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Let S be a compact Riemann surface of genus g > 1, and 
let τ : S → S be any anti-conformal automorphism of S, 
of order 2. Such an anti-conformal involution is known as a 
symmetry of S, and the species of all conjugacy classes of all 
symmetries of S constitute what is known as the symmetry 
type of S. The surface S is said to have maximal real symmetry
if it admits a symmetry τ : S → S such that the compact 
Klein surface S/τ has maximal symmetry (which means that 
S/τ has the largest possible number of automorphisms with 
respect to its genus). If τ has fixed points, which is the 
only case we consider here, then the maximum number of 
automorphisms of S/τ is 12(g − 1). In the first part of this 
paper, we develop a computational procedure to compute the 
symmetry type of every Riemann surface of genus g with 
maximal real symmetry, for given small values of g > 1. We 
have used this to find all of them for 1 < g ≤ 101, and give 
details for 1 < g ≤ 25 (in an appendix). In the second part, 
we determine the symmetry types of four infinite families 
of Riemann surfaces with maximal real symmetry. We also 
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determine the full automorphism group of the Klein surface 
S/τ associated with each symmetry τ : S → S.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let S be a compact Riemann surface of genus g > 1, and let Aut +(S) be the group 
of all conformal automorphisms of S, and Aut (S) be the full automorphism group of S, 
including both conformal and anti-conformal automorphisms (when the latter exist). An 
anti-conformal automorphism τ : S → S of order 2 is known as a symmetry of S.

We may associate with each such τ a quantity known as the species of τ , defined as 
follows. Let k be the number of connected components (or ovals) of the fixed-point set 
Fix(τ) of τ , and define ε = +1 if the orbit space S/τ of S under the action of 〈τ〉 is 
orientable (or equivalently, if S − Fix(τ) is not connected), and ε = −1 otherwise. Then 
the species of τ , denoted by spc(τ), is given by spc(τ) = εk. It is known that spc(τ)
determines τ up to homeomorphism. In particular, every conjugate of τ in the group 
Aut (S) has the same species as τ .

The symmetry type of S is the unordered list of species of representatives of all con-
jugacy classes of symmetries of S. This concept was introduced in [8].

There are very few families of Riemann surfaces for which the symmetry types are 
known. In this paper we address this issue, for a particular class of Riemann surfaces, 
namely those with maximal real symmetry.

If τ is any symmetry of the compact Riemann surface S, then the orbit space S/τ
endowed with the dianalytic structure inherited naturally from S is known as a Klein 
surface. The algebraic genus of S/τ is defined to be the genus of S. Details are given in 
[1], where it is also shown that if S has genus g > 1, then since Aut (S) is finite, the 
same is true of the group Aut (S/τ) of all automorphisms of S/τ , because the latter can 
be identified with the group of all conformal automorphisms of S that commute with τ
(or in other words, the centraliser of τ in Aut +(S)).

A compact Riemann surface S of genus g > 1 is said to have maximal real symmetry
if it admits a symmetry τ : S → S such that the compact Klein surface S/τ has maximal 
symmetry (which means that S/τ has the largest possible number of automorphisms 
with respect to its genus). If S/τ has non-empty boundary, which is the only case we will 
consider here, then this maximum number is 12(g−1); see [15]. The automorphism groups 
of such bordered surfaces are called M*-groups. These groups are smooth quotients of the 
extended modular group PGL(2, Z), and play a role for compact bordered Klein surfaces 
analogous to the one played by Hurwitz groups (smooth quotients of the ordinary (2, 3, 7)
triangle group) for compact Riemann surfaces. In contrast, however, relatively little is 
known about M*-groups.

The contents of this paper can be summarised as follows. We give some further back-
ground in Section 2, and then in Section 3 we describe the structure of the full group 
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Aut (S) of automorphisms of a Riemann surface S with maximal real symmetry. In all 
cases except the Accola–Maclachlan surface of genus 2, the group Aut (S) is a direct 
product G × C2 of an M*-group G and the cyclic group of order two. We address the 
issue of calculating the symmetry type of such a surface S in Sections 4 and 5. Specifi-
cally, in Section 4 we describe a procedure for doing this for a surface S of (up to) given 
genus g, and its implementation in the computational algebra system Magma [2]. We 
display the results for genus 2 to 25 in Appendix A. These results (and additional results 
for genus up to 101) were obtained with the help of the list of M*-groups up to order 
1200 used in [3]. We change the approach in Section 5, where we consider an infinite 
family {Gn} of M*-groups of order 12n2 (for n ≥ 1), and determine the symmetry type 
of four infinite families of Riemann surfaces associated with these groups. As well as 
calculating the species of a representative τ of each conjugacy class of symmetries, we 
describe the automorphism group Aut (S/τ) of the compact Klein surface S/τ associated 
with every such τ .

2. Further background

The adjective “real” for the kind of symmetry we are considering on a Riemann surface 
comes from real algebraic geometry: if we view S as a complex algebraic curve, then 
the symmetry τ can be chosen to be complex conjugation, and then Aut (S/τ) can be 
identified with the group of birational transformations of S with real coefficients. This 
way, Riemann surfaces with maximal real symmetry correspond to complex algebraic 
curves with the largest possible number of real automorphisms.

The category of pairs (S, τ), where S is a compact Riemann surface and τ : S → S is 
a symmetry, is co-equivalent to the category of algebraic function fields in one variable 
over R; see [1, Chapter 2, Section 3]. Consequently, such a pair (S, τ) is usually called 
a real algebraic curve. Non-conjugate symmetries on a Riemann surface S correspond 
to non-isomorphic real curves whose complexifications are (isomorphic to) S. Hence the 
topological classification of these real curves is contained in the symmetry type of S.

Some topological and analytic features of the real curve (S, τ) can be obtained from 
the associated symmetry τ . For instance, the set of real points of the curve is homeo-
morphic to the fixed point set Fix(τ) of the symmetry, so the number of ovals of the 
real curve equals the absolute value |spc(τ)| of the species. In addition, spc(τ) > 0 if 
and only if the real curve disconnects its complexification. Because of this, symmetries 
with positive species are called separating, while symmetries with non-positive species 
are non-separating.

Numerous facts about symmetries of surfaces can be found in the literature, but there 
are few families of surfaces whose symmetry types have been completely determined. The 
symmetry types for surfaces of genus 0 and 1 were given in [1], for genus 2 in [8], and for 
genus 3 in [17]. Also the combinatorial theory of non-euclidean crystallographic groups 
was used to determine the symmetry type of the cyclic covers of the sphere branched 
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over three points in [5], and a complete study of the symmetry types of hyperelliptic 
surfaces was carried out in [4].

