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This paper is partly a survey of known results on quadratic forms
that are hard to find in the literature. Our main focus is a twisted
form of a construction due to Bezout. This skew Bezoutian is a
symplectic (resp. quadratic) space associated to a pair of recipro-
cal (or skew reciprocal) coprime polynomials of same degree.
The isometry group of this space turns out to contain a certain
associated hypergeometric group. Using the skew Bezoutian we
construct explicit isometries of bilinear spaces with given invariants
(such as the characteristic polynomial or Jordan form and, in the
quadratic case, the spinor norm).
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1. Introduction

Given a finite dimensional commutative algebra A over a field k it is useful to have a non-trivial
transfer map that takes bilinear modules over A to bilinear modules over k preserving non-degeneracy.
A typical case is that of A = K a separable finite field extension where one can use the usual trace
TrK/k for this purpose; for an inseparable field extension K/k however, the trace TrK/k is identically
zero. Nevertheless, one may still find suitable linear maps (see [20, Remark 1.4] and [2, Discussion
preceding Proposition (2.2)]).

As an example, consider the unit form Ψ (x, y) = xy on a finite dimensional k-algebra (with unit) A.
It is clearly non-degenerate. Transferring this form to k consists of finding a k-linear map t : A → k
such that the k-bilinear form t ◦ Ψ (x, y) = t(xy) is non-degenerate as well. The resulting pair (A, t) is
called a Frobenius algebra.
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In Section 2 we study in some detail the situation where the Frobenius algebra A is monogenic,
i.e., A = k[α] for some α ∈ A. We show that the isomorphism classes of these algebras over k are
parametrized by rational functions w ∈ k[T ] with w(∞) = 0. In turn, the associated bilinear form is
essentially given by the classical Bezoutian of the polynomials p and q, where w = p/q in lowest
terms.

In Section 3 we further assume the characteristic of the base field k to be different from 2 and we
study a skew version of the classical Bezoutian, which turns out to be quite interesting. For example,
we show how it gives a natural description of the Hermitian form fixed by an associated hypergeo-
metric group.

The rest of the paper is devoted to applications (in characteristic different from 2) of the skew
Bezoutian to the problem of the existence of isometries with prescribed characteristic polynomial
(and/or spinor norm in the quadratic case) or with prescribed Jordan form.

Using the trace map and other linear maps to transfer quadratic A-modules to quadratic
k-modules, where A is a separable k-algebra, appears prominently in the literature. A general account
of applications of trace forms to the construction of lattices via number fields can be found in [5]. See
also [20, Section 1], [16, pp. 109–110] or [2, Beginning of Section 2] for a general construction.

Transfer constructions are used in knot theory at least since the 1960’s; a survey of some of the
results can be found in [16]. The trace plays a prominent role, but other transfers are also used, in
particular by Trotter (see for instance [27, pp. 292–294] and [26, pp. 181–182]). Moreover a gen-
eral study of transfers and their applications was started in the late 1960’s by Scharlau ([23,24]; see
also [18, Chapter 7] for a detailed exposition of Scharlau’s results), and still plays a very important
role in the study of quadratic and Hermitian forms.

2. Monogenic Frobenius algebras and the Bezoutian

Let k be a field. A monogenic Frobenius algebra over k, MFA for short, is a triple (A,α, t), where A
is a finite dimensional k-algebra, A = k[α], and t : A → k is a linear map such that the bilinear form

〈x, y〉 := t(xy), x, y ∈ A,

is non-degenerate. With some notation abuse we will say in this case that the linear map t is
non-degenerate. Two such algebras (A,α, t), (A′,α′, t′) are isomorphic if there is an isomorphism
of algebras φ : A → A′ such that α′ = φ(α) and t′ = t ◦ φ−1.

Let A be a k-algebra and t : A → k be a non-degenerate linear map. For a ∈ A the map ta(x) := t(ax)
is also non-degenerate if and only if a is not a zero-divisor. In particular, there is natural action of
the group of units A× of A on the set of non-degenerate linear maps t : A → k defined by setting
(a · t)(x) := ta(x) = t(ax), where a ∈ A× .

The following theorem gives a parametrization of MFA’s.

Theorem 2.1. For any d � 1 the map (A,α, t) 	→ w(T ), where

w(T ) :=
∑
��0

t
(
α�

)
T −�−1 ∈ k

�
T −1 �

,

induces a bijection between isomorphism classes of d-dimensional MFA’s (A,α, t) over k and rational functions
w ∈ k(T ) ∩ k�T −1 � of degree d with w(∞) = 0.

Proof. Let (A,α, t) be a d-dimensional MFA over k. Consider the power series

w(T ) :=
∑
��0

t
(
α�

)
T −�−1 ∈ k

�
T −1 �

.
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Let q = T d + ∑d−1
i=0 qi T i ∈ k[T ] be the minimal polynomial of α over k. Set qd = 1 and qi = 0 for i > d.

We have:

q(T )w(T ) =
∑
�∈Z

∑
i��+1

qit
(
αi−�−1)T �. (2.1)

On the right hand side the coefficient of T � vanishes as soon as � � d since qi = 0 for i > d. Moreover,
since q vanishes at α, we have for any integer �

0 = α−�−1
∑
i�0

qiα
i =

∑
i�0

qiα
i−�−1.

Thus the coefficient of T � on the right hand side of (2.1) also vanishes for � + 1 � 0. We deduce that
q(T )w(T ) is a polynomial p ∈ k[T ] of degree � d − 1 with

p(T ) :=
d−1∑
�=0

d∑
i=�+1

qit
(
αi−�−1)T �.

The rational function w = p/q ∈ k(T ) satisfies w(∞) = 0 since deg(p) < deg(q). This calculation is
valid for any linear map t without assuming it is non-degenerate.

The Gram matrix of 〈·,·〉 in the k-basis (1,α, . . . ,αd−1) of A is the Hankel matrix

H(p/q) := (
t
(
αi+ j))

0�i, j�d−1. (2.2)

By assumption the bilinear form 〈·,·〉 is non-degenerate hence the determinant of H(p/q) is non-zero.
By Kronecker’s theorem (in [17], see e.g. [11, Theorem 8.20 and Proposition 8.22]) p and q are coprime
and deg w = d. Obviously w depends only on the isomorphism class of (A,α, t). Indeed if (A,α, t)
and (A′,α′, t′) are two isomorphic MFA’s and if φ is a fixed isomorphism then for all � � 0,

t′(α′ �) = t ◦ φ−1(φ(α)�
) = t

(
α�

)
.

Conversely, suppose we are given a rational function w = p(T )/q(T ) ∈ k(T ) satisfying w(∞) = 0
and deg(w) = d � 1. Without loss of generality we may assume q monic, deg q = d, (p,q) = 1, p
non-zero and deg p < d. Set

A := k[T ]/(q).

Let α be the image of T in A; then {1,α, . . . ,αd−1} is a k-basis of A. Let
∑

��0 t�T −�−1 ∈ k�T −1 � be
the power series expansion of w at ∞. Define the k-linear map

t : A → k, α� 	→ t�, � = 0,1, . . . ,d − 1. (2.3)

By construction the power series in T −1:

w̃(T ) :=
∑
��0

t
(
α�

)
T −�−1,

has the same first d coefficients as w . On the other hand, as observed above, p̃(T ) := q(T )w̃(T ) is a
polynomial of degree � d − 1. Hence the first d coefficients of p̃(T ) and q(T )w(T ) = p(T ) agree and
it follows that w = w̃ .
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Again, since (p,q) = 1, by Kronecker’s theorem the matrix H(p/q) has non-zero determinant and
hence the bilinear form on A defined by (x, y) 	→ t(xy) is non-degenerate. This completes the proof
of the theorem. �
Corollary 2.2. 1) Given a monic polynomial q ∈ k[T ] of degree deg(q) > 0 there exists a MFA of the form
(k[T ]/(q), T mod q, t).

