkin
diagram:

t1 t2 t3 t4
>

where t1, t2, t3 and t4 are the simple reflections.
Recall that there exist d-regular elements for d ∈ {1,2,3,4,6,8,12} only (see for example [25]).

Note that the largest integer corresponds to the Coxeter number. By [3], for any such d one can find
a particular d-regular element which is a dth root of π in the braid monoid. By [1, 11.22] and [10,
Proposition 5.5], the cohomology of the corresponding Deligne–Lusztig variety does not depend on
the choice of a root. For our purposes we will take the following 8th root of π

w = t1t2t3t2t3t4.

2.1.1. Cohomology of U I\X(w)

We start by computing the cohomology of the quotient U I\X(w) where I = {t2, t3}. Using the
criterion given in [9, Lemma 8.3] and the package CHEVIE in GAP one can check that there are
only three non-empty pieces Xx , corresponding to the cosets W I x = W I w0, W I w0t1t2 and W I w0t4t3,
where w0 is the longest element of W . Theorem 1.1 does not apply directly to all of these cells, but
we can add an intermediate step. Let J = {t2, t3, t4}. Since W J w0 = W J w0t4t3 �= W J w0t1t2, only two
pieces appear in the decomposition of U J \X(w), namely XW J w0 = XW I w0 ∪XW I w0t4t3 and XW J w0t1t2 =
XW I w0t1t2 . In particular the variety XW I w0t1t2 is P J -stable. Similarly, with K = {t1, t2, t3}, the piece
XW K w0t4t3 = XW I w0t4t3 is P K -stable.

• Let y be the minimal element of W J w0t1t2 and w J be the longest element of W J . Since t1t2
is J -reduced, y = w J w0t1t2. Let us decompose w as w = w1 w2 with w1 = t1t2t3t2 and w2 =
t3t4 = t3 w ′

2. We have y w1 = t2t3 ∈ W J and y w ′
2 = t4 and therefore we can apply Theorem 1.1 to

compute the cohomology of the piece of X(w1w2) corresponding to (W J y, W J y). Furthermore,
one can check (using GAP again) that the pieces corresponding to (W J y, W J y′) are empty unless
y and y′ lie in the same coset. In particular, XW J y(w) � XW J y,W J y(w1w2) (see Remark 1.2) and
by Theorem 1.1 we obtain

H•
c (XW J y,Q�)

U J � H•
c (U J \XW J y,Q�) � H•

c

(
Gm × XL J (t2t3t4),Q�

)[−2](1).

Now XL J (t2t3t4) is a Deligne–Lusztig variety associated to a Coxeter element, and therefore the
cohomology of its quotient by U I ∩ L J is given by [20, Corollary 2.10]:

H•
c

(
XL J (t2t3t4),Q�

)U I ∩L J � H•
c

(
Gm × XLI (t2t3)

)
.
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Together with the previous isomorphism and the fact that U I = (U I ∩ L J )U J we obtain

H•
c (XW I w0t1t2 ,Q�)

U I � (
H•

c

(
Gm × XL J (t2t3t4),Q�

))U I ∩L J [−2](1)

� H•
c

(
(Gm)2 × XLI (t2t3),Q�

)[−2](1).

• For the piece XW I w0t4t3 we proceed as above: if we denote by w K the longest element of W K ,
the minimal element z of W K w0t4t3 is clearly z = w K w0t4t3 since t4t3 is K -reduced. We can
decompose w as w = w1 w2 w3 where w1 = t1, w2 = t2 = t2 w ′

2 and w3 = t3t2t3t4. We observe
that z w1 = t1, z w ′

2 = 1 and z w3 = t2t3 are elements of W K . In addition, we can check by explicit
computation that a piece of X(w1w2w3) corresponding to (W K z, W K z′, W K z′′) is empty unless z,
z′ and z′′ lie in the same coset. Consequently, we can apply Remark 1.2 and Theorem 1.1 to relate
the cohomology of XW K z to the cohomology of XLK (t1t2t3) and then use [20] to obtain

H•
c (XW I w0t4t3 ,Q�)

U I � (
H•

c

(
Gm × XLK (t1t2t3),Q�

))U I ∩LK [−2](1)

� H•
c

(
(Gm)2 × XLI (t2t3),Q�

)[−2](1).

• For the open piece XW I w0 we can directly apply Theorem 1.1 by decomposing w as w = w1 w2
with w1 = t1 (t2t3t2t3) and w2 = t4. We only have to check that XW I w0 (w) = X(W I w0,W I w0)(w1w2)

which can be done using GAP. We deduce

H•
c (XW I w0 ,Q�)

U I � H•
c

(
(Gm)2 × XLI (t2t3t2t3),Q�

)
.

Note that the variety XW I w0t1t2 ∪ XW I w0t4t3 is closed in X(w). Furthermore, the elements in W I w0t1t2
and W I w0t4t3 are not comparable in the Bruhat order and therefore both XW I w0t1t2 and XW I w0t4t3

are closed subvarieties of the union. In particular

H•
c (XW I w0t1t2 ∪ XW I w0t4t3 ,Q�)

U I � (
H•

c

(
(Gm)2 × XLI (t3t2),Q�

))⊕2[−2](1).

The Weyl group of LI has type B2. Let us denote by ε the sign representation of W I , by θ the one-
dimensional representation such that θ(t2) = 1 and θ(t3) = −1 and by r the reflection representation.
Then the unipotent characters of LI are {Id,St,ρθ ,ρθε,ρr, θ10} where θ10 is the unique unipotent
cuspidal character. Using [11, Théorème 4.3.4] we have

HXLI (t3t2) = h2(St +tθ10) + h3tρr + h4t2 Id

and

HXLI (t2t3t2t3) = h4 St+h5t2(ρθ + ρθε + 2θ10) + h8t4 Id.

