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1. Introduction

Clifford theory of finite groups is a central topic in representation theory. When we only consider
representations over the complex numbers, we classify the possible Clifford theories with the help
of a second cohomology group. If two Clifford theories are equivalent, then there exist well-behaved
character correspondences between them, but these correspondences are not uniquely determined.
When we consider representations over arbitrary (small) fields we can use the Brauer–Clifford group
instead of the second cohomology group. In an earlier paper [12], we introduced the concept of
endoisomorphism, and we showed that two Clifford theories for different groups yield the same el-
ement of the Brauer–Clifford group if and only if there is an endoisomorphism between modules
associated with the Clifford theories.

In the present paper, we show that each endoisomorphism yields a unique correspondence among
modules defined over many different fields and among their corresponding characters. We prove that
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this correspondence has many useful properties. In particular, we will use these in a forthcoming pa-
per to prove a strengthened version of the Alperin–McKay Conjecture for all p-solvable finite groups.
Since from [12] we know that the existence of non-trivial endoisomorphisms can be deduced from
equalities in the Brauer–Clifford group, the study of the module and character correspondences in this
case is particularly useful in the applications. In Corollary 9.9 and Corollary 11.7 below we state some
consequences for the correspondences that arise from certain equalities in the Brauer–Clifford group.
The rest of the paper, however, mostly discusses the consequences of the existence of endoisomor-
phisms which may or may not arise in this manner. We show that from each endoisomorphism one
can construct two large families of modules over many different fields and groups and a uniquely de-
fined correspondence between them with excellent properties. From the module correspondence, one
also gets a corresponding unique character correspondence, and even a corresponding unique Brauer
character correspondence in many cases.

The concept of an endoisomorphism is a natural one. An endoisomorphism from a module M1 to
a module M2 is simply an isomorphism of the G-algebras obtained from the two modules M1 and
M2 as G-algebras of endomorphisms. We give a precise definition of endoisomorphism in Section 2
below. The original definition used in [12] assumes that the modules are defined over fields, and that
they are finitely generated. This is sufficient for that paper since these are the only type of modules
discussed there. In the present paper, we extend the family of modules discussed in two ways. First,
we allow the modules to be defined over commutative rings instead of over fields. Second, we allow
the modules to be infinitely generated.

In [12], we saw that endoisomorphisms for finitely generated modules over fields arise naturally
from equality of elements of the Brauer–Clifford group, or from equality between families of elements
of the Brauer–Clifford group. In Section 11 below, we see that the existence of an endoisomorphism
over a field yields the existence of an endoisomorphism over a corresponding ring for finitely gener-
ated modules under certain conditions. These conditions are such as to make a consistent transition
from modules in characteristic zero to modules in positive characteristic. We also show in the pa-
per how endoisomorphisms of finitely generated modules naturally give rise to endoisomorphisms of
certain infinitely generated modules, and use this to set up our module correspondence.

The main goal of the present paper is to show that fixing an endoisomorphism for two modules
yields a unique module and character correspondence with excellent properties. The uniqueness of the
correspondence for modules is, to a certain extent, up to module isomorphism. The correspondence
at the character level is unique. We prove that each endoisomorphism produces a coherent family of
module correspondences for a multitude of module categories.

In Section 4, we describe a natural correspondence between the sections of a given modules and
certain objects obtained from the G-algebra of endomorphisms. In order to be able to describe all
finitely generated modules using these sections, it is natural to extend the original finitely generated
module by taking the direct sum of a countably infinite set of copies of the original module. We are
interested only in the finitely generated submodules of this direct sum. It is convenient to consider
this direct sum as a topological module and to redefine the endomorphism G-algebra for the direct
sum as consisting of those endomorphisms whose kernel is an open set of the topology. This makes
our results flow smoothly.

In Section 2, we define endoisomorphisms in our most general context, namely for topological
modules over finite group algebras over commutative rings. In Section 3, we see that under our defini-
tions the finitely generated submodules are in one-to-one correspondence with the finitely generated
right ideals of the G-algebra of endomorphisms. This then allows us to describe the sections of the
module in Section 4. We also show that this naturally makes each endoisomorphism induce a unique
correspondence of modules with good properties. This unique correspondence on sections of two re-
lated modules which only depends on an endoisomorphism ε is denoted κ0

ε below. We then show
how one can naturally extend the original modules to their completions and then generate two much
bigger families of modules. The completions are generally designed to handle all homomorphic im-
ages of finite direct sums of the original modules. One can also extend the original endoisomorphism
in a uniquely prescribed way to a new one for the extended modules. From this extended endoiso-
morphism we obtain the unique correspondence, denoted κε below. The correspondence κε can be
applied to a large collection of modules over subgroups over various fields in different characteristics.
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We also prove a number of excellent compatibility properties for κε including about reduction modulo
a prime p, and even p-blocks.

Our results make unique, greatly generalize, and prove additional properties for the correspon-
dences studied in [8,9]. These earlier results were used in [10] to prove a strengthening [7] of the
McKay Conjecture for all p-solvable finite groups. Some of the additional properties that we prove in
the present paper have to do with reduction modulo p and p-blocks. In a forthcoming paper, we will
use the results of the present paper to prove a strengthening [7] of the Alperin–McKay Conjecture.
We also plan to explore in forthcoming papers how the results of the present paper yield simplified
and strengthened results for the character and module theory of solvable and p-solvable groups.

We use the notation and conventions of [11]. Note that we systematically write all functions on
the left, and compose them from right to left. This allows us, in particular, to compose characters
with elements of Galois groups. We also use left exponential notation (i.e. ga for the action of a
group element g on an algebra element a). We also note that N means the set of natural numbers
that is the set of cardinalities of the finite sets so that N = {0,1,2, . . .}, i.e. 0 is a natural number.

2. Endomorphism algebras and endoisomorphisms

While endoisomorphisms were defined in [12] in the context of finite dimensional modules de-
fined over fields, it is convenient to extend the definition to a wider class of modules. We now extend
our modules to include infinitely generated ones defined over commutative rings. Furthermore, it is
also convenient for our purposes to allow our modules to be topological. We start with the definition
of the endomorphism algebra of one such module.

Definition 2.1. Let G and G be finite groups, and suppose we are given a surjective homomorphism
π : G → G whose kernel is H . Let R be a commutative ring with identity, and let RG be the group
ring, viewed with the discrete topology. Let M be a topological RG-module, that is a topological space
and a unital RG-module where the operations are continuous. Then we let

End(M) = {
φ ∈ EndR H (M): ker(φ) is open

}
.

In view of Proposition 2.2, we will call End(M) the endomorphism G-algebra of M , and, when we say
that some map f : M → M is an endomorphism of M we will mean f ∈ End(M) unless we explicitly
say otherwise.

End(M) has an algebraic structure, as we see in the next proposition. However, we will not assign
to End(M) any topological structure.

Proposition 2.2. Assume the hypotheses of Definition 2.1. Then End(M) is a G-algebra over R. Furthermore,
if M is discrete then End(M) = EndR H (M).

Proof. In the topological abelian group M , a subgroup is open if and only if it contains a non-empty
open subset. It follows that End(M) is closed under addition, subtraction, scalar multiplication and
composition. Furthermore, multiplication by any element of G induces on M a homeomorphism,
so that End(M) is closed under conjugation by G . Since obviously H acts trivially by conjugation
on End(M), we have that End(M) is a G-algebra over R , as desired. The second statement follows
immediately from the definitions. �
Remark 2.3. End(M) need not be finitely generated over R , and End(M) need not have an identity.

Remark 2.4. If a module M is not described as being topological, we will assume that it has the
discrete topology, and, in particular, End(M) = EndR H (M).

For convenience, we label the following hypotheses.
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Hypotheses 2.5. Let G , G ′ and G be finite groups, and suppose we are given surjective homomor-
phisms π : G → G and π ′ : G ′ → G whose kernels are, respectively, H and H ′ .

The key to an isomorphism between two Clifford theories is the definition below of an endoisomor-
phism. In [12], we saw that Clifford theories that yield the same element of the Brauer–Clifford group
yield endoisomorphisms. The type of module considered in [12] is finite dimensional modules over
fields, but we find it convenient to extend our allowed modules here.

Definition 2.6. Assume Hypotheses 2.5, and let R be a commutative ring with identity. Let M be a
topological RG-module, and let M ′ be a topological RG ′-module. An endoisomorphism over R from M
to M ′ is a map

ε : End(M) → End
(
M ′)

which is an isomorphism of G-algebras over R . We will write

ε : M � M ′

to mean that ε is an endoisomorphism from M to M ′ .

3. Endomorphisms for large direct sums of modules

We are mainly interested in correspondences of finitely generated modules. In order to study these,
it is convenient to define larger (non-finitely generated) modules, and to consider their finitely gener-
ated submodules. It is convenient to use topological language for these modules.

Hypotheses 3.1. Let G and G be finite groups, and suppose we are given a surjective homomorphism
π : G → G whose kernel is H . Suppose F is a field. We view F and F G as discrete topological spaces.
Let C be a (possibly infinite) set of finitely generated F G-modules N such that ResG

H (N) is completely
reducible. We set M to be the direct sum of all elements of C . We consider

T B(C) =
{

x +
∑
N∈D

N: x ∈ M and D ⊆ C and |C\D| < +∞
}
.

We consider M as a topological space with basis of open sets given by T B(C).

Then M is a topological F G-module. When C is finite M is discrete, but M need not be discrete
in general. In general, we can think of the topology on M to be that induced on the direct sum M by
the product topology of the discrete topological modules in C .

Lemma 3.2. Assume Hypotheses 3.1, and let V be an F -subspace of M. Let

D = {N ∈ C : N ⊆ V }.
Then V is open if and only if |C\D| < +∞.

Proof. Suppose first that V is open. Then, since 0 ∈ V , there exists some x ∈ M , and some E ⊆ C such
that |C\E| < +∞, and

0 ∈ x +
∑

N ⊆ V .
N∈E
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Hence, E ⊆ D , and the implication in the forward direction holds. Next suppose that |C\D| < +∞.
Then, for each x ∈ V , we have that

x +
∑
N∈D

N ⊆ V ,

so that V is a union of elements of T B(C), and so it is open. �
Set A = End(M). It follows from Proposition 2.2 that A is a G-algebra over F , possibly of infinite

dimension and possibly without identity. Furthermore, for each a ∈ A, we have that a is continu-
ous and a(M) has finite dimension over F . Finally, note that we will not need to assign a topology
to A.

We are primarily interested in the finite dimensional submodules of M . Let V be any finite dimen-
sional subspace of M . Then for every m ∈ M we let 〈V ,m〉 be the subspace generated by V and m,
and there is an open F G-submodule O of M such that O ∩ 〈V ,m〉 = {0}. If m /∈ V , we have that
m + O is open and disjoint from V , so that V is closed. If m ∈ V , then (m + O ) ∩ V = {m}, so that V
is discrete under the relative topology from M . For this reason, while the topology of M is important,
the topology of the subspaces V themselves does not play an important role in our development.

Remark 3.3. Assume Hypotheses 3.1, and that C is finite. Then M has the discrete topology and we
have End(M) = EndF H (M).

The algebra End(M) can be described directly from ordinary full endomorphism algebras via suit-
able direct sums.

Proposition 3.4. Assume Hypotheses 3.1, and set A = End(M). Then, for each N1, N2 ∈ C , we may identify
naturally HomF H (N1, N2) with a vector F -subspace of A. In this way A may be viewed as a G-algebra over F
as the direct sum of all the HomF H (N1, N2) as N1, N2 ∈ C with the product induced by composition.

Proof. We may view the elements of HomF H (N1, N2) as F H-module homomorphism M → M whose
kernel contains the direct sum of all the elements of C except N1 and whose image is in N2. This
identification preserves the F -vector space structure, as well as the G-action. In addition, the product
is induced from composition under these identifications. Let S be the sum of all the HomF H (N1, N2)

for N1, N2 ∈ C . Then this sum is direct. Let φ ∈ A. Then, since ker(φ) is open, there is some finite
subset C1 ⊆ C such that ker(φ) contains all the elements of C not in C1. It follows that the image of
φ is finite dimensional, so that there exists a finite subset C2 ⊆ C such that φ(M) ⊆ ∑

N∈C2
N . Then

φ is in the sum of the HomF H (N1, N2) for N1 ∈ C1 and N2 ∈ C2. It follows that φ ∈ S . Hence, S = A,
and the proposition holds. �
Proposition 3.5. Assume Hypotheses 3.1, and set A = End(M). Then I is a finitely generated right ideal of A
if and only if there exists some idempotent e ∈ A such that I = e A.

Proof. If there exists some idempotent e ∈ A such that I = e A, then I is a finitely generated (in fact
generated by e) right ideal of A. Hence, we now suppose that I is any finitely generated right ideal
of A. We first show that if a ∈ I , b ∈ A and b(M) ⊆ a(M) then b ∈ I . We set N = a(M) and N1 = b(M)

so that N1 ⊆ N . We set K = ker(a) and K1 = ker(b). Since ResG
H (M) is completely reducible, there

exist F H-submodules Ñ and Ñ1 such that M = Ñ ⊕ K and M = Ñ1 ⊕ K1. We restrict a to a map
α : Ñ → N and we restrict b to a map β : Ñ1 → N1. Both α and β are F H-module isomorphisms. We
define c ∈ A by c(n + k) = α−1(β(n)) for all n ∈ Ñ1 and k ∈ K1. Then ac = b and it follows, since I is
a right ideal, that b ∈ I , as desired.

Now let

C = {
a(M): a ∈ I

}
.
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Let a1, . . . ,an be a finite set of generators of I . Then, if N ∈ C , we have

dimF (N) �
n∑

i=1

dimF
(
ai(M)

)
.

It follows that C has a maximal element N . Suppose N ′ ∈ C . Then since ResG
H (M) is completely re-

ducible, we can find an F H-submodule K of N ′ such that

N + N ′ = N ⊕ K .

Note that these subspaces are all finite dimensional over F . Hence, there exists a subset C0 ⊆ C
consisting of almost all the elements of C such that the direct sum D of all the elements of C0 is
such that D ∩ (N + N ′) = {0}. Then, by the above there exist a,b ∈ I such that a is the identity on N
and contains K + D in its kernel, and b is the identity on K and contains N + D in its kernel. Hence,
a + b ∈ I , and (a + b)(M) ⊇ N + N ′ . Since N is maximal, this implies that N ′ ⊆ N , so that N is the
maximum of C . Since ResG

H (M) is completely reducible, there exists some F H-submodule R of M
such that R contains almost all the elements of C and

M = N ⊕ R.

The linear map e : M → M which is the identity on N and zero on R is an idempotent e ∈ A. Since
e(M) = N ∈ C , it follows from the above that e ∈ I . Therefore e A ⊆ I . Since N is the maximum of C ,
for all i ∈ I we have ei = i, so that I ⊆ e A. Hence, I = e A, as desired. �

The following definition is standard in this context.

Definition 3.6. Suppose I ⊆ A and N ⊆ M . Then we denote by I(N) the additive subgroup of M
generated by all the elements of the form i(n) for i ∈ I and n ∈ N .

Theorem 3.7. Assume Hypotheses 3.1, and set A = End(M). Then the correspondence

I �→ I(M)

is a one-to-one correspondence from the set of finitely generated right ideals of A to the set of finitely generated
F H-submodules of M. Furthermore, the set of finitely generated right ideals of A and the set of finitely gen-
erated F H-submodules of M are ordered by inclusion and the correspondence is an isomorphism of partially
ordered sets. Finally, if I is a finitely generated right ideal of A and g ∈ G, then

gI(M) = (
π(g) I

)
(M),

in other words, multiplication by g of the F H-submodule corresponding to the right ideal I yields the
F H-submodule corresponding to π(g) I .

Proof. Let I be the set of finitely generated right ideals of A, and let M be the set of finitely gener-
ated F H-submodules of M . Let I ∈ I . Then, for each i ∈ I , i(M) is a finitely generated F H-submodule
of M . Since I is finitely generated as a right ideal of A, it follows that I(M) is a finitely generated
F H-submodule of M , and I(M) ∈ M. Therefore I �→ I(M) is well defined. We define f1 : I → M by
f1(I) = I(M) for all I ∈ I . Conversely, let N ∈M. Then we set

IN = {
a ∈ A: a(M) ⊆ N

}
.
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There is an F H-submodule K of M such that K contains almost all the elements of C and M =
N ⊕ K . Let e : M → M be the linear map such that it is the identity on N and zero on K . Then
e ∈ A is an idempotent and the finitely generated right ideal IN = e A of A is such that IN (M) =
e A(M) = N . Therefore IN ∈ I and the correspondence N �→ IN is well defined. We define f2 :M→ I
by f2(N) = IN for all N ∈ M. Then f2 is well defined and f1 f2 is the identity on M. Let I ∈ I .
By Proposition 3.5, there exists some idempotent e ∈ A such that I = e A. Then f1(I) = e(M), and
f2 f1(I) = e A = I , so that f2 f1 is the identity on I . Since it follows from their definition that both f1
and f2 preserve inclusion, we have that f1 and f2 are isomorphisms of partially ordered sets.