In what follows, by a Riemann surface we will mean a compact Riemann surface S of 
genus g > 1, and we will say that S has maximal real symmetry if it admits a symmetry τ

such that S/τ is a bordered Klein surface with 12(g − 1) automorphisms.
We now recall the main ideas of Fuchsian and NEC groups in the setting of Riemann 

surfaces. We refer the reader to Chapters 0 and 1 in [7] for a general treatment.
An NEC group (which is short for non-Euclidean crystallographic group) is a discrete 

subgroup Γ of the group PGL(2, R) of all isometries of the hyperbolic plane H with the 
property that the orbit space H/Γ is compact. If Γ contains only orientation-preserving 
isometries, then it is a Fuchsian group, and otherwise it is a proper NEC group. The 
canonical Fuchsian subgroup of a proper NEC group Γ is the subgroup Γ+ = Γ ∩PSL(2, R)
consisting of its orientation-preserving elements.

A surface Fuchsian group is a torsion-free Fuchsian group. The term “surface” comes 
from the fact that every such group uniformises a compact Riemann surface of genus 
greater than one — that is, for any such surface S there exists a surface Fuchsian group Λ
such S = H/Λ. Two Riemann surfaces H/Λ1 and H/Λ2 are isomorphic if and only if Λ1
and Λ2 are conjugate subgroups within PGL(2, R).

A given finite group G is a group of conformal and anti-conformal automorphisms of 
S = H/Λ if and only if there exist an NEC group Γ and an epimorphism θ : Γ → G which 
has Λ as its kernel. Any such epimorphism whose kernel is a surface Fuchsian group is 
called a smooth epimorphism. In that case, the order of G, the genus of H/Λ and the 
area of a fundamental domain for the action of Γ are related by the Riemann–Hurwitz 
formula.

The algebraic structure of every NEC group Γ and the topological features of the 
projection H → H/Γ are determined by the signature σ(Γ) of Γ. Of special interest here 
are the NEC groups with signature

σ∗ = (0; +; [−]; {(2, 2, 2, 3)}).

Every NEC group Γ∗ with this signature σ∗ is isomorphic to the abstract group with 
presentation

〈 c0, c1, c2, c3 | c20 = c21 = c22 = c23 = (c0c1)2 = (c1c2)2 = (c2c3)2 = (c3c0)3 = 1 〉. (1)

Here each ci represents a hyperbolic reflection, and every other hyperbolic reflection 
c ∈ Γ∗ is conjugate in Γ∗ to some ci. The NEC groups with this presentation play a key 
role in this paper, for the following reason: if S is a Riemann surface with maximal real 
symmetry, then with the single exception of the Accola–Maclachlan surface of genus 2, 
its full automorphism group Aut (S) is described by means of a smooth epimorphism 
θ : Γ∗ → Aut (S) from some NEC group Γ∗ with presentation (1). In fact, the structure 
of Aut (S) is well known, and we will describe it in Theorem 3.1 below.
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The groups arising as the full automorphism group of a bordered Klein surface with 
maximal symmetry are called M*-groups. It is well known that each M*-group G is a 
factor group Γ∗/Λ, where Γ∗ has presentation (1), and Λ is a bordered surface NEC group 
— that is, an NEC group containing a reflection, but no non-trivial orientation-preserving 
element of finite order.

In this case, at least one of {c0, c1, c2, c3} must lie in the normal subgroup Λ. It is 
easy to see (by considering images of elements in the factor group Γ∗/Λ) that neither 
c0 nor c3 can lie in Λ, since c0c3 has order 3 (while c0 and c3 have order 2). Also Γ∗

has an outer automorphism ξ that takes (c0, c1, c2, c3) to (c3, c2, c1, c0), since replacing 
each ci by c3−i in the presentation for Γ∗ preserves the defining relations. Hence, after 
application of ξ if necessary, we may assume that c1 ∈ Λ, in which case c2 /∈ Λ.

Then if we denote the images of c0, c2 and c3 in Γ∗/Λ by a, c and d, respectively, we 
see that every M*-group G = Γ∗/Λ admits the following (partial) presentation:

〈 a, c, d | a2 = c2 = d2 = (cd)2 = (ad)3 = . . . = 1 〉, (2)

where the remaining relators (indicated by ‘. . .’) determine the (finite) group G; indeed 
they are the images of a set of elements in Γ∗ whose normal closure is Λ. The presentation 
without the extra relators can be re-written as 〈 x, y, t | x2 = y3 = t2 = (xt)2 =
(yt)2 = 1 〉 in terms of the alternative generators x = c, y = ad and t = d, and this is a 
presentation for the extended modular group PGL(2, Z), with the two elements x and y
generating the modular group PSL(2, Z), a subgroup of index 2. Hence M*-groups are 
smooth quotients of PGL(2, Z).

Presentations for all M*-groups up to order 1200 can be found in [3, Section 5], and 
as we will explain in Section 4, we have used this list to compute the symmetry types of 
all Riemann surfaces with maximal real symmetry up to genus 101.

3. Riemann surfaces with maximal real symmetry

Recall that the symmetry type of a Riemann surface S is the unordered list of species 
of representatives of all conjugacy classes of symmetries of S. Clearly, a first step in 
finding the symmetry type of S is to know the full automorphism group Aut (S). It is 
difficult in general, however, to determine whether a given group G acting on S as a 
group of automorphisms is the full group Aut (S), or alternatively, whether S admits 
more automorphisms than those in G. In the case of Riemann surfaces with maximal 
real symmetry, this is easy, thanks to a helpful theorem established by May in [16]; see 
also [6]. Before stating it (as Theorem 3.1 below), we introduce some further notation 
which will also be helpful later.

Let S be a genus g Riemann surface with maximal real symmetry, and τ : S → S

a symmetry such that S/τ is a bordered Klein surface with full automorphism group 
Aut (S/τ) of order 12(g−1). We have S = H/Λ+, where Λ is a proper NEC group and Λ+

is its canonical Fuchsian subgroup, and also (with a slight abuse of notation) we can write 
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τ = Λ/Λ+. Then S/τ ∼= (H/Λ+)/(Λ/Λ+) ∼= H/Λ. Also we know that Aut (S/τ) = Γ∗/Λ
where Γ∗ has presentation (1), so that Aut (S/τ) is an M*-group. Now observe that Γ∗

normalises Λ+, since conjugation preserves orientability, and so the quotient Γ∗/Λ+ is 
a group of automorphisms of S. Moreover, Λ/Λ+ is a normal subgroup of order 2 in 
Γ∗/Λ, and is therefore central in Γ∗/Λ, and also Λ/Λ+ is complemented by the index 2
subgroup (Γ∗)+/Λ+, which is isomorphic to Γ∗/Λ, and hence to Aut (S/τ). It follows 
that Γ∗/Λ+ is isomorphic to the direct product (Γ∗)+/Λ+ ×Λ/Λ+ = Aut (S/τ) ×Λ/Λ+, 
and in particular, the full group Aut (S) has a subgroup isomorphic to Aut (S/τ) × C2.

Theorem 3.1 states that with one single exception, namely where S/τ is the regular 
pair of pants, this is the full group Aut (S).

