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1. Introduction

Clifford theory of finite groups is a central topic in representation theory. When we only consider
representations over the complex numbers, we classify the possible Clifford theories with the help
of a second cohomology group. If two Clifford theories are equivalent, then there exist well-behaved
character correspondences between them, but these correspondences are not uniquely determined.
When we consider representations over arbitrary (small) fields we can use the Brauer-Clifford group
instead of the second cohomology group. In an earlier paper [12], we introduced the concept of
endoisomorphism, and we showed that two Clifford theories for different groups yield the same el-
ement of the Brauer-Clifford group if and only if there is an endoisomorphism between modules
associated with the Clifford theories.

In the present paper, we show that each endoisomorphism yields a unique correspondence among
modules defined over many different fields and among their corresponding characters. We prove that
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this correspondence has many useful properties. In particular, we will use these in a forthcoming pa-
per to prove a strengthened version of the Alperin-McKay Conjecture for all p-solvable finite groups.
Since from [12] we know that the existence of non-trivial endoisomorphisms can be deduced from
equalities in the Brauer-Clifford group, the study of the module and character correspondences in this
case is particularly useful in the applications. In Corollary 9.9 and Corollary 11.7 below we state some
consequences for the correspondences that arise from certain equalities in the Brauer—Clifford group.
The rest of the paper, however, mostly discusses the consequences of the existence of endoisomor-
phisms which may or may not arise in this manner. We show that from each endoisomorphism one
can construct two large families of modules over many different fields and groups and a uniquely de-
fined correspondence between them with excellent properties. From the module correspondence, one
also gets a corresponding unique character correspondence, and even a corresponding unique Brauer
character correspondence in many cases.

The concept of an endoisomorphism is a natural one. An endoisomorphism from a module M; to
a module M, is simply an isomorphism of the G-algebras obtained from the two modules M; and
M; as G-algebras of endomorphisms. We give a precise definition of endoisomorphism in Section 2
below. The original definition used in [12] assumes that the modules are defined over fields, and that
they are finitely generated. This is sufficient for that paper since these are the only type of modules
discussed there. In the present paper, we extend the family of modules discussed in two ways. First,
we allow the modules to be defined over commutative rings instead of over fields. Second, we allow
the modules to be infinitely generated.

In [12], we saw that endoisomorphisms for finitely generated modules over fields arise naturally
from equality of elements of the Brauer-Clifford group, or from equality between families of elements
of the Brauer-Clifford group. In Section 11 below, we see that the existence of an endoisomorphism
over a field yields the existence of an endoisomorphism over a corresponding ring for finitely gener-
ated modules under certain conditions. These conditions are such as to make a consistent transition
from modules in characteristic zero to modules in positive characteristic. We also show in the pa-
per how endoisomorphisms of finitely generated modules naturally give rise to endoisomorphisms of
certain infinitely generated modules, and use this to set up our module correspondence.

The main goal of the present paper is to show that fixing an endoisomorphism for two modules
yields a unique module and character correspondence with excellent properties. The uniqueness of the
correspondence for modules is, to a certain extent, up to module isomorphism. The correspondence
at the character level is unique. We prove that each endoisomorphism produces a coherent family of
module correspondences for a multitude of module categories.

In Section 4, we describe a natural correspondence between the sections of a given modules and
certain objects obtained from the G-algebra of endomorphisms. In order to be able to describe all
finitely generated modules using these sections, it is natural to extend the original finitely generated
module by taking the direct sum of a countably infinite set of copies of the original module. We are
interested only in the finitely generated submodules of this direct sum. It is convenient to consider
this direct sum as a topological module and to redefine the endomorphism G-algebra for the direct
sum as consisting of those endomorphisms whose kernel is an open set of the topology. This makes
our results flow smoothly.

In Section 2, we define endoisomorphisms in our most general context, namely for topological
modules over finite group algebras over commutative rings. In Section 3, we see that under our defini-
tions the finitely generated submodules are in one-to-one correspondence with the finitely generated
right ideals of the G-algebra of endomorphisms. This then allows us to describe the sections of the
module in Section 4. We also show that this naturally makes each endoisomorphism induce a unique
correspondence of modules with good properties. This unique correspondence on sections of two re-
lated modules which only depends on an endoisomorphism € is denoted KS below. We then show
how one can naturally extend the original modules to their completions and then generate two much
bigger families of modules. The completions are generally designed to handle all homomorphic im-
ages of finite direct sums of the original modules. One can also extend the original endoisomorphism
in a uniquely prescribed way to a new one for the extended modules. From this extended endoiso-
morphism we obtain the unique correspondence, denoted «. below. The correspondence k¢ can be
applied to a large collection of modules over subgroups over various fields in different characteristics.
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We also prove a number of excellent compatibility properties for k. including about reduction modulo
a prime p, and even p-blocks.

Our results make unique, greatly generalize, and prove additional properties for the correspon-
dences studied in [8,9]. These earlier results were used in [10] to prove a strengthening [7] of the
McKay Conjecture for all p-solvable finite groups. Some of the additional properties that we prove in
the present paper have to do with reduction modulo p and p-blocks. In a forthcoming paper, we will
use the results of the present paper to prove a strengthening [7] of the Alperin-McKay Conjecture.
We also plan to explore in forthcoming papers how the results of the present paper yield simplified
and strengthened results for the character and module theory of solvable and p-solvable groups.

We use the notation and conventions of [11]. Note that we systematically write all functions on
the left, and compose them from right to left. This allows us, in particular, to compose characters
with elements of Galois groups. We also use left exponential notation (i.e. &a for the action of a
group element g on an algebra element a). We also note that N means the set of natural numbers
that is the set of cardinalities of the finite sets so that N={0, 1,2, ...}, i.e. 0 is a natural number.

2. Endomorphism algebras and endoisomorphisms

While endoisomorphisms were defined in [12] in the context of finite dimensional modules de-
fined over fields, it is convenient to extend the definition to a wider class of modules. We now extend
our modules to include infinitely generated ones defined over commutative rings. Furthermore, it is
also convenient for our purposes to allow our modules to be topological. We start with the definition
of the endomorphism algebra of one such module.

Definition 2.1. Let G and G be finite groups, and suppose we are given a surjective homomorphism
7 : G — G whose kernel is H. Let R be a commutative ring with identity, and let RG be the group
ring, viewed with the discrete topology. Let M be a topological RG-module, that is a topological space
and a unital RG-module where the operations are continuous. Then we let

End(M) = {¢ € Endgy(M): ker(¢) is open}.

In view of Proposition 2.2, we will call End(M) the endomorphism G-algebra of M, and, when we say
that some map f: M — M is an endomorphism of M we will mean f € End(M) unless we explicitly
say otherwise.

End(M) has an algebraic structure, as we see in the next proposition. However, we will not assign
to End(M) any topological structure.

Proposition 2.2. Assume the hypotheses of Definition 2.1. Then End(M) is a G-algebra over R. Furthermore,
if M is discrete then End(M) = Endgy (M).

Proof. In the topological abelian group M, a subgroup is open if and only if it contains a non-empty
open subset. It follows that End(M) is closed under addition, subtraction, scalar multiplication and
composition. Furthermore, multiplication by any element of G induces on M a homeomorphism,
so that End(M) is closed under conjugation by G. Since obviously H acts trivially by conjugation
on End(M), we have that End(M) is a G-algebra over R, as desired. The second statement follows
immediately from the definitions. O

Remark 2.3. End(M) need not be finitely generated over R, and End(M) need not have an identity.

Remark 2.4. If a module M is not described as being topological, we will assume that it has the
discrete topology, and, in particular, End(M) = Endgy (M).

For convenience, we label the following hypotheses.
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Hypotheses 2.5. Let G, G’ and E_be finite groups, and suppose we are given surjective homomor-
phisms 7 : G — G and v’ : G’ — G whose kernels are, respectively, H and H'.

The key to an isomorphism between two Clifford theories is the definition below of an endoisomor-
phism. In [12], we saw that Clifford theories that yield the same element of the Brauer-Clifford group
yield endoisomorphisms. The type of module considered in [12] is finite dimensional modules over
fields, but we find it convenient to extend our allowed modules here.

Definition 2.6. Assume Hypotheses 2.5, and let R be a commutative ring with identity. Let M be a

topological RG-module, and let M’ be a topological RG’-module. An endoisomorphism over R from M
to M’ is a map

¢ : End(M) — End(M')
which is an isomorphism of G-algebras over R. We will write
€e:M~M

to mean that € is an endoisomorphism from M to M’.
3. Endomorphisms for large direct sums of modules

We are mainly interested in correspondences of finitely generated modules. In order to study these,
it is convenient to define larger (non-finitely generated) modules, and to consider their finitely gener-
ated submodules. It is convenient to use topological language for these modules.
Hypotheses 3.1. Let G and G be finite groups, and suppose we are given a surjective homomorphism
7 : G — G whose kernel is H. Suppose F is a field. We view F and FG as discrete topological spaces.

Let C be a (possibly infinite) set of finitely generated FG-modules N such that Resg(N) is completely
reducible. We set M to be the direct sum of all elements of C. We consider

TB(C) = {x+ > N:xeMand D c Cand |C\D| < +oo}.
NeD

We consider M as a topological space with basis of open sets given by 7 B(C).

Then M is a topological FG-module. When C is finite M is discrete, but M need not be discrete
in general. In general, we can think of the topology on M to be that induced on the direct sum M by
the product topology of the discrete topological modules in C.

Lemma 3.2. Assume Hypotheses 3.1, and let V be an F-subspace of M. Let
D={NeC: NCV}
Then V is open if and only if |C\D| < 4o0.

Proof. Suppose first that V is open. Then, since 0 € V, there exists some x € M, and some E C C such
that |C\E| < +o0, and

Oex—l—ZNgv.
NeE
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Hence, E C D, and the implication in the forward direction holds. Next suppose that |C\D| < +oo.
Then, for each x € V, we have that

x—i—ZNgV,

NeD

so that V is a union of elements of 7B(C), and so it is open. O

Set A =End(M). It follows from Proposition 2.2 that A is a G-algebra over F, possibly of infinite
dimension and possibly without identity. Furthermore, for each a € A, we have that a is continu-
ous and a(M) has finite dimension over F. Finally, note that we will not need to assign a topology
to A.

We are primarily interested in the finite dimensional submodules of M. Let V be any finite dimen-
sional subspace of M. Then for every m € M we let (V,m) be the subspace generated by V and m,
and there is an open FG-submodule O of M such that O N (V,m) = {0}. If m ¢ V, we have that
m+ O is open and disjoint from V, so that V is closed. If m € V, then (m+ 0) NV = {m}, so that V
is discrete under the relative topology from M. For this reason, while the topology of M is important,
the topology of the subspaces V themselves does not play an important role in our development.

Remark 3.3. Assume Hypotheses 3.1, and that C is finite. Then M has the discrete topology and we
have End(M) = Endry (M).

The algebra End(M) can be described directly from ordinary full endomorphism algebras via suit-
able direct sums.

Proposition 3.4. Assume Hypotheses 3.1, and set A = End(M). Then, for each N1, N3 € C, we may identify
naturally Hompgy (N1, N2) with a vector F-subspace of A. In this way A may be viewed as a G-algebra over F
as the direct sum of all the Hompy (N1, N3) as N1, N, € C with the product induced by composition.

Proof. We may view the elements of Homgy (N1, N2) as FH-module homomorphism M — M whose
kernel contains the direct sum of all the elements of C except N1 and whose image is in N;. This
identification preserves the F-vector space structure, as well as the G-action. In addition, the product
is induced from composition under these identifications. Let S be the sum of all the Hompgy (N1, N2)
for N1, N € C. Then this sum is direct. Let ¢ € A. Then, since ker(¢) is open, there is some finite
subset C1 C C such that ker(¢) contains all the elements of C not in Cy. It follows that the image of
¢ is finite dimensional, so that there exists a finite subset C; < C such that ¢(M) € ycc, N. Then
¢ is in the sum of the Hompy (N1, N») for Ny € C; and N3 € C,. It follows that ¢ € S. Hence, S = A,
and the proposition holds. O

Proposition 3.5. Assume Hypotheses 3.1, and set A = End(M). Then I is a finitely generated right ideal of A
if and only if there exists some idempotent e € A such that I = eA.

Proof. If there exists some idempotent e € A such that [ =eA, then [ is a finitely generated (in fact
generated by e) right ideal of A. Hence, we now suppose that I is any finitely generated right ideal
of A. We first show that ifae I, b€ A and b(M) C a(M) then b € I. We set N=a(M) and N1 =b(M)
so that Ny € N. We set K = ker(a) and K; = ker(b). Since Resg(M) is completely reducible, there
exist FH-submodules N and N; such that M =N @ K and M = N; @ K;. We restrict a to a map
o : N — N and we restrict b to a map B : N; — Ny. Both o and B are FH-module isomorphisms. We
define c € A by c(n+k) =a~1(B(n)) for all n € Ny and k € K;. Then ac = b and it follows, since I is
a right ideal, that b € I, as desired.
Now let

C={aM):aclj.
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Let aq,...,a, be a finite set of generators of I. Then, if N € C, we have

dimp(N) <) dimg (ai(M)).
i=1

It follows that C has a maximal element N. Suppose N’ € C. Then since Rest(M) is completely re-
ducible, we can find an FH-submodule K of N’ such that

N+N=NoK.

Note that these subspaces are all finite dimensional over F. Hence, there exists a subset Co C C
consisting of almost all the elements of C such that the direct sum D of all the elements of Cy is
such that D N (N + N’) = {0}. Then, by the above there exist a, b € I such that a is the identity on N
and contains K + D in its kernel, and b is the identity on K and contains N + D in its kernel. Hence,
a+bel, and (a+b)(M) D N + N’. Since N is maximal, this implies that N’ € N, so that N is the
maximum of C. Since Resﬁ(M) is completely reducible, there exists some FH-submodule R of M
such that R contains almost all the elements of C and

M=N®R.

The linear map e : M — M which is the identity on N and zero on R is an idempotent e € A. Since
e(M) =N e, it follows from the above that e € I. Therefore eA C I. Since N is the maximum of C,
for all i € I we have ei =i, so that I C eA. Hence, I =eA, as desired. O

The following definition is standard in this context.

Definition 3.6. Suppose I C A and N € M. Then we denote by I(N) the additive subgroup of M
generated by all the elements of the form i(n) for i€l and n€ N.