Suppose now that I is a finitely generated right ideal of A and N = I(M), and g ∈ G . Then

gN = gI g−1(M) = π(g) I(M)

since the image of multiplication of M by g−1 is M itself, and by definition of the action of G on A.
Hence, the lemma holds. �
Corollary 3.8. Assume Hypotheses 3.1, and set A = End(M). Let S be a subgroup of G which contains H, and
let S = π(S). Then the finitely generated F S-submodules of M are, under the correspondence of Theorem 3.7,
in one-to-one correspondence with the S-invariant finitely generated right ideals of A.

Proof. This follows immediately from Theorem 3.7. �
4. Ideal triples and sections of modules

The results of the previous section suggest that certain categories of modules may be described
from the endomorphism algebras. More precisely, assume for a moment Hypotheses 3.1, and let S
be a subgroup of G which contains H . The category of F S-modules which are quotients of finitely
generated F S-submodules of M (sections of M for short) can be described purely in terms of the
G-algebra End(M). In this section, we make this idea precise. We start by defining a category of
ideal triples, and we show that it is isomorphic to the category of sections of M under appropriate
conditions.

Definition 4.1. Let G be a finite group, let F be a field, and let A be a G-algebra over F . (We do not
assume that A has finite dimension or that A has an identity.) We define the category of ideal triples
of A to be the category IT (A) defined as follows.

(1) The objects of IT (A) are the triples (I, J , S), where S is a subgroup of G , I and J are S-invariant
right ideals of A such that I ⊇ J , and there exist idempotents eI and e J in A such that I = eI A
and J = e J A.

(2) Let O 1 = (I1, J1, S1) and O 2 = (I2, J2, S2) be objects of IT (A). Set

Λ(O 1, O 2) = {a ∈ A: aI1 ⊆ I2 and a J1 ⊆ J2},
Ξ(O 1, O 2) = {a ∈ A: aI1 ⊆ J2},

HomIT (A)(O 1, O 2) =
{∅ if S1 �= S2;

(Λ(O 1, O 2)/Ξ(O 1, O 2))
S if S1 = S2 = S.

(3) Let O = (I, J , S) be an object of IT (A). Then we set 1O = eI + Ξ(O , O ) ∈ HomIT (A)(O , O ).
(4) Let O 1 = (I1, J1, S1), O 2 = (I2, J2, S2), and O 3 = (I3, J3, S3) be objects of IT (A), and let a ∈

Λ(O 1, O 2) and b ∈ Λ(O 2, O 3). Suppose that

a + Ξ(O 1, O 2) ∈ HomIT (A)(O 1, O 2)
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and

b + Ξ(O 2, O 3) ∈ HomIT (A)(O 2, O 3).

Then,

ba + Ξ(O 1, O 3) ∈ HomIT (A)(O 1, O 3),

and we set

(
b + Ξ(O 2, O 3)

)(
a + Ξ(O 1, O 2)

) = ba + Ξ(O 1, O 3).

Theorem 4.2. Definition 4.1 does define uniquely a (usually disconnected) F -linear small category IT (A).

Proof. It is clear that the objects of IT (A) form a set. We note that for an object O = (I, J , S) of
IT (A) the idempotents eI and e J are assumed to exist, but they may not be uniquely determined by
the object O . Assume the hypotheses of (2). Then, it is direct to check that Λ(O 1, O 2) and Ξ(O 1, O 2)

are vector spaces over F , and, furthermore, Ξ(O 1, O 2) ⊆ Λ(O 1, O 2). Hence, Λ(O 1, O 2)/Ξ(O 1, O 2)

is a vector space over F . Assume that S1 = S2 = S . Then, since I1, I2, J1 and J2 are all
S-invariant, S acts on both Λ(O 1, O 2) and Ξ(O 1, O 2), and so S acts on Λ(O 1, O 2)/Ξ(O 1, O 2)

and, HomIT (A)(O 1, O 2) is the set of S-fixed points of this action. In particular, in all cases,
HomIT (A)(O 1, O 2) is an F -vector space or empty.

Suppose now the hypotheses of (4). Then, by definition, we have S1 = S2 = S3 = S . It is direct to
show that

Λ(O 2, O 3)Λ(O 1, O 2) ⊆ Λ(O 1, O 3);
Λ(O 2, O 3)Ξ(O 1, O 2) ⊆ Ξ(O 1, O 3);
Ξ(O 2, O 3)Λ(O 1, O 2) ⊆ Ξ(O 1, O 3).

It then follows that the class of ba in Λ(O 1, O 3)/Ξ(O 1, O 3) is uniquely determined by the class
of a in Λ(O 1, O 2)/Ξ(O 1, O 2) and the class of b in Λ(O 2, O 3)/Ξ(O 2, O 3). Since the class of a in
Λ(O 1, O 2)/Ξ(O 1, O 2) and the class of b in Λ(O 2, O 3)/Ξ(O 2, O 3) are both invariant under the ac-
tion of S , it follows that

ba + Ξ(O 1, O 3) ∈ (
Λ(O 1, O 3)/Ξ(O 1, O 3)

)S
.

Hence, the product is well defined. Furthermore, it is bilinear, and associative. Let e be an idempotent
of A such that I2 = e A. Then, for all c ∈ I2, we have ec = c, and it follows that e ∈ Λ(O 2, O 2). Further-
more, be − b ∈ Ξ(O 2, O 3), and ea − a ∈ Ξ(O 1, O 2). In particular, e + Ξ(O 2, O 2) is an identity of the
set Λ(O 2, O 2)/Ξ(O 2, O 2) under product. Since the identity is unique, it follows that it is uniquely
determined by Λ(O 2, O 2)/Ξ(O 2, O 2), and therefore it is fixed under the action of S2. Hence, the
identity of each object of IT (A) is uniquely defined, and satisfies the conditions of being an identity
for the category. Hence, IT (A) is an F -linear small category, as claimed. �

The abstract category IT (A) depends only on the G-algebra A. When A = End(M) for an appro-
priate module M , IT (A) is isomorphic to a category of sections of M . We now proceed to describe
this category of sections. We first set up some notation. In view of our later applications, we work
with ambient modules which are possibly infinitely generated.
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Definition 4.3. Assume Hypotheses 3.1. Let S be a subgroup of G , and let S = π−1(S). We define
the category of sections of M over F S , S(M, F S), to be the following small category. Its objects are
all the F S-modules which are quotients of a finitely generated F S-submodule of M by one of its
F S-submodules. Its morphisms are all the F S-module homomorphisms. We define the category of
sections of M , S(M), to be the disjoint union of the categories S(M, F S) as S runs through all the
subgroups of G .

Then S(M, F S) and S(M) are small F -linear categories.

Theorem 4.4. Assume Hypotheses 3.1, and set A = End(M). Then the categories IT (A) and S(M) are isomor-
phic under an isomorphism given as follows. For O = (I, J , S) any object in IT (A), we set S = π−1(S), and
we assign to O the F S-module I(M)/ J (M). For O 1 = (I1, J1, S1) and O 2 = (I2, J2, S2) objects in IT (A),
and a ∈ Λ(O 1, O 2) such that

a + Ξ(O 1, O 2) ∈ HomIT (A)(O 1, O 2),

we assign the map fa : I1(M)/ J1(M) → I2(M)/ J2(M) given by

fa
(
n + J1(M)

) = a(n) + J2(M)

for all n ∈ I1(M).

Proof. Let O = (I, J , S) be any object in IT (A), and set S = π−1(S). Since I ⊇ J are S-stable, by
Corollary 3.8, I(M) and J (M) are F S-submodules of M , and, I(M) ⊇ J (M). Hence, I(M)/ J (M) can be
viewed as an F S-module. Hence, the correspondence on objects is well defined. Furthermore, again
by Corollary 3.8, we have a bijection from the objects of IT (A) to the objects of S(M).

Suppose now that O 1 = (I1, J1, S1) and O 2 = (I2, J2, S2) are objects in IT (A). We get the related
objects Õ 1 = (I1, J1, 1) and Õ 2 = (I2, J2,1) in IT (A). For each a ∈ Λ(Õ 1, Õ 2), since aI1 ⊆ I2 and
a J1 ⊆ J2, the map fa is well defined. Hence, we have a well-defined linear map

F : Λ(Õ 1, Õ 2) → HomF H
(

I1(M)/ J1(M), I2(M)/ J2(M)
)

by setting F(a) = fa for all a ∈ Λ(Õ 1, Õ 2). It follows from the definitions that the kernel of F is
Ξ(Õ 1, Õ 2). Let

λ ∈ HomF H
(

I1(M)/ J1(M), I2(M)/ J2(M)
)
.

Since M is completely reducible as an F H-module, we can find F H-submodules K1, and K2 of M such
that K1 is open, M = K1 ⊕ I1(M), and I2(M) = K2 ⊕ J2(M). Then K2 is isomorphic to I2(M)/ J2(M),
and so it is of finite dimension over F . We can construct a map λ̃ : M → M , by saying that λ̃ is
F -linear, it contains K1 in its kernel, and on I1(M) it is just the projection I1(M) → I1(M)/ J1(M)

followed by λ followed by the isomorphism I2(M)/ J2(M) → K2 followed by the inclusion of K2
into M . Now λ̃ is an F H-module homomorphism and its kernel is open, so that λ̃ ∈ A. It follows
from the definitions that λ̃ ∈ Λ(Õ 1, Õ 2) and F(λ̃) = λ. Hence, F is surjective, and it provides an
isomorphism

F : Λ(Õ 1, Õ 2)/Ξ(Õ 1, Õ 2) → HomF H
(

I1(M)/ J1(M), I2(M)/ J2(M)
)
.

If S1 �= S2, then HomIT (A)(O 1, O 2) = ∅, and similarly there are no morphisms between the corre-
sponding modules. Hence, we assume S1 = S2 = S and let S = π−1(S). Now I1, J1, I2, and J2 are all
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S-invariant, and S acts via π on the domain of F , and S acts on the range of F , and a calculation
shows that F preserves this action. Hence, F restricts to an isomorphism

(
Λ(O 1, O 2)/Ξ(O 1, O 2)

)S → HomF S
(

I1(M)/ J1(M), I2(M)/ J2(M)
)
.

This proves that for all pairs of objects we have a linear isomorphism between the corresponding
sets of homomorphism. A straightforward calculation shows that the defined correspondence of ho-
momorphisms is compatible with composition, and this completes the proof of the theorem. �
Proposition 4.5. Assume the hypotheses and notation of Theorem 4.4. Then, the isomorphism of categories
given in it from IT (A) to S(M) has the following properties.

(1) Let S1 ⊇ S2 be subgroups of G. The map

(I, J , S1) �→ (I, J , S2)

of objects of IT (A) corresponds in S(M) to restriction of modules from an F S1-module to an
F S2-module, where S1 = π−1(S1) and S2 = π−1(S2).

(2) Let g ∈ G. Let (I, J , S) be an object of IT (A), and let N be the corresponding F S-module in S(M). Then

(
π(g) I, π(g) J , π(g) S

)
is an object of IT (A) and the module that corresponds to it is isomorphic to g N as F g S-modules.

(3) Let O = (I, J , S) be an object of IT (A), and let N be the corresponding F S-module in S(M). Then,

EndF S(N) � EndIT (A)(O )

as algebras over F .
(4) Assume the hypotheses of (3). Assume that N is irreducible and let φ be the character afforded by some

absolutely irreducible submodule of F ⊗F N (where F is an algebraic closure of F and we assume that
characters are functions S → F ). Then,

F (φ) � Z
(
EndIT (A)(O )

)
as algebras over F .

(5) Assume the hypotheses and notation of (4). Then, the Schur index of φ over F is the Schur index of
EndIT (A)(O ).

(6) Suppose that we are given a group Γ of field automorphisms of F , and a continuous action of Γ on M
in such a way that Γ preserves the addition on M, for all γ ∈ Γ , λ ∈ F , and v ∈ M we have γ (λv) =
γ (λ)γ (v), and the action of each γ ∈ Γ commutes with the action of each element of G on M. Then, for
each γ ∈ Γ , conjugation determines an automorphism γ of the G-ring A. Furthermore, let (I, J , S) be an
object of IT (A), and let N be the corresponding F S-module in S(M). Then

(
γ (I), γ ( J ), S

)
is an object of IT (A) and the module that corresponds to it is isomorphic to the γ -twist of N as an
F S-module.
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(7) Assume the hypotheses of (3). Assume, furthermore, that, for some algebraic closure F , every irreducible
F H-submodule of F ⊗F M has the same dimension d over F . Let O ′ = (I, J ,1) be the object of IT (A)

obtained from O by replacing S by the trivial subgroup. Then F ⊗F EndIT (A)(O ′) can be written uniquely
as

F ⊗F EndIT (A)

(
O ′) = A1 ⊕ · · · ⊕ An

where each Ai is a central simple algebra over F . Furthermore,

dimF (N) = d
n∑

i=1

√
dimF (Ai).

Proof. (1) It follows from the definition of IT (A) that if O 1 = (I, J , S1) is an object of IT (A), then
O 2 = (I, J , S2) is an object of IT (A). Furthermore, with S1 = π−1(S1) and S2 = π−1(S2), the module
that corresponds to O 1 is I(M)/ J (M) viewed as an F S1-module and the module that corresponds to
O 2 is that same underlying abelian group I(M)/ J (M) viewed as an F S2-module.

(2) Let O = (I, J , S), and set

O ′ = (
π(g) I, π(g) J , π(g) S

)
.

It follows from the definition of IT (A) that O ′ is an object of it. Now the F S-module N = I(M)/ J (M)

is the module that corresponds to O . From the definition of the action of G , we have that
π(g) I(M) = g I(M) and π(g) J (M) = g J (M). It follows that the module corresponding to O ′ is iso-
morphic to g N .

(3) It follows from the isomorphism of F -linear categories of Theorem 4.4 that EndIT (A)(O ), the
algebra of endomorphisms of the object O , is isomorphic to EndF S(N) as algebras over F .

(4) It is well known that the algebra F (φ) is isomorphic to the center of the endomorphism algebra
EndF S (N), so the result follows immediately from (3).

(5) This follows from (3) in a similar way.
(6) If a ∈ A and γ ∈ Γ , then γ aγ −1 ∈ A, and so we may define γ (a) = γ aγ −1. This defines an

action of Γ on the G-ring A by automorphisms. Let (I, J , S) be an object of IT (A), and let N be the
corresponding F S-module in S(M). Then

(
γ (I), γ ( J ), S

)
is an object of IT (A). The module that corresponds to it is

γ Iγ −1(M)/γ Jγ −1(M) = γ I(M)/γ J (M)

as an F S-module. This module is isomorphic to the γ -twist of N as an F S-module.
(7) By (1) the restriction of N to an F H-module corresponds to the object O ′ . It then follows

from (3) that

EndF H (N) � EndIT (A)

(
O ′)

as algebras over F . Hence,

EndF H (F ⊗F N) � F ⊗F EndIT (A)

(
O ′)
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as algebras over F . Since M is completely reducible as an F H-module, N is completely reducible as
an F H-module, and F ⊗F N is completely reducible as an F H-module. Let N1, . . . , Nr be represen-
tatives for the distinct isomorphism classes of irreducible F H-submodules of F ⊗F N , and let their
multiplicities be respectively α1, . . . ,αn . Then

EndF H (F ⊗F N)

is isomorphic to the direct sum of full matrix algebras over F of dimension α2
1 , . . . ,α2

n respectively.
Since

dimF (N) = dimF (F ⊗F N) =
n∑

i=1

αi dimF (Ni)

and the dimension of each Ni is d, the result then follows. �
Definition 4.6. Assume Hypotheses 2.5, and let F be a field. Let C be a (possibly infinite) set of finitely
generated F G-modules N such that ResG

H (N) is completely reducible, and let C ′ be a (possibly infinite)

set of finitely generated F G ′-modules N ′ such that ResG ′
H ′ (N ′) is completely reducible. We set M to be

the direct sum of all elements of C , and we set M ′ to be the direct sum of all elements of C ′ . Suppose
we have an endoisomorphism (Definition 2.6) from M to M ′

ε : End(M) → End
(
M ′).

Then ε determines one isomorphism κ0
ε of small F -linear categories from S(M) to S(M ′), as follows.