The regular pair of pants is the surface S/τ where S is the Accola–Maclachlan curve 
of genus 2, given by w2 = z6 − 1, and τ : (z, w) 	→ (1/z̄, iw̄/z̄3). Topologically, S/τ is a 
sphere with three holes, and therefore spc(τ) = 3. The full group Aut (S) has order 48
and presentation 〈 a, b, c | a2 = b2 = c2 = (ab)4 = (bc)6 = (ac)2 = (babc)2 = 1 〉. The 
symmetry type of this surface is {−1, 0, 1, 3}; see [4, Section 3.4], where explicit algebraic 
equations for representatives of each conjugacy class of symmetries are also given.

Theorem 3.1. (See [16].) With the above notation, suppose that S/τ is not homeomorphic 
to the regular pair of pants. Then the full group Aut (S) of all conformal and anti-
conformal automorphisms of S is isomorphic to the direct product Aut (S/τ) × C2, and 
moreover, Aut (S/τ) is isomorphic to the group Aut +(S) of conformal automorphisms 
of S, while the factor C2 is generated by the symmetry τ .

For any given M*-group G, Theorem 3.1 provides a way to obtain all Riemann surfaces 
with maximal real symmetry and with full group Aut (S) isomorphic to G ×C2. To do this, 
we consider all possible smooth epimorphisms θ : Γ∗ → G × C2 from an NEC group Γ∗

with presentation (1), such that the index 2 subgroup (Γ∗)+ = 〈 c0c1, c1c2, c2c3 〉 of all 
orientation-preserving elements in Γ∗ is mapped onto G, and some hyperbolic reflection 
(with fixed points) in Γ∗ is mapped to the non-trivial element of the C2-factor, say τ . In 
every such case, S = H/ ker θ is a compact Riemann surface, admitting a symmetry τ
with the property that the full automorphism group Aut (S/τ) of the bordered surface 
S/τ is isomorphic to G. Thus S is a Riemann surface with maximal real symmetry, and 
by Theorem 3.1, its full group Aut (S) is G ×C2, unless S/τ is the regular pair of pants.

We will assume from now on that S/τ is not the regular pair of pants.
Because each hyperbolic reflection is conjugate to one of the canonical reflections 

c0, c1, c2 and c3 generating Γ∗, we may assume that τ = θ(ci) for some i ∈ {0, 1, 2, 3}. In 
fact, by the same argument as used in the observations about M*-groups towards the 
end of the previous section, we may assume that τ = θ(c1).

The images of the other generating canonical reflections are of the form θ(c0) =
aτ , θ(c2) = cτ and θ(c3) = dτ , where a, c, d ∈ G. Moreover, the elements a, c and d
are involutions (since the θ(ci) are involutions and τ is a central involution), and they 
must generate the given M*-group G (the image of Aut (S) = G × C2 when the C2 is 
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factored out). In fact, from the relations in the presentation (1) we know that this triple 
(a, c, d) of generators for G must satisfy the relations

a2 = c2 = d2 = (cd)2 = (ad)3 = 1. (3)

Accordingly, in order to find all Riemann surfaces S with maximal symmetry such 
that Aut (S) = G ×C2, we have to find all triples (a, c, d) of generators of G satisfying the 
relations (3). Technically, we only have to consider such triples up to conjugacy within 
Aut (G), since composing θ with an automorphism of G ×C2 gives a smooth epimorphism 
from Γ∗ to G × C2 with the same kernel in Γ∗. This, however, can all be taken care of 
in the determination of presentations for M*-groups, as in [3].

Once the full automorphism group of S is known, the next step in computing the 
symmetry type of S is to find the conjugacy classes of symmetries in Aut (S) = G ×C2. 
From the above description of this group, see know that each symmetry is of the form wτ
where w ∈ G is a conformal automorphism of order 1 or 2. Hence this problem reduces 
to determining conjugacy classes of involutions in the M*-group G.

Finally, for a representative wτ of each conjugacy class of symmetries in Aut (S), 
we have to determine its species spc(wτ). This splits into two problems: counting the 
number of ovals of Fix(wτ), and determining the orientability of S/wτ . We can solve 
these problems using the combinatorial theory of NEC groups in the following way.

Let Γ∗ and θ : Γ∗ → Aut (S) be as above. Then the images θ(ci) of the canonical 
generators for Γ∗ are symmetries, with fixed points (since each ci is an involution with 
fixed points on H). Moreover, since every reflection in Γ∗ is conjugate to some ci, it 
follows that every symmetry which is not conjugate to some θ(ci) is fixed-point-free. 
Observe also that c0 and c3 generate a dihedral subgroup of order 6, and hence they 
are conjugates of each other, and the same is true of θ(c0) and θ(c3). This gives the 
following:

Lemma 3.2. The number of conjugacy classes of symmetries in Aut (S) with fixed points 
is at most 3. In particular, spc(τ) = 0 for any symmetry τ ∈ Aut (S) which is not 
conjugate to θ(c1) or θ(c2) or one of θ(c0) and θ(c3).

On the other hand, we observe that the number of conjugacy classes of fixed-point-free 
symmetries can be arbitrarily large. For by theorems of the third author [9,10], all but 
finitely many alternating groups An and all but finitely many symmetric groups Sn are 
smooth quotients of the extended modular group PGL(2, Z), and hence are M*-groups. 
Also the number of conjugacy classes of involutions in An and Sn increases with n (indeed 
is the integer part of n/4 and n/2 respectively), and the assertion follows.

In order to count the number of ovals of each symmetry θ(ci), which we denote by 
‖θ(ci)‖, we use the following formula due to G. Gromadzki. Here |A : B| denotes the 
index of a subgroup B in a group A, and CA(x) denotes the centraliser in a group A of 
an element x, as usual.
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Theorem 3.3. (See [13].) The number of ovals of the symmetry θ(ci) with fixed points is

‖θ(ci)‖ =
∑
c

|CAut(S)(θ(c)) : θ(CΓ∗(c)) |, (4)

where c runs through the set of all non-conjugate canonical reflections of Γ∗ whose images 
under θ are conjugate in Aut (S) to θ(ci).

The centraliser in an NEC group of a canonical reflection was studied by Singer-
man [18]. It follows from his work that

CΓ∗(c0) = 〈 c0, c1, (c2c3)c0c3 〉 ∼= 〈c0〉 ×
(
〈c0c1〉 ∗ 〈c3c0c2c3c0c3〉

)
, (5)

CΓ∗(c1) = 〈 c0, c1, c2 〉 ∼= 〈c1〉 ×
(
〈c0c1〉 ∗ 〈c1c2〉

)
, (6)

CΓ∗(c2) = 〈 c1, c2, c3 〉 ∼= 〈c2〉 ×
(
〈c1c2〉 ∗ 〈c2c3〉

)
, and (7)

CΓ∗(c3) = 〈 c3, c2, (c1c0)c3c0 〉 ∼= 〈c3〉 ×
(
〈c2c3〉 ∗ 〈c0c3c0c1c3c0〉

)
, (8)

where A ∗B is the free product of the subgroups A and B. Note that we need only one 
of the expressions for CΓ∗(c0) and CΓ∗(c3), since c3 is conjugate to c0 in Γ∗. The other 
terms in formula (4) depend on the particular group Aut (S) and the epimorphism θ.