Theorem 3.7. Assume Hypotheses 3.1, and set A = End(M). Then the correspondence

I (M)

is a one-to-one correspondence from the set of finitely generated right ideals of A to the set of finitely generated
F H-submodules of M. Furthermore, the set of finitely generated right ideals of A and the set of finitely gen-
erated F H-submodules of M are ordered by inclusion and the correspondence is an isomorphism of partially
ordered sets. Finally, if I is a finitely generated right ideal of A and g € G, then

gl(M) = (" 1) (M),

in other words, multiplication by g of the FH-submodule corresponding to the right ideal I yields the
F H-submodule corresponding to (],

Proof. Let Z be the set of finitely generated right ideals of A, and let M be the set of finitely gener-
ated FH-submodules of M. Let I € Z. Then, for each i € I, i(M) is a finitely generated FH-submodule
of M. Since I is finitely generated as a right ideal of A, it follows that I(M) is a finitely generated
FH-submodule of M, and I(M) € M. Therefore I — I(M) is well defined. We define f;:Z — M by
f1(1) =1(M) for all I € Z. Conversely, let N € M. Then we set

In={aeA:a(M) S N}.
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There is an FH-submodule K of M such that K contains almost all the elements of C and M =
N @ K. Let e: M — M be the linear map such that it is the identity on N and zero on K. Then
e € A is an idempotent and the finitely generated right ideal Iy =eA of A is such that Iy(M) =
eA(M) = N. Therefore Iy € Z and the correspondence N +— Iy is well defined. We define f; : M — 7
by fo(N)=Iy for all N € M. Then f, is well defined and f;f, is the identity on M. Let I € 7.
By Proposition 3.5, there exists some idempotent e € A such that I =eA. Then f{(I) =e(M), and
fofil)=eA =1, so that f; f1 is the identity on Z. Since it follows from their definition that both f;
and f> preserve inclusion, we have that f; and f, are isomorphisms of partially ordered sets.
Suppose now that I is a finitely generated right ideal of A and N =1(M), and g € G. Then

gN=glg '(M) ="® (M)

since the image of multiplication of M by g~! is M itself, and by definition of the action of G on A.
Hence, the lemma holds. O

Corollary 3.8. Assume Hypotheses 3.1, and set A = End(M). Let S be a subgroup of G which contains H, and
let S = 7 (S). Then the finitely generated FS-submodules of M are, under the correspondence of Theorem 3.7,
in one-to-one correspondence with the S-invariant finitely generated right ideals of A.

Proof. This follows immediately from Theorem 3.7. O

4. Ideal triples and sections of modules

The results of the previous section suggest that certain categories of modules may be described
from the endomorphism algebras. More precisely, assume for a moment Hypotheses 3.1, and let S
be a subgroup of G which contains H. The category of FS-modules which are quotients of finitely
generated FS-submodules of M (sections of M for short) can be described purely in terms of the
G-algebra End(M). In this section, we make this idea precise. We start by defining a category of
ideal triples, and we show that it is isomorphic to the category of sections of M under appropriate
conditions.

Definition 4.1. Let G be a finite group, let F be a field, and let A be a G-algebra over F. (We do not
assume that A has finite dimension or that A has an identity.) We define the category of ideal triples
of A to be the category Z7 (A) defined as follows.

(1) The objects of Z7 (A) are the triples (I, J, S), where S is a subgroup of G, I and J are S-invariant
right ideals of A such that I 2 J, and there exist idempotents e; and e; in A such that I =¢;A
and | =¢ejA.

(2) Let 01 =(I1, J1,S1) and O3 = (I3, J2, S2) be objects of Z7 (A). Set

A(01,03)={a€A:aly Clyanda]; € Jp},
E(01,03)={aec A: al1 C ]2},

I (01.05) {Q) if S1 # Sy,
omz7 (U1, U2) = — .
o (A(01,02)/8(01,02)5 ifS;=5,=5.

(3) Let 0 =(I, J, S) be an object of Z7 (A). Then we set 19 =e; + Z(0, 0) e Homz7(4)(0, 0).

(4) Let 01 = (I1, J1,S1), O3 = (I2, J2,S2), and O3 = (I3, J3,S3) be objects of Z7 (A), and let a €
A(01,03) and b € A(0O;, O3). Suppose that

a+ &(01,02) € Homz(4)(01, 02)
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and

b+ E(02, 03) e Homz7(4)(02, 03).
Then,

ba+ Z(01, 03) e Homz7(4)(01, 03),
and we set

(b+ E(02,03))(a+ E(01,02)) =ba+ E(01, 03).
Theorem 4.2. Definition 4.1 does define uniquely a (usually disconnected) F-linear small category ZT (A).

Proof. It is clear that the objects of Z7 (A) form a set. We note that for an object O = (I, J, S) of
ZT (A) the idempotents e; and e; are assumed to exist, but they may not be uniquely determined by
the object O. Assume the hypotheses of (2). Then, it is direct to check that A(01, 03) and Z(01, 03)
are vector spaces over F, and, furthermore, £(01, 02) € A(O1, 03). Hence, A(01, 03)/Z(01, 03)
is a vector space over F. Assume that S; = S; = S. Then, since Iy, I, J1 and J, are all
S-invariant, S acts on both A(0O1,03) and Z(01,03), and so S acts on A(01,03)/&E(01,07)
and, Homz7(4)(01, 02) is the set of S-fixed points of this action. In particular, in all cases,
Homz7(4)(01, 03) is an F-vector space or empty.

Suppose now the hypotheses of (4). Then, by definition, we have S; = S, = S3 = S. It is direct to
show that

A(02,03)A(01,032) € A(01q, 03);
A(02,03)5(01,032) € E(01, 03);
Z(02,03)A(01,02) € E(01, 03).

It then follows that the class of ba in A(O1,03)/Z (04, 03) is uniquely determined by the class
of a in A(01,03,)/Z(01, 03) and the class of b in A(0O32, 03)/&(03, 03). Since the class of a in
A(01,03)/E(01, 03) and the class of b in A(03, 03)/Z (03, 03) are both invariant under the ac-
tion of S, it follows that

ba+ (01, 03) € (A(01, 03)/E(01, 03))°.

Hence, the product is well defined. Furthermore, it is bilinear, and associative. Let e be an idempotent
of A such that I, =eA. Then, for all ¢ € I,, we have ec =, and it follows that e € A(O3, O»). Further-
more, be —b € £(03, 03), and ea —a € Z(01, 03). In particular, e + Z(0;, 03) is an identity of the
set A(03,032)/&(02, 02) under product. Since the identity is unique, it follows that it is uniquely
determined by A(03, 03)/& (02, 03), and therefore it is fixed under the action of S,. Hence, the
identity of each object of Z7 (A) is uniquely defined, and satisfies the conditions of being an identity
for the category. Hence, Z7 (A) is an F-linear small category, as claimed. O

The abstract category Z7 (A) depends only on the G-algebra A. When A = End(M) for an appro-
priate module M, Z7 (A) is isomorphic to a category of sections of M. We now proceed to describe
this category of sections. We first set up some notation. In view of our later applications, we work
with ambient modules which are possibly infinitely generated.
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Definition 4.3. Assume Hypotheses 3.1. Let § be a subgroup of G, and let S =7 ~1(5). We define
the category of sections of M over FS, S(M, FS), to be the following small category. Its objects are
all the FS-modules which are quotients of a finitely generated FS-submodule of M by one of its
FS-submodules. Its morphisms are all the FS-module homomorphisms. We define the category of
sections of M, S(M), to be the disjoint union of the categories S(M, FS) as S runs through all the
subgroups of G.

Then S(M, FS) and S(M) are small F-linear categories.

Theorem 4.4. Assume Hypotheses 3.1, and set A = End(M). Then the categories ZT (A) and S(M) are isomor-
phic under an isomorphism given as follows. For O = (I, |, S) any object in ZT (A), we set S = 7 ~1(5), and
we assign to O the FS-module I(M)/J(M). For 01 = (I1, J1,S1) and 05 = (I3, J2, S2) objects in ZT (A),
and a € A(O1, O») such that

a+ (01, 02) € Homz74)(01, 03),

we assign the map fq : [1(M)/ J1(M) — I2(M)/ J2(M) given by

fa(n+ J1(M)) =a(m) + J2(M)
foralln € I{(M).

Proof. Let O = (I, J,S) be any object in Z7 (A), and set S = ~1(S5). Since I D | are S-stable, by
Corollary 3.8, I(M) and J(M) are FS-submodules of M, and, I(M) 2 J(M). Hence, I(M)/J(M) can be
viewed as an FS-module. Hence, the correspondence on objects is well defined. Furthermore, again
by Corollary 3.8, we have a bijection from the objects of Z7 (A) to the objects of S(M).

Suppose now that 01 = (I, J1, S1) and Oz = (I3, J2, S2) are objects in I’T(A) We get the related
objects 01 = (I, J1,1) and 05 = (I, J2,1) in ZT (A). For each a € A(0q, 04), since al; € I, and
aji C J,, the map f; is well defined. Hence, we have a well-defined linear map

F: AD1, 02) — Hompp (11 (M)/ J1 (M), I2(M)/ J2(M))

by setting F(a) = f, for all a € A(01, 05). It follows from the definitions that the kernel of F is
Z(01, 07). Let

% € Homgy (I (M)/ J1 (M), I,(M)/ J2(M)).

Since M is completely reducible as an F H-module, we can find F H-submodules K1, and K, of M such
that Ky is open, M = K1 & I1(M), and I,(M) = K2 & J»(M). Then K3 is isomorphic to I;(M)/J2(M),
and so it is of finite dimension over F. We can construct a map A : M — M, by saying that X is
F-linear, it contains K in its kernel, and on I1(M) it is just the projection I1(M) — I1(M)/J1(M)
followed by A followed by the isomorphism I,(M)/J2(M) — K, followed by the inclusion of K;
into M. Now X is an FH-module homomorphism and its kernel is open, so that A € A. It follows
from the definitions that » € A(01, 02) and F(1) = A. Hence, F is surjective, and it provides an
isomorphism

F:A(01,02)/5 (01, 02) — Homey (It (M)/ J1 (M), I2(M)/ J2(M)).

If S; #* S5, then Homz74)(01, 02) =, and similarly there are no morphisms between the corre-
sponding modules. Hence, we assume S; =S, =35 and let S =7 ~1(5). Now Iy, J1, I, and J, are all
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S-invariant, and S acts via 7 on the domain of F, and S acts on the range of F, and a calculation
shows that F preserves this action. Hence, F restricts to an isomorphism

(A(01,02)/E2(0, Oz))§ — Homgs (I1(M)/ J1(M), I2(M)/ J2(M)).

This proves that for all pairs of objects we have a linear isomorphism between the corresponding
sets of homomorphism. A straightforward calculation shows that the defined correspondence of ho-
momorphisms is compatible with composition, and this completes the proof of the theorem. O

Proposition 4.5. Assume the hypotheses and notation of Theorem 4.4. Then, the isomorphism of categories
given in it from Z'T (A) to S(M) has the following properties.

(1) Let S1 2 S; be subgroups of G. The map

(I, J,50 =, ], 52)

of objects of ZT(A) corresponds in S(M) to restriction of modules from an FSi-module to an
FSy-module, where S1 = =1(S1) and Sy = 1~ (S).
(2) Let g € G. Let (I, J, S) be an object of ZT (A), and let N be the corresponding F S-module in S(M). Then

@ 7@ | T@F
("L, TES)

is an object of ZT (A) and the module that corresponds to it is isomorphic to 8N as F&S-modules.
(3) Let 0 = (I, J, S) be an object of ZT (A), and let N be the corresponding FS-module in S(M). Then,

Endfs(N) = Endz7(4)(0)

as algebras over F.

(4) Assume the hypotheses of (3). Assume that N is irreducible and let ¢ be the character afforded by some
absolutely irreducible submodule of F ¢ N (where F is an algebraic closure of F and we assume that
characters are functions S — F). Then,

F(¢) ~Z(Endz7(x)(0))

as algebras over F.

(5) Assume the hypotheses and notation of (4). Then, the Schur index of ¢ over F is the Schur index of
Endz74)(0).

(6) Suppose that we are given a group I' of field automorphisms of F, and a continuous action of I' on M
in such a way that I" preserves the addition on M, forall y € I', A € F, and v € M we have y (Av) =
¥ (A)y (v), and the action of each y € I' commutes with the action of each element of G on M. Then, for
each y e I', conjugation determines an automorphism y of the G-ring A. Furthermore, let (I, ], S) be an
object of ZT (A), and let N be the corresponding F S-module in S(M). Then

(¥, v, S)

is an object of Z'T (A) and the module that corresponds to it is isomorphic to the y-twist of N as an
FS-module.
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(7) Assume the hypotheses of (3). Assume, furthermore, that, for some algebraic closure F, every irreducible
FH-submodule of F ®F M has the same dimension d over F. Let 0" = (I, ], 1) be the object of TT (A)
obtained from O by replacing S by the trivial subgroup. Then F ® f Endz7(4)(0’) can be written uniquely
as

F®F El‘ldIT(A)(O/) =A1®--- DA

where each A; is a central simple algebra over F. Furthermore,

dimp(N) =d )\ /dimz(A)).
i=1

Proof. (1) It follows from the definition of Z7 (A) that if 01 = (I, J, S1) is an object of Z7 (A), then
0, =1, J,S3) is an object of Z7 (A). Furthermore, with S; =7 ~1(57) and Sy = 7~1(S3), the module
that corresponds to 01 is I(M)/J(M) viewed as an FS;-module and the module that corresponds to
0, is that same underlying abelian group I(M)/J(M) viewed as an FS;-module.

(2)Let 0 =(I, J,S), and set

0 = (n(g)l, ﬂ(g)], ﬂ(g)g)'

It follows from the definition of Z7 (A) that O’ is an object of it. Now the FS-module N =I1(M)/J(M)
is the module that corresponds to O. From the definition of the action of G, we have that
7@ (M) = gI(M) and *® J(M) = g J(M). It follows that the module corresponding to O’ is iso-
morphic to &N.

(3) It follows from the isomorphism of F-linear categories of Theorem 4.4 that Endz7(4)(0), the
algebra of endomorphisms of the object O, is isomorphic to Endgs(N) as algebras over F.

(4) It is well known that the algebra F(¢) is isomorphic to the center of the endomorphism algebra
Endrs(N), so the result follows immediately from (3).

(5) This follows from (3) in a similar way.

(6)Ifac A and y e I', then yay~! € A, and so we may define y(a) = yay ~'. This defines an
action of I" on the G-ring A by automorphisms. Let (I, J, S) be an object of Z7 (A), and let N be the
corresponding FS-module in S(M). Then

(¥, ¥, S)

is an object of Z7 (A). The module that corresponds to it is

yIy Y(M)/y Jy M) =y I(M) /y J(M)

as an FS-module. This module is isomorphic to the y-twist of N as an FS-module.
(7) By (1) the restriction of N to an FH-module corresponds to the object O’. It then follows
from (3) that

Endry (N) ~ Endz7)(0’)

as algebras over F. Hence,

E[ldFH(F ®F N) ~ F QF EHC]IT(A)(O/)
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as algebras over F. Since M is completely reducible as an FH-module, N is completely reducible as
an FH-module, and F ®F N is completely reducible as an FH-module. Let N1, ..., N, be represen-
tatives for the distinct isomorphism classes of irreducible FH-submodules of F ®¢ N, and let their
multiplicities be respectively a1, ..., oy. Then

Endzy (F ®F N)

is isomorphic to the direct sum of full matrix algebras over F of dimension (x%, .. .,oz,f respectively.

Since

n
dimp(N) = dimg(F @ N) =) _ o dimp(Ny)
i=1

and the dimension of each N; is d, the result then follows. O

Definition 4.6. Assume Hypotheses 2.5, and let F be a field. Let C be a (possibly infinite) set of finitely
generated FG-modules N such that Resg (N) is completely reducible, and let C’ be a (possibly infinite)
set of finitely generated FG’-modules N’ such that Resgl, (N") is completely reducible. We set M to be
the direct sum of all elements of C, and we set M’ to be the direct sum of all elements of C’. Suppose
we have an endoisomorphism (Definition 2.6) from M to M’

€ :End(M) — End(M’).