Since the cohomology of Gm (resp. the shift and twist [−2](1)) contributes a factor h2t + h (resp.
h2t), we obtain

HU I \XW I w0
= (

h2t + h
)2(

h4 St+h5t2(ρθ + ρθε + 2θ10) + h8t4 Id
)

= h6 St+h7(2t St+t2(ρθ + ρθε + 2θ10)
) + h8(t2 St+2t3(ρθ + ρθε + 2θ10)

)
+ h9t4(ρθ + ρθε + 2θ10) + h10t4 Id +2h11t5 Id +h12t6 Id

and also
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HU I \XW I w0t1t2
= h2t

(
h2t + h

)2(
h2(St+tθ10) + h3tρr + h4t2 Id

)
= h6(t St+t2θ10

) + h7(t2(2 St+ρr) + 2t3θ10
)

+ h8(t3(St+2ρr + Id) + t4θ10
) + h9t4(ρr + 2 Id) + h10t5 Id.

We observe that the unipotent characters ρθ , ρθε and ρr appear in the cohomology of only one
of the two varieties. Using the long exact sequence associated to the decomposition U I\X(w) =
U I\XW I w0 ∪ (U I\XW I w0t1t2 ∪ U I\XW I w0t4t3 ) we deduce the isotypic part of these characters in the
cohomology of U I\X(w). It is given by

h7t2(ρθ + ρθε + 2ρr) + h8t3(2ρθ + 2ρθε + 4ρr) + h9t4(ρθ + ρθε + 2ρr). (2.1)

The isotypic parts for the unipotent characters St and Id fit into the following exact sequences:

0 −→ St −→ H6
c

(
U I\X(w)

)
St −→ 2t St −→ 2t St −→ H7

c

(
U I\X(w)

)
St

−→ 4t2 St −→ t2 St −→ H8
c

(
U I\X(w)

)
St −→ 2t3 St −→ 0,

0 −→ H8
c

(
U I\X(w)

)
Id −→ 2t3 Id −→ 0,

0 −→ H9
c

(
U I\X(w)

)
Id −→ 4t4 Id −→ t4 Id −→ H10

c

(
U I\X(w)

)
Id

−→ 2t5 Id −→ 2t5 Id −→ H11
c

(
U I\X(w)

)
Id −→ 0,

0 −→ t6 Id −→ H12
c

(
U I\X(w)

)
Id −→ 0.

Any morphism above is F -equivariant so that we can consider each power of t separately. On the
other hand, the only unipotent character of G whose restriction is StLI (resp. IdLI ) is StG (resp. IdG ).
But from [11, Propositions 3.3.14 and 3.3.15] we know exactly where these characters can appear in
the cohomology of X(w) as well as the corresponding eigenvalue of F . Using (2.1) we deduce that
t St (resp. t2 St) cannot appear in H6

c (U I\X(w)) or in H7
c (U I\X(w)) (resp. in H8

c (U I\X(w))) and that
t4 Id (resp. t5 Id) cannot appear in H10

c (U I\X(w)) (resp. in H11
c (U I\X(w))). With the previous exact

sequences, this forces the isotypic part of St and Id in the cohomology of U I\X(w) to be

h6 St+3h7t2 St+h8t3(2 St+2 Id) + 3h9t4 Id +h12t6 Id.

Together with (2.1) we finally obtain:

Proposition 2.2. Let w = t1t2t3t2t3t4 and I = {t2, t3}. The characters of the principal series in the cohomology
of U I\X(w) are given by

h6 St+h7t2(3 St+ρθ + ρθε + 2ρr) + h8t3(2 St+2ρθ + 2ρθε + 4ρr + 2 Id)

+ h9t4(ρθ + ρθε + 2ρr + 3 Id) + h12t6 Id.

Remark 2.3. The long exact sequence coming from the decomposition of the variety U I\X(w) does
not give enough information to determine the θ10-isotypic part:

0 −→ H6
c

(
U I\X(w)

)
θ10

−→ 2t2θ10 −→ 2t2θ10 −→ H7
c

(
U I\X(w)

)
θ10

−→ 4t3θ10

−→ 4t3θ10 −→ H8
c

(
U I\X(w)

) −→ 2t4θ10 −→ 2t4θ10 −→ H9
c

(
U I\X(w)

) −→ 0.

θ10 θ10
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One could nonetheless hope that in this particular situation the boundary maps are isomorphisms,
which would imply that θ10 cannot appear in the cohomology of U I\X(w). This will be the case if
and only if the graded endomorphism ring EndG(H•

c (X(w),Q�)) is concentrated in degree 0.

2.1.2. Cuspidal characters
From [2] we know that the irreducible constituents of the alternating sum of the cohomology of

X(w) are the unipotent characters in the principal Φ8-block, namely {IdG ,StG , φ9,10, φ16,5, φ9,2} for
the principal series and {F4[−1], F4[i], F4[−i]} for the cuspidal characters (with the notation in [5]).
We observe that the restriction of these characters to LI is exactly the one obtained in the previous
proposition. Since the Harish-Chandra restriction preserves the Harish-Chandra series, we can deduce
the contribution of the principal series to the cohomology of X(w). The missing ones are either in
the series associated to θ10 – which we could not determine – or are cuspidal characters. We shall
deduce the contribution of the latter using the results in Section 1.2.

Recall that G has 7 cuspidal unipotent characters, namely F4[−1], F4[i], F4[−i], F4[θ], F4[θ2], FI
4[1]

and FII
4[1] where i (resp. θ ) is a primitive 4th root of unity (resp. a primitive 3rd root of unity). Let ρ

be a cuspidal unipotent character and let v � w . By cuspidality ρ cannot appear in the cohomology
of Deligne–Lusztig varieties associated to elements lying in a proper parabolic subgroup of W . In
particular it cannot appear in the cohomology of X(v) or X(v) unless v is in the following set

V = {w, t1t2t3t2t4, t1t3t2t3t4, t1t2t3t4, t1t3t2t4}.