The separating character of each symmetry τi = θ(ci), or equivalently, the orientability 
of each Klein surface S/τi, can be computed by inspection of a Schreier coset graph for 
the group Γ∗ with respect to the subgroup (θ)−1(〈τi〉), with the reflection loops deleted, 
as explained by Hoare and Singerman in [14, Section 3]. Since all the generators of Γ∗

are orientation-reversing, the symmetry τi is non-separating if and only if this graph is 
non-bipartite; see [14, Corollary 3].

4. Finding the symmetry types of Riemann surfaces of small genus with maximal real 
symmetry

In this section we give a brief description of a procedure for determining the Riemann 
surfaces of (up to) given small genus g that have maximal real symmetry, and for com-
puting their symmetry types. This procedure is valid for all such surfaces except for the 
Accola–Maclachlan surface of genus 2.

As a first step, we can use the LowIndexNormalSubgroups procedure in the computa-
tional algebra system Magma [2] to find all normal subgroups of index up to 12(g − 1)
in the extended modular group

〈 a, c, d | a2 = c2 = d2 = (cd)2 = (ad)3 = 1 〉 ∼= PGL(2,Z),

as was done in [3] to find all M*-groups of up to order 1200.
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For each such normal subgroup K of index (say) n in Ψ = PGL(2, Z), we may consider 
the natural permutation representation of Ψ on the cosets of K, which gives an epimor-
phism ψ from Ψ to the quotient G = Ψ/K of order n, with kernel K. We then check 
that the orders of the ψ-images of the three generators a, c and d and their products 
ad and cd are preserved. In that case, ψ is a smooth homomorphism, and so G is an 
M*-group, which acts on a bordered Klein surface of algebraic genus 1 + n/12. Then 
we can add an extra generator τ , plus relations that make it have order 2 and commute 
with the first three generators. This gives the group G ×C2, and then also we can set up 
the epimorphism θ from the group with presentation (1), which we might as well call Γ∗, 
to G × C2.

The next step is to find the conjugacy classes of symmetries in G × C2. This can 
be achieved easily using the ConjugacyClasses command in Magma, although the 
group has to be converted into a suitable format, for example by taking its regular 
representation (as a permutation group of degree |G × C2| = 2|G| = 2n). We find all 
conjugacy classes of involutions in G ×C2, and then it is also easy to find out which classes 
lie in G and which do not; the latter are the classes of symmetries of the corresponding 
surface S.

One slightly challenging aspect of this is to find representatives of the classes. It is 
easy to find out which class contains τ , because τ is a central involution and hence forms 
a class of size 1, and also it is easy to check which classes contain aτ (or dτ) and cτ . 
The problem occurs with the classes that do not contain one or more of these elements. 
But we can simply run through possibilities for a word w of increasing length in the 
generators a, c and d for G, until we find one such that w or wτ lies in the given class.

In contrast, it is easy to determine the automorphism group of the Klein surface S/τi
associated with each representative symmetry τi, since we know that Aut (S/τi) can 
be identified with the centraliser in G = Aut +(S) of τi (by observations made in the 
Introduction). Note that when τi is the θ-image of one of the canonical generators of Γ∗, 
we also need the centraliser of τi in G × C2 = Aut (S) to compute the number of its 
ovals. These centralisers are easy to compute using Magma.

Similarly, finding the species of each representative symmetry is relatively easy. By 
Lemma 3.2, the species is 0 for every representative of a class that does not contain 
one or more of τ , aτ , cτ and dτ , so we need only consider the classes containing the 
latter. Also we know that aτ is always conjugate to dτ (since they are the θ-images of c0
and c3), so in fact there are at most three classes to consider.

Computation of the number of ovals of each representative symmetry is entirely 
straightforward, using Theorem 3.3 and the observations by Singerman following it. 
For example, the symmetry τ = θ(c1) is a central involution in G × C2 and so lies in a 
class of its own, containing no other images θ(ci), and therefore the number of ovals of 
the symmetry τ is

‖τ‖ = |CG×C2(τ) : θ(CΓ∗(c1)) | = |G× C2 : θ(〈c0, c1, c2〉) | = |G× C2 : 〈a, τ, c〉) |.
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Now 〈a, τ, c〉 is the direct product of 〈a, c〉 and 〈τ〉, and hence isomorphic to Dm × C2, 
where m is the order of ac. In particular, the number of ovals for τ is equal to |G|/2o(ac). 
This leaves only one or two representative symmetries to deal with, namely aτ and cτ
(depending on whether they lie in the same class or not).

Finally, we find the separating character of each of τ , aτ (or dτ) and cτ , by considering 
the Schreier coset graph for the action of G ×C2 via the generating set {aτ, τ, cτ, dτ} on 
right cosets of the subgroup H of order 2 generated by the relevant symmetry. Again, if 
cτ is conjugate to aτ and dτ , then we do this for τ and just one of the other three.

In the case of the central symmetry τ , there is a loop for the effect of τ at every 
vertex, since τ is central in G × C2. When these loops are deleted, what remains is the 
Schreier coset graph for the regular representation of G via the generating set {a, c, d}. 
The latter graph is bipartite if and only if the subgroup of G generated by ac and cd (and 
(ac)(cd) = ad) has index 2 in G, or equivalently, there is no relation in the group G of 
odd length in the generators a, c and d. This is easy to check. In particular, the surface 
S/τ is orientable (and ε = +1 for the symmetry τ) if and only if none of the relators in 
the presentation for the M*-group G has odd length.

For the other symmetries aτ (or dτ) and cτ , some more work is required. In these 
cases, a loop corresponding to the effect of the generator u (= aτ, τ, cτ or dτ) occurs 
at a vertex Hx whenever xux−1 ∈ H, or equivalently, the generator u is a conjugate 
of the generator of H under the element x. This cannot happen when u = τ (again 
since τ is central), but it may happen in other cases. (For example, if H = 〈dτ〉, then 
multiplication by aτ fixes the coset Had, since (ad)aτ(ad)−1 = adadaτ = dτ ∈ H.)

It is relatively easy to find out exactly where these loops occur, using knowledge of 
the centraliser of H. But it is even easier to construct the loop-less version of the graph 
directly, using the permutation representation of G ×C2 on right cosets of H, and then 
to check whether or not this graph is bipartite. It is also not difficult to find an explicit 
cycle of odd length, when one exists, by tracing closed walks in the full coset graph 
corresponding to the defining relators for G or G × C2.