We set A = End(M) and A′ = End(M ′). Then,

ε : A → A′

is an isomorphism of G-algebras. By Theorem 4.4, the categories IT (A) and S(M) are isomorphic un-
der a preferred isomorphism α, and similarly, the categories IT (A′) and S(M ′) are isomorphic under
a preferred isomorphism α′ . Since ε is a G-algebra isomorphism, it induces an isomorphism ιε of
categories from IT (A) to IT (A′). The isomorphism κ0

ε is the one that makes the following diagram
of categories commutative:

IT (A)
ιε

α

IT (A′)

α′

S(M)
κ0
ε S(M ′)

Given a category of modules, one can naturally consider the category of its isomorphism classes of
modules.

Definition 4.7. Let C be a full category of modules. We denote by C� the category of all isomorphism
classes of objects of C . If D is also a full category of modules and I is an isomorphism of categories
from C to D, then there is a unique induced isomorphism of categories I� from C� to D� .

Remark 4.8. The following remarks follow from the above definitions.

• κ0
ε is a well-defined isomorphism of categories, and in particular it will send isomorphic modules

in S(M) to isomorphic modules in S(M ′). κ0�
ε is a well-defined isomorphism of categories from

S(M)� to isomorphic modules in S(M ′)� .
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• If we can compose two endoisomorphisms say ε and ε ′ , then it follows from the definition that
the isomorphism of categories associated with ε′ε is simply the composition of the two isomor-
phisms of categories:

κ0
ε′ε = κ0

ε′κ0
ε .

• If G = G ′ and π = π ′ , and φ : M → M ′ is an isomorphism of topological F G-modules, then we
can define

ε : A → A′

simply by setting

ε(a) = φaφ−1

for all a ∈ A. Then ε is an endoisomorphism. Furthermore, it follows from the definitions that in
this case, whenever N = N1/N2 is any element of S(M) then κ0

ε (N) = κ0
ε (N1/N2) = φ(N1)/φ(N2).

In particular,

S(M)� = S
(
M ′)�

and I0�
ε is the identity.

• It follows from the above comments that the correspondence that to ε assigns κ0�
ε is stable in

the following sense. Suppose we precede ε : M � M ′ with an endoisomorphism ε1 : M1 � M that
arose from a module isomorphism of M1 to M , and follow it with an endoisomorphism ε2 : M ′ �
M ′

1 that arose from module isomorphism of M ′ to M ′
1, then we get a new endoisomorphism

ε2εε1 : M1 � M ′
1, and

κ0�
ε = κ0�

ε2εε1
.

Theorem 4.9. Assume Definition 4.6. Then ε determines one isomorphism κ0
ε of small F -linear categories from

S(M) to S(M ′). Furthermore the isomorphism of categories satisfies the following:

(1) κ0
ε gives bijections from the irreducible modules in S(M) to the irreducible modules in S(M ′), from the

indecomposable modules to the indecomposable modules, and preserves direct sums of modules, and com-
position series.

(2) κ0
ε commutes with restriction of modules. Furthermore, it commutes with induction of modules up to

isomorphism.
(3) κ0

ε commutes, up to module isomorphism, with conjugation by G.
(4) κ0

ε preserves the field of values of irreducible characters.
(5) κ0

ε preserves the corresponding elements of the Brauer group and in particular the Schur indices.
(6) Suppose that we are given a group Γ of field automorphisms of F , and a continuous action of Γ on M

and on M ′ in such a way that Γ preserves the addition on M and on M ′ , for all γ ∈ Γ , λ ∈ F , v ∈ M and
v ′ ∈ M ′ we have γ (λv) = γ (λ)γ (v), γ (λv ′) = γ (λ)γ (v ′), and the action of each γ ∈ Γ commutes with
the action of each element of G on M and of G ′ on M ′ . Then Γ acts as automorphisms of both G-rings
End(M) and End(M ′). We assume that ε preserves these actions. Then, whenever N is an F S-module and
an object in S(M) and N ′ is the corresponding object under κ0

ε , and γ ∈ Γ , then there is an object in
S(M) which is isomorphic to the γ -twist of N, and κ0

ε sends it to a module isomorphic to γ -twist of N ′ .
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(7) Suppose all irreducible direct summands of ResG
H (F ⊗F M) have the same dimension d, and all irreducible

direct summands of ResG ′
H ′(F ⊗F M ′) have the same dimension d′ , where F is an algebraic closure of F .

Then, whenever N is an object in S(M) and N′ is the corresponding object under κ0
ε , then dimF (N ′) =

d′
d dimF (N).

Proof. By Definition 4.6, we have that κε is an isomorphism of categories from IT (A) to IT (A′).
(1) then follows directly from this. Furthermore, the fact that κ0

ε commutes with restriction fol-
lows from Proposition 4.5, and this implies that it will commute with induction up to isomorphism
because induction is the adjoint of restriction. The rest of the properties follow directly from Proposi-
tion 4.5. �

In addition, the module correspondence described in the previous theorem has some good com-
patibility properties. We see that it commutes well with certain restrictions.

Proposition 4.10. Assume that hypotheses of Theorem 4.9, and let G0 be a subgroup of G that contains H
and let G ′

0 be the corresponding subgroup of G ′ that contains H ′ so that π(G0) = π ′(G ′
0). Then we can view

ResG
G0

(M) and ResG ′
G ′

0
(M ′) as the direct sums of the corresponding restriction modules, and, as algebras

End
(
ResG

G0
(M)

) = End(M) and End
(
ResG ′

G ′
0

(
M ′)) = End

(
M ′).

We let ε0 be the endoisomorphism from ResG
G0

(M) to ResG ′
G ′

0
(M ′) which agrees with ε on every element. Then,

S(ResG
G0

(M)) is a full subcategory of S(M) and S(ResG ′
G ′

0
(M)) is a full subcategory of S(M ′) and the original

correspondence I0
ε provides an isomorphism on these subcategories which is simply I0

ε0
.

Proof. The direct sum of the collection of restrictions of the modules in C and C′ do provide, re-
spectively, ResG

G0
(M) and ResG ′

G ′
0
(M ′). Set G0 = π(G0) = π ′(G ′

0), A = End(M), B = End(M ′), A0 =
End(ResG

G0
(M)), and B0 = End(ResG ′

G ′
0
(M ′)). As algebras over F , we have A = A0 and B = B0, but A

and B are G-algebras and A0 and B0 are G0-algebras. Now, ε does provide an endoisomorphism ε0,
as required. The modules in S(ResG

G0
(M)) form a full subcategory of S(M) and those of S(ResG ′

G ′
0
(M))

form a full subcategory of S(M ′). Likewise the category IT (A0) is a full subcategory of IT (A), and
the category IT (B0) is a full subcategory of IT (B). The proposition then follows from the defini-
tions. �
5. The F -completion of M

The module correspondence that we have described in the previous section is limited to modules
over the same field, and furthermore to modules which are section of a given module. In Clifford
theory, it is often convenient to consider modules which are related to the original module, but are
not necessarily a section of the original module (for example modules which require a large number
of generators). Furthermore, we want to discuss simultaneously modules over different fields. In this
section, we construct a larger module than the originally given one in order to control a larger class
of modules. We assume the following hypotheses throughout the section.

Hypotheses 5.1. Let G and G be finite groups, and suppose we are given a surjective homomor-
phism π : G → G whose kernel is H . Suppose R is an integral domain and M is a finitely generated
RG-module such that M is free as an R-module.

The modules above M are to be defined over fields, and these fields are to be extensions of R in
the following sense.
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Definition 5.2. By a field extension F of R we mean a field F together with a unital ring homomor-
phism φ : R → F . In many cases, we will not name the ring homomorphism explicitly. Whenever F is
a field extension of R , we will denote by Gal(F/R) the group of all field automorphisms of F which
fix every element in the image of R in F .

Remark 5.3. In the situation of Definition 5.2, we get that F ⊗R M is a finite dimensional F G-module.
Furthermore, F ⊗R EndRG(M) is identified in a natural way with a subalgebra of EndF H (F ⊗R M).

Among the field extensions of R , we identify the good ones.

Definition 5.4. We say that a field extension F of R is a good extension for M if ResG
H (F ⊗R M) is

completely reducible and

F ⊗R EndR H (M) = EndF H (F ⊗R M).

Proposition 5.5. Assume Hypotheses 5.1, and that F is a field extension of R of characteristic p (possibly equal
to zero) such that p does not divide |H |. Then F is a good field extension of R for M.

Proof. By Maschke’s Theorem, ResG
H (F ⊗R M) is completely reducible. Furthermore,

F ⊗R EndR H (M) ⊆ EndF H (F ⊗R M).

Let φ ∈ EndF H (F ⊗R M). Since M is finitely generated and free as an R-module, we know that

φ ∈ EndF (F ⊗R M) = F ⊗R EndR(M),

so that there exist f i ∈ F and θi ∈ EndR(M) such that

φ =
n∑

i=1

f i ⊗R θi .

For i ∈ {1, . . . ,n}, we have

ζi =
∑
h∈H

hθi ∈ EndR H (M).

Since φ is H-invariant and |H | is invertible in F ,

φ =
n∑

i=1

f i

|H| ⊗R ζi ∈ F ⊗R EndR H (M).

It follows that

F ⊗R EndR H (M) = EndF H (F ⊗R M).

Hence, Definition 5.4 holds as desired. �
While field extensions of a ring may or may not be good, all field extensions of a good field

extension are good.
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Proposition 5.6. Suppose F is a good field extension of R for M, and K is any field extension of F . Then K is
a good field extension of R for M. Furthermore, if R is a field and ResG

H (M) is completely reducible, then every
field extension of R is a good field extension for M.

Proof. It follows directly from the definition that if F is a good field extension for M and K is a good
field extension of F for F ⊗R M , then K is a good field extension of R for M . Hence, it is enough to
show that if R is a field and ResG

H (M) is completely reducible, then every field extension F of R is a
good field extension for M . However, in this case the dimension over R of HomR H (M) is the same as
the dimension over F of HomF H (F ⊗R M), and so

F ⊗R EndRG(M) = EndF H (F ⊗R M),

and the extension is good. �
The π -center algebra was defined in [12], where it was proved that it is a simple G-algebra in

the relevant cases. Here, since we do not assume that our modules are quasi-homogeneous, it is
convenient to relax the definition somewhat and allow for π -central G-algebras which are not simple.
The definition of π -center algebra in [12] then corresponds to the case when we have a π -center
algebra in the sense of the current paper which is simple as a G-ring. We denote, as is standard, by
J (R) the radical of a ring R . Of course, J (R) acts trivially on any completely reducible R-module.

Definition 5.7. Let π : G → G be a surjective group homomorphism of finite groups, let H = ker(π),
and let F be a field. We say that Z is a π -center algebra of F G if it is a G-algebra Z over F of the
following form. We set Z0 = Z(F H/ J (F H)), so that Z0 is a commutative G-algebra over F , and, for
some idempotent e of Z G

0 we have Z = e Z0.

Then Z is a G-algebra over F . Standard arguments, which are given in more detail in [12], show
how, if M is a finitely generated F G-module such that its restriction to H is completely reducible, we
can view Z0 as acting on M . The following definition uses this action.

Definition 5.8. Assume Hypotheses 5.1. Assume that F is a field extension of R good for M , and use
the notation of Definition 5.7. Let e be the sum of all the primitive idempotents of Z G

0 which act
non-trivially on F ⊗R M . We say that e Z0 is the π -center algebra of F G associated with F ⊗R M , and we
write Z(M,π, F ) = e Z0.

Proposition 5.9. Assume F is a good field extension of R for M, and let K be a field extension of F . The
representation map induces a canonical isomorphism from Z(M,π, F ) to Z(EndF H (F ⊗R M)). Furthermore,
the π -center G-algebra Z(M,π, K ) of K G associated with K ⊗R M can be identified with K ⊗F Z(M,π, F ).

Proof. This follows from standard arguments. Some of these are given in more detail in [12]. �
Definition 5.10. Assume F is a good field extension of R for M . Then F G is an F G-module in a natural
way (with kernel H), and M ⊗R F G is an F G-module. We consider a countably infinite number of
copies of the F G-module M ⊗R F G , which we label with the elements of N. The Clifford F -completion
of M is the direct sum of this countably infinite collection of copies of M ⊗R F G . We denote the
Clifford F -completion of M by M̂ F . If A is a subring of F which contains the image of R , then we also
denote by M̂ A the AG-submodule of M̂ F corresponding to the direct sum of the countably infinite
collection of copies of M ⊗R AG . By the π -center algebra of F G associated with M̂ F , we simply mean
the G-algebra Z(M,π, F ) of Definition 5.8.

The algebra associated with the Clifford F -completion of M can be computed from the algebra
associated with M .
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Proposition 5.11. Assume F is a good field extension of R for M. Then End(M̂ F ) is the direct sum of copies of

EndR H (M) ⊗R EndF (F G)

labeled by pairs of elements of N, and this determines its G-algebra structure.

Proof. Since F is a good field extension of R , the G-algebra of endomorphisms of M ⊗R F is
EndR H (M) ⊗R F . It follows that the G-algebra of endomorphisms of M ⊗R F G is

EndR H (M) ⊗R EndF (F G).

The proposition then follows from Proposition 3.4. �
Lemma 5.12. Let F be a good field extension of R for M, and let K be a finite field extension of F . Then, there
is a topological F G-module isomorphism

θM,K ,F : ResK G
F G (M̂K ) → M̂ F .

We denote by

θ̂M,K ,F : End(M̂K ) → End(M̂ F )

the restriction of the corresponding endoisomorphism. Furthermore, whenever G1 , and G2 are finite groups,
and π1 : G1 → G and π2 : G2 → G are surjective homomorphisms, and M1 is a finitely generated
RG1-module such that M1 is free as an R-module, and M2 is a finitely generated RG2-module such that
M2 is free as an R-module, and ε : M1 � M2 is an endoisomorphism, and F and K are good extensions of R
for both M1 and M2 then the following diagram is commutative:

End(M̂1,K )
ε̂K

̂θM1,K ,F

End(M̂2,K )

̂θM2,K ,F

End(M̂1,F )
ε̂F

End(M̂2,F )

Proof. It follows directly from the definition that

End(M̂K ) ⊆ End
(
ResK G

F G (M̂K )
)

and this justifies the use of the term restriction in the statement of the lemma. We let N F be the
direct sum of a countable number of copies of F G and we let NK be the direct sum of a countable
number of copies of K G . Since [K : F ] is finite, we have that ResK G

F G (NK ) is isomorphic to N F , and we
pick some isomorphism

θ : ResK G
F G (NK ) → N F

of topological modules. Now M̂ F = M ⊗R N F and M̂K = M ⊗R NK . Then we set

θM,K ,F = IdM ⊗Rθ : ResK G
F G (M̂K ) → M̂ F ,

and θM,K ,F is an isomorphism of topological F G-modules.
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Since all the maps in the diagram are additive, in order to prove that it is commutative it is enough
to show that they have the same value on a set of additive generators for End(M̂1,K ). We pick some

φ ∈ EndR ker(π1)(M1) and σ ∈ EndK (NK ) such that φ ⊗R σ ∈ End(M̂1,K ). Then

ε̂F
(

̂θM1,K ,F (φ ⊗R σ)
) = ε̂F

(
φ ⊗R

(
θσθ−1)) = ε(φ) ⊗R

(
θσθ−1),

and

̂θM2,K ,F
(
ε̂K (φ ⊗R σ)

) = ̂θM2,K ,F
(
ε(φ) ⊗R σ

) = ε(φ) ⊗R
(
θσθ−1),

so that the diagram commutes as desired. �
6. Modules above M

We assume Hypotheses 5.1 throughout this section. We are ready to define when a module is
above M . Roughly speaking, a module N is above M if it is a section of the module M̂ F , for F a good
field extension of R .

Definition 6.1. Assume Hypotheses 5.1. We let S be a subgroup of G which contains H , and we let F
be a good field extension of R . We denote by A(M, F ) the small category S(M̂ F ) of Definition 4.3.
The full subcategory of A(M, F ) of those objects which are F S-modules is denoted A(M, F S). We say
that an F S-module is above M if it is an object in the category A(M, F S). If F is a collection of good
field extensions of R , we denote by A(M,F) the disjoint union of all the A(M, F ) as we run through
the F in F .

We remark that the category A(M,F) is usually not connected. Furthermore, most often A(M,F)

is not a small category.
In order for a module to be above M , we need it to be constructed in a specific way. However, if we

are only interested in modules up to isomorphism, the following proposition describes the structure
of all such modules.

Proposition 6.2. Assume Hypotheses 5.1. We let S be a subgroup of G with H ⊆ S, we let F be a good field
extension of R for M, and we let N be a finitely generated F S-module. Then the following are equivalent:

(1) N is isomorphic to some module above M.
(2) ResS

H (N) is completely reducible, and for every irreducible submodule I of ResS
H (N), there is some irre-

ducible submodule I ′ of ResG
H (F ⊗R M) such that I is isomorphic to I ′ .