Define Z = X(t1t2t3t2t4) ∪ X(t1t3t2t3t4) and Z′ = X(t1t2t3t4) ∪ X(t1t3t2t4). The property (C2) yields
the following exact sequences:

· · · −→ Hi
c

(
X(w)

)
ρ

−→ Hi
c

(
X(w)

)
ρ

−→ Hi
c(Z)ρ −→ · · · , (2.4)

· · · −→ Hi
c

(
X(t1t2t3t2t4)

)
ρ

−→ Hi
c

(
X(t1t2t3t2t4)

)
ρ

−→ Hi
c

(
Z′)

ρ
−→ · · · , (2.5)

· · · −→ Hi
c

(
X(t1t3t2t3t4)

)
ρ

−→ Hi
c

(
X(t1t3t2t3t4)

)
ρ

−→ Hi
c

(
Z′)

ρ
−→ · · · . (2.6)

Moreover, one can check that each of these compactifications is actually rationally smooth, and there-
fore one can use (C3) to compute the cuspidal part of their cohomology, denoted by HX(t1/2,h). They
are given by

HX(w) = h6t3(F4[−1] + F4[i] + F4[−i] + 2F4[θ] + 2F4
[
θ2]) (2.7)

and

HX(t1t2t3t2t4) = HX(t1t3t2t3t4) = (
h4t2 + h6t3)(F4[i] + F4[−i] + F4[θ] + F4

[
θ2]).

Furthermore, the elements t1t2t3t4 and t1t3t2t4 are minimal in the set V for the Bruhat order, so that
for any unipotent cuspidal character ρ

Hi
c

(
Z′)

ρ
� Hi

c

(
X(t1t2t3t4)

)
ρ

⊕ Hi
c

(
X(t1t3t2t4)

)
ρ

� Hi
c

(
X(c)

)⊕2
ρ

where c is any Coxeter element of W . Using [20, Table 7.3] we deduce that

HZ′ = 2h4t2(F4[i] + F4[−i] + F4[θ] + F4
[
θ2]).
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Together with (2.5) and (2.6), and the fact that the cohomology of X(t1t2t3t2t4) and X(t1t3t2t3t4)

vanishes in degree 4, we obtain

HX(t1t2t3t2t4) = HX(t1t3t2t3t4) = (
h5t2 + h6t3)(F4[i] + F4[−i] + F4[θ] + F4

[
θ2]).

From these results, one can now partially determine the cohomology of Z: for any unipotent cus-
pidal character ρ , we use the following exact sequence

· · · −→ Hi
c

(
X(t1t2t3t2t4)

)
ρ

⊕ Hi
c

(
X(t1t3t2t3t4)

)
ρ

−→ Hi
c(Z)ρ −→ Hi

c

(
Z′)

ρ
−→ · · ·

to deduce that there exist integers 0 � εi � 2 such that

HZ = (
h4 + h5)t2(ε1F4[i] + ε2F4[−i] + ε3F4[θ] + ε4F4

[
θ2])

+ 2h6t3(F4[i] + F4[−i] + F4[θ] + F4
[
θ2]).

However (2.4) forces each character εiρ to be a component of H5
c (X(w)) since H4

c (X(w)) is zero by
(2.7). But the cohomology of X(w) vanishes outside the degrees 6, . . . ,12, and hence the εi ’s must be
zero. Consequently, the exact sequence (2.4) can be decomposed into

0 −→ H6
c

(
X(w)

)
F4[−1] −→ t3F4[−1] −→ 0,

0 −→ H6
c

(
X(w)

)
F4[±i] −→ t3F4[±i] −→ 2t3F4[±i] −→ H7

c

(
X(w)

)
F4[±i] −→ 0,

0 −→ H6
c

(
X(w)

)
F4[θ j ] −→ 2t3F4

[
θ j] −→ 2t3F4

[
θ j] −→ H7

c

(
X(w)

)
F4[θ j ] −→ 0.

We use (C4) to conclude: the characters F4[±i], and F4[θ j] already occur in the cohomology of
the Deligne–Lusztig variety associated to a Coxeter element. Since w is not F -conjugate to a Coxeter
element, they cannot appear in H6

c (X(w)) with an eigenvalue of absolute value q3, and the previous
exact sequences determine the cuspidal part of the cohomology of X(w).

Proposition 2.8. Let w = t1t2t3t2t4 . The cuspidal part of the cohomology of X(w) is given by

h6t3F4[−1] + h7t3(F4[i] + F4[−i]).
2.1.3. Cohomology of X(w)

The unipotent characters in the principal Φ8-block b are given by buni = {Id,StG , φ9,10, φ16,5, φ9,2,

F4[−1], F4[i], F4[−i]}. From Propositions 2.2 and 2.8 we deduce the contribution to the cohomology of
X(w) of any unipotent character in the block:

Theorem 2.9. Let (G, F ) be a split group of type F4 and w be a good 8-regular element. The contribution to the
cohomology of the Deligne–Lusztig variety X(w) of the principal series and the cuspidal characters coincides
with the contribution of the principal Φ8-block, and it is given by

i 6 7 8 9 10 11 12

bHi(X(w),Q�) St q2φ9,10 q3φ16,5 q4φ9,2 q6 Id
−q3F4[−1]

iq3F4[i]
−iq3F4[−i]
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2.2. 9-regular elements for groups of type E6

In this section we assume that (G, F ) is a split group of type E6. The largest regular number
(excluding the Coxeter number) being 9, we are interested in computing the cohomology of X(w) for
any 9th root of π , or equivalently for any good 9-regular element. We will label the simple reflections
as follows:

t1 t3

t2

t4 t5 t6

As before, we may, and we will, consider a particular root of π , since the cohomology of the
corresponding Deligne–Lusztig variety X(w) does not depend on this choice. We shall consider the
following 9th root of π :

w = t1t3t4t3t2t4t5t6.

2.2.1. Cohomology of U I\X(w)

We decompose the quotient of X(w) by U I for I = {t2, t3, t4, t5}. The situation is similar to the one
studied in Section 2.1.1: a piece Xx is non-empty if and only if W I x is one of the three cosets among
W I w0, W I w0t6t5t4 and W I w0t1t3.