Then € determines one isomorphism KS of small F-linear categories from S(M) to S(M’), as follows.
We set A=End(M) and A’ = End(M’). Then,

€:A—> A

is an isomorphism of G-algebras. By Theorem 4.4, the categories Z7 (A) and S(M) are isomorphic un-
der a preferred isomorphism «, and similarly, the categories Z7 (A’) and S(M’) are isomorphic under
a preferred isomorphism o’. Since € is a G-algebra isomorphism, it induces an isomorphism tc of
categories from Z7 (A) to Z7 (A’). The isomorphism KS is the one that makes the following diagram
of categories commutative:

IT(A) IT(A)
S
SM) —— = S(M)

Given a category of modules, one can naturally consider the category of its isomorphism classes of
modules.

Definition 4.7. Let C be a full category of modules. We denote by C= the category of all isomorphism
classes of objects of C. If D is also a full category of modules and I is an isomorphism of categories
from C to D, then there is a unique induced isomorphism of categories I~ from C= to D=.

Remark 4.8. The following remarks follow from the above definitions.

° /cg is a well-defined isomorphism of categories, and in particular it will send isomorphic modules
in S(M) to isomorphic modules in S(M’). KS: is a well-defined isomorphism of categories from
S(M)= to isomorphic modules in S(M’)=.
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o If we can compose two endoisomorphisms say € and €', then it follows from the definition that
the isomorphism of categories associated with €’¢ is simply the composition of the two isomor-
phisms of categories:

0 _,0,0
Kere = Kerke -

e If G=G' and m =7, and ¢ : M — M’ is an isomorphism of topological FG-modules, then we
can define

€A A

simply by setting

€(a) = ¢agp™"

for all a € A. Then € is an endoisomorphism. Furthermore, it follows from the definitions that in
this case, whenever N = N1/N; is any element of S(M) then KS(N) = KS(M/NZ) =¢(N1)/¢p(N2).
In particular,

S(M)==8(M')~

and %= is the identity.

o It follows from the above comments that the correspondence that to € assigns ¥~ is stable in
the following sense. Suppose we precede € : M ~» M’ with an endoisomorphism €; : M1 ~ M that
arose from a module isomorphism of My to M, and follow it with an endoisomorphism €3 : M’ ~»
M that arose from module isomorphism of M’ to M], then we get a new endoisomorphism
€y€€1 : M1~ M’, and

0~ _ , 0~
KG _K€2€€1'

Theorem 4.9. Assume Definition 4.6. Then € determines one isomorphism /cg of small F-linear categories from
S(M) to S(M"). Furthermore the isomorphism of categories satisfies the following:

(n KE gives bijections from the irreducible modules in S(M) to the irreducible modules in S(M"), from the
indecomposable modules to the indecomposable modules, and preserves direct sums of modules, and com-
position series.

(2) KS commutes with restriction of modules. Furthermore, it commutes with induction of modules up to

isomorphism

3) /c commutes, up to module isomorphism, with conjugation by G.

4) /c preserves the field of values of irreducible characters.

) K preserves the corresponding elements of the Brauer group and in particular the Schur indices.

) Suppose that we are given a group I" of field automorphisms of F, and a continuous action of I' on M
and on M’ in such a way that I" preserves the addition on M and on M’, forally e I', A € F, v € M and
v/ € M’ we have y (\v) =y (L)Y (v), Y (AV') = y (A)y (V'), and the action of each y € I" commutes with
the action of each element of G on M and of G’ on M’. Then I' acts as automorphisms of both G-rings
End(M) and End(M’). We assume that € preserves these actions. Then, whenever N is an FS-module and
an object in S(M) and N’ is the corresponding object under K?, and y € I, then there is an object in
S (M) which is isomorphic to the y -twist of N, and KS sends it to a module isomorphic to y -twist of N'.

(
(
(5
(6
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(7) Suppose all irreducible direct summands ofResg (F @ M) have the same dimension d, and all irreducible
direct summands of Resf/,(? ®f M’) have the same dimension d’, where F is an algebraic closure of F.
Then, whenever N is an object in S(M) and N’ is the corresponding object under /(2, then dimp(N') =
& dimp (N).

Proof. By Definition 4.6, we have that k. is an isomorphism of categories from Z7 (A) to Z7 (A").
(1) then follows directly from this. Furthermore, the fact that K? commutes with restriction fol-
lows from Proposition 4.5, and this implies that it will commute with induction up to isomorphism
because induction is the adjoint of restriction. The rest of the properties follow directly from Proposi-
tion 4.5. O

In addition, the module correspondence described in the previous theorem has some good com-
patibility properties. We see that it commutes well with certain restrictions.

Proposition 4.10. Assume that hypotheses of Theorem 4.9, and let Go be a subgroup of G that contains H
and let Gy be the corresponding subgroup of G’ that contains H' so that 7t (Go) = 7' (Gy). Then we can view

ResgO (M) and Resg: (M’) as the direct sums of the corresponding restriction modules, and, as algebras
0
End(Res¢ (M)) =End(M) and ELCI(Resgé (M')) = End(M).

We let €y be the endoisomorphism from Resg0 (M) to Resg: (M") which agrees with € on every element. Then,
0
S(Resg0 (M)) is a full subcategory of S(M) and S(Resg: (M)) is a full subcategory of S(M’) and the original
0

correspondence Ig provides an isomorphism on these subcategories which is simply ISO.

Proof. The direct sum of the gollection of restrictions of the modules in C and C’ do provide, re-
spectively, Reng(M) and Resg/ (M"). Set Go = 7 (Go) = n'(Gy), A =End(M), B =End(M"), Ap =
0

@(Reng(M)), and By = @(Resg: (M")). As algebras over F, we have A = Ag and B = By, but A
0

and B are G-algebras and Ag and Bg are Go-algebras. Now, € does provide an endoisomorphis/m €0,
as required. The modules in S(Resgo(M)) form a full subcategory of S(M) and those of S(Resg, (M))
0

form a full subcategory of S(M’). Likewise the category Z7 (Ag) is a full subcategory of Z7 (A), and
the category Z7 (Bg) is a full subcategory of Z7 (B). The proposition then follows from the defini-
tions. O

5. The F-completion of M

The module correspondence that we have described in the previous section is limited to modules
over the same field, and furthermore to modules which are section of a given module. In Clifford
theory, it is often convenient to consider modules which are related to the original module, but are
not necessarily a section of the original module (for example modules which require a large number
of generators). Furthermore, we want to discuss simultaneously modules over different fields. In this
section, we construct a larger module than the originally given one in order to control a larger class
of modules. We assume the following hypotheses throughout the section.

Hypotheses 5.1. Let G and G be finite groups, and suppose we are given a surjective homomor-
phism 7 : G — G whose kernel is H. Suppose R is an integral domain and M is a finitely generated
RG-module such that M is free as an R-module.

The modules above M are to be defined over fields, and these fields are to be extensions of R in
the following sense.
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Definition 5.2. By a field extension F of R we mean a field F together with a unital ring homomor-
phism ¢ : R — F. In many cases, we will not name the ring homomorphism explicitly. Whenever F is
a field extension of R, we will denote by Gal(F/R) the group of all field automorphisms of F which
fix every element in the image of R in F.

Remark 5.3. In the situation of Definition 5.2, we get that F ®g M is a finite dimensional FG-module.
Furthermore, F ®g Endgg (M) is identified in a natural way with a subalgebra of Endry (F ®g M).

Among the field extensions of R, we identify the good ones.

Definition 5.4. We say that a field extension F of R is a good extension for M if Resg(F ®r M) is
completely reducible and

F ®g Endgy (M) =Endfry (F Qg M).

Proposition 5.5. Assume Hypotheses 5.1, and that F is a field extension of R of characteristic p (possibly equal
to zero) such that p does not divide |H|. Then F is a good field extension of R for M.

Proof. By Maschke’s Theorem, Rest(F ®pr M) is completely reducible. Furthermore,
F ®g Endgy (M) CEndry (F ®r M).
Let ¢ € Endry(F ®g M). Since M is finitely generated and free as an R-module, we know that
¢ € Endr(F ®g M) = F ®g Endg (M),
so that there exist f;j € F and 6; € Endg (M) such that
n
o= fi®r0i
i=1

For i e {1,...,n}, we have

5= "6; € Endrp (M).
heH

Since ¢ is H-invariant and |H| is invertible in F,

n
f.
¢= ; ﬁ ®r & € F ®g Endgy (M).

It follows that
F ®@g Endgy (M) = Endry (F Qg M).
Hence, Definition 5.4 holds as desired. O

While field extensions of a ring may or may not be good, all field extensions of a good field
extension are good.
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Proposition 5.6. Suppose F is a good field extension of R for M, and K is any field extension of F. Then K is
a good field extension of R for M. Furthermore, if R is a field and Resg (M) is completely reducible, then every
field extension of R is a good field extension for M.

Proof. It follows directly from the definition that if F is a good field extension for M and K is a good
field extension of F for F g M, then K is a good field extension of R for M. Hence, it is enough to
show that if R is a field and Resg(M) is completely reducible, then every field extension F of R is a
good field extension for M. However, in this case the dimension over R of Homgy (M) is the same as
the dimension over F of Hompy (F ®g M), and so

F ®g Endgc (M) = Endry (F ®r M),
and the extension is good. O

The 7 -center algebra was defined in [12], where it was proved that it is a simple G-algebra in
the relevant cases. Here, since we do not assume that our modules are quasi-homogeneous, it is
convenient to relax the definition somewhat and allow for 7 -central G-algebras which are not simple.
The definition of m-center algebra in [12] then corresponds to the case when we have a m-center
algebra in the sense of the current paper which is simple as a G-ring. We denote, as is standard, by
J(R) the radical of a ring R. Of course, J(R) acts trivially on any completely reducible R-module.

Definition 5.7. Let 7 : G — G be a surjective group homomorphism of finite groups, let H = ker(r),
and let F be a field. We say that Z is a m-center algebra of FG if it is a G-algebra Z over F of the
following form. We set Zo =Z(FH/J(FH)), so that Zo is a commutative G-algebra over F, and, for

some idempotent e of Zg we have Z =eZj.

Then Z is a G-algebra over F. Standard arguments, which are given in more detail in [12], show
how, if M is a finitely generated FG-module such that its restriction to H is completely reducible, we
can view Zg as acting on M. The following definition uses this action.

Definition 5.8. Assume Hypotheses 5.1. Assume that F is a field extension of R good for M, and use
the notation of Definition 5.7. Let e be the sum of all the primitive idempotents of Zg which act
non-trivially on F g M. We say that eZ is the m-center algebra of FG associated with F @ g M, and we
write Z(M, , F) =eZy.

Proposition 5.9. Assume F is a good field extension of R for M, and let K be a field extension of F. The
representation map induces a canonical isomorphism from Z(M, r, F) to Z(Endru (F ®g M)). Furthermore,
the mr-center G-algebra Z(M, i, K) of KG associated with K ® g M can be identified with K  f Z(M, 7, F).

Proof. This follows from standard arguments. Some of these are given in more detail in [12]. O

Definition 5.10. Assume F is a good field extension of R for M. Then FG is an FG-module in a natural
way (with kernel H), and M ®g FG is an FG-module. We consider a countably infinite number of
copies of the FG-module M ®g FG, which we label with the elements of N. The Clifford F-completion
of M is the direct sum of this countably infinite collection of copies of M ®g FG. We denote the
Clifford F-completion of M by IT/I; If A is a subring of F which contains the image of R, then we also
denote by Ma the AG-submodule of My corresponding to the direct sum of the countably infinite
collection of copies of M ®g AG. By the m-center algebra of FG associated with MF we simply mean
the G-algebra Z(M, 7, F) of Definition 5.8.

The algebra associated with the Clifford F-completion of M can be computed from the algebra
associated with M.
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Proposition 5.11. Assume F is a good field extension of R for M. Then M(W ) is the direct sum of copies of
Endgy (M) ®g Endp (FG)
labeled by pairs of elements of N, and this determines its G-algebra structure.

Proof. Since F is a good field extension of R, the G-algebra of endomorphisms of M ®g F is
Endgry (M) ®g F. It follows that the G-algebra of endomorphisms of M ®g FG is

Endgy (M) ®g Endr (FG).
The proposition then follows from Proposition 3.4. O

Lemma 5.12. Let F be a good field extension of R for M, and let K be a finite field extension of F. Then, there
is a topological F G-module isomorphism

QM,K.F : RES’F(g(m) — M\F
We denote by
Om.x.F : End(Mg) — End(MF)
the restriction of the corresponding endoisomorphism. Furthermore, whenever G1, and G are finite groups,
and w1 : G — G and my : Gy — G are surjective homomorphisms, and My is a finitely generated
RG1-module such that My is free as an R-module, and M, is a finitely generated RG,-module such that

M3, is free as an R-module, and € : M1 ~ M3 is an endoisomorphism, and F and K are good extensions of R
for both M1 and M then the following diagram is commutative:

— ZIZ —
End(M1,x) —— End(M> x)

L L

oM,k F OM, K. F
— 67-" —
End(M; p) ———— End(My,r)

Proof. It follows directly from the definition that
End(My) C End (Resf{¢ (My))

and this justifies the use of the term restriction in the statement of the lemma. We let Nr be the

direct sum of a countable number of copies of FG and we let Ng be the direct sum of a countable

number of copies of KG. Since [K : F] is finite, we have that Resffg(NK) is isomorphic to Ng, and we

pick some isomorphism
6 :Resk&(Nk) — N
of topological modules. Now m =M ®g Nr and m =M ®r Nk. Then we set
Om.k.F = Idy ®r6 : ReskS (M) — Mp,

and Oy k r is an isomorphism of topological FG-modules.
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Since all the maps in the diagram are additive, in order to prove that it is commutative it is enough
to show that they have the same value on a set of additive generators for End(M; k). We pick some
¢ € Endg ger(r;)(M1) and o € Endg (Ng) such that ¢ @z o € End(M k). Then

& (O, k. r (@ ®r 0)) = & (¢ ®r (0067 1)) = €(d) @k (0567),

and

Otk .F (€K (@ ©R 0)) = Oty k. (€(¢) @k 0) = €(¢) @k (05671),
so that the diagram commutes as desired. O

6. Modules above M

We assume Hypotheses 5.1 throughout this section. We are ready to define when a module is
above M. Roughly speaking, a module N is above M if it is a section of the module Mp, for F a good
field extension of R.

Definition 6.1. Assume Hypotheses 5.1. We let S be a subgroup of G which contains H, and we let F
be a good field extension of R. We denote by A(M, F) the small category S(MF) of Definition 4.3.
The full subcategory of A(M, F) of those objects which are FS-modules is denoted A(M, FS). We say
that an FS-module is above M if it is an object in the category A(M, FS). If F is a collection of good
field extensions of R, we denote by A(M, F) the disjoint union of all the A(M, F) as we run through
the F in F.