Proof. Suppose first that (1) holds. Then, by Definition 6.1, N is isomorphic to a section of M̂ F . Since
F is a good field extension of R for M , we have that ResG

H (F ⊗R M) is completely reducible. It follows
that ResG

H (M̂ F ) is completely reducible and all its irreducible submodules are isomorphic to some
irreducible submodule of ResG

H (F ⊗R M), and (2) follows.
Suppose next that (2) holds. Then ResS

H (N) is completely reducible, and for every irreducible
submodule I of ResS

H (N), there is some irreducible submodule I ′ of ResG
H (F ⊗R M) such that I is

isomorphic to I ′ . We set M1 = IndG
S (N). Hence, ResG

H (M1) is isomorphic to a direct summand of some
finite multiple of ResG

H (F ⊗R M). It then follows that M1 is a homomorphic image of some finite mul-
tiple of M ⊗R F G . Therefore M1 is a homomorphic image of some finitely generated F G-submodule
of M̂ F . Since N is isomorphic to a submodule of the restriction of M1 to S , it follows that N is iso-
morphic to some module in S(M̂ F ) which means that N is isomorphic to some module above M .
Hence, (1) holds. The proposition then follows. �



A. Turull / Journal of Algebra 394 (2013) 7–50 25
Remark 6.3. In the language of category theory, Proposition 6.2 shows that the category A(M, F S)

is equivalent to the category of all finitely generated F S-modules which satisfy condition (2) of the
proposition. However, the actual equivalence of categories is defined in terms of a choice of represen-
tatives, and as such it is not unique. We will use the category A(M, F S) and related ones to prove that
endoisomorphisms define unique isomorphisms of categories. This uniqueness implies uniqueness of
isomorphisms for corresponding categories of isomorphism classes of modules. Similar results do not
directly extend to the categories of modules that include with any module in it all other modules
isomorphic to it because of the need to use choice.

7. Module correspondences

We are now ready to show how each endoisomorphism provides a unique isomorphism of module
categories.

Theorem 7.1. Let G, G ′ and G be finite groups, and suppose we are given surjective homomorphisms π : G → G
and π ′ : G ′ → G whose kernels are, respectively, H and H ′ . Let R be an integral domain. Suppose M is a finitely
generated RG-module which is free as an R-module, and M ′ is a finitely generated RG ′-module which is free
as an R-module. Let

ε : EndR H (M) → EndR H ′
(
M ′)

be an endoisomorphism from M to M ′ . Let F be a collection of field extensions of R which are good for M
and good for M ′ . Then we may define isomorphisms of G-algebras and an isomorphism κε of categories from
A(M,F) to A(M ′,F) as follows. For each field extension F of R which is in F , ε determines uniquely an
isomorphism of G-algebras over F

εF : Z(M,π, F ) → Z
(
M ′,π ′, F

)
(Definition 5.8), and ε determines uniquely an endoisomorphism

ε̂F : End(M̂ F ) → End
(
M̂ ′

F

)
.

Then ε̂F determines uniquely an isomorphism of categories κ0
ε̂F

from A(M, F ) to A(M ′, F ). The isomorphism

κε is obtained by putting together the isomorphisms κ0
ε̂F

on their respective domains as F ranges over all

the field extensions of R which are in F . Furthermore, for each subgroup S of G, if we set S = π−1(S) and
S ′ = (π ′)−1(S), then κε provides an isomorphism of F -linear categories from A(M, F S) to A(M ′, F S ′).

Proof. Let F be any field extension F of R which is good for both M and M ′ . The endoisomorphism
ε yields a G-algebra isomorphism

EndF H (M ⊗R F ) → EndF H ′
(
M ′ ⊗R F

)
,

which, by restriction, yields a G-algebra isomorphism

Z
(
EndF H (M ⊗R F )

) → Z
(
EndF H ′

(
M ′ ⊗R F

))
.

This, together with the isomorphisms of Proposition 5.9, yields the isomorphism of G-algebras over F

εF : Z(M,π, F ) → Z
(
M ′,π ′, F

)
.
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The endoisomorphism ε also yields a G-algebra isomorphism

ε ⊗R Id : EndR H (M) ⊗R EndF (F G) → EndR H ′
(
M ′) ⊗R EndF (F G).

In view of Proposition 5.11, this defines uniquely an endoisomorphism ε̂F from M̂ F to M̂ ′
F :

ε̂F : End(M̂ F ) → End
(
M̂ ′

F

)
.

It then follows from Theorem 4.9 that ε̂F determines uniquely an isomorphism of categories κ0
ε̂F

from A(M, F ) to A(M ′, F ). Furthermore, for each subgroup S of G , if we set S = π−1(S) and S ′ =
(π ′)−1(S), then κ0

ε̂F
provides an isomorphism of F -linear categories from A(M, F S) to A(M ′, F S ′).

The theorem then follows directly from this. �
The isomorphism of G-algebras εF and the isomorphism of module categories of Theorem 7.1 are

uniquely determined by ε . We now see that, up to isomorphism, these isomorphism are compatible
with restriction of modules.

Proposition 7.2. Assume the hypotheses and notation of Theorem 7.1. Let S be a subgroup of G which con-
tains H and let S ′ be the corresponding subgroup of G ′ i.e. G ′ � S ′ � H ′ and π(S) = π ′(S ′). Set S = π(S).
Let N = ResG

S (M) and N ′ = ResG ′
S ′ (M ′), and set π0 = ResG

S (π) and π ′
0 = ResG ′

S ′ (π ′), so that π0 : S → S and
π ′

0 : S ′ → S are surjective group homomorphisms. Note that the same ε can be viewed as ε : M � M ′ and
ε : N � N ′ . Then

Z(M,π, F ) = Z(N,π0, F )

and

Z
(
M ′,π, F

) = Z
(
N ′,π ′

0, F
)

and ε induces the same isomorphism

εF : Z(M,π, F ) → Z
(
M ′,π ′, F

)
as ε : M � M ′ and as ε : N � N ′ . In addition, A(N,F)� is a full subcategory of A(M,F)� and A(N ′,F)�
is a full subcategory of A(M ′,F)� , and the restriction of κ�

ε provides an isomorphism κ1�
ε from A(N,F)�

to A(N ′,F)� . Furthermore, ε is also an endoisomorphism from N to N ′ , and, as such it provides an isomor-
phism κ2

ε from A(N,F) to A(N ′,F). Finally, κ1�
ε and κ2

ε coincide up to module isomorphisms, that is

κ1�
ε = κ2�

ε .

Proof. The statements about Z(M,π, F ) and Z(M ′,π, F ) and εF follow directly from the definitions.
If F is a field in F , then ResG

S (F G) is isomorphic to the direct sum of a finite number of copies of F S .
It follows that

ResG
S (M̂ F ) � N̂ F and ResG ′

S ′
(
M̂ ′

F

) � N̂ ′
F

as topological F S-modules and F S ′-modules respectively. Furthermore, the endoisomorphism from
N̂ F to N̂ ′

F obtained from ε is obtained from ε̂F by preceding it and following it by endoisomorphisms
which arise from module isomorphisms. It then follows from Remark 4.8 that
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S
(
ResG

S (M̂ F )
)� = S(N̂ F )�

and

S
(
ResG ′

S ′
(
M̂ ′

F

))� = S
(
N̂ ′

F

)�
.

It follows that A(N,F)� is the isomorphism classes of modules in A(M,F) which are modules for
some subgroup of S that contains H , and that A(N ′,F)� is the isomorphism classes of modules
in A(M ′,F) which are modules for some subgroup of S ′ that contains H ′ . Hence, A(N,F)� is a
full subcategory of A(M,F)� and A(N ′,F)� is a full subcategory of A(M ′,F)� , and the restriction
of κ�

ε provides an isomorphism κ1�
ε from A(N,F)� to A(N ′,F)� . It follows from Remark 4.8 and

the fact that the endoisomorphism from N̂ F to N̂ ′
F that is obtained from ε is obtained from ε̂F by

preceding it and following it by endoisomorphisms which arise from module isomorphisms that κ1�
ε

and κ2
ε coincide up to module isomorphisms, that is

κ1�
ε = κ2�

ε . �
Under the hypotheses of Theorem 7.1 we have an isomorphism of module categories. This isomor-

phism has some excellent compatibility properties which we now investigate.

Lemma 7.3. Assume the hypotheses of Theorem 7.1. Using Definition 5.2, we set Γ = Gal(F/R). Then Γ acts
naturally on F G, and so Γ acts on M̂ F and on M̂ ′

F . Then these actions together with the G-algebra isomorphism
ε̂F satisfy the hypotheses of Theorem 4.9 (6).

Proof. Γ acts in a natural way on F G , and so it acts in a natural way on M ⊗R F G and on M ′ ⊗R F G ,
and it follows that Γ acts continuously on M̂ F and M̂ ′

F . By the definition of ε̂F in Theorem 7.1, we
get that the G-algebra isomorphism ε̂F satisfies the hypotheses of Theorem 4.9 (6), as desired. �
Notation 7.4 (Subgroup correspondence). Under the hypotheses of Theorem 7.1, we will denote by S an
arbitrary subgroup of G which contains H , and we will denote by S its corresponding subgroup of G ,
and by S ′ its corresponding subgroup of G ′ , i.e. S = π(S), and S ′ = (π ′)−1(S).

The following theorem is related to [6, Theorem 3.5], and can be viewed as a modular version of
it where the bijection is uniquely determined.

Theorem 7.5. Assume the hypotheses and notation of Theorem 7.1. Then, the isomorphism of categories κε

from A(M) to A(M ′) has the following properties. We let F be any field extension of R which is good for M
and for M ′ . To compare κε with other module correspondences, we define

εF = ε ⊗R IdF : EndR H (M) ⊗R F → EndR H ′
(
M ′) ⊗R F

so that εF : M ⊗R F � M ′ ⊗R F is an endoisomorphism, and εF defines a module correspondence κ0
εF

from
S(M ⊗R F ) to S(M ′ ⊗R F ) as in Definition 4.6.

(1) κε gives bijections from the irreducible modules in A(M, F S) to the irreducible modules in A(M ′, F S ′),
from the indecomposable modules to the indecomposable modules, and preserves direct sums of modules,
and composition series.

(2) κε commutes with restriction of modules. Furthermore, it commutes with induction of modules up to
isomorphism.

(3) Up to isomorphisms, κε agrees with κ0
εF

on the domain of the latter. In particular, κε sends modules which

are isomorphic to sections ResG
S (M ⊗R F ) to modules which are isomorphic to sections of ResG ′

S ′ (M ′ ⊗R F ).
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(4) Let N be a module in A(M, F S) be sent to N ′ a module in A(M ′, F S ′) under κε , and let z ∈ Z(M,π, F )

and let z′ = εF (z) so that z′ ∈ Z(M ′,π ′, F ). Then zN is an F H-module, and z′N ′ is an F H ′-module, and,
up to isomorphism, κε sends zN to z′N ′ .

(5) κε commutes, up to isomorphism, with field extensions and restrictions.
(6) κε commutes up to isomorphisms with tensoring with S-modules.
(7) κε commutes up to isomorphisms with any Galois automorphism that fixes each element of (the image

of ) R.
(8) κε commutes up to module isomorphisms with conjugation by G.
(9) κε preserves the field of values of irreducible characters.

(10) κε preserves the corresponding elements of the Brauer group and in particular the Schur indices.
(11) Suppose for some algebraic closure F of F the irreducible F H-submodules of F ⊗R M are all of the same

dimension and the irreducible F H ′-submodules of F ⊗R M ′ are all of the same dimension. Then there is
some rational constant d, such that, whenever N, a module over a field K , an extension of F , is an object
in A(M, K ) and N′ is the corresponding object under κε , then dimK (N ′) = d dimK (N).

Proof. In view of Lemma 7.3, we can apply all of Theorem 4.9, and we obtain all the claimed proper-
ties except (3), (4), (5) and (6).

We show (3). Let N = N1/N2 be an F S-module which is a section of M ⊗R F , and let N ′ = N ′
1/N ′

2
be the F S ′-module which is a section of M ′ ⊗R F and corresponds to N under κ0

εF
. Set v0 = ∑

g∈G g .

We may view M ⊗R F v0 as an F G-submodule of M ⊗R F G , and M ′ ⊗R F v0 as an F G ′-submodule of
M ′ ⊗R F G . We let

φ : M ⊗R F → M ⊗R F v0

be the natural F G-module isomorphism, and

φ′ : M ′ ⊗R F → M ′ ⊗R F v0

be the natural F G ′-module isomorphism. Now

N = N1/N2 � φ(N1)/φ(N2)

as F S-modules, and

N ′ = N ′
1/N ′

2 � φ′(N ′
1

)
/φ

(
N ′

2

)
as F S ′-modules. We let N̂i be the F S-submodule of M̂ F which is φ(Ni) on the first coordinate and
zero on all others. We let N̂ ′

i to be the F S ′-submodule of M̂ ′
F which is φ′(N ′

i) on the first coordi-

nate and zero on all others. Then N̂1/N̂2 is in A(M, F S), and N̂ ′
1/N̂ ′

2 is in A(M ′, F S ′). Let N̂1/N̂2

correspond to the object (I, J , S) in IT (End(M̂ F )). Let N̂ ′
1/N̂ ′

2 correspond to the object (I ′, J ′, S) in

IT (End(M̂ ′
F )). One can show that I ′ = ε̂F (I) and J ′ = ε̂F ( J ). Hence, κε sends N̂1/N̂2 to N̂ ′

1/N̂ ′
2. It

then follows that (3) holds.
Now we prove (4) and we assume its notation. Since the restriction of N to H is completely

reducible and the restriction of N ′ to H ′ is completely reducible, we have that z acts on N , and z′
acts on N ′ , and the resulting module zN is at least an F H-module, and the resulting module z′N ′ is at
least an F H ′-module. In a similar way z acts on M̂ F and z′ acts on M̂ ′

F . Let N correspond to the object

(I, J , S) in IT (End(M̂ F )). Then N ′ corresponds to the object (εF (I), εF ( J ), S) in IT (End(M̂ ′
F )). The

F H-module zN corresponds, up to isomorphism, to (zI, z J , H), and F H ′-module z′N ′ corresponds, up
to isomorphism, to (z′εF (I), z′ε( J ), H ′). Since it follows from the definitions that εF (zI) = z′εF (I) and
εF (z J ) = z′εF ( J ), it follows that, up to isomorphism κε sends zN to z′N ′ . So (4) as desired.
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Let K be a field extension of F . Let N be an F S-module in S(M̂ F ). Let N correspond to the ob-
ject (I, J , S) in IT (End(M̂ F )). It follows from the definitions that M̂K is canonically isomorphic to
K ⊗F M̂ F , and using this identification we have that (K ⊗F I, K ⊗F J , S) is an object in IT (End(M̂K ))

which corresponds to a module which is isomorphic to K ⊗F N . An analogous situation holds over in
the categories IT (End(M̂ ′

F )) and IT (End(M̂ ′
K )). Since ε̂F and ε̂K are compatible with these corre-

spondences, it follows that κε commutes up to isomorphism with field extensions.
To see that κε commutes with field restrictions, since we are dealing with finitely generated mod-

ules, we assume that K is a field extension of F with finite degree. Let N be a K S-module in S(M̂K ),
and let N ′ be a K S ′-module in S(M̂ ′

K ) corresponding to N under κε . Let N correspond to the object

(I, J , S) in IT (End(M̂K )), so that N ′ corresponds to the object (εK (I), εK ( J ), S) in IT (End(M̂ ′
K )). Let

Nr be the restriction of N to an F S-module, and let N ′
r be the restriction of N ′ to an F S ′-module.

Let θ be as in Lemma 5.12. Then Nr is isomorphic to θM,K ,F (N) and N ′
r is isomorphic to θM′,K ,F (N ′).