• Let J = S � {t1}. We have W J w0t1t3 = W J w0 and therefore the piece corresponding to
W I w0t6t5t4 is stable by the action of P J . Let y be the minimal element of W J w0t6t5t4. Since
w0 (t6t5t4) = t1t3t4 is J -reduced, y = w J w0t6t5t4. Let us decompose w as w = w1 w2 w3 with
w1 = t1, w2 = t3 = t3 w ′

2 and w3 = t4t3t2t4t5t6. Then y w1 = t6, y w ′
2 = 1 and y w3 = t3t5t4t2 are

all elements of W J . In addition, they satisfy the assumptions of Theorem 1.1 (see also Remark 1.2)
so that

H•
c (XW J y,Q�)

U J � H•
c

(
Gm × XL J (t6t3t5t4t2),Q�

)[−2](1).

Now XL J (t6t3t5t4t2) is a Deligne–Lusztig variety associated to a Coxeter element, and therefore
the cohomology of its quotient by U I ∩ L J is given by [20]. We obtain

H•
c (XW I w0t6t5t4 ,Q�)

U I � (
H•

c

(
Gm × XL J (t6t3t5t4t2),Q�

))U I ∩L J [−2](1)

� H•
c

(
(Gm)2 × XLI (t2t5t4t3),Q�

)[−2](1).

• For the piece XW I w0t1t3 , we proceed as above: let K = S � {t6} and z be the minimal element
of W K w0t1t3. It is clearly z = w K w0t1t3 since t6t5 is K -reduced. We can decompose w as w =
w1 w2 where w1 = t1t3t4t3t2 and w2 = t4 (t5t6) = t4 w ′

2. We have z w1 = t2t4t5 and z w ′
2 = t3t1 so

that with Theorem 1.1 and [20] we obtain

H•
c (XW I w0t1t3 ,Q�)

U I � (
H•

c

(
Gm × XLK (t2t4t5t3t1),Q�

))U I ∩LK [−2](1)

� H•
c

(
(Gm)2 × XLI (t5t4t2t3),Q�

)[−2](1).
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• For the open piece XW I w0 we can directly apply Theorem 1.1 by decomposing w as w = w1 w2
with w1 = t1 (t3t4t3t2t4t5) and w2 = t6. We deduce

H•
c (XW I w0 ,Q�)

U I � H•
c

(
(Gm)2 × XLI (t5t4t5t2t4t3),Q�

)
.

By the properties of the Bruhat order the varieties XW I w0t6t5t4 and XW I w0t1t3 are both closed sub-
varieties of X(w). Therefore the cohomology of the union X f = U I\XW I w0t6t5t4 ∪ U I\XW I w0t1t3 can
be deduced from [20, Table 7.3] whereas the cohomology of Xo = U I\XW I w0 is given by [9, Theo-
rem 12.4]:

HXo = (
h2t + h

)2(
h6 St+h7(t2(ρ12+ + ρ12− + ρ212) + 2t3D4

) + 2h8t3ρ1.21

+ h9t4(ρ2+ + ρ2− + ρ31) + h12t6 Id
)
,

HX f = 2h2t
(
h2t + h

)2(
h4(St+t2D4

) + h5tρ1.13 + h6t2ρ12.2 + h7t3ρ1.3 + h8t4 Id
)

where ρλ is the unipotent character (in the principal series) associated to the character λ of W I and
D4 is the unique unipotent cuspidal character of LI .

As before, any character in the principal series which is different from St and Id cannot appear in
the cohomology of both of the varieties, so that the isotypic part on the cohomology of U I\X(w) is
the sum of the isotypic part on H•

c (X f ) and H•
c (Xo). For the characters St and Id, we proceed exactly

as in Section 2.1.1 using [11, Propositions 3.3.14 and 3.3.15].

Proposition 2.10. Let w = t1t3t4t3t2t4t5t6 and I = {t2, t3, t4, t5}. The contribution of the characters in the
principal series to the cohomology of U I\X(w) is given by

h8 St+h9t2(3 St +ρ12+ + ρ12− + ρ212 + 2ρ1.13)

+ h10t3(2 St+2ρ12+ + 2ρ12− + 2ρ212 + 4ρ1.13 + 2ρ1.21 + 2ρ12.2)

+ h11t4(ρ12+ + ρ12− + ρ212 + 2ρ1.13 + 4ρ1.21 + 4ρ12.2 + ρ2+ + ρ2− + ρ31 + 2ρ1.3)

+ h12t5(2ρ1.21 + 2ρ12.2 + 2ρ2+ + 2ρ2− + 2ρ31 + 4ρ1.3 + 2 Id)

+ h13t6(ρ2+ + ρ2− + ρ31 + 2ρ1.3 + 3 Id) + h16t8 Id.

Remark 2.11. Unfortunately, this method is not sufficient for determining the D4-isotypic part (see
also Remark 2.3).

2.2.2. Cuspidal characters
The group G has only two cuspidal characters, denoted by E6[θ] and E6[θ2] where θ is a primitive

3rd root of unity. In order to determine their contribution to the cohomology of X(w), we want to
use the closure X(v) for v � w . However, unlike the type F4, they are not always rationally smooth
and we shall rather work with “bigger” compactifications, obtained by underlining all the simple
reflections. For details on the explicit computations we refer to Section 2.1.2. We start by defining the
following closed subvariety of X(w):

Z = X(t1t4t3t2t4t5t6) ∪ X(t1t3t3t2t4t5t6) ∪ X(t1t3t4t2t4t5t6) ∪ X(t1t3t4t3t2t5t6)

so that we obtain, for any cuspidal character ρ , a long exact sequence

· · · −→ Hi
c

(
X(w)

) −→ Hi
c

(
X(w)

) −→ Hi
c(Z)ρ −→ · · · . (2.12)
ρ ρ
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We determine the cuspidal part of Z as follows: we compute, for any element v ∈ {t1t4t3t2t4t5t6,

t1t3t4t2t4t5t6, t1t3t4t3t2t5t6}

HX(v) = HX(v) = (
h7t3 + h8t4)(E6[θ] + E6

[
θ2])

by means of the following exact sequences

· · · −→ Hi
c

(
X(v)

)
ρ

−→ Hi
c

(
X(v)

)
ρ

−→ (
Hi

c

(
X(c)

)
ρ

)⊕2 −→ · · ·

and the precise values

HX(v) = (
h6t3 + h8t4)(E6[θ] + E6

[
θ2])

and

HX(c) = h6t3(E6[θ] + E6
[
θ2])

that can be found using (C3). Note that we have also used the fact that the cohomology of X(v) is
zero outside the degrees 7, . . . ,14. For the element v = t1t3t3t2t4t5t6 we use [11, Proposition 3.2.10]
and we obtain the same value again:

HX(v) = (
h2t + h

)
HX(c) = (

h7t3 + h8t4)(E6[θ] + E6
[
θ2]).