We remark that the category A(M, F) is usually not connected. Furthermore, most often A(M, F)
is not a small category.

In order for a module to be above M, we need it to be constructed in a specific way. However, if we
are only interested in modules up to isomorphism, the following proposition describes the structure
of all such modules.

Proposition 6.2. Assume Hypotheses 5.1. We let S be a subgroup of G with H C S, we let F be a good field
extension of R for M, and we let N be a finitely generated FS-module. Then the following are equivalent:

(1) N is isomorphic to some module above M.
(2) Resf,(N) is completely reducible, and for every irreducible submodule I of Resf_, (N), there is some irre-

ducible submodule I ofResf,(F ®gr M) such that I is isomorphicto I'.

Proof. Suppose first that (1) holds. Then, by Definition 6.1, N is isomorphic to a section of Mp. Since
F is a good field extension of R for M, we have that Resf,(F ®g M) is completely reducible. It follows
that Resg (IT/I\F) is completely reducible and all its irreducible submodules are isomorphic to some
irreducible submodule of Resﬁ(F ®gr M), and (2) follows.

Suppose next that (2) holds. Then Res%(N) is completely reducible, and for every irreducible
submodule I of Rest(N), there is some irreducible submodule I’ of Res,(_;,(F ®gr M) such that I is
isomorphic to I’. We set M1 = Indg(N). Hence, Resf,(Mﬂ is isomorphic to a direct summand of some
finite multiple of Resg(F ®g M). It then follows that M7 is a homomorphic image of some finite mul-
tiple of M ®g FG. Therefore M is a homomorphic image of some finitely generated FG-submodule
of /M\p Since N is isomorphic to a submodule of the restriction of My to S, it follows that N is iso-
morphic to some module in S(My) which means that N is isomorphic to some module above M.
Hence, (1) holds. The proposition then follows. O
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Remark 6.3. In the language of category theory, Proposition 6.2 shows that the category .A(M, FS)
is equivalent to the category of all finitely generated FS-modules which satisfy condition (2) of the
proposition. However, the actual equivalence of categories is defined in terms of a choice of represen-
tatives, and as such it is not unique. We will use the category .A(M, FS) and related ones to prove that
endoisomorphisms define unique isomorphisms of categories. This uniqueness implies uniqueness of
isomorphisms for corresponding categories of isomorphism classes of modules. Similar results do not
directly extend to the categories of modules that include with any module in it all other modules
isomorphic to it because of the need to use choice.

7. Module correspondences

We are now ready to show how each endoisomorphism provides a unique isomorphism of module
categories.

Theorem 7.1. Let G, G’ and G be finite groups, and suppose we are given surjective homomorphisms 7w : G — G
and r’ : G’ — G whose kernels are, respectively, H and H'. Let R be an integral domain. Suppose M is a finitely
generated RG-module which is free as an R-module, and M’ is a finitely generated RG’-module which is free
as an R-module. Let

€ : Endgy (M) — Endgy/ (M)

be an endoisomorphism from M to M'. Let F be a collection of field extensions of R which are good for M
and good for M'. Then we may define isomorphisms of G-algebras and an isomorphism k. of categories from
AWM, F) to AM’, F) as follows. For each field extension F of R which is in F, € determines uniquely an
isomorphism of G-algebras over F

€F:ZM, 7, F) > Z(M', 7', F)
(Definition 5.8), and € determines uniquely an endoisomorphism
&  End(MF) — End(M7, ).

Then €f determines uniquely an isomorphism of categories ICSAF from A(M, F) to A(M’, F). The isomorphism
K¢ is obtained by putting together the isomorphisms KBAF on their respective domains as F ranges over all
the field extensions of R which are in F. Furthermore, for each subgroup S of G, if we set S = v~ 1(S) and
S’ = (/)= 1(S), then k¢ provides an isomorphism of F-linear categories from A(M, FS) to A(M’, FS’).

Proof. Let F be any field extension F of R which is good for both M and M’. The endoisomorphism
€ yields a G-algebra isomorphism

Endry (M ®g F) — Endpy (M’ ®k F),
which, by restriction, yields a G-algebra isomorphism
Z(Endpy(M ®g F)) — Z(Endpy (M’ ®k F)).
This, together with the isomorphisms of Proposition 5.9, yields the isomorphism of G-algebras over F

€F:Z(M, 7, F) — Z(M', 7', F).
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The endoisomorphism € also yields a G-algebra isomorphism
€ ®g 1d : Endgy (M) ®g Endp (FG) — Endgy (M') ®g Endr (FG).
In view of Proposition 5.11, this defines uniquely an endoisomorphism €f from Mr to M;:

& : End(M) — End(MF).

It then follows from Theorem 4.9 that € determines uniquely an isomorphism of categories KSAF

from A(M, F) to A(M', F). Furthermore, for each subgroup S of G, if we set S =7"1(5) and §' =
(")~1(S), then KSAF provides an isomorphism of F-linear categories from A(M, FS) to AM’, FS").
The theorem then follows directly from this. O

The isomorphism of G-algebras € and the isomorphism of module categories of Theorem 7.1 are
uniquely determined by €. We now see that, up to isomorphism, these isomorphism are compatible
with restriction of modules.

Proposition 7.2. Assume the hypotheses and notation of Theorem 7.1. Let S be a subgroup of G which con-
tains H and let S’ be the corresponding subgroup of G’ i.e. G’ > S’ > H' and n(S) /(S"). Set S = 7 (S).
Let N = Resg(M) and N’ = Resg,/(M/), and set 7wy = Ress () and ) = Ress, (7r'), so that Ty : S — S and
my: S — S are surjective group homomorphisms. Note that the same € can be viewed as € : M ~» M’ and
€ : N~ N'. Then

ZM, 1, F) =Z(N, o, F)

and

Z(M', 7, F)=Z(N',my, F)
and € induces the same isomorphism

E_FZZ(M,T[,F)—>Z(M/,JT/, F)

as€: M~ M andas € : N~ N'. In addition, A(N, F)~ is a full subcategory of A(M, F)~ and A(N', F)=
is a full subcategory of A(M’, F)=, and the restriction of k= provides an isomorphism )~ from A(N, F)=
to A(N’, F)=. Furthermore, € is also an endoisomorphism from N to N’, and, as such it provides an isomor-
phism K€2 from A(N, F) to A(N’, F). Finally, Kg: and K? coincide up to module isomorphisms, that is

K;* = KZ*

Proof. The statements about Z(M, v, F) and Z(M’, 7r, F) and ¢f follow directly from the definitions.
If F is a field in F, then Resg(FG) is isomorphic to the direct sum of a finite number of copies of FS.
It follows that

Res$(Mp) ~ Nr and Resg,/(m):ﬁ;

as topological FS-modules and F S’-modules respectively. Furthermore, the endoisomorphism from
Nr to N/ obtained from ¢ is obtained from €r by preceding it and following it by endoisomorphisms
which arise from module isomorphisms. It then follows from Remark 4.8 that



A. Turull / Journal of Algebra 394 (2013) 7-50 27
S(Res¢ (Mp))™ = S(Np)~

and
S(Res§. (V7)) = 5(N})*

It follows that A(N, F)= is the isomorphism classes of modules in A(M, F) which are modules for
some subgroup of S that contains H, and that A(N’, )= is the isomorphism classes of modules
in A(M’, F) which are modules for some subgroup of S’ that contains H’. Hence, A(N, F)~ is a
full subcategory of A(M, F)=~ and A(N’, F)= is a full subcategory of A(M’, F)=, and the restriction
of k2 provides an isomorphism Kgl: from A(N,f): to A(N’, F)=. It follows from Remark 4.8 and
the fact that the endoisomorphism from Ifl; to N that is obtained from € is obtained from é€r by
preceding it and following it by endoisomorphisms which arise from module isomorphisms that Kg:
and «2 coincide up to module isomorphisms, that is

1> _ 2>
Ko™ =K¢ O

Under the hypotheses of Theorem 7.1 we have an isomorphism of module categories. This isomor-
phism has some excellent compatibility properties which we now investigate.

Lemma 7.3. Assume the hypotheses of Theorem 7.1. Using Definition 5.2, we set I' = Gal(F /R). Then I" acts
naturally on FG, and so I' acts on Mp Fandon M/ Then these actions together with the G-algebra isomorphism
€ satisfy the hypotheses of Theorem 4.9 (6).

Proof. I" acts in a natural way on FG, and so it it acts in a natural way on M ®g FG and on M’ ®g FG,
and it follows that I" acts continuously on MF and M/ By the definition of €f in Theorem 7.1, we
get that the G-algebra isomorphism € satisfies the hypotheses of Theorem 4.9 (6), as desired. O

Notation 7.4 (Subgroup correspondence). Under the hypotheses of Theorem 7.1, we will denote by S an
arbitrary subgroup of G which contains H, and We will denote by S its corresponding subgroup of G,
and by S’ its corresponding subgroup of G/, i.e. S=m(S), and S’ = (w/)~1(S).

The following theorem is related to [6, Theorem 3.5], and can be viewed as a modular version of
it where the bijection is uniquely determined.

Theorem 7.5. Assume the hypotheses and notation of Theorem 7.1. Then, the isomorphism of categories k¢
from A(M) to A(M’) has the following properties. We let F be any field extension of R which is good for M
and for M'. To compare k. with other module correspondences, we define

€r = € @ Idf : Endgry (M) @ F — Endgy (M') ®g F

so that €r : M ®g F ~» M’ ®g F is an endoisomorphism, and €f defines a module correspondence K from
S(M ®g F) to S(M’ ®g F) as in Definition 4.6.

(1) e gives bijections from the irreducible modules in A(M, FS) to the irreducible modules in A(M’, FS’),
from the indecomposable modules to the indecomposable modules, and preserves direct sums of modules,
and composition series.

(2) ke commutes with restriction of modules. Furthermore, it commutes with induction of modules up to
isomorphism.

(3) Up toisomorphisms, k¢ agrees with KSF on the domain of the latter. In particular, k¢ sends modules which

are isomorphic to sections Resg (M ®g F) to modules which are isomorphic to sections ofResg,/ (M'®g F).
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(4) Let N be a module in A(M, FS) be sent to N’ a module in A(M’, FS") under k¢, and let z € Z(M, 7, F)
and let 7/ = €p(z) so that z/ € Z(M’, 7/, F). Then zN is an F H-module, and z’N’ is an F H'-module, and,
up to isomorphism, k¢ sends zN to Z’N’.

(5) ke commutes, up to isomorphism, with field extensions and restrictions.

(6) ke commutes up to isomorphisms with tensoring with S-modules.

(7) ke commutes up to isomorphisms with any Galois automorphism that fixes each element of (the image
of )R

(8) ke commutes up to module isomorphisms with conjugation by G.

(9) k¢ preserves the field of values of irreducible characters.

(10) k¢ preserves the corresponding elements of the Brauer group and in particular the Schur indices.

(11) Suppose for some algebraic closure F of F the irreducible F H-submodules of F ®g M are all of the same
dimension and the irreducible F H'-submodules of F @g M’ are all of the same dimension. Then there is
some rational constant d, such that, whenever N, a module over a field K, an extension of F, is an object
in A(M, K) and N’ is the corresponding object under k., then dimg (N’) = d dimg (N).

Proof. In view of Lemma 7.3, we can apply all of Theorem 4.9, and we obtain all the claimed proper-
ties except (3), (4), (5) and (6).

We show (3). Let N = N1/N; be an FS-module which is a section of M ®g F, and let N = N//N},
be the FS’-module which is a section of M’ ® F and corresponds to N under K . Set vg = decg

We may view M ®g Fvg as an FG- submodule of M ®g FG, and M’ ®g Fvg as an FG’ submodule of
M’ ®r FG. We let

¢:M®RF— MQ®gFvg

be the natural FG-module isomorphism, and

¢/:M,®RF—>M,®R Fvo

be the natural FG’-module isomorphism. Now

N =N1/N2 = ¢(N1)/¢(N2)

as FS-modules, and

= N1 /Ny = ¢'(N1)/¢(N3)

as FS’-modules. We let ﬁ, be the FS-submodule of W which is ¢(N;) on the first coordinate and
zero on all others. We let N’ to be the FS’-submodule of M’ whlch is ¢’(N}) on the first coordi-
nate and zero on all others. Then N1/N2 is in A(M, FS) and N/ /N is in A(M’, FS’). Let N1/N2
correspond to the object (I, J,S) in Z7 (End(MF)). Let N/ /N/ correspond to the object r, ] S) in
IT(@(M})). One can show that I’ = é¢(I) and J' = & (J). Hence, k. sends N1/N; to N/I/N’z.
then follows that (3) holds.

Now we prove (4) and we assume its notation. Since the restriction of N to H is completely
reducible and the restriction of N’ to H’ is completely reducible, we have that z acts on N, and Z’
acts on N’, and the resulting module zN is at least an FH-module, and the resulting module z 'N’ is at
least an FH’-module. In a similar way z acts on MpF and Z' acts on M’ Let N correspond to the object
,71,5 in IT(End(MF)) Then N’ corresponds to the object (er(I), €r(J),S) in IT(End(M )). The
FH-module zN corresponds, up to isomorphism, to (zI,zJ, H), and FH’-module z’N’ corresponds, up
to isomorphism, to (Z€r(I), Z’€(J), H'). Since it follows from the definitions that €r(zI) = Z€r(I) and
€r(z]) =27 €p(])), it follows that, up to isomorphism «, sends zN to zZ’N’. So (4) as desired.
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Let K be a field extension of F. Let N be an FS-module in S(Mp) Let N correspond to the ob-
ject (I, j S) in IT(End(M r)). It follows from the definitions that My x is canonically 1som0rph1c to
K ®F MF, and using this identification we have that (K ®f I, K ®F ], S) is an object in IT(End(MK))
which corresponds to a module which is isomorphic to K ®p N. An analogous situation holds over in
the categories Z7 (End(M )) and Z7 (End(M})). Since €r and € are compatible with these corre-
spondences, it follows that Ke commutes up to isomorphism with field extensions.

To see that k. commutes with field restrictions, since we are dealing with finitely generated mod-
ules, we assume that K is a field extension of F with finite degree. Let N be a KS-module in S(m)
and let N’ be a KS’-module in S(M ) corresponding to N under k.. Let N correspond to the object
,7],5) in IT(End(MK)) so that N’ corresponds to the object (ex (I), €x(J), S) in IT(End(M )). Let
N; be the restriction of N to an FS-module, and let N; be the restriction of N’ to an FS’'- module
Let 6 be as in Lemma 5.12. Then N, is isomorphic to GMA,K,F(N) and Nj is isomorphic to Oy p(N').
Then N; corresponds to the object ((m(l)), (m(j)), S) in ZT(Eﬂi(W)), and N; corresponds
to the object

((Ow.k.r (ex D). (Our.k.r (ex(D)). S)

in ZT (End(M )), where we indicate the ideal generated by the various images of & maps by paren-
thesis. It then follows from Lemma 5.12 that €r sends the first triple to the second one, so that k.
sends a module isomorphic to N; to a module isomorphic to N;. Hence, k. commutes up to isomor-
phism with field restrictions, and x¢ satisfies (5).