2) For any MFA (A,α, t) the unit group A× acts transitively on the non-degenerate linear maps on A.

Proof. To prove 1), it is enough to take w = 1/q. Let (k[T ]/(q), T mod q, t) be the corresponding MFA.
Say t′ is another non-degenerate linear map on it and let p/q be the associated rational function. To
show 2), it is enough to prove that

∑
l�0

t
(

p(α)αl)T −l−1 = p(T )

q(T )
,

where α := T mod q, since then t′ = p(α) · t . To see this note that if p(T ) = ∑d−1
j=0 p j T j then the left

hand side equals

∑
l�0

d−1∑
j=0

p jtl+ j T
−l−1 =

∑
l�0

d−1∑
j=0

p jtl T
j−l−1 = p(T ) · 1

q(T )
,

finishing the proof. �
Remark 2.3. Over the complex numbers the space of rational functions w of degree d with w(∞) = 0
is naturally isomorphic to a circle bundle over the moduli space of SU(2) monopoles of charge d [9].

2.1. Examples

1) If q is irreducible and separable (i.e., q is irreducible and k has characteristic 0 or q is irreducible,
k has characteristic l > 0, and q is not a polynomial in T l) then A := k[T ]/(q) is a field, K say, and it
is well-known that t = TrK/k is non-degenerate (in fact the algebra A is separable over k if and only
if TrA/k is non-degenerate). It is not hard to see that the underlying MFA corresponds to the rational
function p/q, where p ≡ dq/dT mod q. Indeed let L be the Galois closure of K/k. Since the extension
K/k is separable there are d := [K : k] distinct k-embeddings σ1, . . . , σd : K ↪→ L. The Galois action of
G := Gal(L/K ) on L extends to an action on L(T ) via σ(

∑
λi T i) := ∑

σ(λi)T i . Therefore

w =
∑
i�0

TrK/k
(
αi)T −i−1 =

∑
i�0

(
d∑

j=1

σ j
(
αi))T −i−1 = 1

T

d∑
j=1

σ j

(∑
i�0

(α/T )i
)

.

The inner sum equals T /(T − α) hence:

w =
d∑

j=1

σ j

(
1

T − α

)
=

d∑
j=1

1

T − σ j(α)
= dq/dT

q
.

2) Another extreme case is A = k[T ]/(T d). If say p = 1 then the rational function w given by Theo-
rem 2.1 is simply 1/T d . The k-linear map t : k[T ]/(T d) → k corresponding to w is defined by t(αi) = 0
for 0 � i � d − 2 and t(αd−1) = 1. Thus t can be identified with the projection A → A with image
kαd−1. The non-degeneracy of t can be shown by elementary arguments. Namely, if z = ∑

ziα
i ∈ A is

orthogonal to any y ∈ A with respect to the inner product (x, y) 	→ t(xy) then in particular, for any
fixed index i we have t(z · αd−1−i) = zi = 0. Thus z = 0.
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2.2. Reproducing kernel

Given a Frobenius algebra (A, t) of dimension d consider the Casimir element (or reproducing kernel)
defined by

C :=
d∑

i=1

ei ⊗ e#
i ∈ A ⊗ A,

where e1, . . . , ed is any basis of A over k and e#
i is its dual basis (with respect to the bilinear form

〈·,·〉 determined by t), i.e.,

〈
ei, e#

j

〉 = t
(
eie

#
j

) = δi, j, i, j = 1, . . . ,d.

This element is well defined; it does not depend on the choice of basis used in its definition.
We have

C =
d∑

i, j=1

〈
e#

i , e#
j

〉
ei ⊗ e j .

For a MFA (A,α, t) with A 
 k[T ]/(q) for some q ∈ k[T ] monic of degree d (namely, the minimal
polynomial of α) we can represent elements of A ⊗ A as polynomials in k[x, y] of degree at most
d − 1 in each variable.

Taking ei := αi−1 for i = 1, . . . ,d as our basis of A we obtain

C =
d∑

i, j=1

b#
i, j x

i−1 y j−1,

where b#
i, j := 〈e#

i , e#
j 〉.

The matrix B# := (b#
i, j) is the inverse of the Hankel matrix H(p/q) in (2.2) since the matrices

(〈ei, e j〉
)
,

(〈
e#

i , e#
j

〉)
are inverses of each other. Combining this observation with the proof of Corollary 2.2 we obtain the
following.

Proposition 2.4. With the above notation and assumptions

H(1/q)Mp = t Mp H(1/q) = H(p/q) = (
B#)−1

,

where Mp is the matrix of multiplication by p in k[T ]/(q) in the basis 1, T , . . . , T d−1 .

2.3. Classical Bezoutian

Given two polynomials p,q ∈ k[T ], the classical Bezoutian is the symmetric matrix B(p,q) := (bi, j),
where
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p(x)q(y) − p(y)q(x)

x − y
=

d∑
i, j=1

bi, j x
i−1 y j−1, (2.4)

with d := max{deg(p),deg(q)}. We have the following matrix expression for B(p,q).

Lemma 2.5. Let Q be the matrix with entries (qi+ j−1), where 1 � i, j � d and q = ∑
i�0 qi T i ∈ k[T ] is a

polynomial of degree d. Assume deg p � d, then

B(p,q) = −Mp Q ,

where Mp is the matrix of multiplication by p in k[T ]/(q).

Proof. Expand the left hand side of (2.4) in Laurent series in k[x, y]� y−1 �. Modulo q(x) the coefficient
of y j−1 is that of

−p(x)q(y)y−1
∑
i�0

(
x

y

)i

and this is easily seen to equal −p(x)
∑

i�0 qi+ j xi . �
We leave the easy proof of the following lemma to the reader

Lemma 2.6. We have

Q = H(1/q)−1.

Putting together Propositions 2.4 and Lemmas 2.5 and 2.6 we finally obtain a connection between
the Casimir element C and the classical Bezoutian.

Theorem 2.7. With the above notation and assumptions

B# = B(q, r),

where r ∈ k[T ] is a polynomial of degree less than d such that rp ≡ 1 mod q. Or, equivalently,

C = q(x)r(y) − q(y)r(x)

x − y
.

Remark 2.8. We have discussed two symmetric matrices associated to a pair of coprime polynomials
p,q ∈ k[T ]: the Hankel matrix H(p/q) and the Bezoutian B(p,q). Combining Propositions 2.4, 2.5 and
Lemma 2.6 we find that they are actually congruent up to a minus sign

t Q H(p/q)Q = −B(p,q)

(note that Q is symmetric).

The Bezoutian plays an important role in mathematical control theory, see for example [11].
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3. The skew Bezoutian

We now turn to a construction that is a skew version of the classical Bezoutian.

3.1. Preliminaries

Let k be a field and d a positive integer; consider the algebra A := k[T ]/(T d). Given a power series
a = a0 + a1T + a2T 2 + · · · ∈ k�T � let M(a) ∈ kd×d be the matrix of the k-linear map A → A defined by
multiplication by a in the basis 1, T , . . . , T d−1 of A. Concretely,

M(a) =

⎛⎜⎜⎝
a0 0 0
a1 a0
...

. . . 0
ad−1 · · · · · · a0

⎞⎟⎟⎠ .