In particular, the cohomology of Z fits into the following long exact sequence

· · · −→ (
Hi

c

(
X(v)

)
ρ

)⊕4 −→ Hi
c(Z)ρ −→ (

Hi
c

(
X(c)

)
ρ

)⊕4 −→ · · · .

We claim that

HZ = 4h8t4(E6[θ] + E6
[
θ2]). (2.13)

Again, the exact sequence itself is not enough to compute this value, but it can be deduced from the
following properties:

• the cohomology of X(w) vanishes in degree 7 by (C1);
• HX(w) = 3h8t4(E6[θ] + E6[θ2]) which forces in particular H6

c (X(w)) to have no cuspidal con-
stituent.

These properties, together with (2.12), ensure that the coefficient of h6 in HZ is zero, and we deduce
(2.13).

Consequently, the decomposition X(w) = X(w) ∪ Z yields the following exact sequence for any
cuspidal character ρ:

0 −→ H8
c

(
X(w)

)
ρ

−→ 3t4ρ −→ 4t4ρ −→ H9
c

(
X(w)

)
ρ

−→ 0.

Finally, by (C4) the group H8
c (X(w)) cannot contain any unipotent cuspidal character with an eigen-

value of absolute value q4 and we obtain:
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Proposition 2.14. Let w = t1t3t4t3t2t4t5t6 . The contribution of the cuspidal characters of G to the cohomology
of X(w) is given by

h9t4(E6[θ] + E6
[
θ2]).

2.2.3. Cohomology of X(w)

By [4], the irreducible constituents of the virtual character associated to the cohomology of X(w)

are exactly the unipotent characters in the principal Φ9-block, namely buni = {IdG ,StG , φ20,20, φ64,13,

φ90,8, φ64,4, φ20,2,E6[θ],E6[θ2]}. By looking at the Harish-Chandra restriction of these characters, we
can deduce from Propositions 2.10 and 2.14 the following theorem:

Theorem 2.15. Let (G, F ) be a split group of type E6 and w be a good 9-regular element of W . The contribution
to the cohomology of the Deligne–Lusztig variety X(w) of the principal series and the cuspidal characters
coincides with the contribution of the principal Φ9-block, and it is given by

i 8 9 10 11 12 13 14 15 16

bHi(X(w),Q�) St q2φ20,20 q3φ64,13 q4φ90,8 q5φ64,4 q6φ20,2 q8 Id
θq4E6[θ]
θ2q4E6[θ2]

Conjecturally, for good regular elements, there should be no cancellation in the virtual charac-
ter

∑
(−1)iHi

c(X(w),Q�) ∈ K0(G-mod) [3, Conjecture 5.7]. In particular, the series associated to the
cuspidal character of D4 should not appear in the cohomology of X(w):

Assumption 2.16. For good 9-regular elements in E6, the cohomology of X(w) has no constituent in
the Harish-Chandra series associated to the cuspidal representation of D4.

This assumption will be essential to study the contribution of the D4-series for groups of type E7
and E8 (see Theorems 2.20 and 2.26).

2.3. 14-regular elements for groups of type E7

We now assume that (G, F ) is a split group of type E7 and we are interested in computing the
cohomology of Deligne–Lusztig varieties associated to good 14-regular elements. We will label the
simple reflections according to the following Dynkin diagram

t1 t3

t2

t4 t5 t6 t7

and consider a specific 14th root of π :

w = t7t6t5t4t5t2t4t3t1.

2.3.1. Cohomology of U I\X(w)

Let I = S � {t7}. The group LI has type E6 and we can use the results in the previous section to
compute the cohomology of the quotient of X(w) by U I . In the decomposition of X(w) by PI -cosets
in G/B, only two pieces are non-empty, with associated cosets W I w0 and W I w0t7t6t5. We can apply
Theorem 1.1 in these two cases:
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• when y = w I w0t7t6t5 we decompose w as w = w1 w2 with w1 = t7t6t5t4t5t2 and w2 =
t4 (t3t1) = t4 w ′

2. We have y w1 = t1t3t4t2 and y w ′
2 = t5t6 so that

H•
c (XW I y,Q�)

U I � H•
c

(
Gm × XLI (t1t3t4t2t5t6),Q�

)[−2](1);

• for x = w I w0 we observe that w = t7 (t6t5t4t5t2t4t3t1) = t7 w ′ with x w ′ ∈ W J and deduce that

H•
c (XW I w0 ,Q�)

U I � H•
c

(
Gm × XLI (t1t3t4t3t2t4t5t6),Q�

)
.

The cohomology of these varieties is known by Theorem 2.15 and [20, Table 7.3]. Recall that for any
Coxeter element cI of W I , the cohomology of the corresponding variety is given by

HXLI (cI ) = h6(St+t2D4,ε + t3E6[θ] + t3E6
[
θ2]) + h7(tφ6,25 + t3D4,r

)
+ h8(t2φ15,17 + t4D4,Id

) + h9t3φ20,10 + h10t4φ15,5 + h11t5φ6,1 + h12t6 Id.

If we exclude St and Id, none of the characters in the principal series that appear here can appear in
the cohomology of U I\XW I w0 . From that observation one can readily deduce the contribution of the
principal series to the cohomology of U I\X(w). Note that in the case of St and Id we can proceed as
in Section 2.1.1.