To summarise, we have the following algorithm, valid for all Riemann surfaces with 
maximal real symmetry except the Accola–Maclachlan surface of genus 2:

Algorithm 4.1. For every smooth epimorphism ψ from the extended modular group to 
an M*-group G, of order 12(g − 1), we can perform these steps to obtain the symme-
try type of the corresponding surface S having maximal real symmetry, genus g, and 
automorphism group G × C2:

(1) Construct the direct product G × C2, by adjoining a central involution τ , and also 
construct the corresponding smooth epimorphism θ : Γ∗ → G × C2;
(2) Find the conjugacy classes of symmetries in G × C2, and a representative of each 
class;
(3) Use centralisers and Theorem 3.3 to find the automorphism group of the Klein surface 
S/τi associated with each representative symmetry τi;
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(4) For each class containing the θ-image of one of the canonical generators of Γ∗, use 
centralisers and Theorem 3.3 to find the number of ovals of each representative symmetry, 
and use a Schreier coset graph and the Hoare–Singerman method [14, Section 3] to 
determine its separating character, and hence its species.

By way of illustration, let us consider the M*-group G of order 336 with presentation

〈 a, c, d | a2 = c2 = d2 = (cd)2 = (ad)3 = (ac)7 = (acd)8 = 1 〉.

This is isomorphic to the group PGL(2, 7), and acts on a bordered surface of algebraic 
genus 29. As explained earlier, we adjoin a central involution τ to create G ×C2, and then 
we can take the epimorphism θ : Γ∗ → G ×C2 under which (c0, c1, c2, c3) 	→ (aτ, τ, cτ, dτ). 
The resulting group G ×C2 of order 672 has five conjugacy classes of involutions, of sizes 
1, 21, 21, 28 and 28, with representatives τ , cd, cdτ , aτ (or cτ or dτ) and a (or c or d) 
respectively. Two of these lie in G (namely the ones containing a and cd), while the other 
three consist of symmetries, and we will take their representatives as τ , cτ and cdτ .

The centralisers in G ×C2 of these elements are respectively G ×C2, 〈c, d, (acdac)3, τ〉
and 〈c, d, (acd)4, τ〉, and so their centralisers in G are respectively G, 〈c, d, (acdac)3〉 and 
〈c, d, (acd)4〉. The latter centralisers, and hence also the automorphism groups of the 
Klein surfaces S/τ , S/(cτ) and S/(cdτ), have orders 336, 12 and 16.

Finally, we determine the species of each representative symmetry. We know the 
species of cdτ is 0 (since it contains none of the θ-images of the canonical generators ci
of Γ∗), and so we need only find the species of τ and cτ .

In the special case of τ itself, we know by observations made above that the number 
of ovals of the symmetry τ is ‖τ‖ = | G : 〈a, c〉 | = 336/14 = 24, since ac has order 7.

The class containing cτ = θ(c2) contains also aτ = θ(c0) and dτ = θ(c3), and indeed 
c0 and c3 are conjugate in Γ∗, but c0 and c2 are not. By Theorem 3.3 and a Magma

computation, it follows that the number of ovals for cτ is

‖cτ‖ = |CG×C2(aτ) : θ(CΓ∗(c0)) | + |CG×C2(cτ) : θ(CΓ∗(c2)) |

= |CG×C2(aτ) : 〈a, τ, (cd)ad〉 | + |CG×C2(cτ) : 〈τ, c, d〉 |

= 24/8 + 24/8 = 6,

since both 〈a, τ, (cd)ad〉 and 〈τ, c, d〉 have order 8 (and we know that the size of the 
conjugacy class of G ×C2 containing aτ and cτ is 28, so the centralisers CG×C2(aτ) and 
CG×C2(cτ) both have order 672/28 = 24).

To find the separating character of τ (and hence the orientability of S/τ), we note that 
every relator in the presentation we took for G has even length. It follows that when 
the loops for the effect of τ at each vertex of the Schreier coset graph for the action 
of G × C2 via the generating set {aτ, τ, cτ, dτ} on cosets of 〈τ〉 are deleted, we have a 
bipartite graph. Hence the species of the symmetry τ is +24.
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On the other hand, there are 36 loops in the Schreier coset graph for the action of 
G ×C2 on the 336 cosets of the subgroup 〈cτ〉, via the generating set {aτ, τ, cτ, dτ}, with 
12 loops for the effect of each of aτ , cτ and dτ (and none for bτ). When these loops 
are deleted we have a non-bipartite graph, since the relation (cda)8 = 1 in the group G
implies a relation ((cτ)(dτ)(aτ))8 = 1 in the group G × C2, and tracing this out in the 
coset graph gives a loop followed by a 23-cycle, and hence a cycle of odd length when 
the loops are deleted. (Note: the relations (cd)2 = 1, (ad)3 = 1 and (ac)7 = 1 give closed 
walks of lengths 2, 6 and 12, respectively.) The cycle of odd length 23 shows that the 
quotient surface S/(cτ) is non-orientable, and therefore the species of the symmetry cτ
is −6.

To summarise, the species of τ , cτ and cdτ are 24, −6 and 0, it follows that the 
symmetry type of the corresponding surface S (of genus 1 +336/12 = 29) is {+24, −6, 0}.

We have implemented the above procedure in Magma, in order to compute the 
symmetry types of all compact Riemann surfaces of genus 2 to 101 with maximal real 
symmetry (except the Accola–Maclachlan surface of genus 2), with the help of the list 
of all M*-groups of up to order 1200 found in [3]. The results for genus 2 to 25 are 
displayed in Appendix A, and those for higher genera are available from any one of the 
authors. For notational convenience, we have expressed the additional relators used to 
obtain each M*-group G as a quotient of Ψ = PGL(2, Z) in terms of the two elements 
u = ac and v = (ac)d (= dacd = dadc = adac).

5. Infinite families of Riemann surfaces with maximal real symmetry

In this section we explicitly compute the symmetry type of some infinite families 
of Riemann surfaces with maximal real symmetry, leading to a proof of the following 
theorem:

Theorem 5.1. For every n > 3, there are two compact Riemann surfaces of genus n2 + 1
with maximal real symmetry, each having conformal automorphism group isomorphic 
to Gn and full automorphism group isomorphic to Gn × C2, where

Gn = 〈 a, c, d | a2 = c2 = d2 = (cd)2 = (ad)3 = (ac)6 = (acd)2n = 1 〉,

which is isomorphic to the group G3,6,2n in the notation of Coxeter. Moreover, if b is the 
generator of the C2 factor, and u = acacad, then the following hold:

(a) If n is odd, these surfaces have symmetry types {n2, −n, −n, 0} and {3n, −n, −3, 0}.
More specifically, each of the two surfaces has four conjugacy classes of symmetries, 
with representatives b, ab, cb and cdb, and their respective species are n2, −n, −n

and 0 for one surface, and 3n, −n, −3 and 0 for the other.
(b) If n is even, the two symmetry types are {n2, −n, −n, 0, 0, 0} and {3n, −n, −4, 0, 0, 0}.
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More specifically, each of the two surfaces has six conjugacy classes of symmetries, 
with representatives b, ab, cb, cdb, un/2b and ucdb, and their respective species are 
n2, −n, −n, 0, 0 and 0 for one surface, and 3n, −n, −4, 0, 0 and 0 for the other.