The map a 	→ M(a) is clearly a homomorphism of k-algebras k�T � → Md×d(k).
We will assume from now on that k has characteristic different from 2. For a polynomial q ∈ k[T ]

we let q∗ be the polynomial q with its coefficients reversed, i.e.,

q∗(T ) := T deg(q)q(1/T ), q ∈ k[T ],

where deg(q) is the degree of q.
For further reference let us note a few simple observations about the operation ∗. In general, ∗ is

not additive but we have

(p + q)∗ = p∗ + q∗, if deg(p) = deg(q)

and (pq)∗ = p∗q∗ always. We extend ∗ to k(T ) by multiplicativity. Then for w = p/q we have

w∗(T ) := p∗

q∗ = T deg(p)−deg(q)w
(
T −1).

We will say that w ∈ k(T ) is reciprocal if w∗ = w , skew-reciprocal if w∗ = −w and in general
ε-reciprocal if w∗ = εw with ε = ±1.

To shorten the notation we let vε , for ε = ±1, denote the valuation on k[T ] at T − ε. If p ∈
k[T ] is skew-reciprocal then p(1) = 0. It follows that in fact v+(p) must be odd since otherwise
p(T )/(T −1)v+(p) would be a skew-reciprocal polynomial not vanishing at T = 1. Similarly, if p ∈ k[T ]
is ε-reciprocal with ε = −(−1)deg(p) then p(−1) = 0 and again, v−(p) must be odd. In particular, if
p(−1) �= 0 then deg(p) must be even.

3.2. Definition

Let w ∈ k(T ) be a rational function with coefficients in k. Assume that w is regular at 0 and ∞.
Then we have the two power series expansions

w(T ) = w0 + w1T + · · · , w(T ) = w∗
0 + w∗

1T −1 + · · · .

Let d be the degree of w = p/q where the fraction is written in lowest terms. With the above notation
define the skew Bezoutian of w as
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B∗(w) = t M
(
T d−deg p w∗) − M(w) =

⎛⎜⎜⎜⎝
w∗

0 − w0 w∗
1 . . . w∗

d−1−w1 w∗
0 − w0 w∗

1 w∗
d−2

...
. . .

. . . w∗
1−wd−1 · · · −w1 w∗

0 − w0

⎞⎟⎟⎟⎠ .

(We learned of this construction in [13].) Note that B∗(w) is a Toeplitz matrix (constant entries along
diagonals). Also, in the case where d = deg p = deg q (for instance if w(∞) = 1, as will be assumed
later) one has the simpler definition B∗(w) = t M(w∗) − M(w).

There is a more conceptual way to give B∗ , closer to the approach of the previous section on
Frobenius algebras, as follows. Let R := k[T , T −1] and let t : R → k be the linear map corresponding to
taking constant terms; i.e., t(1) := 1 and t(T n) := 0 for all non-zero integers n.

We may represent elements in the dual space ω ∈ Hom(R,k) as formal infinite series of the form

ω :=
∑
n∈Z

ω
(
T n)T −n.

Following the usual rules of multiplication of series gives Hom(R,k) the structure of an R-module.
Then

ω(u) = t(u · ω), u ∈ R.

With this notation define ω ∈ Hom(R,k) by

ω :=
∑
n�0

w∗
n T n −

∑
n�0

wn T −n.

Explicitly,

ω
(
T n) =

⎧⎨⎩
−wn n > 0,

w∗
0 − w0 n = 0,

w∗−n n < 0.
(3.1)

Then the skew Bezoutian B∗ is the matrix with entries ω(T i− j) for i, j = 0,1, . . . ,d − 1.
The first thing to point out is the value of the determinant of B∗(w). Write w = p/q for p,q ∈ k[T ]

relatively prime. By assumption d = deg(w) = max{deg(p),deg(q)}. But since we also assume w is
regular at infinity we must have deg(p) � deg(q) = d.

Proposition 3.1. Let q0 and qd be the constant and leading coefficients of q respectively. Then we have

qd
0qdeg(p)

d det B∗(w) = (−1)d−deg(p) Res(p,q)

Proof. Assume first that deg(p) = d. The following block-matrix identity is easy to check using the
fact that M is a homomorphism.(

t M(w∗) M(w)

Id Id

)
·
(

t M(q∗) 0
0 M(q)

)
=

(
t M(p∗) M(p)
t M(q∗) M(q)

)
,

where Id is the d × d identity matrix. The right hand side is then precisely the Sylvester matrix of
p and q whose determinant is Res(p,q). On the other hand, the determinant of the left hand side
equals (q0qd)

d det B∗(w).
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We may consider the case deg(p) < d as a specialization of the generic case of deg(p) = d. Then
the determinant on the right hand side is easily seen to equal (−qd)

d−deg(p) Res(p,q) completing the
proof. �
Remark 3.2. The proof we gave follows that of a generalization of Proposition 3.1 to subresultants
in [8, Proposition 11]. The fact that the classical Bezoutian has determinant related to the resultant
goes back to Bezout. From a computational point of view the Bezoutian has the advantage that it is a
matrix of size max{deg(p),deg(q)} versus the Sylvester matrix that has size deg(p) + deg(q).

Consider the case that deg(p) = d. It follows from the proof of the proposition that

B∗(p,q) := t M
(
q∗)B∗(w)M(q) = t M

(
p∗)M(q) − t M

(
q∗)M(p) (3.2)

has determinant Res(p,q). This matrix can be described in a very similar way to that of the classical
Bezoutian (2.4). Indeed, it is not hard to see that its entries are the coefficients of the two variable
polynomial

p(x)q∗(y) − q(x)p∗(y)

xy − 1
. (3.3)

As in the proof of the proposition we may think of the case deg(p) < d as a specialization of the
generic case deg(p) = d and define B∗(p,q) accordingly (namely, p∗ should be replaced by T d p(T −1)).
In general we have

det
(

B∗(p,q)
) = (−qd)

d−deg(p) Res(p,q).

3.3. Bilinear form

We now consider the bilinear form determined by the skew Bezoutian. Let V := R/(q∗) with basis
1, T , . . . , T d−1. We claim that the linear form ω (3.1) vanishes on the ideal (q∗) ⊆ R and therefore
induces a corresponding linear form on V . To see this we compute

q∗ · ω = q∗ ∑
n�0

w∗
n T n − q∗ ∑

n�0

wn T −n.

The first term equals q∗(T )w(T −1) = T d−deg(p)q∗(T )w∗(T ) = T d−deg(p) p∗(T ) and similarly, the second
term also equals q∗(T )w(T −1) canceling out. It follows that ω(T nq∗(T )) = t(T nq∗(T ) ·ω) = 0 for all n.

From now on we assume

w
(
T −1) = −εw(T ), w(∞) = 1, (3.4)

for some ε = ±1. Then

t B∗(w) = εB∗(w),

and, in the notation of the previous section,

wn = −εw∗
n, n = 0,1, . . . .

Therefore,
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B∗(w) =

⎛⎜⎜⎜⎝
ε + 1 w∗

1 · · · w∗
d−1

εw∗
1 ε + 1 · · · w∗

d−2
...

...
...

...

εw∗
d−1 εw∗

d−2 · · · ε + 1

⎞⎟⎟⎟⎠ . (3.5)

Recall that w = p/q is in lowest terms. The assumptions (3.4) imply that both p and q must be
reciprocal or skew-reciprocal polynomials of degree d. Let εp and εq be the corresponding signs:
p∗ = εp p and q∗ = εqq with ε = εpεq . Note that we cannot have εp = εq = −1 since p and q are
relatively prime by assumption.