Proposition 2.17. Let w = t7t6t5t4t5t2t4t3t1 and I = S � {t7}. The contribution of the principal series to the
cohomology of U I\X(w) is given by

h9 St+h10t2(St+φ6,25 + φ20,20) + h11t3(φ6,25 + φ20,20 + φ15,17 + φ64,13)

+ h12t4(φ15,17 + φ64,13 + φ20,10 + φ90,8) + h13t5(φ20,10 + φ90,8 + φ15,5 + φ64,4)

+ h14t6(φ15,5 + φ64,4 + φ6,1 + φ20,2) + h15t7(φ6,1 + φ20,2 + Id) + h18t9 Id.

The case of the Harish-Chandra series associated to the cuspidal character of D4 remains undeter-
mined unless we know the contribution of this series to the cohomology of the open part. However,
in our situation, none of these characters should appear, and the isotypic part on the cohomology of
the union U I\X(w) should come from the Coxeter variety only.

Proposition 2.18. Assume that 2.16 holds, and let w = t7t6t5t4t5t2t4t3t1 and I = S � {t7}. Then the contri-
bution of the Harish-Chandra series associated to the cuspidal character of D4 to the cohomology of U I\X(w)

is given by

h9t3D4,ε + h10t4(D4,ε + D4,r) + h11t5(D4,r + D4,Id) + h12t6D4,Id.

Finally, for the cuspidal characters E6[θ] and E6[θ2], we have a long exact sequence

0 −→ H9
c

(
U I\X(w)

)
E6[θ ] −→ t4E6[θ] −→ t4E6[θ] −→ H10

c

(
U I\X(w)

)
E6[θ ]

−→ t5E6[θ] −→ t5E6[θ] −→ H11
c

(
U I\X(w)

)
E6[θ ] −→ 0.

This is not enough to determine their contribution and we can only hope that they actually do not
appear in the cohomology of U I\X(w).
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2.3.2. Cuspidal characters
The group G has only two cuspidal unipotent characters, namely E7[i] and E7[−i], where i is a

primitive 4th root of unity. The method to determine their contribution to the cohomology is strictly
identical to the case of E6 and yields:

Proposition 2.19. Let w = t7t6t5t4t5t2t4t3t1 . The cuspidal part of the cohomology of X(w) is given by

h10t9/2(E7[i] + E7[−i]).
2.3.3. Cohomology of X(w)

By combining Propositions 2.17 and 2.18, we obtain the Harish-Chandra restriction to E6 of the
cohomology of the variety X(w). If we compare these to the restrictions of the characters in the prin-
cipal Φ14-block buni = {StG , IdG , φ27,37, φ105,26, φ189,17, φ189,10, φ105,5, φ27,2,D4,13.,D4,12.1,D4,1.2,D4,.3,

E7[i],E7[−i]} (and the fact that these actually occur as constituents of the cohomology) we deduce
their exact contribution. Adding the cuspidal characters obtained in 2.19, we get the following re-
sult.

Theorem 2.20. Let (G, F ) be a split group of type E7 and w be a good 14-regular element of W . The con-
tribution to the cohomology of the Deligne–Lusztig variety X(w) of the principal series, the D4-series and the
cuspidal characters coincides with the contribution of the principal Φ14-block, and it is given by

i 9 10 11 12 13

bHi(X(w),Q�) St q2φ27,37 q3φ105,26 q4φ189,17 q5φ189,10

−q3D4,13 . −q4D4,12 .1 −q5D4,1.2 −q6D4,.3

iq9/2E7[i]
−iq9/2E7[−i]

i 14 15 16 17 18

bHi(X(w),Q�) q6φ105,5 q7φ27,2 q9 Id

where the D4-series is given under Assumption 2.16.

In our situation, the non-cancellation for the corresponding Deligne–Lusztig virtual character is
equivalent to the following:

Assumption 2.21. The characters lying in the Harish-Chandra series associated to the cuspidal charac-
ters E6[θ] and E6[θ2] do not appear in the cohomology of X(w).

2.4. 24-regular elements for groups of type E8

We close this section by studying the cohomology of Deligne–Lusztig varieties associated to good
24-regular elements in E8. We will label the simple reflections as follows

t1 t3

t2

t4 t5 t6 t7 t8
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and choose the following 24th root of π :

w = t8t7t6t5t4t5t2t4t3t1.

2.4.1. Cohomology of U I\X(w)

The situation is very similar to the case of E7 so we will omit the details. When I = S � {t8}, the
pieces corresponding to W I w0 and W I w0t8t7t6t5 are the only non-empty pieces, and the cohomology
of their quotient by U I is given by

H•
c (U I\XW I w0t8t7t6t5 ,Q�) � H•

c

(
Gm × XLI (t7t6t5t4t2t3t1),Q�

)[−2](1)

and

H•
c (U I\XW I w0 ,Q�) � H•

c

(
Gm × XLI (t7t6t5t4t5t2t4t3t1),Q�

)
.

The latter has been computed in the previous section, whereas the cohomology of a Deligne–Lusztig
variety associated to any Coxeter element cI of W I can be deduced from [20, Table 7.3]:

HXLI (cI ) = h7(St+t2D4,ε + t3(E6[θ]ε + E6
[
θ2]

ε

) + t7/2(E7[i] + E7[−i]))
+ h8(tφ7,46 + t3D4,1.12 + t4(E6[θ]Id + E6

[
θ2]

Id

))
+ h9(t2φ21,33 + t4D4,2.1

) + h10(t3φ35,22 + t5D4,Id
)

+ h11t4φ35,13 + h12t5φ21,6 + h13t6φ7,1 + h14t7 Id.

Together with Theorem 2.20, this is enough to determine the contribution of the principal series:

Proposition 2.22. Let w = t8t7t6t5t4t5t2t4t3t1 and I = S � {t8}. The contribution of the principal series to
the cohomology of U I\X(w) is given by

h10 St+h11t2(St+φ7,46 + φ27,37) + h12t3(φ7,46 + φ27,37 + φ21,33 + φ105,26)

+ h13t4(φ21,33 + φ105,26 + φ35,22 + φ189,17) + h14t5(φ35,22 + φ189,17 + φ35,13 + φ189,10)

+ h15t6(φ35,13 + φ189,10 + φ21,6 + φ105,5) + h16t7(φ21,6 + φ105,5 + φ7,1 + φ27,2)

+ h17t8(φ7,1 + φ27,2 + Id) + h20t10 Id.