Furthermore, if n = 1 then all the above holds, except that the symmetries ab and cdb
for the second surface have positive species, giving symmetry type {3, 1, 3, 0}. Similarly, 
if n = 2 then all the above holds, except that the symmetries ab and cdb for the second 
surface have positive species, giving symmetry type {6, 2, 4, 0, 0, 0}. Finally, if n = 3 then 
all the above also holds, except that the two surfaces are the same, with symmetry type 
{9, −3, −3, 0}.

All these surfaces can be constructed from an infinite family of quotients of the ex-
tended (2, 3, 6) triangle group, which is the abstract group

Δ∗(2, 3, 6) = 〈 a, c, d | a2 = c2 = d2 = (cd)2 = (ad)3 = (ac)6 = 1 〉.

By the theory of this triangle group (as given in [11, Section 8.4], for instance), we know 
that the elements v = [cd, ad] and u = [cd, ad]a generate a free abelian normal subgroup 
of rank 2, with index 12. In fact v = [cd, ad] = (cd)−1(ad)−1cdad = cddacdad = cacada, 
since a2 = c2 = d2 = (cd)2 = 1 and ada = dad (because (ad)3 = 1), and so u = va =
acacad. Also uv−1 = acacadadacac = acacdcac = acadac, and it follows that conjugation 
by a swaps u and v, while conjugation by c fixes u (since cacacadc = acacacdc = acacad) 
and takes v to acadac = uv−1, and conjugation by d takes u to dacaca = u−1, and v
to dcacadad = dcacda = cdadca = cadaca = vu−1. Factoring out this normal subgroup 
gives a dihedral quotient of order 12, generated by the images of a and c, and it follows 
that the extended (2, 3, 6) triangle group is isomorphic to an extension of Z × Z by D6.

Now for each positive integer n, we can add the relation un = 1 and obtain the 
quotient

Gn = 〈 a, c, d | a2 = c2 = d2 = (cd)2 = (ad)3 = (ac)6 = (acacad)n = 1 〉.

Here we are abusing notation by using the same symbols a, c and d as generators for Gn. 
We take this further by letting

v = cacada = [cd, ad] and u = acacad = [cd, ad]a

in this group Gn. In doing so, we see that Gn is obtained from Δ∗(2, 3, 6) by specifying 
the order of u (and its conjugate v = ua) as n. Also the element acacad is conjugate 
via ac to acadac = acdadc = acdacd = (acd)2, so the final relation can be replaced by 
(acd)2n = 1, which makes Gn isomorphic to the group G3,6,2n in the notation of [11]. 
Moreover, it follows from the above observations that u and v generate an abelian normal 
subgroup N isomorphic to Cn × Cn, with

ua = v, va = u, uc = u, vc = uv−1, ud = u−1 and vd = vu−1,
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and quotient Gn/N isomorphic to D6 (generated by the images of a and c). In particular, 
Gn has order 12n2, and is therefore an M*-group of genus n2 + 1.

When n = 1 we have Gn
∼= D6, which is the only M*-group of genus 2, and when n = 2

we have the unique M*-group of genus 5 (namely S4 ×C2); see [3]. The symmetry types 
of the Riemann surfaces with genus 2 or 5 with maximal real symmetry were considered 
in Section 4, and given (with a different definition for u and v) in Appendix A, so we 
can ignore these cases and assume that n > 2 from now on.

Next, we adjoin a central involution b to Gn, to create the direct product Gn × C2, 
generated by a, b, c and d. Note that the subgroup N = 〈u, v〉 remains normal in Gn×C2. 
We will consider all ways in which Gn × C2 is the automorphism group of a compact 
Riemann surface of genus g = n2 + 1 with maximal real symmetry.

Before doing that, we exhibit some automorphisms of Gn × C2 that will be useful. 
Conjugation by any element urvs of N is an inner automorphism that has the following 
effect on the generators:

au
rvs

= us−rvr−sa, bu
rvs

= b, cu
rvs

= usv−2sc, and du
rvs

= u−2r−sd.

Similarly, conjugation by elements of the dihedral subgroup D = 〈a, c〉 of order 12
gives a subgroup of inner automorphisms that transitively permutes the 12 pairs of 
involutions generating D, and transitively permutes the 12 pairs of involutions generating 
a dihedral subgroup of order 6 in D (and also the 6 pairs of involutions generating a 
subgroup of order 4 in D). Finally, for any unit α mod n, there exists an automorphism 
of Gn ×C2 taking (a, b, c, d) to (a, b, c, duα−1) = (a, b, c, (acaca)uα), since the latter four 
elements generate Gn × C2 and satisfy the same relations as (a, b, c, d). Note that this 
automorphism takes u = (acaca)d to (acaca)2uα = uα.

Now we find the conjugacy classes of involutions in Gn × C2 that lie outside Gn. For 
obvious reasons, we will call any such involution x a symmetry in Gn × C2.

In each case, the image of x in the quotient (Gn × C2)/N ∼= D6 × C2 must be an 
involution lying outside Gn/N ∼= D6. There are four conjugacy classes of such elements in 
Gn/N , with representatives Nb, Nab, Ncb and N(ac)3b, of sizes 1, 3, 3 and 1, respectively. 
It follows that each x is conjugate to an element of the form wb, wab, wcb or w(ac)3b, 
where w ∈ N .

We can use this to prove the following:

Lemma 5.2. If n is odd, then there are four conjugacy classes of symmetries in Gn×C2: 
one of size 1 with representative b, two of size 3n with representatives ab and cb, and 
one of size n2 with representative dcb. On the other hand, if n is even, then there are 
six conjugacy classes of symmetries in Gn ×C2: one of size 1 with representative b, one 
of size 3 with representative un/2b, two of size 3n with representatives ab and cb, one 
of size n2/4 with representative udcb, and one of size 3n2/4 with representative dcb. In 
particular, b is the only central involution in Gn × C2 whenever n > 2.
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Proof. If x = wb then also 1 = (wb)2 = w2 (since b is a central involution), and so 
w = 1, un/2, vn/2, or (uv)n/2 (= un/2vn/2 = (uv−1)n/2), with the last three possibilities 
occurring only when n is even. Moreover, the last three involutions are mutually conju-
gate within Gn, by what we know about the effects on u and v by conjugation by each 
of a, c and d. Hence if n is odd we find one conjugacy class, of size 1, with representative 
x = b, while if n is even we have two classes, of sizes 1 and 3, with representatives x = b

and x = un/2b.
Next, suppose x = wab, where w = uivj . Then 1 = (wab)2 = uivjauivja = ui+jvj+i

and so i + j ≡ 0 mod n, which implies that w is one of the n powers of uv−1. On the 
other hand, the centraliser of ab in N consists of all elements urvs for which urvs =
(urvs)ab = vrus, that is, r ≡ s mod n, and so ab has |N : CN (ab)| = n2/n = n distinct 
conjugates under elements of N . These must be the n elements of the form (uv−1)iab. 
Hence this gives one further conjugacy class in Gn×C2, of size 3n and with representative 
ab (irrespective of whether n is odd or even).