Then Nr corresponds to the object ((θ̂M,K ,F (I)), (θ̂M,K ,F ( J )), S) in IT (End(M̂ F )), and N ′
r corresponds

to the object

((
θ̂M ′,K ,F

(
εK (I)

))
,
(
θ̂M ′,K ,F

(
εK ( J )

))
, S

)
in IT (End(M̂ ′

F )), where we indicate the ideal generated by the various images of θ maps by paren-
thesis. It then follows from Lemma 5.12 that εF sends the first triple to the second one, so that κε

sends a module isomorphic to Nr to a module isomorphic to N ′
r . Hence, κε commutes up to isomor-

phism with field restrictions, and κε satisfies (5).
It only remains to show (6). We need to consider modules over a subgroup S of G . However, in

view of Proposition 7.2, it is enough to assume that our module is defined over S = G . Let (I, J , G)

be an object in IT (M̂ F ), and let N be its corresponding module in S(M̂ F ). Let (εF (I), εF ( J ), G) be
the corresponding object in IT (M̂ ′

F ), and let N ′ be its corresponding module in S(M̂ ′
F ). Then N is

an F G-module and N ′ is an F G ′-module. Let P be some finitely generated F G-module. We need to
show that κε sends a module isomorphic to N ⊗F P to a module isomorphic to N ′ ⊗F P . If P = 0 the
result holds trivially, so we assume that P �= 0. It follows that F G ⊗F P is isomorphic to the direct
sum of a finite positive number of copies of F G as F G-modules. This induces naturally

θ : M̂ F ⊗F P → M̂ F and θ ′ : M̂ ′
F ⊗F P → M̂ ′

F

isomorphisms of topological F G-modules and topological F G ′-modules. We denote by θ and by θ ′
the corresponding isomorphisms of endomorphism algebras:

θ : End(M̂ F ) ⊗F EndF (P ) → End(M̂ F )

and

θ ′ : End
(
M̂ ′

F

) ⊗F EndF (P ) → End
(
M̂ ′

F

)
.

Furthermore, the following diagram

End(M̂ F ) ⊗F EndF (P )
ε̂F ⊗F Id

θ

End(M̂ ′
F ) ⊗F EndF (P )

θ ′

End(M̂ F )
ε̂F

End(M̂ ′
F )
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is commutative. Set I p = I ⊗F EndF (P ) and J p = J ⊗F EndF (P ), and set I ′p = (ε̂F ⊗F Id)(I p) and

J ′
p = (ε̂F ⊗F Id)( J p). Let N1 = θ(I p)(M̂ F ), N2 = θ( J p)(M̂ F ), N ′

1 = θ ′(I ′p)(M̂ ′
F ), and N ′

2 = θ ′( J ′
p)(M̂ ′

F ).
Then, it follows from Remark 4.8 that N ⊗F P is isomorphic to N1/N2 as F G-modules and N ′ ⊗F P
is isomorphic to N ′

1/N ′
2 as F G ′-modules. Since κε sends N1/N2 to N ′

1/N ′
2, it follows that κε satis-

fies (6). �
Even without any assumption on M and M ′ , it follows from the theorem that, in characteristic

zero, the quotient of the degrees of corresponding irreducible modules is a quotient of divisors of |H |
and |H ′|. In general, the quotient may be different for different irreducible modules.

Corollary 7.6. Assume the hypotheses and notation of Theorem 7.5, and assume that F has characteristic which
does not divide |H ||H ′|. Let N be a module which is an object in A(M, F ) and let N′ be its corresponding object
under κε . Set d = dimF (N ′)/dimF (N). Then, if N is irreducible, then d is a rational number which is a quotient
of a divisor of |H ′| by a divisor of |H |.

Proof. We let S be the subgroup of G such that N is an irreducible F S-module, and we let S ′ be
the subgroup of G ′ such that N ′ is an irreducible F S ′-module. Let K be a finite Galois extension
field of F which is a splitting field for all the subgroups of G and of G ′ . Let N0 be an irreducible
direct summand of the K S-module K ⊗F N . Then if α is the Schur index of N0 over F and β the
number of non-isomorphic Galois conjugates of N0 under Gal(K/F ) then dimF (N) = αβ dimK (N0).
Let N ′

0 be the K S ′-module corresponding to N0 under κε . By Theorem 7.5 (5), we also have
dimF (N ′) = αβ dimK (N ′

0), with the same α and β . Hence, d = dimK (N ′
0)/dimK (N0). Let I be an irre-

ducible direct summand of ResS
H (N0). Now, by Clifford’s Theorem, all the irreducible direct summands

of ResS
H (N0) have the same degree, so that dimK (N0) = s dimK (I) where s is the composition length

of the K H-module ResS
H (N0). Let I ′ be the module corresponding to I under κε . By Theorem 7.5,

N ′
0 is irreducible, so that all irreducible direct summands of ResS ′

H ′(N ′
0) have the same dimension. By

Theorem 7.5 (2), the composition length of ResS ′
H ′(N ′) as a K H ′-module is also s, and one of its direct

summands is isomorphic to I ′ . Hence, dimK (N ′
0) = s dimK (I ′). Hence,

d = dimK (N ′
0)

dimK (N0)
= dimK (I ′)

dimK (I)
.

Since K has characteristic which does not divide |H ||H ′| and K is a splitting field, we have dimK (I ′)
divides |H ′| and dimK (I) divides |H |, and the corollary follows. �

A number of useful concepts are commonly used to describe the modular representation of finite
groups. For any field F , and any finite group G , we will use the following notation (compare to [5,2]).
We denote by AF (G) the Green ring of G over F . It is the Z-module generated by the isomorphism
classes of finitely generated F G-modules, with direct sum inducing addition on them, and tensor
product inducing multiplication, see [2, p. 92]. If M is any finitely generated F G-module, we denote by
[M]a its (isomorphism) class in AF (G), and we denote by A+

F (G) the image of this map. We denote by
IF (G) a complete collection of isomorphism classes of finitely generated indecomposable F G-modules,
so that the collection ([I]a)I∈IF (G) is a Z-basis for AF (G). We denote by RF (G) the Grothendieck group
of finitely generated F G-modules. RF (G) is actually a ring and it is the quotient of AF (G) by an ideal
generated by [U ]a − [V ]a + [W ]a for all modules U , V , W , for which there is a short exact sequence,

0 → U → V → W → 0,

see [2, p. 92], for example. If M is a finitely generated F G-module, we denote by [M]r its class
in RF (G), and we denote by R+

F (G) the image of this map. We denote by SF (G) a complete set
of isomorphism classes of irreducible F G-modules, so that the collection ([S]r)S∈SF (G) is a Z-basis
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for RF (G). We denote by P+
F (G) the subset of RF (G) of the classes of finitely generated projective

F G-modules, and by PF (G) the subring of RF (G) generated by P+
F (G). We can think of PF (G) as a

subring of AF (G) as well. Hence, we may use AF (G) to describe modules up to isomorphism, RF (G)

to describe when modules have the same (Brauer) characters but without having to make any par-
ticular choice of modular system, and PF (G) to describe the projective modules, which are uniquely
determined by their (Brauer) characters.

These concepts have their corresponding version in the context of the module correspondence, as
follows. For convenience, we assume for our definition the hypotheses of the theorem, even though
these definitions involve only one group, rather than two.

Definition 7.7. Assume the hypotheses of Theorem 7.1, we let S be a subgroup of G , and we set S =
π−1(S), and we pick some F in F . We denote by A+

F (S, M) the image in AF (S) of A(M, F S), and we
denote by AF (S, M) the subgroup of AF (S) generated by A+

F (S, M). We denote by IF (S, M) a complete
collection of isomorphism classes of finitely generated indecomposable F S-modules in A(M, F S), so
that the collection ([I]a)I∈IF (S,M) is a Z-basis for AF (G, M). Likewise, we denote by R+

F (S, M) the image
in RF (S) of A(M, F S), and we denote by RF (S, M) the subgroup of RF (S) generated by R+

F (S, M).
We denote by SF (S, M) a complete collection of isomorphism classes of irreducible F S-modules in
A(M, F S), so that the collection ([I ′]r)I ′∈SF (S,M) is a Z-basis for RF (G, M). We denote by P+

F (S, M) the
set of RF (S) of the classes of finitely generated projective F S-modules in A(M, F S), and we denote
by PF (S, M) the subring of RF (S) generated by P+

F (S, M). We can think of PF (S, M) as a subring of
AF (S) as well.

We note that AF (S, M) is naturally an AF (S)-module, and that RF (S, M) is naturally an
RF (S)-module, where, in each case, the module multiplication is induced from the ring structure
of AF (S) and RF (S) respectively, which in turn derive from the tensor product of modules.

Corollary 7.8. Assume the hypotheses and notation of Theorem 7.5. Then the following hold:

(1) κε induces uniquely an AF (S)-module isomorphism

Hε(S, F ) : AF (S, M) → AF
(

S ′, M ′).
(2) Hε(S, F )(A+

F (S, M)) = A+
F (S ′, M ′).

(3) Hε(S, F )(IF (S, M)) is in bijection with IF (S ′, M ′).
(4) κε induces uniquely an RF (S)-module isomorphism

H′
ε(S, F ) : RF (S, M) → RF

(
S ′, M ′).

(5) H′
ε(S, F )(SF (S, M)) is in bijection with SF (S ′, M ′).

(6) If both H and H ′ are p′-groups, and F has characteristic p �= 0, then Hε(S, F )(P+
K (S, M)) = P+

K (S ′, M ′),
and the restriction of Hε(S, F ) provides an isomorphism PK (S, M) → PK (S ′, M ′).

Proof. This follows directly from Theorem 7.5 and the definition of these groups and sets. �
8. Compatibility

The module correspondence κε is determined by the endoisomorphism ε , and we saw in the
previous section that each κε has some excellent properties. In this section, we study how the module
correspondence κε varies naturally as we vary ε by some standard operations. The results are natural
and follow directly from the definitions. We record them here so we can use them later. We note that
Proposition 7.2 is a compatibility statement that we have already established.



32 A. Turull / Journal of Algebra 394 (2013) 7–50
Proposition 8.1. Let G, G ′ , G ′′ and G be finite groups, and suppose we are given surjective homomorphisms
π : G → G, π ′ : G ′ → G π ′′ : G ′′ → G whose kernels are, respectively, H, H ′ , and H ′′ . Let R be an integral
domain. Suppose M is a finitely generated RG-module which is free as an R-module, M ′ is a finitely generated
RG ′-module which is free as an R-module, and M ′′ is a finitely generated RG ′′-module which is free as an
R-module. Let

ε : EndR H (M) → EndR H ′
(
M ′)

be an endoisomorphism from M to M ′ , and let

ε′ : EndR H ′
(
M ′) → EndR H ′′

(
M ′′)

be an endoisomorphism from M ′ to M ′′ . Let F be a collection of field extensions of R which are good for M,
good for M ′ , and good for M ′′ . Then ε′ε is an endoisomorphism, and for each F in F , the isomorphism of
G-algebras

ε′εF : Z(M,π, F ) → Z
(
M ′′,π ′′, F

)
,

is simply the composition ε′
F εF , and the isomorphism κε′ε of categories from A(M, F ) to A(M ′′, F ) is the

composition of κε′ and κε .

Proof. This follows directly from the definitions. �
Proposition 8.2. Let G, and G be finite groups, and suppose we are given a surjective homomorphism
π : G → G, whose kernel is H. Let R be an integral domain. Suppose M and M ′ are finitely generated
RG-modules which are free as R-modules. Let

φ : M → M ′

be a module isomorphism. Then φ induces

ε : EndR H (M) → EndR H
(
M ′)

an endoisomorphism from M to M ′ . Let F be a collection of field extensions of R which are good for M and
good for M ′ . Then for each F in F , the isomorphism κε of categories from A(M, F ) to A(M ′, F ) associates to
each module a module isomorphic to it.

Proof. This follows directly from the definitions. �
Proposition 8.3. Let G, G ′ and G be finite groups, and suppose we are given surjective homomorphisms
π : G → G, and π ′ : G ′ → G whose kernels are H and H ′ . Let R be an integral domain. Suppose M is a finitely
generated RG-module which is free as an R-module, and M ′ is a finitely generated RG ′-module which is free
as an R-module. Let

ε : EndR H (M) → EndR H ′
(
M ′)

be an endoisomorphism from M to M ′ . Let F be a good extension field of R for M and M ′ . Then we obtain an
endoisomorphism

εF : EndF H (F ⊗R M) → EndF H ′
(

F ⊗R M ′)
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and, up to module isomorphisms, A(F ⊗R M) can be viewed as being contained in A(M), A(F ⊗R M ′) can
be viewed as being contained in A(M ′), and κεF agrees with the appropriate restriction of κε .

Proof. This follows directly from the definitions. �
Proposition 8.4. Let G, G ′ and G be finite groups, and suppose we are given surjective homomorphisms
π : G → G, and π ′ : G ′ → G whose kernels are H and H ′ . Let U be a normal subgroup of G such that
U ∩ H = 1 and let U ′ be a normal subgroup of G ′ such that U ′ ∩ H ′ = 1 and suppose π(U ) = π ′(U ′) = U .
Let τ : G/U → G/U be the surjective group homomorphism induced by π , and let τ ′ : G ′/U ′ → G/U be the
surjective group homomorphism induced by π ′ . Let R be an integral domain. Suppose M is a finitely generated
RG/U -module which is free as an R-module, and M ′ is a finitely generated RG ′/U ′-module which is free as
an R-module. Let

ε : EndR HU/U (M) → EndR H ′U ′/U ′
(
M ′)

be an endoisomorphism from M to M ′ with respect to τ and τ ′ . Let N be M as an RG-module and let N ′ be
M ′ as an RG ′-module. Then, the same map ε can be viewed as an endoisomorphism

ε0 : EndR H (N) → EndR H ′
(
N ′).

Let F be a collection of field extensions of R which are good for M, and good for M ′ . Then for each F in F ,
there are natural

Z(N,π, F ) � Z(M, τ , F )

and

Z
(
N ′,π ′, F

) � Z
(
M ′, τ ′, F

)
and the isomorphism

ε0 F : Z(N,π, F ) → Z
(
N ′,π ′, F

)
is induced from εF and the isomorphisms, and the isomorphism κε of categories from A(M, F ) to A(M ′, F )

agrees, on the appropriate modules after appropriate identifications, up to isomorphisms with the isomorphism
κε0 of categories from A(N, F ) to A(N ′, F ).

Proof. This follows directly from the definitions. �
9. Characteristic zero

When working over fields of characteristic zero, the results become considerably easier to de-
scribe. In this section, we describe this important special case. We recover, with the added benefit
of the uniqueness of the correspondence, some of the results in [8,9]. Since to describe modules in
characteristic zero it is enough to describe cyclic modules, some of the machinery set up earlier in
the paper would be unnecessary if we were only interested in this case as we were in [8,9]. The fact
that the character correspondence arises from the module correspondence provides useful additional
information.

As is well known, the representations in characteristic zero can be efficiently studied with the help
of characters. Ordinary characters take complex values, or more specifically, they take values in Q(e)
the complex field of e-th roots of unity, where e is any positive integer multiple of the exponent of



34 A. Turull / Journal of Algebra 394 (2013) 7–50
the group in question. In order to assign characters, one needs to fix some relationship between Q(e)
and the field of definition of the module, and such relationship can be established for all fields of
characteristic zero. For most purposes, however, it is sufficient to choose one field of characteristic
zero K that contains a splitting field for Xe − 1, and to assign characters to modules over subfields
of K . Choices of such K could be C or the field of all algebraic numbers in C, or, more generally, any
extension field of the field of all algebraic numbers in C, but we do not need to have such large fields
for our purposes here.

Hypotheses 9.1. Let K be a field, let e be a positive integer, and assume that K contains a subfield
(identified with) Q(e). Further, we assume that R is subring of K which is a principal ideal domain,
and F is the field of fractions of R .

Definition 9.2. Let G be a finite group whose exponent divides e and let M be a finitely generated
F G-module. Then the character χ afforded by M is the map

χ : G → C

such that χ(g) is the trace of the F -linear transformation induced by the action of g on M for all
g ∈ G .

Of course the trace of the action of g on M is in F ∩ Q(e), so we can think of it as a complex
number.

Definition 9.3. A character χ of a finite group G is said to be irreducible if it is the character of some
irreducible K G-module. The set of all irreducible characters of G is denoted Irr(G).

As is well known, we have a bijection between the isomorphism classes of irreducible K G-modules
and Irr(G). Furthermore, Irr(G) are linearly independent over C. In addition, the Z-module Z Irr(G)

generated by Irr(G) is naturally isomorphic to AK (G) = RK (G).
The concept of good field extension is unnecessary in the context of this section.

Proposition 9.4. Assume Hypotheses 5.1 and Hypotheses 9.1. Then every characteristic 0 field extension of R
is good for M.

Proof. This follows immediately from Proposition 5.5. �
Assume Hypotheses 5.1, and assume that F is a field extension in characteristic zero of R . Then

J (F H) = 0, and we take the π -center algebra of F G to be G-algebra Z over F of the following form.
We set Z0 = Z(F H), so that Z0 is a G-algebra over F , and, for some idempotent e of Z G

0 we have

Z = e Z0. Let e be the sum of all the primitive idempotents of Z G
0 which act non-trivially on F ⊗R M .

We say that e Z0 is the π -center algebra of F G associated with F ⊗R M , and we write Z(M,π, F ) = e Z0.
This agrees with the earlier definition, except that, for the more general earlier definition, we need to
take the quotient by the radical of F H .