The results for the intermediate series depend whether Assumptions 2.16 and 2.21 are satisfied. If
they hold, we can easily obtain:

Proposition 2.23. Let w = t8t7t6t5t4t5t2t4t3t1 and I = S � {t8}.

(i) Under Assumption 2.16, the contribution of the D4-series to the cohomology of U I\X(w) is given by

h10t3(D4,ε + D4,13.) + h11t4(D4,ε + D4,13. + D4,1.12 + D4,12.1)

+ h12t5(D4,1.12 + D4,12.1 + D4,2.1 + D4,1.2)

+ h13t6(D4,2.1 + D4,1.2 + D4,Id + D4,.3) + h14t7(D4,Id + D4,.3).
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(ii) Under Assumption 2.21, the contribution of the E6-series to the cohomology of U I\X(w) is given by

h10t4E6[θ]ε + h11t5(E6[θ]ε + E6[θ]Id
) + h12t6E6[θ]Id

and

h10t4E6
[
θ2]

ε
+ h11t5(E6

[
θ2]

ε
+ E6

[
θ2]

Id

) + h12t6E6
[
θ2]

Id.

2.4.2. Cuspidal characters
The group G has several cuspidal unipotent characters, denoted in [5] by E8[±i],E8[±θ],E8[±θ2],

EI
8[1],EII

8[1] and E8[ζ j] where ζ is a primitive 5th root of unity and j = 1,2,3,4. We proceed as in
the previous cases to determine their contribution to the cohomology of X(w). However, due to the
large number of cuspidal characters, the calculations are a bit more tedious.

We start by considering the closed subvariety Z of X(w) consisting of the union of the varieties
X(v) where v runs over the set

{t8t7t6t4t5t2t4t3t1, t8t7t6t5t4t2t4t3t1, t8t7t6t5t4t5t2t3t1, t8t7t6t5t5t2t4t3t1}.

The cohomology of this variety fits in the following long exact sequence, for any cuspidal character ρ

· · · −→ Hi
c

(
X(w)

)
ρ

−→ Hi
c

(
X(w)

)
ρ

−→ Hi
c(Z)ρ −→ · · · . (2.24)

The elements of the braid monoid obtained by un-underlining the elements v will be denoted by v1,
v2, v3 and v4. Note that only v4 is not the canonical lift of an element of W . For j = 1,2,3, the
cuspidal part of the cohomology of X(v j) � X(v j) can be deduced from the following exact sequence

· · · −→ Hi
c

(
X(v j)

)
ρ

−→ Hi
c

(
X(v j)

)
ρ

−→ (
Hi

c

(
X(c)

)
ρ

)⊕2 −→ · · ·

together with the following properties:

• the cuspidal part of H•
c (X(v j)) can be explicitly computed using (C3):

HX(v j)
= (

h8t4 + h10t5)(E8[−θ] + E8
[−θ2] + E8[ζ ] + E8

[
ζ 2] + E8

[
ζ 3] + E8

[
ζ 4]),

• the cuspidal part of a variety associated to a Coxeter element is given by [20] (or equivalently can
be computed using (C3)):

HX(c) = h8t4(E8[−θ] + E8
[−θ2] + E8[ζ ] + E8

[
ζ 2] + E8

[
ζ 3] + E8

[
ζ 4]),

• the cohomology of X(v j) vanishes in degree 8.

We obtain, for j = 1,2,3:

HX(v j) = (
h9t4 + h10t5)(E8[−θ] + E8

[−θ2] + E8[ζ ] + E8
[
ζ 2] + E8

[
ζ 3] + E8

[
ζ 4]).

Using [11, Proposition 3.2.10], one can check that it is also the cuspidal part of the cohomology of
X(v4).
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We claim that we can derive the cohomology of Z: for any cuspidal character ρ , we have an exact
sequence

· · · −→
4⊕

j=1

Hi
c

(
X(v j)

)
ρ

−→ Hi
c(Z)ρ −→ (

Hi
c

(
X(c)

)
ρ

)⊕4 −→ · · · .

Furthermore, the cohomology of X(w) vanishes in degree 9 and the cuspidal part of H•
c (X(w)) is

concentrated in degree 10, given by

h10t5(E8[i] + E8[−i] + 3
(
E8[−θ] + E8

[−θ2]) + 4
(
E8[ζ ] + E8

[
ζ 2] + E8

[
ζ 3] + E8

[
ζ 4])).

Consequently, the cuspidal part of H8
c (Z) is zero by (2.24) and we obtain

HZ = 4h10t5(E8[−θ] + E8
[−θ2] + E8[ζ ] + E8

[
ζ 2] + E8

[
ζ 3] + E8

[
ζ 4]).

In particular, we can unpack the exact sequence (2.24) according to the different cuspidal characters
as follows

0 −→ H10
c

(
X(w)

)
E8[±i]−→t5E8[±i] −→ 0,

0 −→ H10
c

(
X(w)

)
E8[−θ i ] −→ 3t5E8

[−θ i] −→ 4t5E8
[−θ i] −→ H11

c

(
X(w)

)
E8[−θ i ] −→ 0,

0 −→ H10
c

(
X(w)

)
E8[ζ j ] −→ 4t5E8

[
ζ j] −→ 4t5E8

[
ζ j] −→ H11

c

(
X(w)

)
E8[ζ j ] −→ 0.

To conclude, we observe that the unipotent characters E8[−θ i] and E8[ζ j] already appear in the Cox-
eter variety, and for that reason they cannot be constituents of H10

c (X(w)) with an eigenvalue of
absolute value q5 (see (C4)).

Proposition 2.25. Let w = t8t7t6t5t4t5t2t4t3t1 . The cuspidal part of the cohomology of X(w) is given by

h10t5(E8[i] + E8[−i]) + h11t5(E8[−θ] + E8
[−θ2]).