Applying an inner automorphism of Gn × C2 that takes a to c (within the dihedral 
subgroup D = 〈a, c〉), we find the same is true for the case x = wcb, namely that there 
is a single class of involutions, of size 3n, with representative cb.

Finally, suppose x = w(ac)3b, where w = uivj . Note that conjugation by ac induces 
the 6-cycle (u, uv−1, v−1, u−1, u−1v, v), and so conjugation by (ac)3b inverts each of u
and v, and hence inverts every element of N . In particular, (w(ac)3b)2 = ww−1(ac)6 = 1
for all w ∈ N , so there are n2 possibilities for w. Also Gn is generated by a, b, c and 
u (= acacad), and conjugation by these generators has the following effect on x =
w(ac)3b = uivj(ac)3b:

xa = (uivj(ac)3b)a = viuj(ca)3b = ujvi(ac)3b = (uv−1)j−ix,

xb = (uivj(ac)3b)b = uivj(ac)3b = x,

xc = (uivj(ac)3b)c = uiujv−j(ca)3b = ui+jv−j(ac)3b = (uv−2)jx, and

xu = (uivj(ac)3b)u = uivju−2(ac)3b = ui−2vj(ac)3b = u−2x.

When n is odd, these show there is just one conjugacy class of elements of the required 
form, of size n2, and taking (i, j) = (−1, 0) gives class representative x = u−1(ac)3b =
dcb. On the other hand, when n is even there are two classes, of sizes n2/4 and 3n2/4, 
with one consisting of the elements urvs(ac)3b where r and s are both even, and the other 
of those where at least one of r and s is odd. In particular, taking (r, s) = (0, 0) and 
(−1, 0) gives representatives of these two classes as (ac)3b = udcb and u−1(ac)3b = dcb, 
respectively. �

Next, we find all smooth epimorphisms θ : Γ∗ → Gn×C2, up to equivalence, where Γ∗

is an NEC group with presentation given in (1), and θ takes each canonical generator ci
to a symmetry in Gn×C2, with θ(c1) = b. We will call such an epimorphism admissible. 
Two such epimorphisms θ and ν are equivalent if ν is the composite of θ with any 
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automorphism of Gn × C2. Observe that in any such case, ker θ = ker ν, and then the 
Riemann surfaces H/ ker θ and H/ ker ν are the same.

Lemma 5.3. For every n 
= 3, up to equivalence there are exactly two admissible epimor-
phisms from Γ∗ onto Gn × C2, namely the epimorphisms θ1 and θ2 under which

θ1 : (c0, c1, c2, c3) 	→ (ab, b, cb, db) and θ2 : (c0, c1, c2, c3) 	→ (ab, b, cdb, db).

For n = 3, up to equivalence there is just one such epimorphism, and this is the same 
as θ1 above.

Proof. First, we observe that each of θ1 and θ2 is an epimorphism, since the images of 
the generators c0, c1, c2 and c3 of Γ∗ satisfy the relations in (1), and the orders of these 
generators and their products c0c1, c1c2, c2c3 and c3c0 are preserved. In particular, the 
restriction of θ1 to the orientation-preserving subgroup (Γ∗)+ = 〈c0c1, c1c2, c2c3〉 takes 
the triple (c0c1, c2c1, c3c1) to (a, c, d), which generates the M*-group Gn. Similarly, the 
restriction of θ2 to (Γ∗)+ takes (c0c1, c2c1, c3c1) to (a, cd, d), which also generates Gn.

Now let θ : Γ∗ → Gn × C2 be any admissible epimorphism. Then

θ : (c0, c1, c2, c3) 	→ (x0b, b, x2b, x3b),

where x0, x2 and x3 are involutions which generate Gn, and have the property that x2x3
has order 2 while x3x0 has order 3. Then in the quotient Gn/N ∼= D6, which is generated 
by the images of a and c, the image of the subgroup generated by x0 and x3 must be 
dihedral of order 6. By applying an inner automorphism if necessary, we may suppose 
that Nx0 = Na and Nx3 = Nacaca = Nc(ac)3, so that x0 = w0a and x3 = w3c(ac)3, 
where w0 and w3 lie in N . In particular, since x0 and x3 are involutions, we find that 
x0 = uiv−ia for some i, while x3 = ukc(ac)3 for some k. Also the image of x2 is an 
involution that commutes with the image of x3, so Nx2 = Nc or N(ac)3.

If Nx2 = Nc then x2 = w2c for some w2 ∈ N , and since x2 is an involution, we 
find that x2 = ujv−2jc for some j. Now it is an easy exercise to see that conjugation 
by ui−jv−j takes x0 = uiv−ia to a, and x2 = ujv−2jc to c, and x3 = ukc(ac)3 to 
u3j−2i+kc(ac)3 = uλc(ac)3, where λ = 3j− 2i +k. Also since x0, x2 and x3 generate Gn, 
so do their conjugates a, c and uλc(ac)3, and it follows that λ is a unit mod n, with 
inverse ζ, say. Next, we can apply the automorphism of Gn×C2 that takes (a, b, c, d) to 
(a, b, c, du−ζ−1) = (a, b, c, (acaca)u−ζ). This takes u = (acaca)d to (acaca)2u−ζ = u−ζ , 
so takes uλ to u−λζ = u−1, and therefore takes a, c and uλc(ac)3 to a, c and u−1c(ac)3 =
u−1acaca = d. Hence the given epimorphism θ is equivalent to one for which x0 = a, 
x2 = c and x3 = d, namely the epimorphism θ1.

On the other hand, if Nx2 = N(ac)3 then x2 = w2(ac)3 for some w2 ∈ N , say 
w2 = urvs. Here we note that since c2c3 has order 2, so must its θ-image x2x3 =
urvs(ac)3ukc(ac)3 = ur−kvsc, and it follows that u2r−2k+s = 1, so s ≡ 2k − 2r mod n. 
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Conjugation by uk+i−rvk−r then takes x0, x2 and x3 to a, uλ(ac)3 and uλc(ac)3, respec-
tively, where λ = 3r−2i −2k. Again λ must be a unit mod n, and this time if ζ is its inverse 
mod n then the automorphism of Gn×C2 that takes (a, b, c, d) to (a, b, c, du−ζ−1) and u to 
u−ζ takes uλ to u−1, and therefore takes a, uλ(ac)3 and uλc(ac)3 to a, u−1(ac)3 = dc = cd

and u−1c(ac)3 = d(ac)6 = d. Hence in this case the given epimorphism θ is equivalent 
to θ2.

Finally, we note that the images of c0c2 under each of θ1 and θ2 are ac and acd. The 
former has order 6, but the latter has order 2n. Hence if n 
= 3, then the epimorphisms θ1

and θ2 are not equivalent. On the other hand, if n = 3 then there exists an automorphism 
of Gn×C2 taking (a, b, c, d) to (a, b, cd, d), and so θ1 and θ2 are equivalent in that case. �

We note that the inequivalence of the epimorphisms θ1 and θ2 will also be evident 
when we show below that the associated Riemann surfaces H/ ker θ1 and H/ ker θ2 have 
different symmetry types.