We may give the skew Bezoutian bilinear form in a way analogous to the classical one. The new
ingredient is the involution ι : T 	→ T −1 of R that descends to V since it fixes the ideal (q∗). Indeed
we have that B∗(w) is the Gram matrix in the basis 1, T , . . . , T d−1 of the bilinear form Ψ on V
defined by

Ψ (u, v) := t
(
uvι · w

) = ω
(
uvι

)
,

where, with some notation abuse, u, v ∈ V . Concretely,

Ψ
(
T i, T j) = ω

(
T i− j), i, j ∈ Z. (3.6)

This bilinear form satisfies

Ψ (v, u) = εΨ (u, v). (3.7)

We will say that (V ,Ψ ) is an ε-symmetric bilinear space over k. By Proposition 3.1 this space is
non-degenerate since p and q are relatively prime.

3.4. Properties

In addition to the bilinear form Ψ the skew Bezoutian carries some extra structures not shared
by the classical Bezoutian. It has a distinguished vector v0, the class of the polynomial 1 ∈ R , with
Ψ (v0, v0) = 1 + ε and an isometry γ , given by multiplication by T (the fact that it is an isometry is
clearly seen in (3.6), for example). Note that by construction γ has characteristic polynomial ±q (the
monic generator of the ideal (q∗) = (q)). Moreover, the translates v0, γ (v0), γ

2(v0), . . . generate the
whole space V . In fact, these properties characterize the skew Bezoutian as we now show.

Given v0 ∈ V with Ψ (v0, v0) = 1 + ε we define its associated ε-reflection to be the isometry given
by

σ(v) := v − Ψ (v0, v)v0. (3.8)

(In the skew-symmetric case σ is usually called a transvection.) Note that σ is of order two if ε = +1
but of infinite order if ε = −1. In fact,

σ−1(v) := v − εΨ (v0, v)v0.

We have

σ(v0) = −εv0, σ (v) = v, if Ψ (v0, v) = 0.

Hence σ fixes a codimension 1 subspace of V and det(σ ) = −ε.
Recall that an isometry of a non-degenerate bilinear space has a characteristic polynomial which

is reciprocal or skew-reciprocal.
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Theorem 3.3. Let (V ,Ψ ) be a non-degenerate, finite dimensional, ε-symmetric bilinear space over k. Suppose
there exists an isometry γ of this space and a vector v0 ∈ V such that

(i) Ψ (v0, v0) = 1 + ε,
(ii) V is generated by v0, γ v0, γ

2 v0, . . . .

Then (V ,Ψ ) is the skew Bezoutian B∗(w) with w = p/q, where q is the characteristic polynomial of γ
and p is the characteristic polynomial of γ σ with σ the ε-reflection associated to v0 .

Proof. Let d be the dimension of V . Note that V := {v0, γ v0, . . . , γ
d−1 v0} is a basis of V . Indeed, by

the Cayley–Hamilton theorem γ n v0 is in the span of V and hence so is every v in V by hypothe-
sis (ii). Again by hypothesis (ii), V is linearly independent.

Define for every n ∈ Z

cn := Ψ
(
γ n v0, v0

)
. (3.9)

Note that c−n = εcn . We claim that

1 +
∑
n�1

cn T n

is the power series expansion of a rational function of denominator q. Write q = ∑
k�0 qk T k . By as-

sumption qd−k = qk for k = 0, . . . ,d and q0 = qd = 1. Then

q(T )

(
1 +

∑
n�1

cn T n
)

=
∑
n�0

rn T n = 1 +
∑
n�1

rn T n,

where rn = qn + ∑n
k=1 ckqn−k for n � 1. Since qn = 0 for n > d we have

rn =
d∑

k=0

cn−kqk =
d∑

k=0

cn−d+kqd−k =
d∑

k=0

cn−d+kqk, n > d.

Hence

rn = Ψ
(
γ n−dq(γ )v0, v0

) = 0, n > d.

We now show that rd−n = −εrn for n = 0, . . . ,d. Since q(γ ) = 0 we have for n < d

rd−n = qn +
d−n∑
k=1

qn+kck = qn − Ψ
(
sn(γ )γ −n v0, v0

)
,

where sn := ∑n
k=0 qk T k . Hence

rd−n = qn −
n∑

k=0

qkck−n = qn − (1 + ε)qn − ε

n−1∑
k=0

qkcn−k = −εrn.

We have shown then that p(T ) := −ε
∑d

n=0 rn T n is (−ε)-reciprocal; since r0 = 1 it is also monic. In
other words, we have that (V ,Ψ ) is isometric to the skew Bezoutian B∗(p,q).
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It remains to show that p is the characteristic polynomial of δ := γ σ . For every n ∈ Z let σn be
the ε-reflection associated to vn := γ n v0. Note that Ψ (vn, vn) = 1 + ε. We have

σn = γ nσγ −n

and hence by induction

δn = σ1 · · ·σnγ
n.

Let u0 := v0 and un := σ−1
n · · ·σ−1

1 v0 for n > 0. Let also en := εΨ (δn v0, v0) for n ∈ Z. Then

en+1 = Ψ (v0,σ1 · · ·σn+1 vn+1) = Ψ (un+1, vn+1).

Since

un+1 = σ−1
n+1un = un − εΨ (un, vn+1)vn+1, n � 0

we get

en+1 = Ψ (un, vn+1) − εΨ (un, vn+1)Ψ (vn+1, vn+1) = −εΨ (un, vn+1).

Therefore un+1 = un + en+1 vn+1 and by induction

un = v0 +
n∑

k=1

ek vk.

Finally,

−en+1 = Ψ (vn+1, un) = cn+1 +
n∑

k=1

ekcn+1−k

and (
1 +

∑
n�1

cn T n
)(

1 +
∑
n�1

en T n
)

= 1. (3.10)

Combined with our previous calculation we see that

p(T )

(
1 +

∑
n�1

en T n
)

= −εq(T ).

So if p(T ) = ∑d
n=0 pn T n then

0 =
d∑

k=0

en−d+k pd−k = −ε

d∑
k=0

en−d+k pk, n > d

and
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Ψ
(

p(δ)v0, δ
d−n v0

) = 0, n > d. (3.11)

It is not hard to see that δn v0 = −εvn + ∑n−1
j=1 αn, j v j for n = 1, . . . ,d − 1, for some αn, j ∈ k (note

that for n = 1 the equality is δv0 = −εv1). It follows that the δn v0 with n ∈ Z span V and by (3.11)
p(δ) = 0. �
Remark 3.4. The equivalence established by Theorem 3.3 is a skew analogue of that in Theorem 2.1,
where the new ingredient is the involution T 	→ T −1 of the algebra k[T , T −1]/(q). A similar result
appears in [9, Proposition 3.2].

3.5. Hypergeometric groups

We choose now k = C. The subgroup Γ ⊆ GL(V ) generated by γ , δ,σ (see Theorem 3.3) is a hyper-
geometric group in the sense of [7, Definition 3.1], with parameters the multisets of roots of p and q.
In other words, we have a triple of elements in GL(V ) which multiply to the identity, two of which
have a prescribed characteristic polynomial and the third fixes a codimension one subspace of V . By
a theorem of Levelt such triples are unique up to conjugation by GL(V ) (see [7, Theorem 3.5]).

Since our polynomials are coprime it is proved in [7, Proposition 3.3 and Theorem 4.3] that Γ acts
irreducibly. Furthermore, if we assume p and q have real coefficients, since they are (±1)-reciprocal,
Γ fixes a non-degenerate bilinear form Ψ on V which is unique up to scaling. Our discussion here
shows that this form is none other than the skew Bezoutian B∗(p,q) of p and q. This was mentioned
in [22]. For general p and q with complex coefficients it is not hard to extend the construction of the
skew-Bezoutian and this now yields a Hermitian form fixed by Γ .