Proposition 9.5. Assume Hypotheses 5.1 and Hypotheses 9.1. Then the F -algebra homomorphisms from
Z(M,π, F ) to K are in natural one-to-one correspondence with the central characters of the irreducible char-
acters which are summands of the character afforded by ResG

H (K ⊗R M).

Proof. The central characters of F H are in one-to-one correspondence with the elements of Irr(H),
and the ones which restrict non-trivially to Z(M,π, F ) are exactly those which correspond to the
irreducible summands of the character afforded by ResG

H (K ⊗R M). �
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It is standard to define what it means for an irreducible character to be above some irreducible
character of some normal subgroup. We will need a slight generalization of this standard definition,
where we will not assume that the character of the normal subgroup is irreducible.

Definition 9.6. Let G be a finite group and let H be a normal subgroup of G , and let ζ be some ordi-
nary character of H . We let Irr(G|ζ ) denote the set of all irreducible characters of G whose restriction
to H contains some irreducible summand which is also a summand of ζ .

This concept is closely connected to the concept of modules above another one.

Proposition 9.7. Assume Hypotheses 5.1 and Hypotheses 9.1, and assume that the exponent of G divides e. Let
ζ be the sum of all the distinct irreducible characters contained in the character afforded by ResG

H (K ⊗R M).
Let S be a subgroup of G that contains H. Let χ be a character of S. Then, χ is the character afforded by some
module in A(M, K S) if and only if χ is an N-linear combination of the elements of Irr(S|ζ ).

Proof. This follows from Proposition 6.2. �
In this context, the correspondences of modules described earlier yield unique correspondences of

characters.

Theorem 9.8. Assume Hypotheses 9.1. Let G, G ′ and G be finite groups, and suppose we are given surjective
homomorphisms π : G → G and π ′ : G ′ → G whose kernels are, respectively, H and H ′ . Assume that the
exponent of G and the exponent of G ′ both divide e. Suppose M is a finitely generated F G-module, and M ′ is
a finitely generated F G ′-module. Let

ε : EndF H (M) → EndF H ′
(
M ′)

be an endoisomorphism from M to M ′ . Let ζ be the sum of all the distinct irreducible characters contained in
the character afforded by ResG

H (M), let ζ ′ be the sum of all the distinct irreducible characters contained in the

character afforded by ResG ′
H ′(M ′). For each subgroup S of G, we set S = π−1(S) and S ′ = (π ′)−1(S). Then κε

provides isomorphisms of Z-modules

κε : Z Irr(S|ζ ) → Z Irr
(

S ′∣∣ζ ′).
Furthermore, these have the following properties.

(1) κε gives bijections

Irr(S|ζ ) → Irr
(

S ′∣∣ζ ′).
(2) κε commutes with restriction of characters and with induction of characters.
(3) κε sends the characters which are summands of the character afforded by K ⊗F M to summands of the

character afforded by K ⊗F M ′ .
(4) The isomorphism of G-algebras

εK : Z(M,π, K ) → Z
(
M ′,π ′, K

)
(Theorem 7.1) acts on some central characters (Proposition 9.5) and this action determines the bijection

κε : Irr(H|ζ ) → Irr
(

H ′∣∣ζ ′).
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(5) Both Z Irr(S|ζ ) and Z Irr(S ′|ζ ′) are Z Irr(S)-modules, and the map

κε : Z Irr(S|ζ ) → Z Irr
(

S ′∣∣ζ ′)
is an isomorphism of Z Irr(S)-modules.

(6) The isomorphism

κε : Z Irr(S|ζ ) → Z Irr
(

S ′∣∣ζ ′)
commutes with the action of Gal(K/F ).

(7) κε commutes with conjugation by G.
(8) For every χ ∈ Z Irr(S|ζ ), we have F (κε(χ)) = F (χ).
(9) For every χ ∈ Irr(S|ζ ), let [χ ] denote the element of the Brauer group Br(F (χ)) associated with it.

Then we have [κε(χ)] = [χ ]. In particular, the Schur indices of the irreducible characters are preserved
under κε .

(10) Suppose that all the irreducible characters contained in ζ have the same degree, and all the irreducible
characters contained in ζ ′ have the same degree. Then there is some rational constant d, not depending
on S, such that whenever χ ∈ Z Irr(S|ζ ) is sent to κε(χ) = χ ′ ∈ Z Irr(S ′|ζ ′), then χ ′(1) = dχ(1).

Proof. That the isomorphisms exist and are unique follows from Theorem 7.1 and Proposition 9.7. The
rest of the theorem follows from Theorem 7.5. Perhaps it is worth giving a few more details about (4).
Let χ ∈ Irr(H |ζ ), and let χ ′ = κε(χ) ∈ Irr(H ′|ζ ′). Then χ corresponds to a primitive idempotent eχ ∈
Z(K H) and χ ′ corresponds to a primitive idempotent eχ ′ ∈ Z(K H). It follows from Theorem 7.5 (4)
that εK (eχ ) = eχ ′ . Hence, εK alone determines κε(χ), and it does so on the basis of the central
characters described in Proposition 9.5. �

In view of applications, it is convenient to relate the results that we have obtained so far to
known results about the Brauer–Clifford group. We refer the reader to [12] for unexplained definitions,
notations and further details.

Corollary 9.9. Assume Hypotheses 9.1. Let G, G ′ and G be finite groups, and suppose we are given surjective
homomorphisms π : G → G, and π ′ : G ′ → G whose kernels are H and H ′ . Assume that the exponent of G
and the exponent of G ′ both divide e. Let U be a normal subgroup of G such that U ∩ H = 1 and let U ′ be a
normal subgroup of G ′ such that U ′ ∩ H ′ = 1 and suppose π(U ) = π ′(U ′) = U . Let τ : G/U → G/U be the
surjective group homomorphism induced by π , and let τ ′ : G ′/U ′ → G/U be the surjective group homomor-
phism induced by π ′ . Let θ ∈ Irr(H) and let θ ′ ∈ Irr(H ′). Let θ1 be the character of ker(τ ) corresponding to θ ,
and let θ ′

1 be the character of ker(τ ′) corresponding to θ ′ . Set Z = Z(θ1, F , τ ) and Z ′ = Z(θ ′
1, F , τ ′) be the

respective center algebras, and let [[θ1]] ∈ BrClif(G/U , Z) and [[θ ′
1]] ∈ BrClif(G/U , Z ′) be the elements of the

Brauer–Clifford group that correspond to the respective characters. Suppose there is a G/U -algebra isomor-
phism

α : Z → Z ′

such that α sends the central character associated with θ1 to the central character associated with θ ′
1 , and,

with

α : BrClif(G/U , Z) → BrClif
(
G/U , Z ′)

being the induced group isomorphism, we have

α
([[θ1]

]) = [[
θ ′

1

]]
.
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Then, there exist M a finitely generated θ -quasi-homogeneous F G-module whose kernel contains U , M ′ a
finitely generated θ ′-quasi-homogeneous F G ′-module whose kernel contains U ′ , and an endoisomorphism

ε : EndF H (M) → EndF H ′
(
M ′)

such that:

(1) κε satisfies all the properties described in Theorem 9.8;
(2) In this theorem, ζ is the sum of the G × Gal(K/F )-orbit of θ , and ζ ′ is the sum of the G ′ × Gal(K/F )-orbit

of θ ′;
(3) For each subgroup S of G, we set S = π−1(S) and S ′ = (π ′)−1(S). Then κε provides isomorphisms of

Z-modules

κε : Z Irr(S|ζ ) → Z Irr
(

S ′∣∣ζ ′);
In addition, we set f = θ ′(1)/θ(1). Then for each χ ∈ Z Irr(S|ζ ), if we set χ ′ = κε(χ) then χ ′(1) =
f χ(1);

(4) κε sends θ to θ ′:

κε(θ) = θ ′.

Proof. By [12, Proposition 4.7], there exist M a finitely generated θ1-quasi-homogeneous F G/U -mod-
ule, M ′ a finitely generated θ ′

1-quasi-homogeneous F G ′/U ′-module, and an endoisomorphism

ε : EndF H (M) → EndF H ′
(
M ′).

Looking at the proof of [12, Proposition 4.7] we see that ε induces the isomorphism α, and sends the
central character associated with θ1 to the central character associated with θ ′

1. By Proposition 8.4, ε is
also an endoisomorphism from M to M ′ when viewed respectively as F G-module and as F G ′-module.
Hence, we obtain the properties of Theorem 9.8. Furthermore, by Proposition 8.4 and Property (4) of
Theorem 9.8, it follows that

κε(θ) = θ ′.

Finally, it follows from the definition of quasi-homogeneous, that the sum of the distinct irreducible
summands of the character afforded by ResG

H (M) is the sum of all the G × Gal(K/F )-conjugates of θ ,

and the sum of the distinct irreducible summands of the character afforded by ResG ′
H ′ (M ′) is the sum

of all the G ′ × Gal(K/F )-conjugates of θ ′ . Since all the irreducible summands of ζ have the same
degree, and all the irreducible summands of ζ ′ have the same degree, Property (10) of the theorem
completes the proof of the corollary. Hence, the corollary holds. �
10. Correspondences of characters and blocks

In the previous section, we used characters to describe the representations of groups in charac-
teristic zero. It is also convenient and customary to study the blocks of finite groups with the help
of characters. In this section, we study properties of blocks under the correspondences. We set up
hypotheses to discuss both ordinary and Brauer characters for the relevant finite groups. Some results
in this section are special cases of results of the previous section in a slightly different context: we
state them here together with their corresponding results about Brauer characters for clarity.

Ordinary characters and Brauer characters take complex values, or more specifically, they take
values in Q(e) the complex field of e-th roots of unity, where e is any positive integer multiple of the
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exponent of the group in question. In order to assign characters, one needs to fix some relationship
between Q(e) and the field of definition of the module, and such relationship can be established for
all fields. For most purposes, however, it is sufficient to choose, for each relevant characteristic, one
field of this characteristic that contains a splitting field for Xe −1, and to assign characters to modules
over subfields of such fields.

Hypotheses 10.1. Let A be a principal ideal domain with field of fractions K . Let e be a positive
integer, and assume that K contains a subfield (identified with) Q(e). We let p be any prime rational
integer which is not a unit of A, and we let M be any maximal ideal of A such that p ∈ M. We set
k = A/M.

Under Hypotheses 10.1, A is integrally closed in K , and in particular, it contains all e-th roots
of unity in C. It follows that K is a field of characteristic zero which contains a splitting field for
the polynomial Xe − 1 over the prime subfield, and k is a field of characteristic p which contains a
splitting field for the polynomial Xe − 1 over the prime subfield. Furthermore, the projection homo-
morphism A → k restricts to a group isomorphism from the multiplicative group of ep′ -th roots of
unity in A× to the multiplicative group of ep′ -th roots of unity in k× .

In the previous section, we reminded the reader how to define ordinary characters in the present
context. We can also define Brauer characters.

Definition 10.2. Let k0 be some subfield of k, let G be a finite group whose exponent divides e and
let M be a finitely generated k0G-module. We let G p′ be the subset of G of all elements of p′ order,
that is, the p-regular elements of G . Then the Brauer character χ afforded by M is the map

χ : G p′ → C

defined as follows. Let g ∈ G p′ . Let ε1, . . . , εn ∈ k× be the eigenvalues with multiplicities of the
k-linear action of g on k ⊗k0 M , and let ε1, . . . , εn ∈ A× be the corresponding p′-roots of unity in
C under the group isomorphism of induced by the projection A → k. Then, we set

χ(g) = ε1 + · · · + εn.

Definition 10.3. A character χ of a finite group G is said to be irreducible if it is the character of some
irreducible K G-module. The set of all irreducible characters of G is denoted Irr(G). Likewise, a Brauer
character χ is said to be irreducible if it is the Brauer character of some irreducible kG-module, and
the set of all irreducible Brauer characters of G is denoted IBr(G) = IBrp(G) = IBrM(G).

As is well known, we have a bijection between the isomorphism classes of irreducible K G-modules
and Irr(G) and, likewise, we have a bijection between the isomorphism classes of irreducible
kG-modules and IBr(G). Furthermore, both Irr(G) and IBr(G) are linearly independent over C. In ad-
dition, the Z-module Z Irr(G) generated by Irr(G) is naturally isomorphic to AK (G) = RK (G), and the
Z-module Z IBr(G) generated by IBr(G) is naturally isomorphic to Rk(G).

In addition, there is a process of reduction modulo p of finitely generated K G-modules, and it
induces the decomposition homomorphism. For each finite group G , the decomposition homomorphism
dG,p is a group homomorphism

dG,p : RK (G) → Rk(G)

from the Grothendieck group RK (G) of representations over K to the Grothendieck group Rk(G) of
representations over k. Given a finitely generated K G-module M , one may choose a lattice E (i.e. a
finitely generated A-submodule of M which generates M as a K -module). One may pick E to be
G-invariant by simply adding together all the images of E under the action of each element of G ,
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and replacing E by this sum. Hence, we take E to be G-invariant lattice. This yields E/ME which
is a kG-module, and is called a reduction modulo p of M . This module is not unique even up to iso-
morphism. However, for all choices of E , the modules E/ME have, up to isomorphism, the same
composition factors. Then the map dG,p is the unique group homomorphism which sends, for all M ,
the class in RK (G) of M to the class in Rk(G) of E/ME . See, for example, [5] for details. Since RK (G) is
naturally isomorphic to the Z-module of generalized characters Z Irr(G) and Rk(G) is naturally isomor-
phic to the Z-module of generalized Brauer characters Z IBrp(G), we also get a group homomorphism
with the same name

dG,p : Z Irr(G) → Z IBrp(G).

In particular, for each χ ∈ Irr(G), we can write

dG,p(χ) =
∑

ψ∈IBr(G)

dχ,ψψ,

for some unique dχ,ψ ∈ N called the decomposition numbers. The following proposition describes the
map dG,p in terms of characters. It is well known, and follows easily from the definitions.

Proposition 10.4. Let χ ∈ Z Irr(G), and set ψ = dG,p(χ). Then ψ is simply the restriction to G p′ of χ .

It is standard to define what it means for an irreducible character to be above some irreducible
character of some normal subgroup. We will need a slight generalization of this standard definition
(and of Definition 9.6) where we will not assume that the character of the normal subgroup is irre-
ducible.

Definition 10.5. Let G be a finite group and let H be a normal subgroup of G , and let ζ be some
ordinary character of H . We let Irr(G|ζ ) denote the set of all irreducible characters of G whose re-
striction to H contains some irreducible summand which is also a summand of ζ . Similarly, if η is
some Brauer character of H , we denote by IBr(G|η) the set of all irreducible Brauer characters of G
whose restriction to H contains some irreducible summand which is also a summand of η.

This concept is closely connected to the concept of modules above another one.

Proposition 10.6. Assume Hypotheses 5.1 and Hypotheses 10.1, and assume that the exponent of G divides e.
Suppose that A contains the image of R in K . Assume furthermore that the extension of R obtained from the
inclusion of R in A followed by the projection onto k is a good extension for M. Let ζ be the sum of all the
distinct irreducible characters contained in the character afforded by ResG

H (K ⊗R M), and let η be the sum of
all the distinct irreducible Brauer characters contained in the character afforded by ResG

H (k ⊗R M). Let S be a
subgroup of G that contains H. Let χ be a character of S and let ψ be a Brauer character of S. Then, χ is the
character afforded by some module in A(M, K S) if and only if χ is an N-linear combination of the elements
of Irr(S, ζ ). Furthermore, ψ is the Brauer character afforded by some module in A(M,kS) if and only if ψ is
an N-linear combination of the elements of IBr(S, η).

Proof. By Proposition 5.5, K is a good extension of R for M . The result then follows from Proposi-
tion 6.2. �

In this context, the correspondences of modules described in Section 7 yield unique correspon-
dences of characters.

Theorem 10.7. Let G, G ′ and G be finite groups, and suppose we are given surjective homomorphisms
π : G → G and π ′ : G ′ → G whose kernels are, respectively, H and H ′ . Let R be an integral domain. Suppose
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M is a finitely generated RG-module which is free as an R-module, and M ′ is a finitely generated RG ′-module
which is free as an R-module. Let

ε : EndR H (M) → EndR H ′
(
M ′)

be an endoisomorphism from M to M ′ . Assume furthermore Hypotheses 10.1, and assume that the exponent
of G and the exponent of G ′ both divide e. Suppose that A contains the image of R in K . We set F to be the
smallest subfield of K containing the image of R. Assume furthermore that the extension of R obtained from the
inclusion of R in A followed by the projection onto k is a good field extension for M and for M ′ . Let ζ be the sum
of all the distinct irreducible characters contained in the character afforded by ResG

H (K ⊗R M), let ζ ′ be the

sum of all the distinct irreducible characters contained in the character afforded by ResG ′
H ′(K ⊗R M ′), let η be

the sum of all the distinct irreducible Brauer characters contained in the character afforded by ResG
H (k ⊗R M),

and let η′ be the sum of all the distinct irreducible Brauer characters contained in the character afforded by
ResG ′

H ′ (k ⊗R M ′). For each subgroup S of G, we set S = π−1(S) and S ′ = (π ′)−1(S). Then κε provides isomor-
phisms of Z-modules

κε : Z Irr(S|ζ ) → Z Irr
(

S ′∣∣ζ ′)
and

κε : Z IBr(S|η) → Z IBr
(

S ′∣∣η′).
Furthermore, these have the following properties.