It only remains to show (6). We need to consider modules over a subgroup S of G. However, in
view of Proposition 7.2, it is enough to assume that our module is defined over S =G. Let (I, J, G)
be an object in IT(W) and let N be its corresponding module in S(ME) Let (er (D), €r()), G) be
the corresponding object in IT(M ), and let N’ be its corresponding module in S(M/ ). Then N is
an FG-module and N’ is an FG’-module. Let P be some finitely generated FG-module. We need to
show that k. sends a module isomorphic to N ®f P to a module isomorphic to N’ ®f P. If P =0 the
result holds trivially, so we assume that P = 0. It follows that FG ®f P is isomorphic to the direct
sum of a finite positive number of copies of FG as FG-modules. This induces naturally

0:Mp®pP—M; and 6':M,®F P — M}

isomorphisms of topological FG-modules and topological FG’-modules. We denote by 8 and by 6’
the corresponding isomorphisms of endomorphism algebras:

6 : End(Mr) ®F Endf (P) — End(Mp)

and

& : End(M}, ) ® Endg (P) — End (M}, ).
Furthermore, the following diagram
€rQrld
End(Mp) ®r Endp(P) — End(M ) ®f Endp(P)
| .
J A N
End(Mr) End(M7)
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is commutative. Set I =1 ®f Endp(P) and Jp, = | ®f Endp(P), and set 1;, = (€r ®r 1d)(I;) and
Jiy = (€ ®F 1d)(Jp). Let Ny = 0(I,) (M), N2 = 8(Jp)(Mr), Ny =6 (I}))(M}), and Ny = 0'(J},)(Mp).
Then, it follows from Remark 4.8 that N ®f P is isomorphic to N1/N, as FG-modules and N’ ®¢ P

is isomorphic to N}/N} as FG’-modules. Since «. sends N1/Np to Nj/N, it follows that «. satis-
fies (6). O

Even without any assumption on M and M/, it follows from the theorem that, in characteristic
zero, the quotient of the degrees of corresponding irreducible modules is a quotient of divisors of |H|
and |H’|. In general, the quotient may be different for different irreducible modules.

Corollary 7.6. Assume the hypotheses and notation of Theorem 7.5, and assume that F has characteristic which
does not divide |H||H'|. Let N be a module which is an object in A(M, F) and let N’ be its corresponding object
under k¢. Set d = dimp (N)/ dimp (N). Then, if N is irreducible, then d is a rational number which is a quotient
of a divisor of |H’| by a divisor of |H|.

Proof. We let S be the subgroup of G such that N is an irreducible FS-module, and we let S’ be
the subgroup of G’ such that N’ is an irreducible FS’-module. Let K be a finite Galois extension
field of F which is a splitting field for all the subgroups of G and of G’. Let No be an irreducible
direct summand of the KS-module K ®f N. Then if « is the Schur index of Ng over F and B the
number of non-isomorphic Galois conjugates of No under Gal(K/F) then dimg(N) = B dimg (Np).
Let Nj be the KS’-module corresponding to No under ke. By Theorem 7.5 (5), we also have
dimr (N') = a B dimg (Np), with the same o and . Hence, d = dimg (Ng)/ dimg (No). Let I be an irre-
ducible direct summand of Resf, (No). Now, by Clifford’s Theorem, all the irreducible direct summands
of Rest(No) have the same degree, so that dimg (Ng) = sdimg(I) where s is the composition length
of the KH-module Resfq(No). Let I’ be the module corresponding to I under x¢. By Theorem 7.5,
Ny is irreducible, so that all irreducible direct summands of ResZ,(NE)) have the same dimension. By
Theorem 7.5 (2), the composition length of Resz/, (N’) as a KH’-module is also s, and one of its direct
summands is isomorphic to I'. Hence, dimg (Nj) = sdimg (I"). Hence,

_ dimK(Né) _ dimK(I’)
" dimg(Ng)  dimg (D)’

Since K has characteristic which does not divide |H||H’| and K is a splitting field, we have dimy (I")
divides |H’| and dimg (I) divides |H|, and the corollary follows. O

A number of useful concepts are commonly used to describe the modular representation of finite
groups. For any field F, and any finite group G, we will use the following notation (compare to [5,2]).
We denote by Ar(G) the Green ring of G over F. It is the Z-module generated by the isomorphism
classes of finitely generated FG-modules, with direct sum inducing addition on them, and tensor
product inducing multiplication, see [2, p. 92]. If M is any finitely generated F G-module, we denote by
[M]q its (isomorphism) class in Ap(G), and we denote by A;(G) the image of this map. We denote by
Ir(G) a complete collection of isomorphism classes of finitely generated indecomposable FG-modules,
so that the collection ([I1a)1eiz(G) is a Z-basis for Ar(G). We denote by Rr(G) the Grothendieck group
of finitely generated FG-modules. Rg(G) is actually a ring and it is the quotient of Ar(G) by an ideal
generated by [U]; — [V]q + [W]q for all modules U, V, W, for which there is a short exact sequence,

0-U—->V->W-=>0,

see [2, p. 92|, for example. If M is a finitely generated FG-module, we denote by [M], its class
in Rp(G), and we denote by R?(G) the image of this map. We denote by Sg(G) a complete set
of isomorphism classes of irreducible FG-modules, so that the collection ([S];)sesq(c) is a Z-basis
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for RF(G). We denote by P;“(G) the subset of Rr(G) of the classes of finitely generated projective
FG-modules, and by Pr(G) the subring of Rr(G) generated by P‘F*(G). We can think of Pg(G) as a
subring of Ar(G) as well. Hence, we may use Ar(G) to describe modules up to isomorphism, Rg(G)
to describe when modules have the same (Brauer) characters but without having to make any par-
ticular choice of modular system, and Pr(G) to describe the projective modules, which are uniquely
determined by their (Brauer) characters.

These concepts have their corresponding version in the context of the module correspondence, as
follows. For convenience, we assume for our definition the hypotheses of the theorem, even though
these definitions involve only one group, rather than two.

Definition 7.7. Assume the hypotheses of Theorem 7.1, we let S be a subgroup of G, and we set S =
771(5), and we pick some F in F. We denote by A} (S, M) the image in Ar(S) of A(M, FS), and we
denote by Ar(S, M) the subgroup of Ar(S) generated by A;“(S, M). We denote by I (S, M) a complete
collection of isomorphism classes of finitely generated indecomposable FS-modules in A(M, FS), so
that the collection ([I1q)1el,(s,m) is @ Z-basis for Ar(G, M). Likewise, we denote by R}F(S, M) the image
in Rg(S) of A(M, FS), and we denote by R (S, M) the subgroup of Rr(S) generated by R*F'(S, M).
We denote by Sg(S, M) a complete collection of isomorphism classes of irreducible FS-modules in
A(M, FS), so that the collection ([I'];)es;(s,m) is a Z-basis for Rr (G, M). We denote by P‘;(S, M) the
set of R(S) of the classes of finitely generated projective FS-modules in A(M, FS), and we denote
by Pr(S, M) the subring of Rr(S) generated by PJFr(S, M). We can think of Pg(S, M) as a subring of
Afr(S) as well.

We note that Ap(S,M) is naturally an Ar(S)-module, and that Rp(S,M) is naturally an
Rr(S)-module, where, in each case, the module multiplication is induced from the ring structure
of Ar(S) and Rp(S) respectively, which in turn derive from the tensor product of modules.

Corollary 7.8. Assume the hypotheses and notation of Theorem 7.5. Then the following hold:

(1) ke induces uniquely an A (S)-module isomorphism
He(S, F): Ap(S, M) — Ap(S', M').

(2) He(S. F)AF(S, M) =Af (S, M").
(3) He(S, F)(p(S, M)) isin bij_ection with 1 (S, M).
(4) k¢ induces uniquely an Rg (S)-module isomorphism

H. (S, F):Rp(S, M) —> Rp(S', M').

(5) H.(S, F)(SF(S, M)) is in bijection with Sg (S, M’).
(6) If both H and H' are p’-groups, and F has characteristic p # 0, then H¢ (S, F)(P}(S, M)) = P}(S/, M),
and the restriction of H¢ (S, F) provides an isomorphism Pk (S, M) — Pk (S’, M").

Proof. This follows directly from Theorem 7.5 and the definition of these groups and sets. O
8. Compatibility

The module correspondence k. is determined by the endoisomorphism €, and we saw in the
previous section that each «¢ has some excellent properties. In this section, we study how the module
correspondence k. varies naturally as we vary € by some standard operations. The results are natural
and follow directly from the definitions. We record them here so we can use them later. We note that
Proposition 7.2 is a compatibility statement that we have already established.
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Proposition 8.1. Let G, G', G” and G be finite groups, and suppose we are given surjective homomorphisms
7:G— G, ' :G — Gn":G"— G whose kernels are, respectively, H, H’, and H". Let R be an integral
domain. Suppose M is a finitely generated RG-module which is free as an R-module, M’ is a finitely generated
RG’-module which is free as an R-module, and M” is a finitely generated RG”-module which is free as an
R-module. Let

€ : Endgy (M) — Endgp/ (M)
be an endoisomorphism from M to M’, and let
€ El’ldRH/(M/) — Endgpy~ (M”)

be an endoisomorphism from M’ to M”. Let F be a collection of field extensions of R which are good for M,
good for M, and good for M". Then €'¢ is an endoisomorphism, and for each F in F, the isomorphism of
G-algebras

€'er:Z(M, 7, F) — Z(M", 7" F),

is simply the composition e_/Fe_p, and the isomorphism k.. of categories from A(M, F) to A(M”, F) is the
composition of k¢ and k.

Proof. This follows directly from the definitions. O

Proposition 8.2. Let G, and G be finite groups, and suppose we are given a surjective homomorphism
7 : G — G, whose kernel is H. Let R be an integral domain. Suppose M and M’ are finitely generated
RG-modules which are free as R-modules. Let

¢:M—>M
be a module isomorphism. Then ¢ induces
€ : Endgy (M) — Endgy (M)
an endoisomorphism from M to M'. Let F be a collection of field extensions of R which are good for M and
good for M'. Then for each F in F, the isomorphism k. of categories from A(M, F) to A(M’, F) associates to
each module a module isomorphic to it.

Proof. This follows directly from the definitions. O

Proposition 8.3. Let G, G’ and G be finite groups, and suppose we are given surjective homomorphisms
7 :G— G,and ' : G' — G whose kernels are H and H'. Let R be an integral domain. Suppose M is a finitely
generated RG-module which is free as an R-module, and M’ is a finitely generated RG’-module which is free
as an R-module. Let

€ : Endgy (M) — Endgpr (M)

be an endoisomorphism from M to M. Let F be a good extension field of R for M and M’'. Then we obtain an
endoisomorphism

€r : Endpy (F ®g M) — Endpy/ (F @ M)
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and, up to module isomorphisms, A(F ®g M) can be viewed as being contained in A(M), A(F ®g M’) can
be viewed as being contained in A(M’), and k., agrees with the appropriate restriction of k.

Proof. This follows directly from the definitions. O

Proposition 8.4. Let G, G’ and G be finite groups, and suppose we are given surjective homomorphisms
7:G— G, and w’ : G' — G whose kernels are H and H'. Let U be a normal subgroup of G such that
UNH=1and let U’ be a normal subgroup of G’ such that U’ N H' = 1 and suppose w (U) =’ (U') = U.
Let T : G/U — G/U be the surjective group homomorphism induced by 7, and let T’ : G'/U’ — G/U be the
surjective group homomorphism induced by 7’. Let R be an integral domain. Suppose M is a finitely generated
RG/U-module which is free as an R-module, and M’ is a finitely generated RG’/U’-module which is free as
an R-module. Let

€ :Endrpyu (M) — EndRH’U’/U’(M/)

be an endoisomorphism from M to M’ with respect to T and t’. Let N be M as an RG-module and let N’ be
M’ as an RG’-module. Then, the same map € can be viewed as an endoisomorphism

€0 : Endgy (N) — Endgy (N).

Let F be a collection of field extensions of R which are good for M, and good for M. Then for each F in F,
there are natural

Z(N,m,F)~Z(M, 1, F)
and
Z(N',7',F)~Z(M', 7, F)
and the isomorphism

€r:Z(N,m,F) > Z(N', 7', F)

is induced from € and the isomorphisms, and the isomorphism k¢ of categories from A(M, F) to A(M’, F)
agrees, on the appropriate modules after appropriate identifications, up to isomorphisms with the isomorphism
ke, Of categories from A(N, F) to A(N', F).

Proof. This follows directly from the definitions. O
9. Characteristic zero

When working over fields of characteristic zero, the results become considerably easier to de-
scribe. In this section, we describe this important special case. We recover, with the added benefit
of the uniqueness of the correspondence, some of the results in [8,9]. Since to describe modules in
characteristic zero it is enough to describe cyclic modules, some of the machinery set up earlier in
the paper would be unnecessary if we were only interested in this case as we were in [8,9]. The fact
that the character correspondence arises from the module correspondence provides useful additional
information.

As is well known, the representations in characteristic zero can be efficiently studied with the help
of characters. Ordinary characters take complex values, or more specifically, they take values in Q(e)
the complex field of e-th roots of unity, where e is any positive integer multiple of the exponent of
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the group in question. In order to assign characters, one needs to fix some relationship between Q(e)
and the field of definition of the module, and such relationship can be established for all fields of
characteristic zero. For most purposes, however, it is sufficient to choose one field of characteristic
zero K that contains a splitting field for X — 1, and to assign characters to modules over subfields
of K. Choices of such K could be C or the field of all algebraic numbers in C, or, more generally, any
extension field of the field of all algebraic numbers in C, but we do not need to have such large fields
for our purposes here.

Hypotheses 9.1. Let K be a field, let e be a positive integer, and assume that K contains a subfield
(identified with) Q(e). Further, we assume that R is subring of K which is a principal ideal domain,
and F is the field of fractions of R.

Definition 9.2. Let G be a finite group whose exponent divides e and let M be a finitely generated
FG-module. Then the character x afforded by M is the map

x:G—>C

such that x(g) is the trace of the F-linear transformation induced by the action of g on M for all
geG.

Of course the trace of the action of g on M is in F N Q(e), so we can think of it as a complex
number.

Definition 9.3. A character x of a finite group G is said to be irreducible if it is the character of some
irreducible KG-module. The set of all irreducible characters of G is denoted Irr(G).

As is well known, we have a bijection between the isomorphism classes of irreducible K G-modules
and Irr(G). Furthermore, Irr(G) are linearly independent over C. In addition, the Z-module ZIrr(G)
generated by Irr(G) is naturally isomorphic to Ag(G) = Rk (G).

The concept of good field extension is unnecessary in the context of this section.

Proposition 9.4. Assume Hypotheses 5.1 and Hypotheses 9.1. Then every characteristic O field extension of R
is good for M.

Proof. This follows immediately from Proposition 5.5. O

Assume Hypotheses 5.1, and assume that F is a field extension in characteristic zero of R. Then
J(FH) =0, and we take the 7 -center algebra of FG to be G-algebra Z over F of the following form.
We set Zg = Z(FH), so that Zy is a G-algebra over F, and, for some idempotent e of Zg we have
Z =eZy. Let e be the sum of all the primitive idempotents of Zg which act non-trivially on F ®g M.
We say that eZg is the 7 -center algebra of FG associated with F ®g M, and we write Z(M, 7, F) = eZy.
This agrees with the earlier definition, except that, for the more general earlier definition, we need to
take the quotient by the radical of FH.