Over R the signature σ of Ψ can be computed by a skew version of the classical theorem of
Hermite [14, p. 409] for the usual Bezoutian. (Here ς := r − s if Ψ is isometric to x2

1 + · · · + x2
r −

y2
1 − · · · − y2

s over R.) For the classical Bezoutian the signature depends on the interlacing pattern
of the roots of p and q in R. For the skew Bezoutian it depends on the interlacing pattern of the
roots on the unit circle S1. In both cases this can be phrased in terms of the Cauchy index for the
rational function p/q (on R for the classical case, on S1 for the skew case; for the latter see [13,
Theorem 2.1]).

A conceptual formulation of Hermite’s result is as follows. The rational function w = p/q ∈ R[T ]
gives a continuous map w : P1(R) → P

1(R). In turn this yields a homomorphism H1(P
1(R),Z) →

H1(P
1(R),Z). After fixing an isomorphism H1(P

1(R),Z) 
 Z this map is multiplication by some in-
teger which is none other than the signature ς . The same applies for the skew Bezoutian. Since
w(T −1) = −εw(T ) the values of w on S1 are either real or purely imaginary. Hence w gives a con-
tinuous map S1 → P

1(R) in either case. This yields a map Z → Z via H1 well defined up to sign.
Choosing orientations appropriately this map is again multiplication by the signature ς (defined as
zero in the skew symmetric case).

In practice one can compute ς using Sylverster’s simple characterization (that applies equally well
to both the classical and the skew cases). We associate to w a word φ in two letters say A and B
as follows. Start with the empty word. Traverse P

1(R) or S1 in the standard orientation starting at
the base point ∞ or 1 respectively. Append A (resp. B) to φ on the right if you encounter a root
of p (resp. q), including multiplicities, finishing when you reach back the base point. Now recursively
remove from φ any instance of repeated symbols A A or B B . We end with a word consisting of r
pairs · · · AB AB · · · or · · · B AB A · · · . Then ς equals r or −r respectively.

In particular, Ψ is definite if and only if the roots of p and q interlace in the unit circle. This is
one of the crucial calculations of [7] (see e.g. Theorem 4.8 in [7]), which was done directly without
any reference to Hermite’s result or its variants.

It is not hard to see [1, Proposition 2.3.3] that the number of words corresponding to signature ς
is (

d
1 (d − ς)

)2

.

2
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(Necessarily ς ≡ d mod 2; in fact in the symmetric case, if d is even then ς ≡ d mod 4.) It follows that
we should expect the signature to be typically small if p and q are picked in some random fashion.
This appears to be indeed the case. For example, considering all pair of coprime polynomials with
only cyclotomic factors and of degree 15 with ε = −1 we find the following distribution of signatures

ς 15 13 11 9 7 5 3 1
# 25 118 179 5935 41 242 75 458 184 173 268 640

with symmetrical values for ς = −1,−3, . . . ,−15.

3.6. Examples

We end this section with some examples. The skew Bezoutian construction can be done over a
commutative ring (details will appear in a later publication). Here we work over Z.

Alternate constructions for the first two examples below can be found in [5, Section 3]. In [5] the
constructions use the trace form (as mentioned in the introduction) with respect to an extension K/Q,
where K is a suitable cyclotomic field. Examples in [5] and [4, §4] also include the Leech lattice, the
Coxeter–Todd lattice, etc. See also [3, §1] for related work where the question of the existence of a
definite unimodular lattice with an isometry having a prescribed cyclotomic characteristic polynomial
is addressed.

1) Let

p = Φ1Φ2Φ3Φ5 = x8 + 2x7 + 2x6 + x5 − x3 − 2x2 − 2x − 1,

q = Φ30 = x8 + x7 − x5 − x4 − x3 + x + 1,

where Φn is the n-th cyclotomic polynomial. Then

w = −p/q = 1 + x + x2 + x3 + x4 + x5 − x10 + O
(
x11)

and

B∗(p/q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 1 1 1 0 0
1 2 1 1 1 1 1 0
1 1 2 1 1 1 1 1
1 1 1 2 1 1 1 1
1 1 1 1 2 1 1 1
1 1 1 1 1 2 1 1
0 1 1 1 1 1 2 1
0 0 1 1 1 1 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The lattice Z[x]/(q) with this quadratic form is the well-known E8 lattice and γ is a Coxeter element
of the corresponding Weyl group.

2) Similarly the An lattice with Cartan matrix

Cn :=

⎛⎜⎜⎜⎜⎝
2 −1 0 · · · 0 0

−1 2 −1 · · · 0
...

0 · · · −1 2 −1
0 0 · · · −1 2

⎞⎟⎟⎟⎟⎠
arises as the skew Bezoutian B∗(p/q), where
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p = xn − 1, q = xn + xn−1 + · · · + x + 1

and γ represents an n-cycle in Sn .
3) Let q = x10 +x9 −x7 −x6 −x5 −x4 −x3 +x+1 be the Lehmer polynomial (the integer polynomial

of smallest known Mahler measure bigger than 1). For p, we search among the polynomials of degree
10 which are products of cyclotomics. We find eight such that B∗(p,q) is isometric to the unimodular
lattice I9,1 of signature (9,1). These are tabulated below.

Φ3
1 Φ2Φ3Φ5 x10 − x8 − x7 + x3 + x2 − 1

Φ1Φ3
2 Φ3Φ5 x10 + 4x9 + 7x8 + 7x7 + 4x6 − 4x4 − 7x3 − 7x2 − 4x − 1

Φ1Φ2Φ3Φ5Φ6 x10 + x9 + x8 + x7 + x6 − x4 − x3 − x2 − x − 1
Φ1Φ2Φ3Φ7 x10 + 2x9 + 2x8 + x7 − x3 − 2x2 − 2x − 1
Φ1Φ2Φ3Φ9 x10 + x9 − x − 1
Φ1Φ2Φ3Φ18 x10 + x9 − 2x7 − 2x6 + 2x4 + 2x3 − x − 1
Φ1Φ2Φ5Φ8 x10 + x9 + x6 − x4 − x − 1
Φ1Φ2Φ5Φ10 x10 − 1

We do not know if these isometries are in the same conjugacy class.
4) In the paper [21] the authors consider the modification q(x) := p(x) ± xm of a monic reciprocal

polynomial p of even degree 2m consisting of adding a single monomial ±xm . The skew Bezoutian
B∗(p,q) then yields a skew-symmetric form of determinant Res(p,q) = 1 and a symplectic transfor-
mation of characteristic polynomial q. For example, if we again take q to be the Lehmer polynomial
we see that it is also the characteristic polynomial of a symplectic transformation. As pointed out
in [21, §4] it is remarkable that q(x) + x5 is actually a product of cyclotomic polynomials.

In light of Theorem 3.3, the modification used in [21] can be seen as an example of modifying
a symplectic transformation by multiplying it by a single transvection. It would be interesting to
extend their results and study how this modification affects the Mahler measure of the characteristic
polynomial.

4. Isometries with given characteristic polynomial

The goal of this section is to give a new and effective proof of the following well-known result
(see, e.g. [20, Lemma 1.2 and Remarks 1.3, 1.4, 1.5]), using the skew Bezoutian.

We keep the notation of Section 3.

Theorem 4.1. Let q ∈ k[T ] be a monic reciprocal polynomial of degree d � 1. Then

1) There exists a non-degenerate symmetric bilinear space over k of dimension d with an isometry of charac-
teristic polynomial q.

2) If, in addition, d is even there exists a non-degenerate skew-symmetric bilinear space over k of dimension
d with an isometry of characteristic polynomial q.

For related work where a quadratic structure is prescribed as well see [6].