(1) κε gives bijections

Irr(S|ζ ) → Irr
(

S ′∣∣ζ ′)
and

IBr(S|η) → IBr
(

S ′∣∣η′).
(2) κε commutes with restriction of characters and with induction of characters.
(3) κε sends the characters which are summands of the character afforded by K ⊗R M to summands of the

character afforded by K ⊗R M ′ , and similarly for k ⊗R M and k ⊗R M ′ .
(4) The isomorphism of G-algebras

εK : Z(K ⊗R M,π, K ) → Z
(

K ⊗R M ′,π ′, K
)

(Theorem 7.1) acts on some central characters (Proposition 9.5) and this action determines the bijection

κε : Irr(H|ζ ) → Irr
(

H ′∣∣ζ ′).
(5) Both Z Irr(S|ζ ) and Z Irr(S ′|ζ ′) are Z Irr(S)-modules, and the map

κε : Z Irr(S|ζ ) → Z Irr
(

S ′∣∣ζ ′)
is an isomorphism of Z Irr(S)-modules. Similarly, the map
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κε : Z IBr(S|η) → Z IBr
(

S ′∣∣η′)
is an isomorphism of Z IBr(S)-modules.

(6) The isomorphism

κε : Z Irr(S|ζ ) → Z Irr
(

S ′∣∣ζ ′)
commutes with the action of Gal(K/F ).

(7) κε commutes with conjugation by G.
(8) For every χ ∈ Z Irr(S|ζ ), we have F (κε(χ)) = F (χ).
(9) For every χ ∈ Irr(S|ζ ), let [χ ] denote the element of the Brauer group Br(F (χ)) associated with it.

Then we have [κε(χ)] = [χ ]. In particular, the Schur indices of the irreducible characters are preserved
under κε .

(10) Suppose that all the irreducible characters contained in ζ have the same degree, and all the irreducible
characters contained in ζ ′ have the same degree. Then there is some rational constant d, not depending
on S, such that whenever χ ∈ Z Irr(S|ζ ) is sent to κε(χ) = χ ′ ∈ Z Irr(S ′|ζ ′), then χ ′(1) = dχ(1).

Proof. By Proposition 5.5, K is a good extension of R for M and for M ′ . The result then follows either
directly from Theorem 9.8 or from the results that proved that theorem. �

One can say more when the characters ζ and ζ ′ are sums of p-defect zero irreducible characters.
We first set up some notation.

Definition 10.8. Let G be a finite group and let H be a normal subgroup of G . Suppose that ζ is
a character of H which is a sum of p-defect zero irreducible characters. We denote by Bl(G, p) =
Bl(G,M) = Bl(G) the set of all p-blocks of G . For convenience we consider blocks as sets of irreducible
ordinary and Brauer characters. We denote by Bl(G, p|ζ ) = Bl(G|ζ ) the set of all p-blocks of G which
contain at least one irreducible character in Irr(G|ζ ).

Let η be the reduction modulo p of ζ . We note that if B ∈ Bl(G|ζ ) then

B ⊆ Irr(G|ζ ) ∪ IBr(G|η),

and, in fact, Bl(G|ζ ) can be viewed as a partition of Irr(G|ζ ) ∪ IBr(G|η).

Lemma 10.9. Assume the hypotheses of Theorem 10.7. Suppose that every irreducible summand of ζ has
p-defect zero, and every irreducible summand of ζ ′ has p-defect zero. Suppose that S is a p′-group. Let χ ∈
Irr(S|ζ ), let χ0 = dS,p(χ) be its reduction modulo p, let χ ′ = κε(χ), and let χ ′

0 = dS ′,p(χ ′) be the reduction
modulo p of χ ′ . Then χ and χ ′ ∈ Irr(S ′|ζ ′) are characters of p-defect zero, χ0 ∈ IBr(S|η), χ ′

0 ∈ IBr(S ′|η′),
and

κε(χ0) = χ ′
0.

Proof. Notice that the p-part of the order of S equals the p-part of the order of H , and similarly, the
p-part of the order of S ′ equals the p-part of the order of H ′ . Since a character of p-defect zero is
one where the p-part of the degree is equal to the p-part of the order of the group, and the degree
of χ is divisible by the degree of some irreducible summand of ζ , it follows that χ has p-defect zero,
and, similarly, χ ′ has p-defect zero. In particular, χ0 ∈ IBr(S|η) and χ ′

0 ∈ IBr(S ′|η′).

Set M1 = ResG
S (M̂K ), and M2 = ResG ′

S ′ (M̂ ′
K ). We also set M3 = ResG

S (M̂ A), and M4 = ResG ′
S ′ (M̂ ′

A). In
addition, we set M5 = k ⊗A M3, and M6 = k ⊗A M4. We set A1 = End(M1) and A2 = End(M2). We set
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A3 = {
f ∈ A1: f (M3) ⊆ M3

}
and

A4 = {
f ∈ A2: f (M4) ⊆ M4

}
.

We have natural identifications A3 = End(M3) and A4 = End(M4). We also set A5 = End(M5) and
A6 = End(M6). Our assumptions now imply that we have an S-algebra isomorphism

ε̂K : A1 → A2,

that ε̂K (A3) ⊆ A4, and that we have an S-algebra isomorphism

ε̂k : A5 → A6.

Furthermore, for each f ∈ A3 and α ∈ k, we may identify α ⊗A f with the element of A5 such that
(α ⊗A f )(β ⊗A m3) = αβ ⊗A f (m3) for all β ∈ k, m3 ∈ M3, and we have

ε̂k(α ⊗A f ) = α ⊗A ε̂K ( f )

using a similar identification of α ⊗A ε̂K ( f ) with an element of A6.
There is a K S-submodule N1 of M1 which affords the character χ . Since M1 is completely re-

ducible and N1 is finitely generated, there is an open K S-submodule of M1 which is a complement
to N1. We denote by a : M1 → M1 the projection K S-homomorphism whose image is N1 and whose
kernel is this complement. Now a(M3) is a non-zero finitely generated A S-submodule of N1. There ex-
ists a K -multiple f1 of a such that f1(M3) ⊆ M3 but f1(M3) � MM3. Now f1 ∈ A3. Set I1 = f1 A1, and
set L1 = f1(M3). Then I1 is a finitely generated right ideal of A1, and the K S-module N1 is (isomor-
phic to) the module that corresponds to the triple (I1, {0}, S). Furthermore, L1 is a lattice in N1, and a
reduction modulo p of N1 is given by L1/ML1. In particular, L1/ML1 affords the Brauer character χ0.
It follows that L1/ML1 is irreducible as a kS-module, and L1 ∩MM3 = ML1. Set L3 = L1 +MM3, and
L5 = L3/MM3. Then L5 is a kS-module affording χ0. Set f5 = 1k ⊗A f1 ∈ A5, and set I5 = f5 A5. Then
the module L5 is (isomorphic to) the module that corresponds to the triple (I5, {0}, S). In particular,
χ0 ∈ IBr(S, η).

Let f2 = ε̂K ( f1) ∈ A2, N2 = f2(M2), and I2 = f2 A2. Then f2 is a K S ′-homomorphism, I2 is an
S-invariant finitely generated right ideal of A2, and N2 is a K S ′-module which is isomorphic to the
module that corresponds to the triple (I2, {0}, S). Since (I1, {0}, S) is mapped to (I2, {0}, S) under the
map induced from ε̂K , in particular, N2 affords the character χ ′ . By our choice, we further know that
f1 ∈ A3, and it follows that f2 ∈ A4. We set L2 = f2(M4). Since the kernel of f2 is open, we have
that L2 is a finitely generated A S ′-submodule of M4. Since N2 = f2(M2), we have that L2 contains
a K -basis for N2, and it follows that L2 is an S ′-invariant lattice for N2. Therefore L2/ML2 is an
irreducible kS ′-module and affords the Brauer character χ ′

0. Then, L2 ∩ MM4 = ML2. Set L4 = L2 +
MM4, and L6 = L4/MM4. Then L6 is a kS ′-module affording χ ′

0. Set f6 = 1k ⊗A f2 ∈ A6, and set I6 =
f6 A6. Then the module L6 is (isomorphic to) the module that corresponds to the triple (I6, {0}, S). In
particular, χ ′

0 ∈ IBr(S, η′). Since (I5, {0}, S) is mapped to (I6, {0}, S) under the map induced from ε̂k ,
we have that κε(χ0) = χ ′

0. This completes the proof of the lemma. �
Theorem 10.10. Assume the hypotheses of Theorem 10.7. Suppose that every irreducible summand of ζ has
p-defect zero, and every irreducible summand of ζ ′ has p-defect zero. Then, the isomorphisms induced by κε

have the following additional properties. We let S be any subgroup of G that contains H, and we let S ′ be the
corresponding subgroup of G ′ , that is H ′ ⊆ S ′ and π(S) = π ′(S ′).
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(1) κε commutes with the decomposition map. More precisely, the following diagram commutes:

Z Irr(S|ζ )
κε

dS,p

Z Irr(S ′|ζ ′)

dS′,p

Z IBr(S|η)
κε

Z IBr(S ′|η′)

(2) κε sends p-blocks of S to p-blocks of S ′ . More precisely, the action of κε on irreducible ordinary characters
and irreducible Brauer characters induces a bijection

Bl(S|ζ ) → Bl
(

S ′∣∣ζ ′).
(3) Assume the notation of (2). Let B ∈ Bl(S|ζ ) and let B ′ ∈ Bl(S ′|ζ ′) be the corresponding block under κε .

Then κε provides bijections

Irr(B) → Irr
(

B ′)
and

IBr(B) → IBr
(

B ′).
(4) Assume the notation of (3). Order Irr(B) and IBr(B), and use the bijection of (3) to order Irr(B ′) and

IBr(B ′). Then, the decomposition matrices and the Cartan matrices of B and of B ′ are equal.
(5) For each B ∈ Bl(S|ζ ) there exists a rational number f B such that, whenever χ ∈ Irr(B) is sent to χ ′ ∈

Irr(B ′) under κε , and ψ ∈ IBr(B) is sent to ψ ′ ∈ IBr(B ′) under κε , then

f B = χ ′(1)

χ(1)
= ψ ′(1)

ψ(1)
.

Furthermore, the p-part of f B is the p-part of |H ′| divided by the p-part of |H |.
(6) Assume the notation of (3). p-blocks also contain finitely generated indecomposable kS-modules. κε pro-

vides a bijection between the isomorphism classes of finitely generated indecomposable kS-modules in B
and the isomorphism classes of finitely generated indecomposable kS ′-modules in B ′ . Furthermore, let
N be a finitely generated indecomposable kS-module in B, and let V be a vertex for N. Let N ′ be the
kS ′-modules corresponding to N under κε , and let V ′ be a vertex for N ′ . Then π(V ) and π ′(V ′) are
conjugate in π(S).

(7) Assume the notation of (3). Let D be a defect group of B, and let D ′ be a defect group of B ′ . Then D, D ′ ,
π(D), and π ′(D ′) are all isomorphic, and π(D) and π ′(D ′) are conjugate in π(S).

(8) The bijection from (3),

Irr(B) → Irr
(

B ′)
given by κε preserves the heights. In other words, if χ ∈ Irr(B) is sent to κε(χ) = χ ′ ∈ Irr(B ′), then the
p-height of χ equals the p-height of χ ′ .

(9) Assume the notation of (7) and that π(D) = π ′(D ′). Assume in addition, that H and H ′ are p′-groups
and that S0 is a subgroup of G which contains H and is such that DCS(D) ⊆ S0 ⊆ S. Let b ∈ Bl(S0) be
the Brauer correspondent to B. Furthermore, we let S ′

0 be the subgroup of G ′ corresponding to S0 . Then
D ′CS ′(D ′) ⊆ S ′

0 , the block b′ ∈ Bl(S ′
0) which is the Brauer correspondent to B ′ is defined, b ∈ Bl(S0|ζ ),

b′ ∈ Bl(S ′
0|ζ ′) and κε sends b to b′ under (2).
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Proof. Assume that (1) does not hold, and among all counterexamples choose one with |π(S)| as
small as possible. Since the maps in the diagram are all Z-module homomorphisms, it follows that
there exists some χ ∈ Irr(S|ζ ) for which the diagram does not commute. We set χ ′ = κε(χ) ∈
Irr(S ′|ζ ′), and we denote χ0 = dS,p(χ) ∈ N IBr(S|η) and χ ′

0 = dS ′,p(χ ′) ∈ N IBr(S ′|η′). We also set
ξ = κε(χ0) ∈ N IBr(S ′|η′). We have ξ �= χ ′

0. In particular, there is a p′-element s′ ∈ S ′ such that
χ ′

0(s′) �= ξ(s′). By Theorem 10.7 the maps in the diagram all commute with restriction to subgroups
that contain H (or H ′), so, by our choice of a counterexample, we must have that π(S) = π ′(〈s′〉). In
particular, S is a p′-group. Then Lemma 10.9 yields a contradiction. Hence, (1) holds.

Since the irreducible characters and the irreducible Brauer characters in a block can be character-
ized from the decomposition map, it follows from (1) that (2), (3), and (4) all hold.

Let B ∈ Bl(S, ζ ) and B ′ = κε(B). Assume that χ ∈ Irr(B) is sent to χ ′ = κε(χ) ∈ Irr(B ′), and ψ ∈
IBr(B) is sent to ψ ′ = κε(ψ) ∈ IBr(B ′). Since ζ is a sum of characters of p-defect zero, the irreducible
characters contained in the restriction of χ to H , which are all conjugate under the action of S ,
form a set which depends only on B . Let ξ ∈ Irr(H) be contained in the restriction ResS

H (χ), and
let dB = ξ(1) be its degree. Of course, dB depends only on B , and not on χ or our choice of ξ .
Let ξ0 = dH,p(ξ) ∈ IBr(H), let ξ ′ = κε(ξ) ∈ Irr(H ′), and let ξ ′

0 = κε(ξ0) ∈ IBr(H ′). We let dB ′ = ξ ′(1).
Then dB ′ only depends on B , and ξ(1) = ξ0(1) = dB and ξ ′(1) = ξ ′

0(1) = dB ′ . We set f B = dB ′/dB .
Let αχ be the number of irreducible characters contained in ResS

H (χ) counting multiplicities, and
let βψ be the number of irreducible Brauer characters contained in ResS

H (ψ) counting multiplicities.
Since ξ0 is one of the irreducible Brauer characters in ResS

H (ψ), we have χ(1) = αχξ(1) = αχdB and

ψ(1) = βψξ0(1) = βψdB . By Theorem 10.7, we have that ξ ′ is contained in ResS ′
H ′ (χ ′), that the number

of irreducible characters contained in ResS ′
H ′(χ ′) counting multiplicities is αχ , that ξ ′

0 is contained

in ResS ′
H ′(ψ ′), and that the number of irreducible Brauer characters contained in ResS ′

H ′(ψ ′) counting
multiplicities is βψ . It follows that χ ′(1) = αχξ ′(1) = αχdB ′ and ψ ′(1) = βψξ ′

0(1) = βψdB ′ . Hence,

χ ′(1)

χ(1)
= αχdB ′

αχdB
= f B

and

ψ ′(1)

ψ(1)
= βψdB ′

βψdB
= f B .

Since ξ is contained in ζ , ξ is of p-defect zero and the p-part of ξ(1) is the p-part of the order of H ,
and similarly the p-part of ξ ′(1) is the p-part of the order of H ′ . Hence, (5) holds.