Proposition 9.5. Assume Hypotheses 5.1 and Hypotheses 9.1. Then the F-algebra homomorphisms from
Z(M, i, F) to K are in natural one-to-one correspondence with the central characters of the irreducible char-
acters which are summands of the character afforded by Resf,(K ®Rr M).

Proof. The central characters of FH are in one-to-one correspondence with the elements of Irr(H),
and the ones which restrict non-trivially to Z(M, ir, F) are exactly those which correspond to the
irreducible summands of the character afforded by Resf,(l( ®RrM). O
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It is standard to define what it means for an irreducible character to be above some irreducible
character of some normal subgroup. We will need a slight generalization of this standard definition,
where we will not assume that the character of the normal subgroup is irreducible.

Definition 9.6. Let G be a finite group and let H be a normal subgroup of G, and let ¢ be some ordi-
nary character of H. We let Irr(G|¢) denote the set of all irreducible characters of G whose restriction
to H contains some irreducible summand which is also a summand of ¢.
This concept is closely connected to the concept of modules above another one.

Proposition 9.7. Assume Hypotheses 5.1 and Hypotheses 9.1, and assume that the exponent of G divides e. Let
¢ be the sum of all the distinct irreducible characters contained in the character afforded by Resg(K ®r M).
Let S be a subgroup of G that contains H. Let x be a character of S. Then, x is the character afforded by some
module in A(M, KS) if and only if x is an N-linear combination of the elements of Irr(S|¢).

Proof. This follows from Proposition 6.2. 0O

In this context, the correspondences of modules described earlier yield unique correspondences of
characters.

Theorem 9.8. Assume Hypotheses 9.1. Let G, G" and G be finite groups, and suppose we are given surjective
homomorphisms & : G — G and 7w’ : G’ — G whose kernels are, respectively, H and H'. Assume that the

exponent of G and the exponent of G’ both divide e. Suppose M is a finitely generated F G-module, and M’ is
a finitely generated FG’-module. Let

€ :Endpy (M) — Endpy (M)
be an endoisomorphism from M to M'. Let ¢ be the sum of all the distinct irreducible characters contained in
the character afforded by Res,(_;, (M), let ¢’ be the sum of all the distinct irreducible characters contained in the

character afforded by Resf,’,(M’). For each subgroup S of G, we set S =7 ~1(5) and S’ = (7')~1(S). Then ke
provides isomorphisms of Z-modules

Ke 1 ZIrr(S|¢) — ZIrr(S'|¢").
Furthermore, these have the following properties.
(1) e gives bijections
Irr(S1¢) — Irr(S'[¢7).

(2) ke commutes with restriction of characters and with induction of characters.

(3) ke sends the characters which are summands of the character afforded by K ® p M to summands of the
character afforded by K @ M.

(4) The isomorphism of G-algebras

€k :ZM, 7, K) > Z(M', ', K)
(Theorem 7.1) acts on some central characters (Proposition 9.5) and this action determines the bijection

ke :Irr(H|¢) — Irr(H'|¢").
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(5) Both ZIrr(S|¢) and ZIrr(S'|¢') are Z1rr(S)-modules, and the map
ke 1 ZIrr(S|¢) — ZIrr(S'[¢)

is an isomorphism of ZIrr(S)-modules.
(6) The isomorphism

ke 1 ZIrr(S|¢) — ZIrr(S'|¢)

commutes with the action of Gal(K /F).

(7) ke commutes with conjugation by G.

(8) Forevery x € ZIrr(S|¢), we have F(ke(x)) = F(X).

(9) For every x € Irr(S|¢), let [x] denote the element of the Brauer group Br(F(x)) associated with it.
Then we have [k¢(x)] = [x]. In particular, the Schur indices of the irreducible characters are preserved
under k.

(10) Suppose that all the irreducible characters contained in ¢ have the same degree, and all the irreducible
characters contained in ¢’ have the same degree. Then there is some rational constant d, not depending
on S, such that whenever x € ZIrr(S|¢) is sent to ke (x) = x’ € ZIrr(S'[¢"), then x’ (1) =dx (1).

Proof. That the isomorphisms exist and are unique follows from Theorem 7.1 and Proposition 9.7. The
rest of the theorem follows from Theorem 7.5. Perhaps it is worth giving a few more details about (4).
Let x elrr(H|¢), and let x’' =k (x) € Irr(H'|[¢"). Then x corresponds to a primitive idempotent e, €
Z(KH) and x’ corresponds to a primitive idempotent e, € Z(KH). It follows from Theorem 7.5 (4)
that €x(ey) = ey . Hence, €x alone determines k.(x), and it does so on the basis of the central
characters described in Proposition 9.5. O

In view of applications, it is convenient to relate the results that we have obtained so far to
known results about the Brauer-Clifford group. We refer the reader to [12] for unexplained definitions,
notations and further details.

Corollary 9.9. Assume Hypotheses 9.1. Let G, G’ and G be finite groups, and suppose we are given surjective
homomorphisms 7w : G — G, and ' : G’ — G whose kernels are H and H’. Assume that the exponent of G
and the exponent of G’ both divide e. Let U be a normal subgroup of G such that U N H =1 and let U’ be a
normal subgroup of G’ such that U’ N H' =1 and suppose 7w (U) =7’ (U’) =U. Let T : G/U — G/U be the
surjective group homomorphism induced by 7, and let T’ : G'/U’ — G/U be the surjective group homomor-
phism induced by 7’. Let 6 € Irr(H) and let 8’ € Irr(H’). Let 61 be the character of ker(t) corresponding to 9,
and let ] be the character of ker(z’) corresponding to 6'. Set Z =Z(01, F, t) and Z' = Z(6;, F, ') be the
respective center algebras, and let [[61]] € BrClif(G/U, Z) and [[6;]] € BrClif(G/U, Z') be the elements of the
Brauer-Clifford group that correspond to the respective characters. Suppose there is a G /U-algebra isomor-
phism

a:Z—27

such that o sends the central character associated with 6y to the central character associated with 61, and,
with

@ : BrClif(G/U, Z) — BrClif(G/U, Z')

being the induced group isomorphism, we have

a([1en]) = [[e1]]
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Then, there exist M a finitely generated 6-quasi-homogeneous FG-module whose kernel contains U, M’ a
finitely generated 0’-quasi-homogeneous F G’'-module whose kernel contains U’, and an endoisomorphism

€ :Endpy (M) — Endpy (M)
such that:

(1) ke satisfies all the properties described in Theorem 9.8;

(2) In this theorem, ¢ is the sum of the G x Gal(K /F)-orbit of , and ¢’ is the sum of the G’ x Gal(K /F)-orbit
of 0';

(3) For each subgroup S of G, we set S =~ 1(S) and S’ = (/)" 1(S). Then . provides isomorphisms of
Z-modules

Ke 1 ZIrr(S|¢) — ZIrr(S'|¢);

In addition, we set f = 6/(1)/0(1). Then for each x € ZIrr(S|¢), if we set x' = ke(x) then x'(1) =

Fx@);
(4) ke sends O to0’:

Ke(9) =6

Proof. By [12, Proposition 4.7], there exist M a finitely generated 6;-quasi-homogeneous FG/U-mod-
ule, M’ a finitely generated 6;-quasi-homogeneous FG’/U’-module, and an endoisomorphism

€ :Endry (M) — Endpy (M').

Looking at the proof of [12, Proposition 4.7] we see that € induces the isomorphism «, and sends the
central character associated with 6; to the central character associated with ;. By Proposition 8.4, € is
also an endoisomorphism from M to M’ when viewed respectively as FG-module and as FG’-module.
Hence, we obtain the properties of Theorem 9.8. Furthermore, by Proposition 8.4 and Property (4) of
Theorem 9.8, it follows that

Ke(0) =6

Finally, it follows from the definition of quasi-homogeneous, that the sum of the distinct irreducible
summands of the character afforded by Resg(M) is the sum of all the G x Gal(K/F)-conjugates of 6,
and the sum of the distinct irreducible summands of the character afforded by Resf,’,(M/) is the sum
of all the G’ x Gal(K/F)-conjugates of &’. Since all the irreducible summands of ¢ have the same
degree, and all the irreducible summands of ¢’ have the same degree, Property (10) of the theorem
completes the proof of the corollary. Hence, the corollary holds. O

10. Correspondences of characters and blocks

In the previous section, we used characters to describe the representations of groups in charac-
teristic zero. It is also convenient and customary to study the blocks of finite groups with the help
of characters. In this section, we study properties of blocks under the correspondences. We set up
hypotheses to discuss both ordinary and Brauer characters for the relevant finite groups. Some results
in this section are special cases of results of the previous section in a slightly different context: we
state them here together with their corresponding results about Brauer characters for clarity.

Ordinary characters and Brauer characters take complex values, or more specifically, they take
values in Q(e) the complex field of e-th roots of unity, where e is any positive integer multiple of the
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exponent of the group in question. In order to assign characters, one needs to fix some relationship
between Q(e) and the field of definition of the module, and such relationship can be established for
all fields. For most purposes, however, it is sufficient to choose, for each relevant characteristic, one
field of this characteristic that contains a splitting field for X¢ — 1, and to assign characters to modules
over subfields of such fields.

Hypotheses 10.1. Let A be a principal ideal domain with field of fractions K. Let e be a positive
integer, and assume that K contains a subfield (identified with) Q(e). We let p be any prime rational
integer which is not a unit of A, and we let 9t be any maximal ideal of A such that p € 9. We set
k=A/Mm.

Under Hypotheses 10.1, A is integrally closed in K, and in particular, it contains all e-th roots
of unity in C. It follows that K is a field of characteristic zero which contains a splitting field for
the polynomial X¢ — 1 over the prime subfield, and k is a field of characteristic p which contains a
splitting field for the polynomial X¢ — 1 over the prime subfield. Furthermore, the projection homo-
morphism A — k restricts to a group isomorphism from the multiplicative group of e -th roots of
unity in A* to the multiplicative group of e, -th roots of unity in k*.

In the previous section, we reminded the reader how to define ordinary characters in the present
context. We can also define Brauer characters.

Definition 10.2. Let ko be some subfield of k, let G be a finite group whose exponent divides e and
let M be a finitely generated koG-module. We let G, be the subset of G of all elements of p’ order,
that is, the p-regular elements of G. Then the Brauer character x afforded by M is the map

X:Gy—C
defined as follows. Let g € G,. Let €1,...,& € k* be the eigenvalues with multiplicities of the
k-linear action of g on k ®, M, and let €1,...,€;, € A be the corresponding p’-roots of unity in

C under the group isomorphism of induced by the projection A — k. Then, we set

x@ =€+ --+é€n.

Definition 10.3. A character x of a finite group G is said to be irreducible if it is the character of some
irreducible KG-module. The set of all irreducible characters of G is denoted Irr(G). Likewise, a Brauer
character x is said to be irreducible if it is the Brauer character of some irreducible kG-module, and
the set of all irreducible Brauer characters of G is denoted IBr(G) = IBr (G) = IBron (G).

As is well known, we have a bijection between the isomorphism classes of irreducible K G-modules
and Irr(G) and, likewise, we have a bijection between the isomorphism classes of irreducible
kG-modules and IBr(G). Furthermore, both Irr(G) and IBr(G) are linearly independent over C. In ad-
dition, the Z-module ZIrr(G) generated by Irr(G) is naturally isomorphic to Ag(G) = Rg(G), and the
Z-module ZIBr(G) generated by IBr(G) is naturally isomorphic to Ri(G).

In addition, there is a process of reduction modulo p of finitely generated KG-modules, and it
induces the decomposition homomorphism. For each finite group G, the decomposition homomorphism
dg,p is a group homomorphism

dg,p : Rk (G) — Re(G)

from the Grothendieck group Rg(G) of representations over K to the Grothendieck group Ri(G) of
representations over k. Given a finitely generated KG-module M, one may choose a lattice E (i.e. a
finitely generated A-submodule of M which generates M as a K-module). One may pick E to be
G-invariant by simply adding together all the images of E under the action of each element of G,
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and replacing E by this sum. Hence, we take E to be G-invariant lattice. This yields E/9E which
is a kG-module, and is called a reduction modulo p of M. This module is not unique even up to iso-
morphism. However, for all choices of E, the modules E/9E have, up to isomorphism, the same
composition factors. Then the map dg,p is the unique group homomorphism which sends, for all M,
the class in Rg (G) of M to the class in Ry (G) of E/NE. See, for example, 5] for details. Since Rg (G) is
naturally isomorphic to the Z-module of generalized characters ZIrr(G) and Ri(G) is naturally isomor-
phic to the Z-module of generalized Brauer characters ZIBry(G), we also get a group homomorphism
with the same name

dc.p : Z1rr(G) — ZIBry(G).

In particular, for each x € Irr(G), we can write

depOO= Y. dyy,

¥elBr(G)

for some unique d, y €N called the decomposition numbers. The following proposition describes the
map dg p in terms of characters. It is well known, and follows easily from the definitions.

Proposition 10.4. Let x € ZIrr(G), and set  =dg p(x). Then v is simply the restriction to G of x.

It is standard to define what it means for an irreducible character to be above some irreducible
character of some normal subgroup. We will need a slight generalization of this standard definition
(and of Definition 9.6) where we will not assume that the character of the normal subgroup is irre-
ducible.

Definition 10.5. Let G be a finite group and let H be a normal subgroup of G, and let ¢ be some
ordinary character of H. We let Irr(G|¢) denote the set of all irreducible characters of G whose re-
striction to H contains some irreducible summand which is also a summand of ¢. Similarly, if 7 is
some Brauer character of H, we denote by IBr(G|n) the set of all irreducible Brauer characters of G
whose restriction to H contains some irreducible summand which is also a summand of 7.

This concept is closely connected to the concept of modules above another one.

Proposition 10.6. Assume Hypotheses 5.1 and Hypotheses 10.1, and assume that the exponent of G divides e.
Suppose that A contains the image of R in K. Assume furthermore that the extension of R obtained from the
inclusion of R in A followed by the projection onto k is a good extension for M. Let ¢ be the sum of all the
distinct irreducible characters contained in the character afforded by Resﬁ (K ®g M), and let n be the sum of
all the distinct irreducible Brauer characters contained in the character afforded by Resﬁ (k ®g M). Let S be a
subgroup of G that contains H. Let x be a character of S and let v be a Brauer character of S. Then, x is the
character afforded by some module in A(M, KS) if and only if x is an N-linear combination of the elements
of Irr (S, ¢). Furthermore, v is the Brauer character afforded by some module in A(M, kS) if and only if ¥ is
an N-linear combination of the elements of IBr(S, n).

Proof. By Proposition 5.5, K is a good extension of R for M. The result then follows from Proposi-
tion 6.2. O

In this context, the correspondences of modules described in Section 7 yield unique correspon-
dences of characters.