Proof. The main idea is to use the skew Bezoutian. If we can find a polynomial p ∈ k[T ], which is
(−ε)-reciprocal and coprime to q then the skew Bezoutian B∗(p,q) provides an explicit answer to
what we are looking for. As discussed above, the skew Bezoutian comes equipped with an isometry
of characteristic polynomial q and is non-degenerate if p and q are coprime. Knowledge of Res(p,q)

will help us show that the bilinear form we construct is non-degenerate by Proposition 3.1.
In the skew-symmetric case, where ε = −1 and d is assumed even, we may always find such a p.

Indeed, the polynomial

p(T ) := q(T ) + T m,
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where m := d/2 satisfies all the requirements we need: p is clearly reciprocal and coprime to q.
Moreover we may easily compute Res(p,q). It is (

∏
b b)m , where b runs over the roots of q counted

with multiplicity, and this equals q(0)m . Since q is monic and reciprocal q(0) = 1. See the remark
following the proof for a discussion on the relevance of this computation.

Now we turn to the case where ε = 1. Let Q0 be the polynomial of k[T ] such that one has the
factorization

q(T ) = (T − 1)v+(T + 1)v−Q0(T ), Q0(±1) �= 0. (4.1)

As q is reciprocal, by the observations of Section 3.1, its order of vanishing v+ at 1 is even. Hence,
Q0 is also reciprocal; let d0 be its degree. Assume for the moment that d0 > 0 and set

P0(T ) := (T − 1)e(T + 1)d0−e,

for some odd integer 0 � e � d0. Note that d0 − e is odd also since d0 is even as Q0 is a reciprocal
polynomial not vanishing at −1 (see Section 3.1).

By construction P0 is monic, skew-reciprocal, of degree d0 and coprime to Q0. The skew Bezoutian
(V 0,Ψ0) of P0,Q0 is then a non-degenerate symmetric bilinear space over k of dimension d0. The
corresponding isometry γ0 has characteristic polynomial Q0. To obtain the space V we are after we
consider

V := V 0 ⊥ V+ ⊥ V−

where V± is a vector space over k of dimension v± . We put on V± an arbitrary non-degenerate
symmetric bilinear form Ψ± and consider Ψ := Ψ0 ⊥ Ψ+ ⊥ Ψ− and γ := γ0 ⊥ idV+ ⊥ (− idV− ). It is
now clear that (V ,Ψ ) and γ fulfill the requirements.

The same construction works if d0 = 0; just ignore V 0 altogether. This completes the proof
of 1). �
Remark 4.2. Note that the proof actually gives a (skew-)symmetric space and an isometry of charac-
teristic polynomial q defined over the ring of coefficients of the polynomials p and q. In case 2) of
Theorem 4.1 the determinant of this space is 1 as can be seen from the computation performed in
the proof. For case 1), see Remark 6.3.

It seems natural to try and compute other invariants attached to the bilinear space constructed
in terms of the polynomials p and q. In the following section we focus on the case ε = 1 and we
investigate how the spinor norm of the isometry constructed in the proof of Theorem 4.1 can be
expressed in terms of the polynomial q.

5. Spinor norm of an isometry with prescribed characteristic polynomial

Recall that if (V ,Ψ ) is a non-degenerate finite dimensional quadratic space, the spinor norm of
an isometry of (V ,Ψ ) can be defined as follows: first let v be a non-isotropic vector of V and let rv

be the reflection with respect to the hyperplane v⊥ . We define the spinor norm Nspin(rv) to be the
class in k�/(k�)2 of Ψ (v, v). Now any isometry σ of V is a product

∏
v rv , where v runs over a finite

set of non-isotropic vectors of V . It is known that σ 	→ ∏
v Ψ (v, v) gives a well-defined spinor norm

homorphism

Nspin : O (V ,Ψ ) → k�/
(
k�

)2
,
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which is onto as soon as d := dim V � 2. Note in particular that Nspin(− idV ) = det(V ,Ψ ), where
det(V ,Ψ ) := det(Ψ (vi, v j)) for any basis v1, . . . , vd of V . (If v1, . . . , vd is an orthogonal basis of V

then − idV = ∏d
i=1 rvi and det V = ∏d

i=1 Ψ (vi, vi).)
We recall the following formula due to Zassenhaus (see [29, p. 444]) which gives a useful way

to compute the spinor norm of an isometry. To state and prove the results of this section it will
be convenient to use the following notation introduced by Zassenhaus in his original paper. If σ is
an endomorphism of V and if λ ∈ k then we let M(λ,σ ) be the maximal subspace of V on which
σ − λidV acts as a nilpotent endomorphism of V . In particular the dimension of M(λ,σ ) is the
multiplicity of λ as a root of the characteristic polynomial of σ .

Theorem 5.1 (Zassenhaus). Let γ be an isometry of a non-degenerate quadratic space (V ,Ψ ) over k and let v±
be the dimension of M(±1, γ ). Let q be the characteristic polynomial of γ . Then M(−1, γ ) is non-degenerate
and, if we denote by q− the polynomial such that

q(T ) = (T + 1)v−q−(T ), q−(−1) �= 0,

then

Nspin(γ ) = det
(
M(−1, γ ),Ψ

)
(−2)−(dim V −v−)q−(−1),

in k�/(k�)2 .

Proof. Let us describe the main ideas of the proof based on Zassenhaus original paper [29,
pp. 444–446]. Let us consider the subspace of V :

M̂(−1, γ ) :=
⋂
n�1

(σ + idV )n V .

Then Zassenhaus shows [29, Proposition 2, p. 437 and its corollary p. 438] that one has the orthogonal
splitting

V = M(−1, γ ) ⊥ M̂(−1, γ ),

thus both these spaces are non-degenerate with respect to the restriction of Ψ . In particular the
formula

sn(γ ) := det
(
M(−1, γ ),Ψ

) · det

(
γ + idV

2

∣∣ M̂(−1, γ )

)
, (5.1)

defines a function on the orthogonal group O (V ,Ψ ) with values in the classes modulo non-zero
squares of k� . Zassenhaus then shows [29, Theorem, p. 446] that the map sn is a group homomor-
phism and that it coincides with Nspin (see [29, (2.10b), p. 446]).

One has M(−1, γ )⊥ = M̂(−1, γ ) and the restriction of γ to M(−1, γ )⊥ has characteristic polyno-
mial q− . Therefore (5.1) yields

Nspin(γ ) = det
(
M(−1, γ ),Ψ

) · (−2)−(dim V −v−)q−(−1),

in k�/(k�)2, which completes the proof. �
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Corollary 5.2. With notation as above fix an isometry γ of (V ,Ψ ). Let q ∈ k[T ] be the characteristic polyno-
mial of γ and let Q0 ∈ k[T ] be as in (4.1). Then the spinor norm of γ is given by

Nspin(γ ) = Q0(−1)det
(
M(−1, γ ),Ψ

)
,

in k�/(k�)2 .

Proof. With notation of Theorem 5.1 one has

q−(T ) = (T − 1)v+Q0(T ).

We deduce

Nspin(γ ) = det
(
M(−1, γ ),Ψ

)
(−2)−(dim V −v−)(−2)v+Q0(−1),

in k�/(k�)2.
Therefore:

Nspin(γ ) = det
(
M(−1, γ ),Ψ

)
(−2)−(dim V −(v−+v+))Q0(−1)

= det
(
M(−1, γ ),Ψ

)
(−2)d0Q0(−1),

modulo non-zero squares. That is the desired formula since d0 := degQ0 is even. �
From the above corollary we further deduce how to decide when we can prescribe the spinor

norm and the characteristic polynomial of an isometry.

Corollary 5.3. Let q ∈ k[T ] be a monic reciprocal polynomial of degree d � 1 and let Q0 ∈ k[T ] be as in (4.1).

(i) If v−(q) > 0 then there exists a non-degenerate symmetric bilinear space over k of dimension d with an
isometry γ of characteristic polynomial q and arbitrary spinor norm Nspin(γ ). In particular, this is true if
d is odd.