2.4.3. Cohomology of X(w)

We summarize the results obtained in this section. The unipotent characters in the principal
Φ24-block b are given by

buni = {
IdG ,StG , φ35,74, φ160,55, φ350,38, φ448,25, φ350,14, φ160,16, φ35,2, D4,φ′′

2,16
,

D4,φ′′
8,9

, D4,φ12,4 , D4,φ′
8,3

, D4,φ′
2,4

, E6[θ]φ′
1,3

, E6[θ]φ2,2 , E6[θ]φ′′
1,3

, E6
[
θ2]

φ′
1,3

,

E6
[
θ2]

φ2,2
, E6

[
θ2]

φ′′
1,3

, E8[i], E8[−i], E8[−θ], E8
[−θ2]}.

By comparing the restriction to E7 of these characters and Propositions 2.22, 2.23 and 2.25 we obtain
a good approximation of the cohomology of X(w).

Theorem 2.26. Let (G, F ) be a split group of type E8 and w be a good 24-regular element of W . The contribu-
tion to the cohomology of the Deligne–Lusztig variety X(w) of the principal series, the D4-series, the E6-series
and the cuspidal characters coincides with the contribution of the principal Φ24-block, and it is given by
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i 10 11 12 13

bHi(X(w),Q�) St q2φ35,74 q3φ160,55 q4φ350,38

−q3D4,φ′′
2,16

−q4D4,φ′′
8,9

−q5D4,φ12,4 −q6D4,φ′
8,3

θq4E6[θ]φ′
1,3

θq5E6[θ]φ2,2 θq6E6[θ]φ′′
1,3

θ2q4E6[θ2]φ′
1,3

θ2q5E6[θ2]φ2,2 θ2q6E6[θ2]φ′′
1,3

iq5E8[i]
−iq5E8[−i]

−θq5E8[−θ]
−θ2q5E8[−θ2]

i 14 15 16 17 18 19 20

bHi(X(w),Q�) q5φ448,25 q6φ350,14 q7φ160,7 q8φ35,2 q10 Id
−q7D4,φ′

2,4

where the D4-series is given under Assumption 2.16 and the E6-series under Assumption 2.21.

3. Conjectures on associated Brauer trees

Having computed the cohomology of some Deligne–Lusztig varieties for exceptional groups, we
would like to propose conjectures on Brauer trees for the corresponding principal Φd-blocks.

Recall from [2] that if d is a regular number, and w is a d-regular element, the irreducible con-
stituent of the virtual character RG

T w
(1) = ∑

(−1)iHc(X(w),Q�) are exactly the unipotent characters in
the principal Φd-block. If moreover CW (w F ) � NG(Tw)/CG(Tw) is cyclic, then the Φd-block is gener-
ically of cyclic defect: if � divides Φd(q) but does not divide |W |, then any Sylow subgroup of G is
cyclic. In that case, the representation theory of the block (i.e. the module category over the block)
can be described by its Brauer tree. More precisely, in this situation:

• any �-character θ of T w is in general position and the associated irreducible character χθ =
(−1)�(w)RG

T w
(θ) is cuspidal by [21, Proposition 2.18]. Moreover, using [8, Proposition 12.2] it can

be shown that its restriction to the set of �-regular elements is independent of θ . Any character
of this form is said to be exceptional;

• there are e = |CW (w F )| unipotent characters {χ0, . . . ,χe−1} in the block, which will be referred
to as the non-exceptional characters.

Now if we consider the sum χexc of all distinct exceptional characters, any projective indecomposable
F�G-module lifts uniquely, up to isomorphism, to a Z�-module P whose character is [P ] = χ +χ ′ for
χ , χ ′ two distinct characters in V = {χexc,χ0, . . . ,χe−1}. We define the Brauer tree Γ of the block to
be the graph with vertices labelled by V and edges χ–χ ′ whenever there exists a projective inde-
composable module with character χ + χ ′ . This graph is a tree and its planar embbeding determines
the module category over the block up to Morita equivalence.

When d = h is the Coxeter number, Hiss, Lübeck and Malle have formulated in [19] a conjecture
relating the cohomology of the Deligne–Lusztig variety associated to a Coxeter element (together with
the action of F ) and the planar embedded Brauer tree of the principal Φh-block. Using the explicit
results on the cohomology of Deligne–Lusztig varieties that we have obtained, and the Brauer trees
that we already know from [18] and [19], we shall propose two conjectural Brauer trees for groups of
type E7 and E8.

3.1. Observations

Let (G, F ) be a split group of type F4 and w be a good 8-regular element. When � divides Φ8(q)

and does not divide the order of W , we can observe that the classes in F� of the eigenvalues of F
on bH•

c (X(w),Q�) form the group of 8th roots of unity, generated by the class of q. Therefore to any
non-exceptional character χ one can associate an integer jχ such that the class of the corresponding
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Fig. 1. Brauer tree of the principal Φ8-block of F4.

Fig. 2. Brauer tree of the principal Φ9-block of E6.

eigenvalue of F coincides with the class of q jχ . By [18], the Brauer tree of the block, together with
the integers jχ is given in Fig. 1.

Now assume that (G, F ) is a split group of type E6. The Brauer tree of the principal Φ9-block of G
has been determined in [19]. It corresponds to Fig. 2.

Remark 3.1. Unlike the Coxeter case (see [12] and [13]), one can find torsion in the cohomology
over Z� of the (Galois covering) of the corresponding Deligne–Lusztig variety. Indeed, it is impossible
to represent the generalized (q2)-eigenspace of F on the cohomology complex with a complex of

projective modules 0 −→ P
f−→ Q −→ 0 where the cokernel of f is torsion-free. Note that even the

cohomology of the complex constructed by Rickard in [23, Section 4] will also have a non-trivial
torsion part (one can show nevertheless that the torsion is always cuspidal).

3.2. Conjectures

From the results obtained in Theorems 2.20 and 2.26, it is not difficult to extrapolate the previous
trees to the case of E7 and E8. We conjecture that the Brauer trees of the principal Φ14-block in E7
and the principal Φ24-block in E8 are given by Figs. 3 and 4. Note that

• the lines represented by each Harish-Chandra series, as well as the real stem, are known
from [16];

• the simple modules corresponding to edges connecting two different series are necessarily cusp-
idal.
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