Theorem 10.7. Let G, G’ and G be finite groups, and suppose we are given surjective homomorphisms
7 :G— Gand ' : G — G whose kernels are, respectively, H and H'. Let R be an integral domain. Suppose
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M is a finitely generated RG-module which is free as an R-module, and M’ is a finitely generated RG’-module
which is free as an R-module. Let

€ : Endgy (M) — Endgp/ (M)

be an endoisomorphism from M to M’. Assume furthermore Hypotheses 10.1, and assume that the exponent
of G and the exponent of G’ both divide e. Suppose that A contains the image of R in K. We set F to be the
smallest subfield of K containing the image of R. Assume furthermore that the extension of R obtained from the
inclusion of R in A followed by the projection onto k is a good field extension for M and for M. Let ¢ be the sum
of all the distinct irreducible characters contained in the character afforded by Resf,(l( ®g M), let ¢’ be the

sum of all the distinct irreducible characters contained in the character afforded by Resg, (K ®g M"), let 1 be
the sum of all the distinct irreducible Brauer characters contained in the character afforded by Resf, (k®r M),
and let ' be the sum of all the distinct irreducible Brauer characters contained in the character afforded by
Resﬁ’, (k ®g M"). For each subgroup S of G, we set S = 7 ~1(S) and S’ = (r')~1(S). Then k. provides isomor-
phisms of Z-modules

ke 1 ZIrr(S[¢) — ZIrr(S'|¢)
and
ke 1 ZIBr(S|n) — Z1Br(S'|n’).
Furthermore, these have the following properties.
(1) ke gives bijections
Ire(S1¢) — Irr(S'[¢)
and
IBr(S|n) — IBr(S'[n).

(2) ke commutes with restriction of characters and with induction of characters.

(3) «e sends the characters which are summands of the character afforded by K ®g M to summands of the
character afforded by K ®g M’, and similarly fork @ M and k @g M'.

(4) The isomorphism of G-algebras

€k Z(K @ M, 7, K) — Z(K @ M', ", K)
(Theorem 7.1) acts on some central characters (Proposition 9.5) and this action determines the bijection
ke :Irr(H|¢) — Irr(H'|¢).
(5) Both ZIrr(S|¢) and ZIrr(S’|¢') are ZIrr(S)-modules, and the map
ke 1 ZIrr(S|¢) — ZIrr(S'|¢)

is an isomorphism of ZIrr(S)-modules. Similarly, the map
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ke : ZIBr(S|n) — ZIBr(S'|n')

is an isomorphism of Z1Br(S)-modules.
(6) The isomorphism

Ke 1 ZIrr(S|¢) — ZIrr(S'|¢)

commutes with the action of Gal(K /F).

(7) ke commutes with conjugation by G.

(8) Forevery x € ZIrr(S|¢), we have F (ke (X)) = F(X).

(9) For every x € Irr(S|¢), let [x] denote the element of the Brauer group Br(F(x)) associated with it.
Then we have [k¢(x)] = [x]. In particular, the Schur indices of the irreducible characters are preserved
under Ke.

(10) Suppose that all the irreducible characters contained in ¢ have the same degree, and all the irreducible
characters contained in ¢’ have the same degree. Then there is some rational constant d, not depending
on S, such that whenever x € ZIrr(S|¢) is sent to ke (x) = x’ € ZIrr(S'|¢"), then x’(1) =dx (1).

Proof. By Proposition 5.5, K is a good extension of R for M and for M’. The result then follows either
directly from Theorem 9.8 or from the results that proved that theorem. 0O

One can say more when the characters ¢ and ¢’ are sums of p-defect zero irreducible characters.
We first set up some notation.

Definition 10.8. Let G be a finite group and let H be a normal subgroup of G. Suppose that ¢ is
a character of H which is a sum of p-defect zero irreducible characters. We denote by BI(G, p) =
BI(G, 9t) = BI(G) the set of all p-blocks of G. For convenience we consider blocks as sets of irreducible
ordinary and Brauer characters. We denote by BI(G, p|¢) = BI(G|¢) the set of all p-blocks of G which
contain at least one irreducible character in Irr(G|¢).

Let n be the reduction modulo p of ¢. We note that if B € BI(G|¢) then

B CIrr(G|¢) UIBr(G|n),
and, in fact, BI(G|¢) can be viewed as a partition of Irr(G|¢) U IBr(G|n).

Lemma 10.9. Assume the hypotheses of Theorem 10.7. Suppose that every irreducible summand of { has
p-defect zero, and every irreducible summand of ¢’ has p-defect zero. Suppose that S is a p’-group. Let x
Irr(S|2), let xo =ds,p()) be its reduction modulo p, let x' = k¢ (x), and let x; =ds ,(x') be the reduction
modulo p of x'. Then x and x’ € Irr(S’|¢") are characters of p-defect zero, xo € IBr(S|n), x| € IBr(S'|n’),
and

Ke(Xo) = X(l)-

Proof. Notice that the p-part of the order of S equals the p-part of the order of H, and similarly, the
p-part of the order of S’ equals the p-part of the order of H’. Since a character of p-defect zero is
one where the p-part of the degree is equal to the p-part of the order of the group, and the degree
of x is divisible by the degree of some irreducible summand of ¢, it follows that x has p-defect zero,
and, similarly, x has p-defect zero. In particular, xo € IBr(S|n) and yx, € IBr(S'|n’).

Set M; = Res$ (M), and M = Resg(m). We also set M3 = Res$ (M), and My = Res&, (m). In
addition, we set M5 =k ®4 M3, and Mg =k ® 4 M4. We set A =End(M7) and A, = End(M>). We set
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A3 ={f €Az f(M3) S M3}

and

Ag={f €Az f(Ms) C My}.

We have natural identifications A3 = End(M3) and A4 = End(M4). We also set As = End(Ms) and
As = End(Mg). Our assumptions now imply that we have an S-algebra isomorphism

€x : A1 — Ay,

that €x(A3) € Ag, and that we have an §—algebra isomorphism

& : As — Ag.

Furthermore, for each f € A3 and « € k, we may identify o ® 4 f with the element of As such that
(@ ®a f)(BRsM3) =ap ®4 f(ms3) for all B €k, m3 € M3, and we have

€@ ®a f)=a®a€k(f)

using a similar identification of @ ®4 €x(f) with an element of Ag.

There is a KS-submodule N; of M; which affords the character x. Since M; is completely re-
ducible and N; is finitely generated, there is an open KS-submodule of M; which is a complement
to N1. We denote by a: M; — M the projection KS-homomorphism whose image is N; and whose
kernel is this complement. Now a(M3) is a non-zero finitely generated AS-submodule of N1. There ex-
ists a K-multiple f; of a such that f;(M3) € M3 but f1(M3) ¢ MMMs. Now f; € As. Set I1 = f1Aq, and
set L1 = f1(M3). Then Iy is a finitely generated right ideal of A{, and the KS-module N is (isomor-
phic to) the module that corresponds to the triple (I1, {0}, S). Furthermore, L; is a lattice in N1, and a
reduction modulo p of Ny is given by L1/9L1. In particular, L1/9tL1 affords the Brauer character ¥po.
It follows that L1 /9L is irreducible as a kS-module, and L1 N9tM3 = MLq. Set L3 = L1 + 9MM3, and
Ls = L3/9MM3. Then Ls is a kS-module affording xo. Set f5 =1; ®a4 f1 € As, and set Is = f5As. Then
the module Ls is (isomorphic to) the module that corresponds to the triple (Is, {0}, S). In particular,
Xo € IBr(S, n).

Let f, = €x(f1) € Ay, Ny = fo(M3), and I, = fA>. Then f, is a KS’-homomorphism, I, is an
S-invariant finitely generated right ideal of A,, and N; is a KS’-module which is isomorphic to the
module that corresponds to the triple (I3, {0}, S). Since (I1, {0}, S) is mapped to (I, {0}, S) under the
map induced from €k, in particular, N, affords the character x’. By our choice, we further know that
f1 € Az, and it follows that f, € A4. We set Ly = f>(My). Since the kernel of f, is open, we have
that L, is a finitely generated AS’-submodule of My. Since N, = f>(M3), we have that L, contains
a K-basis for N,, and it follows that L, is an S’-invariant lattice for N,. Therefore L,/91L, is an
irreducible kS’-module and affords the Brauer character X6~ Then, Ly N 9MM4 =MLy, Set Ly =1Ly +
9MMy, and Lg = L4/9M4. Then Lg is a kS’-module affording y. Set fs =1, ®4 f2 € Ag, and set Is =
feAs. Then the module Lg is (isomorphic to) the module that corresponds to the triple (Ig, {0}, S). In
particular, x; € IBr(S, n’). Since (Is, {0}, S) is mapped to (Ig, {0}, S) under the map induced from &,
we have that ke (xo) = x4. This completes the proof of the lemma. O

Theorem 10.10. Assume the hypotheses of Theorem 10.7. Suppose that every irreducible summand of ¢ has
p-defect zero, and every irreducible summand of ¢’ has p-defect zero. Then, the isomorphisms induced by k.
have the following additional properties. We let S be any subgroup of G that contains H, and we let S’ be the
corresponding subgroup of G', thatis H' € S’ and 7w (S) = ' (S').
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(1) ke commutes with the decomposition map. More precisely, the following diagram commutes:

ZIr(S|g) —— — ZIre(S'|¢)

dsp dg

.p

ZIBr(S|y) —— ~ ZIBr(S'|n)

(2) ke sends p-blocks of S to p-blocks of S’. More precisely, the action of k¢ on irreducible ordinary characters
and irreducible Brauer characters induces a bijection

BI(S|¢) — BI(S'|¢).

(3) Assume the notation of (2). Let B € BI(S|¢) and let B’ € BI(S’|¢") be the corresponding block under .
Then k¢ provides bijections

Irr(B) — Irr(B’)

and

IBr(B) — IBr(B’).

(4) Assume the notation of (3). Order Irr(B) and 1Br(B), and use the bijection of (3) to order Irr(B’) and
IBr(B’). Then, the decomposition matrices and the Cartan matrices of B and of B’ are equal.

(5) For each B € BI(S|¢) there exists a rational number fg such that, whenever x € Irr(B) is sent to x' €
Irr(B’) under k¢, and v € IBr(B) is sent to ¥’ € IBr(B’) under k¢, then

_ X _ v
JOREZON

fB

Furthermore, the p-part of fg is the p-part of |H'| divided by the p-part of |H]|.

(6) Assume the notation of (3). p-blocks also contain finitely generated indecomposable kS-modules. k¢ pro-
vides a bijection between the isomorphism classes of finitely generated indecomposable kS-modules in B
and the isomorphism classes of finitely generated indecomposable kS’-modules in B’. Furthermore, let
N be a finitely generated indecomposable kS-module in B, and let V be a vertex for N. Let N’ be the
kS’-modules corresponding to N under k¢, and let V' be a vertex for N'. Then 7w (V) and n’/(V') are
conjugate in 7 (S).

(7) Assume the notation of (3). Let D be a defect group of B, and let D’ be a defect group of B'. Then D, D’,
(D), and 7r’(D") are all isomorphic, and 7t (D) and 7’ (D") are conjugate in 7t (S).

(8) The bijection from (3),

Irr(B) — Irr(B)

given by k. preserves the heights. In other words, if x € Irr(B) is sent to k¢ (x) = x' € Irr(B’), then the
p-height of x equals the p-height of x'.

(9) Assume the notation of (7) and that 7w (D) = 7/ (D’). Assume in addition, that H and H' are p’-groups
and that Sg is a subgroup of G which contains H and is such that DCs(D) € So C S. Let b € BI(Sp) be
the Brauer correspondent to B. Furthermore, we let Sj, be the subgroup of G’ corresponding to So. Then
D’Cg/(D') C Sy, the block b" € BI(Sy)) which is the Brauer correspondent to B’ is defined, b € BI(So|¢),
b" € BI(Sg|¢") and k¢ sends b to b” under (2).



44 A. Turull / Journal of Algebra 394 (2013) 7-50

Proof. Assume that (1) does not hold, and among all counterexamples choose one with |7 (S)| as
small as possible. Since the maps in the diagram are all Z-module homomorphisms, it follows that
there exists some y € Irr(S|¢) for which the diagram does not commute. We set x' = ke()) €
Irr(S'|¢"), and we denote xo =ds,p(x) € NIBr(S|n) and x; =ds p(x') € NIBr(S'|n). We also set
& = Kke(Xo0) € NIBr(S'|n’). We have & # x(. In particular, there is a p’-element s € S’ such that
Xx4(s") #&(s). By Theorem 10.7 the maps in the diagram all commute with restriction to subgroups
that contain H (or H’), so, by our choice of a counterexample, we must have that 7 (S) = 7/((s')). In
particular, S is a p’-group. Then Lemma 10.9 yields a contradiction. Hence, (1) holds.

Since the irreducible characters and the irreducible Brauer characters in a block can be character-
ized from the decomposition map, it follows from (1) that (2), (3), and (4) all hold.

Let B € BI(S,¢) and B’ = k¢(B). Assume that y € Irr(B) is sent to x' = kc(x) € Irr(B), and ¢ €
IBr(B) is sent to ¥’ = k¢ (¥) € IBr(B’). Since ¢ is a sum of characters of p-defect zero, the irreducible
characters contained in the restriction of y to H, which are all conjugate under the action of S,
form a set which depends only on B. Let & € Irr(H) be contained in the restriction Resi(x), and
let dg = £(1) be its degree. Of course, dg depends only on B, and not on x or our choice of &.
Let & =dy, p(§) € IBr(H), let &' = ke(§) e Irr(H'), and let &) = k. (§0) € IBr(H'). We let dp = &'(1).
Then dp' only depends on B, and &(1) = £&(1) =dp and &'(1) = £)(1) =dp. We set fp =dp /dp.
Let oy be the number of irreducible characters contained in Resf,(x) counting multiplicities, and
let By be the number of irreducible Brauer characters contained in Resf,(g//) counting multiplicities.
Since & is one of the irreducible Brauer characters in Resf,(w), we have x (1) =ay&(1) =aydp and
¥ (1) = By&o(1) = Bydp. By Theorem 10.7, we have that &’ is contained in Res,s;,(x/), that the number
of irreducible characters contained in Resg,()(/) counting multiplicities is a,, that &; is contained

in Resg,(w/), and that the number of irreducible Brauer characters contained in Resg,(w/) counting
multiplicities is By . It follows that x'(1) = ay&'(1) = aydp and ¥'(1) = By, (1) = By dp. Hence,

x' (1) _ aydp _f

x()  aydg P
and

v _ Bydy _

Y(1)  Bydp

Since £ is contained in ¢, & is of p-defect zero and the p-part of £(1) is the p-part of the order of H,
and similarly the p-part of £'(1) is the p-part of the order of H'. Hence, (5) holds.