(ii) If v−(q) = 0 and γ is an isometry with characteristic polynomial q then its spinor norm equals Q0(−1)

(modulo non-zero squares). In particular, this is the case if q is separable and d is even.

Proof. (i) Fix a representative s for a class in k�/(k�)2. If v− > 0 we can always choose V− to have
det(V−) ≡ sQ0(−1) mod (k�)2. The result now follows from Corollary 5.2. If d is odd by the observa-
tions of Section 3.1 v− is odd and hence positive.

(ii) The first statement follows from Corollary 5.2. Assume q to be separable; if v−(q) > 0 then the
quotient q(T )/(T + 1) is a reciprocal polynomial of odd degree. So −1 is also a root of the quotient
which contradicts the separability of q. �
6. Discriminant of a quadratic space having an isometry with prescribed characteristic polynomial

This section is devoted to the study of the relation between the discriminant of a quadratic space
(V ,Ψ ) and the characteristic polynomial of an isometry of O (V ,Ψ ). If (V ,Ψ ) is a quadratic space
over k we let its discriminant be disc(V ,Ψ ) := (−1)n(n−1)/2 det(V ,Ψ ) where d := dim V .

The results we present here are well-known. The idea emphasized in the following statement (that
can be found, e.g., in [20, Theorem 3.4]) is that to an ε-symmetric non-degenerate bilinear space
(V ,Ψ ) equipped with an isometry γ , we can naturally associate a (−ε)-symmetric non-degenerate
bilinear space (V ,Ψγ ).
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Lemma 6.1. Let (V ,Ψ ) be an ε-symmetric non-degenerate bilinear space and let γ be an isometry of (V ,Ψ ).
We define the bilinear form Ψγ on V by:

Ψγ (u, v) = Ψ
((

γ − γ −1)(u), v
)
, u, v ∈ V .

Denoting as before by q the characteristic polynomial of γ , we have:

(i) (V ,Ψγ ) is (−ε)-symmetric,
(ii) det(V ,Ψγ ) = q(1)q(−1)detγ det(V ,Ψ ),

(iii) γ is an isometry of the bilinear space (V ,Ψγ ).

Proof. First note that for any isometry γ of a bilinear space (V , 〈·,·〉) and any element h ∈ k[x, x−1]
we have

〈
h(γ )u, v

〉 = 〈
u,h

(
γ −1)v

〉
, u, v ∈ V . (6.1)

For (i) we fix u, v ∈ V and we compute, using (6.1),

Ψγ (v, u) = Ψ
((

γ − γ −1)v, u
) = Ψ

(
v,

(
γ −1 − γ

)
u
) = −Ψ

(
v,

(
γ − γ −1)u

)
.

The right hand side equals −εΨγ (u, v) since Ψ is ε-symmetric.
For (ii), we denote by d the dimension of V and we fix a basis B = (e1, . . . , ed) of V . Let Q be the

Gram matrix of Ψ with respect to B and M be the matrix representation of γ in the basis B. The
Gram matrix of Ψγ with respect to B is (Ψ ((γ − γ −1)ei, e j))i, j . That matrix equals t((M − M−1))Q.
Taking determinants we get

det(V ,Ψγ ) = det
(
M − M−1)det(V ,Ψ ) = det

(
γ − γ −1)det(V ,Ψ ),

which is the formula we wanted since det(γ − γ −1) = det(γ )det(γ 2 − idV ) = det(γ )q(−1)q(1).
Finally, (iii) is a straightforward consequence of the fact that γ and γ − γ −1 commute. �
The construction of the bilinear form Ψγ from the data (Ψ,γ ) can be iterated to produce a se-

quence of bilinear forms Ψ0 = Ψ , Ψ1 = Ψγ , and more generally for any j � 0:

Ψ j: (u, v) ∈ V × V 	→ Ψ
((

γ − γ −1) j
u, v

)
.

The generalization of Lemma 6.1 to Ψ j is straightforward and can be found in [20, Theorem 3.4].
Using Lemma 6.1 we deduce the following statement.

Proposition 6.2. Let q ∈ k[x] be a monic reciprocal polynomial with q(±1) �= 0. Then the discriminant
disc(V ,Ψ ) of a non-degenerate quadratic space (V ,Ψ ) over k with an isometry of characteristic polynomial
q is uniquely determined. More precisely, for any such space we have

det(V ,Ψ ) ≡ q(−1)q(1) mod
(
k�

)2
.

This statement is well-known and can be found e.g. in [19, §7, Lemma c)].

Proof. We invoke Lemma 6.1(ii) in the case ε = 1. Indeed detγ = 1 since q is reciprocal. Moreover
the formula for det(V ,Ψγ ) implies that Ψγ is non-degenerate by our assumption on q and Ψ . Thus
det(V ,Ψγ ) is a square since (V ,Ψγ ) is a non-degenerate skew-symmetric bilinear space. �



180 F. Jouve, F. Rodriguez Villegas / Journal of Algebra 400 (2014) 161–184
Remark 6.3. In fact, from the proof of Theorem 4.1 we see that for every odd integer e in the range
0 � e � deg q = d we can find (V ,Ψ ) defined over the ring of coefficients of q that satisfies:

det(V ,Ψ ) = q(1)q(−1)d−e.

From the above proposition we deduce the following corollary that answers the question investi-
gated in this section.

Corollary 6.4. Let (V ,Ψ ) be a non-degenerate quadratic space over k.

(i) Let q be a reciprocal polynomial which is the characteristic polynomial of an isometry γ of (V ,Ψ ). Then
with notation as in Section 5 (in particular we use the factorization (4.1)),

det(V ,Ψ ) ≡ det
(
M(−1, γ )

)
det

(
M(1, γ )

)
Q0(−1)Q0(1) mod

(
k�

)2
. (6.2)

(ii) Let q be a separable reciprocal polynomial in k[T ] of even degree. If there exists an isometry γ of a
non-degenerate quadratic k-space (V ,Ψ ) of characteristic polynomial q then disc(V ,Ψ ) ≡ disc(q) mod
(k�)2 .

Proof. From [29, Proposition 2 and its corollary] and since we assume char k �= 2, one easily deduces
the orthogonal decomposition:

V = M(1, γ ) ⊥ M(−1, γ ) ⊥ (
M̂(1, γ ) ∩ M̂(−1, γ )

)
. (6.3)

Thus

det V = det M(1, γ )det M(−1, γ )det
(
M̂(1, γ ) ∩ M̂(−1, γ )

)
,

where the quadratic structure on each vector space is given by the suitable restriction of Ψ .
Each subspace on the right hand side of (6.3) is stable under γ and by definition of the subspaces

M(±1, γ ), the restriction of γ to M̂(1, γ ) ∩ M̂(−1, γ ) has characteristic polynomial Q0. Thus (i)
follows by applying Proposition 6.2.

The statement (ii) is an easy consequence of (i) and the following well-known lemma. �
Lemma 6.5. Let q ∈ k[x] be a monic separable reciprocal polynomial of even degree 2m. Then

disc q ≡ (−1)mq(−1)q(1) mod
(
k�

)2
.

Proof. The hypothesis on q guarantees that q(±1) �= 0, i.e., q = Q0. Indeed, if q is reciprocal then
v+ must be even. If in addition q is separable then v+(q) = 0. As we argued in the proof of Corol-
lary 5.3(ii) we also have v−(q) = 0.