The finitely generated indecomposable modules of B are those which afford as Brauer character
some elements of N Irr(B), and similarly for the finitely generated indecomposable modules of B ′ .
Hence, κε provides a bijection between the isomorphism classes of finitely generated indecomposable
modules of B and the isomorphism classes of finitely generated indecomposable modules of B ′ . Let N
be a finitely generated indecomposable kS-module in B and let V be a vertex for N . It follows that N
is isomorphic to an object in A(M,kS), so we assume that N is an object in A(M,kS). We let N ′ be
the element of A(M ′,kS ′) corresponding to N under κε . Let V ′ be a vertex for N ′ . Since V is a vertex,
V is minimal among the subgroups of S such that N is V -projective, and all such minimal subgroups
are S-conjugate to V . It follows that V H is minimal among the subgroups of S that contain H and
are such that N is V H-projective. By for example [2, Theorem I, 4.8], for any subgroup S1 of S , N is
S1-projective if and only if N is isomorphic to a direct summand of IndS

S1
(ResS

S1
(N)). Let (V H)′ be

the subgroup of G ′ corresponding to V H , that is, H ′ ⊆ (V H)′ and π ′((V H)′) = π(V H). It then follows
from Theorem 7.5 that (V H)′ is minimal among all the subgroups of S ′ which contain H ′ and are such
that N ′ is (V H)′-projective. Therefore, N ′ has some vertex V 1 ⊆ (V H)′ . We then have V 1 H ′ = (V H)′
by the minimality of (V H)′ . Since V ′ and V 1 are conjugate in S ′ , it follows that (V H)′ and V ′H ′ are
conjugate in S ′ , and, therefore, π(V ) and π ′(V ′) are conjugate in π(S). Hence, (6) holds.
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The defect groups of a block B are all conjugate to each other. By for example [1, Theorem 13.5]
and [1, Corollary 14.5], the defect groups of a block B can be characterized as the maximal elements
under inclusion among all the vertices of all the finitely generated indecomposable kS-modules in B .
Assume the hypotheses of (7). Then it follows from (6) that π(D) is conjugate to a subgroup of π ′(D ′)
and conversely. Hence π(D) and π ′(D ′) have the same order and they are conjugate to each other.
Furthermore, it follows from Knörr’s Theorem [3, Theorem (9.26)] that, since ζ is a sum of characters
of defect zero, D ∩ H = 1, and similarly, D ′ ∩ H ′ = 1. Hence D and π(D) are isomorphic and D ′ and
π ′(D ′) are isomorphic, so that (7) holds.

Assume the hypotheses of (8), and let D be a defect group of B , and let D ′ be a defect group of B ′ .
Let pn be the p-part of |π(S)|, let pn1 be the p-part of |H |, and let pn2 be the p-part of |H ′|. By (7),
B and B ′ have the same defect, say d, and we have |D| = |D ′| = pd . Let χ have height h. Then the
p-part of χ(1) is pn+n1−d+h . By (5), the p-part of χ ′(1) is pn+n2−d+h . It follows that χ ′ has height h.
Hence, (8) holds.

Finally, assume the hypotheses of (9). Since D and D ′ are p-groups and H and H ′ are p′-groups,
it follows that π(CS (D)) = Cπ(S)(π(D)) = π ′(CS ′ (D ′)). Therefore D ′CS ′ (D ′) ⊆ S ′

0 ⊆ S ′ . We note that
since DCS (D) ⊆ S0 the existence of the block b is already guaranteed. Since b ∈ Bl(S0) is the Brauer
correspondent to B , we have that bS = B . It follows that b ∈ Bl(S0, ζ ). Let b′

1 ∈ Bl(S ′
0, ζ

′) be the block

of S ′
0 corresponding to b under κε . Since b′

1 ∈ Bl(S ′
0, ζ

′) and it has defect D ′ , we know that (b′
1)

S ′

is defined, and (b′
1)

S ′ ∈ Bl(S ′, ζ ′). It only remains to show that (b′
1)

S ′ = B ′ . Let θ ∈ Irr(b) and set the
induced character

θ S =
∑

χ∈Irr(S)

aχχ

for suitable aχ ∈ N. Recall that, for an integer n, we denote by np the p-part of n. Then, by a result of
Brauer for example [3, Corollary (6.4)], for B1 ∈ Bl(S), we have

θ S(1)p =
( ∑

χ∈Irr(B1)

aχχ(1)

)
p

if B1 = B,

θ S(1)p <

( ∑
χ∈Irr(B1)

aχχ(1)

)
p

if B1 �= B.

Denoting by χ ′ ∈ Irr(S ′|ζ ′) the character which corresponds to any χ ∈ Irr(S|ζ ) under κε , and us-
ing (5), it follows that

θ ′ S(1)p =
( ∑

χ∈Irr(B1)

aχχ ′(1)

)
p

if B1 = B,

θ ′ S(1)p <

( ∑
χ∈Irr(B1)

aχχ ′(1)

)
p

if B1 �= B.

By the same result of Brauer and the properties of the correspondence κε that we have already es-
tablished, this implies that (b′

1)
S ′ = B ′ . Hence, (9) holds. This completes the proof of the theorem. �

Remark 10.11. The special case of the previous theorem which is most important for the applications
is the case when both H and H ′ are p′-groups. In this case it is not necessary to use Knörr’s Theorem.
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11. Endoisomorphisms from fields to subrings

Our definition of endoisomorphism includes the possibility that our modules are defined over
rings. We now see that, if we have an endoisomorphism over the field of fractions of some principal
ideal domain, we will also have an endoisomorphism over the principal ideal domain itself. More
details on orders, lattices and related concepts can be found in [4].

Definition 11.1. Let R be a principal ideal domain, and let F be the field of fractions of R . Let A be a
finite dimensional algebra over F . Then an R-order in A is an R-algebra O contained in A, containing
an F -basis for A, and such that every element of O is integral over R . (Integral over R means that it
is a zero of some non-zero monic polynomial with coefficients in R .)

Lattices have already been mentioned earlier. Next, for clarity, we recall their definition in the
present context.

Definition 11.2. Let R be a principal ideal domain, and let F be the field of fractions of R . Let M be a
finite dimensional vector space over F . Then, a lattice of M over R is an R-submodule L of M which
is finitely generated as an R-module, and contains an F -basis for M .

One way to obtain R-orders in our context is to start with some lattice.

Lemma 11.3. Let G and G be finite groups, and suppose we are given a surjective homomorphism π : G → G
whose kernel is H. Let R be a principal ideal domain, and let F be the field of fractions of R. Suppose that M is
a finitely generated F G-module, and we set A = EndF H (M). Let L be any G-invariant lattice of M. Then set

O = {
a ∈ A: a(L) ⊆ L

}
.

Then O is a G-invariant R-order in A.

Proof. Since R is a principal ideal domain, and L is finitely generated there exists a free R-basis
e1, . . . , en for L. This is also an F -basis for M . We have that O is a G-invariant R-subalgebra of A.
If o ∈ O , then the matrix of o has coefficients in R , and so its characteristic polynomial is with
coefficients in R , and it follows that o is integral over R . Let a ∈ A. By considering the action of a
on the basis for M , we see that there exists some non-zero r ∈ R such that ra ∈ O . It follows that O
contains an F -basis for A. Hence, O is an R-order in A, as desired. �
Theorem 11.4. Let G and G be finite groups, and suppose we are given a surjective homomorphism π : G → G
whose kernel is H. Let R be a principal ideal domain, and let F be the field of fractions of R. Suppose that
M is a finitely generated F G-module, and that the restriction ResG

H (M) is completely reducible. We set A =
EndF H (M). Then, any R-order in A is finitely generated as an R-module. Furthermore, A has some R-order O
which is G-invariant and which is maximal among the G-invariant orders of A.

Proof. We first show that every R-order O in A is finitely generated as an R-module. Suppose that
ResG

H (M) has n different homogeneous components,

M = N1 ⊕ · · · ⊕ Nn

and we set Bi = EndF H (Ni) for i = 1, . . . ,n. Then Bi is a simple algebra, and

A = B1 ⊕ · · · ⊕ Bn.
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We let πi : A → Bi be the projection homomorphism, and ei to be the identity of Bi . We let Ki be the
center of Bi , and we let Si be the integral closure of Rei in Ki . Since Ki is a finite Galois extension
of F ei , we have that Si is Noetherian, and Si is finitely generated as an R-module. Furthermore, πi(O )

is an R-order of Bi . Let O i be the Si -span of πi(O ). Since Si -linear combinations of elements which
are integral over R are also integral over Si , we have that O i is an Si -order of Bi , where we view Bi

as an algebra over Ki . By, for example, [4, Theorem 6.5], we know that O i is finitely generated as an
Si -module. It follows that πi(O ) is finitely generated as an R-module. This implies that O is finitely
generated as an R-module, as desired.

Pick an F -basis for M , and let L be the R-submodule of M generated by this basis and all the
images of the basis elements under the elements of G . Then L is a G-invariant lattice of M . By
Lemma 11.3, it follows that A has some G-invariant R-order O 1. By Zorn’s Lemma, there exists a
maximal element O among the orders which are G-invariant and contain O 1. �
Lemma 11.5. Assume the hypotheses of Theorem 11.4, and let O be a maximal G-invariant R-order of A. Then,
there is a G-invariant lattice L of M such that

O = {
a ∈ A: a(L) ⊆ L

}
.

Proof. Take an F -basis e1, . . . , en for M . By Theorem 11.4, O is finitely generated as an R-module.
Let b1, . . . ,bm be a finite set of generators for O as an R-module. Let L be the R-submodule of M
generated by all the gbie j for all g ∈ G , i = 1, . . . ,m and j = 1, . . . ,n. Then L is an O -module and
also G-invariant. Furthermore, L is finitely generated as an R-module, so L is a lattice of M . Now, we
have

O ⊆ {
a ∈ A: a(L) ⊆ L

}
.

Since by Lemma 11.3 the right-hand side is a G-invariant R-order of A, and O is a maximal
G-invariant R-order, this implies that we actually have equality. This completes the proof of the
lemma. �
Theorem 11.6. Assume Hypotheses 2.5. Suppose F is the field of fractions of a principal ideal domain R. Let
M be a finitely generated F G-module, and let M ′ be a finitely generated F G ′-module such that the restrictions
ResG

H (M) and ResG ′
H ′ (M ′) are completely reducible. Let

ε : EndF H (M) → EndF H ′
(
M ′)

be an endoisomorphism over F from M to M ′ . Then there exist a G-invariant R-lattice L of M, and a
G ′-invariant R-lattice L′ of M ′ and an endoisomorphism

ν : EndR H (L) → EndR H ′
(
L′)

from L to L′ such that, with proper identifications, we have

EndF H (M) = F ⊗R EndR H (L),

EndF H ′
(
M ′) = F ⊗R EndR H ′

(
L′),

ε = IdF ⊗Rν.
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Proof. Set A = EndF H (M) and A′ = EndF H ′ (M ′). By Theorem 11.4, there is a maximal G-invariant
R-order O for A. We set O ′ = ε(O ), so that O ′ is maximal G-invariant R-order for A′ . We let
ε0 : O → O ′ be the restriction of ε , so that ε0 is an isomorphism of G-algebras over R . It follows
from Lemma 11.5 that there exist a G-invariant lattice L of M , and a G ′-invariant lattice L′ of M ′ such
that

O = {
a ∈ A: a(L) ⊆ L

}
,

and

O ′ = {
a ∈ A′: a

(
L′) ⊆ L′}.

Now restrictions provide an isomorphism O → EndR H (L), and an isomorphism O ′ → EndR H ′(L′).
Hence, ε0 induces an isomorphism

ν : EndR H (L) → EndR H ′
(
L′)

of G-algebras over R , i.e. an endoisomorphism from L to L′ . It is clear that F ⊗R O is naturally
identified with EndF H (M), and F ⊗R O ′ is naturally identified with EndF H ′(M ′). The identifications
stated in the theorem follow naturally from this and the construction given above. �

In view of applications, it is convenient to again relate the results that we have obtained so far
to known results about the Brauer–Clifford group. Again, we refer the reader to [12] for unexplained
definitions, notations and further details.

Corollary 11.7. Assume Hypotheses 10.1. Let R be a principal ideal domain with field of fractions F , and assume
that K is a field extension of F and that A contains R. Let G, G ′ and G be finite groups, and suppose we are
given surjective homomorphisms π : G → G, and π ′ : G ′ → G whose kernels are H and H ′ . Assume that the
exponent of G and the exponent of G ′ both divide e, and that p does not divide |H ||H ′|. Let U be a normal
subgroup of G such that U ∩ H = 1 and let U ′ be a normal subgroup of G ′ such that U ′ ∩ H ′ = 1 and suppose
π(U ) = π ′(U ′) = U . Let τ : G/U → G/U be the surjective group homomorphism induced by π , and let
τ ′ : G ′/U ′ → G/U be the surjective group homomorphism induced by π ′ . Let θ ∈ Irr(H) and let θ ′ ∈ Irr(H ′).
Let θ1 be the character of ker(τ ) corresponding to θ , and let θ ′

1 be the character of ker(τ ′) corresponding to θ ′ .
Set Z = Z(θ1, F , τ ) and Z ′ = Z(θ ′

1, F , τ ′) be the respective center algebras, and let [[θ1]] ∈ BrClif(G/U , Z)

and [[θ ′
1]] ∈ BrClif(G/U , Z ′) be the elements of the Brauer–Clifford group that correspond to the respective

characters. Suppose there is a G/U -algebra isomorphism

α : Z → Z ′

such that α sends the central character associated with θ1 to the central character associated with θ ′
1 , and,

with

α : BrClif(G/U , Z) → BrClif
(
G/U , Z ′)

being the induced group isomorphism, we have

α
([[θ1]

]) = [[
θ ′

1

]]
.

Then, there exist M a finitely generated RG-module whose kernel contains U , M ′ a finitely generated
RG ′-module whose kernel contains U ′ , and an endoisomorphism
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ε : EndR H (M) → EndR H ′
(
M ′)

such that all of the following are satisfied.

(1) Both M and M ′ are free as R-modules.
(2) Both F and k are good extensions of R for both M and for M ′ .
(3) F ⊗R M is a finitely generated θ -quasi-homogeneous F G-module whose kernel contains U , and F ⊗R M ′

is a finitely generated θ ′-quasi-homogeneous F G ′-module whose kernel contains U ′ .
(4) The hypotheses and conclusions of Theorem 10.7 and Theorem 10.10 hold.
(5) In these theorems, ζ is the sum of the G × Gal(K/F )-orbit of θ , ζ ′ is the sum of the G ′ × Gal(K/F )-orbit

of θ ′ , and as maps the Brauer characters are η = ζ and η′ = ζ ′ .
(6) For each subgroup S of G, we set S = π−1(S) and S ′ = (π ′)−1(S). Then κε provides isomorphisms of

Z-modules

κε : Z Irr(S|ζ ) → Z Irr
(

S ′∣∣ζ ′)
and

κε : Z IBr(S|η) → Z IBr
(

S ′∣∣η′).
In addition, we set f = θ ′(1)/θ(1). Then for each χ ∈ Z Irr(S|ζ ) and each ψ ∈ Z IBr(S|η), if we set χ ′ =
κε(χ) and ψ ′ = κε(ψ) then χ ′(1) = f χ(1) and ψ ′(1) = f ψ(1).

(7) θ can be viewed both as an ordinary character or as a Brauer character, and viewed either way κε sends it
to θ ′:

κε(θ) = θ ′.

Proof. By Corollary 9.9, there exist M1, M ′
1 and ε1 with the following properties. M1 is a finitely

generated θ -quasi-homogeneous F G-module whose kernel contains U , M ′
1 is a finitely generated

θ ′-quasi-homogeneous F G ′-module whose kernel contains U ′ , and ε1 is an endoisomorphism

ε1 : EndF H (M1) → EndF H ′
(
M ′

1

)
such that ε1 induces the isomorphism α, and sends the central character associated with θ to the
central character associated with θ ′ . Furthermore, by Proposition 8.4 and Property (4) of Theorem 9.8,
it follows that

κε1(θ) = θ ′.

Finally, the sum of the distinct irreducible summands of the character afforded by M1 is the sum
of all the G × Gal(K/F )-conjugates of θ , and the sum of the distinct irreducible summands of the
character afforded by M ′

1 is the sum of all the G ′ × Gal(K/F )-conjugates of θ ′ .
By Theorem 11.6, there exist a G-invariant R-lattice M of M1, and a G ′-invariant R-lattice M ′ of

M ′
1 and an endoisomorphism

ε : EndR H (M) → EndR H ′
(
M ′)

from M to M ′ such that, with proper identifications, we have
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EndF H (M1) = F ⊗R EndR H (M),

EndF H ′
(
M ′

1

) = F ⊗R EndR H ′
(
M ′),

ε1 = IdF ⊗Rε.

Of course, the kernel of M contains U , and the kernel of M ′ contains U ′ . Furthermore, (1) holds. By
Proposition 5.5, we know that (2) holds. It follows from our construction that (3) and (4) hold. By
Theorem 10.10, κε commutes with reduction modulo p, so that the effect of κε of ordinary characters
or Brauer characters of subgroups of order prime to p is the same. In view of Proposition 8.3, the
other stated properties follow from Corollary 9.9. Hence, the corollary holds. �
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