The finitely generated indecomposable modules of B are those which afford as Brauer character
some elements of NIrr(B), and similarly for the finitely generated indecomposable modules of B’.
Hence, k. provides a bijection between the isomorphism classes of finitely generated indecomposable
modules of B and the isomorphism classes of finitely generated indecomposable modules of B’. Let N
be a finitely generated indecomposable kS-module in B and let V be a vertex for N. It follows that N
is isomorphic to an object in A(M, kS), so we assume that N is an object in A(M, kS). We let N’ be
the element of A(M’, kS’) corresponding to N under x.. Let V' be a vertex for N’'. Since V is a vertex,
V is minimal among the subgroups of S such that N is V-projective, and all such minimal subgroups
are S-conjugate to V. It follows that VH is minimal among the subgroups of S that contain H and
are such that N is V H-projective. By for example [2, Theorem I, 4.8], for any subgroup S1 of S, N is
S1-projective if and only if N is isomorphic to a direct summand of lndg1 (Res§1 (N)). Let (VH)' be
the subgroup of G’ corresponding to V H, that is, H' € (VH)’ and 7/ ((VH)") = 7w (V H). It then follows
from Theorem 7.5 that (V H) is minimal among all the subgroups of S’ which contain H” and are such
that N’ is (V H)'-projective. Therefore, N’ has some vertex V1 C (VH)'. We then have ViH' = (VH)’
by the minimality of (V H)'. Since V' and V; are conjugate in S, it follows that (VH)" and V'H’ are
conjugate in S’, and, therefore, 77 (V) and 7’(V’) are conjugate in 77 (S). Hence, (6) holds.
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The defect groups of a block B are all conjugate to each other. By for example [1, Theorem 13.5]
and [1, Corollary 14.5], the defect groups of a block B can be characterized as the maximal elements
under inclusion among all the vertices of all the finitely generated indecomposable kS-modules in B.
Assume the hypotheses of (7). Then it follows from (6) that 77 (D) is conjugate to a subgroup of 7’(D")
and conversely. Hence (D) and 7r/(D’) have the same order and they are conjugate to each other.
Furthermore, it follows from Knorr’'s Theorem [3, Theorem (9.26)] that, since ¢ is a sum of characters
of defect zero, DN H =1, and similarly, D’ N H' = 1. Hence D and 7t (D) are isomorphic and D’ and
7t/(D’) are isomorphic, so that (7) holds.

Assume the hypotheses of (8), and let D be a defect group of B, and let D’ be a defect group of B’.
Let p" be the p-part of |7 (S)|, let p™ be the p-part of |H|, and let p™ be the p-part of |H’'|. By (7),
B and B’ have the same defect, say d, and we have |D| = |D’| = p%. Let x have height h. Then the
p-part of x (1) is p"t™M—d+h By (5), the p-part of x’(1) is p™t"2—9+" |t follows that x’ has height h.
Hence, (8) holds.

Finally, assume the hypotheses of (9). Since D and D’ are p-groups and H and H’ are p’-groups,
it follows that 7 (Cs(D)) = Cy(s)( (D)) = w'(Cs/(D")). Therefore D'Cs/(D') € S € S’. We note that
since DCs(D) C Sp the existence of the block b is already guaranteed. Since b € BI(Sg) is the Brauer
correspondent to B, we have that b5 = B. It follows that b € BI(Sg, ¢). Let b} € BI(S;, ¢’) be the block
of S;, corresponding to b under .. Since b} € BI(Sj, ¢") and it has defect D’, we know that (b/l)s’

is defined, and (b;)s/ € BI(S’, ¢’). It only remains to show that (b/l)S' = B’. Let § € Irr(b) and set the
induced character

65 = Z ay X

X €lrr(S)

for suitable a, e N. Recall that, for an integer n, we denote by n;, the p-part of n. Then, by a result of
Brauer for example [3, Corollary (6.4)], for By € BI(S), we have

95(1)p=( > axx(1)) if By = B,

x €lrr(By) p

95(1)p<< > aXX(l)) if By # B.

X €lrr(By) p

Denoting by yx’ e Irr(S’|¢’) the character which corresponds to any x € Irr(S|¢) under x¢, and us-
ing (5), it follows that

6’5(1)p=( > aXX’(1)> if B =B,

X €lrr(By) p
9’5(1)p<( > aXX/(1)) if By # B.
X €lrr(By) p

By the same result of Brauer and the properties of the correspondence x. that we have already es-
tablished, this implies that (b’])s = B’. Hence, (9) holds. This completes the proof of the theorem. O

Remark 10.11. The special case of the previous theorem which is most important for the applications
is the case when both H and H’ are p’-groups. In this case it is not necessary to use Knorr’s Theorem.
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11. Endoisomorphisms from fields to subrings

Our definition of endoisomorphism includes the possibility that our modules are defined over
rings. We now see that, if we have an endoisomorphism over the field of fractions of some principal
ideal domain, we will also have an endoisomorphism over the principal ideal domain itself. More
details on orders, lattices and related concepts can be found in [4].

Definition 11.1. Let R be a principal ideal domain, and let F be the field of fractions of R. Let A be a
finite dimensional algebra over F. Then an R-order in A is an R-algebra O contained in A, containing
an F-basis for A, and such that every element of O is integral over R. (Integral over R means that it
is a zero of some non-zero monic polynomial with coefficients in R.)

Lattices have already been mentioned earlier. Next, for clarity, we recall their definition in the
present context.

Definition 11.2. Let R be a principal ideal domain, and let F be the field of fractions of R. Let M be a
finite dimensional vector space over F. Then, a lattice of M over R is an R-submodule L of M which
is finitely generated as an R-module, and contains an F-basis for M.

One way to obtain R-orders in our context is to start with some lattice.

Lemma 11.3. Let G and G be finite groups, and suppose we are given a surjective homomorphism 7 : G — G
whose kernel is H. Let R be a principal ideal domain, and let F be the field of fractions of R. Suppose that M is
a finitely generated F G-module, and we set A = Endgy (M). Let L be any G-invariant lattice of M. Then set

0={acA:rall) L}
Then O is a G-invariant R-order in A.

Proof. Since R is a principal ideal domain, and L is finitely generated there exists a free R-basis
e1,...,ey for L. This is also an F-basis for M. We have that O is a G-invariant R-subalgebra of A.
If o € O, then the matrix of o has coefficients in R, and so its characteristic polynomial is with
coefficients in R, and it follows that o is integral over R. Let a € A. By considering the action of a
on the basis for M, we see that there exists some non-zero r € R such that ra € O. It follows that O
contains an F-basis for A. Hence, O is an R-order in A, as desired. O

Theorem 11.4. Let G and G be finite groups, and suppose we are given a surjective homomorphism 7 : G — G
whose kernel is H. Let R be a principal ideal domain, and let F be the field of fractions of R. Suppose that
M is a finitely generated F G-module, and that the restriction Resg(M) is completely reducible. We set A =
Endry (M). Then, any R-order in A is finitely generated as an R-module. Furthermore, A has some R-order O
which is G-invariant and which is maximal among the G-invariant orders of A.

Proof. We first show that every R-order O in A is finitely generated as an R-module. Suppose that
Resg(M) has n different homogeneous components,

M=N{ & ---®&N;

and we set B; = Endgy(N;) for i =1,...,n. Then B; is a simple algebra, and

A=B1&®-- & Bn.
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We let 7t; : A — B; be the projection homomorphism, and e; to be the identity of B;. We let K; be the
center of B;, and we let S; be the integral closure of Re; in K;. Since K; is a finite Galois extension
of Fe;, we have that S; is Noetherian, and S; is finitely generated as an R-module. Furthermore, 7;(0)
is an R-order of B;. Let O; be the S;-span of m;(0). Since S;-linear combinations of elements which
are integral over R are also integral over S;, we have that O; is an S;-order of B;, where we view B;
as an algebra over K;. By, for example, [4, Theorem 6.5], we know that O; is finitely generated as an
S;-module. It follows that 7;(0) is finitely generated as an R-module. This implies that O is finitely
generated as an R-module, as desired.

Pick an F-basis for M, and let L be the R-submodule of M generated by this basis and all the
images of the basis elements under the elements of G. Then L is a G-invariant lattice of M. By
Lemma 11.3, it follows that A has some G-invariant R-order Oi. By Zorn’s Lemma, there exists a
maximal element O among the orders which are G-invariant and contain 0. O

Lemma 11.5. Assume the hypotheses of Theorem 11.4, and let O be a maximal G-invariant R-order of A. Then,
there is a G-invariant lattice L of M such that

0={aeA:al)cL}.

Proof. Take an F-basis eq,...,e; for M. By Theorem 11.4, O is finitely generated as an R-module.
Let by,...,bn be a finite set of generators for O as an R-module. Let L be the R-submodule of M
generated by all the ghiej for all ge G, i=1,...,mand j=1,...,n. Then L is an O-module and
also G-invariant. Furthermore, L is finitely generated as an R-module, so L is a lattice of M. Now, we
have

0c{acAral)<cL}.

Since by Lemma 113 the right-hand side is a G-invariant R-order of A, and O is a maximal
G-invariant R-order, this implies that we actually have equality. This completes the proof of the
lemma. O

Theorem 11.6. Assume Hypotheses 2.5. Suppose F is the field of fractions of a principal ideal domain R. Let
M be a finitely generated F G-module, and let M’ be a finitely generated F G’'-module such that the restrictions
Res$; (M) and Res$,,(M’) are completely reducible. Let

€ :Endpy (M) — Endpy (M')

be an endoisomorphism over F from M to M’. Then there exist a G-invariant R-lattice L of M, and a
G’-invariant R-lattice L’ of M" and an endoisomorphism

v : Endgy (L) — Endgy (L)
from L to L' such that, with proper identifications, we have
Endry (M) = F ®g Endgy (L),

EndFH’(M/) = F ®g Endgy (L/),

€ =I1dr ®pv.
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Proof. Set A = Endry(M) and A’ = Endpy:(M’). By Theorem 114, there is a maximal G-invariant
R-order O for A. We set O’ = €(0), so that O’ is maximal G-invariant R-order for A’. We let
€0: 0 — 0’ be the restriction of €, so that €y is an isomorphism of G-algebras over R. It follows
from Lemma 11.5 that there exist a G-invariant lattice L of M, and a G’-invariant lattice L’ of M’ such
that

0={aeA:al)cL},

and
0'={aeA:a(l')cL'}.

Now restrictions provide an isomorphism O — Endgy(L), and an isomorphism O’ — Endgy/(L').
Hence, €p induces an isomorphism

v : Endgy (L) — Endgpy (L")

of G-algebras over R, i.e. an endoisomorphism from L to L’. It is clear that F @ O is naturally
identified with Endry (M), and F ®g O’ is naturally identified with Endrp(M’). The identifications
stated in the theorem follow naturally from this and the construction given above. O

In view of applications, it is convenient to again relate the results that we have obtained so far
to known results about the Brauer-Clifford group. Again, we refer the reader to [12] for unexplained
definitions, notations and further details.

Corollary 11.7. Assume Hypotheses 10.1. Let R be a principal ideal domain with field of fractions F, and assume
that K is a field extension of F and that A contains R. Let G, G’ and G be finite groups, and suppose we are
given surjective homomorphisms 7w : G — G, and 7’ : G’ — G whose kernels are H and H’. Assume that the
exponent of G and the exponent of G’ both divide e, and that p does not divide |H||H'|. Let U be a normal
subgroup of G such that U N H =1 and let U’ be a normal subgroup of G’ such that U’ N H' = 1 and suppose
aU)=a'(U)=U.Let T:G/U — G/U be the surjective group homomorphism induced by =, and let
7/ :G'/U’ — G/U be the surjective group homomorphism induced by 7w’. Let 6 € Irr(H) and let ¢’ € Irr(H’).
Let 61 be the character of ker(t) corresponding to 6, and let 6] be the character of ker(z") corresponding to 0.
Set Z=17(1,F, 1) and Z' = Z(0,, F, T’) be the respective center algebras, and let [[61]] € BrClif(G/U, Z)
and [[61]] € BrClif(G/U, Z') be the elements of the Brauer-Clifford group that correspond to the respective
characters. Suppose there is a G /U -algebra isomorphism

a:Z—27Z

such that o sends the central character associated with 6y to the central character associated with 61, and,
with

@ : BrClif(G/U, Z) — BrClif(G/U, Z')
being the induced group isomorphism, we have

a([1en]) = [[o1]]

Then, there exist M a finitely generated RG-module whose kernel contains U, M’ a finitely generated
RG’-module whose kernel contains U’, and an endoisomorphism
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€ : Endgy (M) — Endgy (M)

such that all of the following are satisfied.

(1) Both M and M’ are free as R-modules.

(2) Both F and k are good extensions of R for both M and for M'.

(3) F ®g M is a finitely generated 0-quasi-homogeneous F G-module whose kernel contains U, and F @ g M’
is a finitely generated 6’-quasi-homogeneous F G’-module whose kernel contains U’.

(4) The hypotheses and conclusions of Theorem 10.7 and Theorem 10.10 hold.

(5) In these theorems, ¢ is the sum of the G x Gal(K/F)-orbit of 9, ¢’ is the sum of the G’ x Gal(K/F)-orbit
of 8’, and as maps the Brauer characters aren =¢ and n’ = ¢’.

(6) For each subgroup S of G, we set S =~ 1(S) and S’ = (')~ 1(S). Then k¢ provides isomorphisms of
Z-modules

ke 1 ZIrr(S|¢) — ZIrr(S'|¢)

and

ke : Z1Br(S|n) — Z1Br(S'|n).

In addition, we set f = 6'(1)/0(1). Then for each x € ZIrr(S|¢) and each € ZIBr(S|n), if we set x' =
Kke(x) and ' = ke () then x'(1) = f x (1) and ¢'(1) = f(1).

(7) 6 can be viewed both as an ordinary character or as a Brauer character, and viewed either way k¢ sends it
to':

Ke(9) =6

Proof. By Corollary 9.9, there exist M1, M} and €; with the following properties. M1 is a finitely
generated 6-quasi-homogeneous FG-module whose kernel contains U, M] is a finitely generated
0’-quasi-homogeneous FG’-module whose kernel contains U’, and €7 is an endoisomorphism

€1 : Endpy(M1) — Endpy (M})

such that €; induces the isomorphism ¢, and sends the central character associated with 6 to the
central character associated with #’. Furthermore, by Proposition 8.4 and Property (4) of Theorem 9.8,
it follows that

Ke, (0) =0

Finally, the sum of the distinct irreducible summands of the character afforded by M; is the sum
of all the G x Gal(K/F)-conjugates of 6, and the sum of the distinct irreducible summands of the
character afforded by M is the sum of all the G’ x Gal(K/F)-conjugates of ¢’.

By Theorem 11.6, there exist a G-invariant R-lattice M of M1, and a G’-invariant R-lattice M’ of
M and an endoisomorphism

€ : Endgy (M) — Endgy/ (M)

from M to M’ such that, with proper identifications, we have
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Endpy (M) = F ®g Endgy (M),
Endpy (M}) = F ®g Endgy (M),
€1 =I1dr Qre.

Of course, the kernel of M contains U, and the kernel of M’ contains U’. Furthermore, (1) holds. By
Proposition 5.5, we know that (2) holds. It follows from our construction that (3) and (4) hold. By
Theorem 10.10, k. commutes with reduction modulo p, so that the effect of k. of ordinary characters
or Brauer characters of subgroups of order prime to p is the same. In view of Proposition 8.3, the
other stated properties follow from Corollary 9.9. Hence, the corollary holds. O
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