We may assume without loss of generality that q is irreducible. Let K := k[x]/(q). The exten-
sion K/k is separable and disc q is the discriminant of the quadratic space (K ,Ψ ), where Ψ (a,b) :=
TrK/k(ab). A calculation like that in [12, Proposition A.3] (see also the discussion at the beginning of
Section 2 in [2]) finishes the proof. (Let L ⊆ K be the subfield fixed by the involution x 	→ x−1, and
let NL/k denote the norm map relative to L/k. Then K = L(x − x−1). The subspaces L and (x − x−1)L
are orthogonal hence det K = NL/k(x − x−1)det L2 and NL/k(x − x−1) = q(−1)q(1).) �

For an alternate proof of the lemma see [10, Proof of Theorem 2]. The statement (ii) of Corollary 6.4
can be found e.g. in [2, Theorem (1.2)].
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7. Isometries with given Jordan form

We end with a characterization of the Jordan form of isometries of non-degenerate bilinear spaces.
The main result goes back to (at least) Wall [28] (see also [15], [20, Section 3] and [25, IV, 2.15 (iii)]).
We include a proof for the reader’s convenience using the skew Bezoutian to construct the isometries.

We assume our field k is now algebraically closed (and of characteristic different from 2 as before).
Fix a vector space V of dimension r over k. For γ ∈ End(V ), λ ∈ k� and m ∈ N, let μ(γ ;λ,m) be the
number of Jordan blocks of γ of size m and eigenvalue λ.

We start with a few preparatory results. The following crucial statement (very close to the first
part of [20, Theorem 3.2]), will help us perform a reduction step needed in the proof of Theorem 7.5.

Lemma 7.1. Let (V ,Ψ ) be a non-degenerate ε-symmetric space equipped with a unipotent isometry γ . We
have an orthogonal splitting:

V =⊥m�1 V (m),

where γ acts on each V (m) as a sum of Jordan blocks J1(m). In particular, each (V (m),Ψ ) is a non-degenerate
ε-symmetric space.

Proof. Let n be the largest index m with V (m) �= 0. We claim that V (n) is non-degenerate.
Since γ is unipotent and preserves rad(V (n),Ψ ) we have rad(V (n),Ψ ) ⊆ ker(γ − idV ) = Im((γ −

idV )n−1).
Taking h(x) = (x − 1)n−1 in (6.1) it follows that rad(V (n),Ψ ) ⊆ rad(V ,Ψ ) proving our claim. We

deduce that V (n) splits off from V as an orthogonal direct summand.
We conclude by finite descending induction on m � 1. �
The following lemma can be seen as a complement to Lemma 6.1. In the notation of Lemma 6.1 it

gives an additional property of Ψγ in the case where −1 is not an eigenvalue of γ . For any bilinear
space (W , 〈·,·〉), its radical rad(W ) is the subspace {v ∈ W : 〈v, w〉 = 0 for all w ∈ W }.

Lemma 7.2. With notation as in Lemma 6.1, we assume further that γ + idV is invertible. Then we have

rad(V ,Ψγ ) = ker(γ − idV ).

Proof. Fix a vector u ∈ V . We have u ∈ rad(V ,Ψγ ) if and only if Ψ ((γ − γ −1)u, v) = 0 for all v ∈ V .
Since Ψ is non-degenerate, this is equivalent to (γ − γ −1)u = 0, i.e. (γ 2 − idV )u = 0. Rewriting the
last equation

(γ + idV ) ◦ (γ − idV )u = 0,

the lemma follows since we have assumed γ + idV to be invertible. �
Remark 7.3. As for the case of Lemma 6.1 the generalization of Lemma 7.2 to Ψ j is straightforward.
Let us mention for example that if Ψ is ε-symmetric then Ψ j is (−1) jε-symmetric with radical
ker((γ − idV ) j) (see [20, Theorem 3.4] where the general version of the construction is used).

Corollary 7.4. With hypotheses as in Lemma 6.1, assume ε = 1 and γ unipotent. Consider the Jordan block
decomposition of γ :

r⊕
Jmi (1), m1 � m2 � · · · � mr,

∑
mi = dim V ,
i=1 i
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where Jmi (1) stands for the Jordan block of size mi attached to the eigenvalue 1. We have

r∑
i=1

(mi − 1) ≡ 0 (mod 2).

In particular there are evenly many indices i for which mi is even.

Proof. Since (V /rad(V ,Ψγ ),Ψγ ) is a non-degenerate skew-symmetric space, its dimension is even. It
follows then from Lemma 7.2 that dim V ≡ dim ker(γ − idV ) (mod 2). Since γ is unipotent its number
of Jordan blocks equals dim ker(γ − idV ) therefore

r∑
i=1

mi ≡ r (mod 2).

Equivalently
∑r

i=1 (mi − 1) is even. �
We can now state and prove the main result of this section.

Theorem 7.5. Let γ ∈ End(V ). Then γ preserves a non-degenerate ε-symmetric bilinear form on V if and
only if

(i)

μ(γ ,λ,m) = μ
(
γ ,λ−1,m

)
, λ �= ±1, m ∈N,

and

(ii)

(m − δ)μ(γ ,±1,m) ≡ 0 mod 2, m ∈N,

where δ := 1
2 (1 + ε).

Proof. We give details for the orthogonal case ε = 1 the symplectic case ε = −1 is completely analo-
gous. For m � 1 let Jm(λ) denote the Jordan block with size m and eigenvalue λ.

First we exhibit an isometry with a prescribed Jordan form satisfying the hypothesis (i) and (ii).
Identify V with kd . If γ ∈ End(V ) is an endomorphism having Jordan form M = Jm(λ)⊕ Jm(λ−1) with
λ �= λ−1 consider q = (T − λ)m(T − λ−1)m . By Theorem 4.1 there exists a skew-reciprocal polynomial
p ∈ k[T ] such that q is the characteristic polynomial of an isometry of the non-degenerate quadratic
space determined by B∗(p,q), which by Theorem 3.3 has Jordan form M . A similar argument applies
to Jm(±1) for m odd taking q = (T − 1)m and p = (T + 1)m .

Finally, let m be even and set again p := (T + 1)m and q := (T − 1)m . Now U := B∗(p,q), however,
is skew-symmetric. Consider instead the symmetric matrix

A =
(

0 U
−U 0

)
.

Since p and q are relatively prime U and hence also A yield non-degenerate bilinear pairings. By
Theorems 3.3 and 4.1 there exists γ ± with Jordan form Jm(±1) preserving U . The map γ := γ ± ⊕γ ±
then preserves A giving our desired isometry.
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We now show that the conditions on the multiplicities of the Jordan blocks are necessary. Suppose
then that γ ∈ End(V ) preserves a non-degenerate, symmetric bilinear pairing 〈·,·〉 on V . It follows
that as k[x, x−1]-modules V ∗ 
 V . This implies (i).

For λ ∈ k� let Vλ ⊆ V be the subspace annihilated by some power of γ −λ and let Wλ := Vλ⊕Vλ−1

if λ �= λ−1 and W±1 := V±1. Taking h(x) = (x − λ)(x − λ−1) or x − (±1) in (6.1) we see that the
distinct non-zero Wλ ’s are mutually orthogonal with orthogonal sum V and, in particular, they are
non-degenerate. To prove (ii) we may hence assume without loss of generality that γ is unipotent so
V = V 1.

Applying Lemma 7.1, we can restrict further to the case where V = V (m) is a non-degenerate
quadratic space on which γ acts as a sum of μ(γ ,1,m) Jordan blocks J1(m).

Applying Corollary 7.4 to γ , we deduce that μ(γ ,1,m)(m − 1) is even, which is what we wanted
to prove.

Note that in the skew-symmetric case (ii) follows directly from Lemma 7.1. Indeed γ restricts to
a unipotent isometry of the non-degenerate skew-symmetric space (V (m),Ψ ). Thus the dimension
mμ(γ ,1,m) of this space is even. �
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