We now proceed to determine these symmetry types, and the automorphism groups 
of the corresponding Klein surfaces.

Recall that we need only compute the species of the images of c0, c2 and c3 under 
each epimorphism θi, and to find the number of ovals of each θi(cj), we need to consider 
the centraliser of each cj in Γ∗ and of each θi(cj) in Gn × C2.

In Gn×C2 we know that b is centralised by all of Gn×C2, of order 24n2, and that each 
of the symmetries ab, db = (ab)da and cb lies in a class of size 3n, so each has centraliser 
of order 8n. For odd n, the symmetry dcb lies in a class of size n2, so its centraliser has 
order 24, while for even n, it lies in a class of size 3n2/4, so its centraliser has order 32. 
Also if n is even, then un/2b lies in a class of size 3, and its centraliser has order 8n2, 
and udcb lies in a class of size n2/4, and its centraliser has order 96.

The orders of the corresponding centralisers in Gn are precisely half of the above 
orders, because CGn×C2(wb) = CGn×C2(w) is a direct product CGn

(w) × 〈b〉, for every 
w ∈ Gn. This observation and a little further analysis of the centralisers gives the 
following:

Proposition 5.4. The full automorphism group Aut (S/τ) of the Klein surface S/τ asso-
ciated with each representative symmetry τ in Gn × C2 is given by the following:

(a) Aut (S/b) ∼= Gn, of order 12n2;
(b) Aut (S/ab) ∼= 〈uv〉 × 〈a〉 × 〈(ac)3〉 ∼= Cn × C2 × C2, of order 4n;
(c) Aut (S/cb) ∼= 〈u, (ac)3〉 × 〈c〉 ∼= Dn × C2, of order 4n;
(d) Aut (S/dcb) ∼= 〈c, a(u−1v)(n−1)/2〉 = D6, of order 12, if n is odd,

while Aut (S/dcb) ∼= 〈c, vn/2〉 � 〈d〉 ∼= D4 � C2, of order 16, if n is even;
(e) Aut (S/un/2b) ∼= 〈u, v〉 � 〈c, (ac)3〉 ∼= (Cn × Cn) � (C2 × C2), of order 4n2, if n is 

even;
(f) Aut (S/udcb) ∼= 〈un/2, vn/2〉 � 〈a, c〉 ∼= (C2 × C2) �D6, of order 48, if n is even.
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We now return to the task of determining the species of the representative symmetries 
θi(cj) for j ∈ {1, 2, 3}. For both values of i and for all n, these three symmetries lie in 
distinct conjugacy classes. Again we use Theorem 3.3 and the observations by Singerman 
following it, to compute the number of ovals in each case.

The epimorphism θ1 takes CΓ∗(c0) = 〈 c0, c1, (c2c3)c0c3〉 to 〈 a, b, (cd)ad 〉. The conju-
gate of this by da is 〈d, b, cd〉 ∼= 〈d, cd〉 ×〈b〉 ∼= (C2×C2) ×C2, and so it has order 8. Also 
θ1 takes CΓ∗(c1) = 〈 c0, c1, c2〉 to 〈a, b, c〉 ∼= 〈a, c〉 × 〈b〉 ∼= D6 × C2, and so has order 24, 
while θ1 takes CΓ∗(c2) = 〈 c1, c2, c3〉 to 〈b, c, d〉, which again has order 8. By Theorem 3.3, 
it follows that the number of ovals for θ1(c1) = b is 24n2/24 = n2, while the number of 
ovals for each of θ1(c0) = ab and θ1(c2) = cb is 8n/8 = n.

Similarly, the epimorphism θ2 takes CΓ∗(c0) to 〈a, b, cad 〉 = 〈d, b, c〉ad, of order 8, and 
takes CΓ∗(c2) = 〈 c1, c2, c3〉 to 〈b, cd, d〉, also of order 8. On the other hand, θ2 takes 
CΓ∗(c1) to 〈a, b, cd〉 ∼= 〈a, cd〉 ×〈b〉, which is isomorphic to D2n×C2, of order 8n, because 
acd has order 2n. By Theorem 3.3, it follows that the number of ovals for θ2(c0) = ab is 
8n/8 = n, while the number of ovals for θ2(c1) = b is 24n2/(8n) = 3n, and the number 
of ovals for θ2(c3) = cdb = dcb is 24/8 = 3 when n is odd, or 32/8 = 4 when n is even.

Remark 5.5. A consequence of Proposition 5.4 and what we have just shown about the 
numbers of ovals is that for each n > 3 the group Gn is the automorphism group of two 
Klein surfaces with maximal symmetry, with algebraic genus g = n2 + 1, and having n2

and 3n boundary components respectively. This was shown also by Etayo in [12, Prop. 1]. 
We will see below that both surfaces are orientable.

Next, we determine the separating character of each representative symmetry θi(cj), 
again using the Hoare–Singerman method explained in [14, Section 3].

Dealing with θi(c1) = b is easy. There is a loop for the effect of b at every vertex of the 
Schreier coset graph for the action of Gn×C2 on cosets of 〈b〉, and when these loops are 
deleted, what remains is the Schreier coset graph for the regular representation of Gn, 
via the generating set {a, c, d} in the case of θ1, or {a, cd, d} in the case of θ2. For θ1, 
this graph is bipartite, since all the relators in the presentation defining Gn have even 
length (as words in {a, c, d}). Similarly, for θ2, we can re-write the presentation for Gn

in terms of the generators a, c′ and d, where c′ = cd, as

a2 = (c′d)2 = d2 = (c′)2 = (ad)3 = (ac′d)6 = (ac′)2n = 1,

since the final relation (acacad)n is equivalent to (acd)2n = 1; in particular, all the 
relators have even length as words in {a, c′, d}, and so again the graph is bipartite. 
Hence in both cases, the quotient surface S/b is orientable, as claimed above.

In contrast, we will see that the graphs that occur for the images of other generators 
c0 (or c3) and c2 are not bipartite, and so the corresponding surfaces are non-orientable, 
for all n > 2. When n = 1 or 2, the graphs for θ2(c2) and θ2(c3) are bipartite, while 
those for θ1(c2) and θ1(c3) are not.
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For θ1, we consider the two Schreier coset graphs for the action of Gn × C2 on the 
cosets of 〈cb〉 and 〈db〉, respectively, via generators x0 = ab, x1 = b, x2 = cb and 
x3 = db. We can find a cycle of odd length in the loop-free versions of these graphs, 
by taking w = x2x3x0 = cdab. This element w has order 2n, since (cdab)2 = cdacda =
cdadca = cadaca = vca, which has order n and lies in Gn, but cdab /∈ Gn. It follows that 
x3x0(x2x3x0)2n−1 = x2 ∈ 〈cb〉, and similarly, x0x2(x3x0x2)2n−1 = x3 ∈ 〈db〉.

Applying the word w = x3x0(x2x3x0)2n−1 to the cosets of H = 〈x2〉 = 〈cb〉
gives a closed walk of length 6n − 1, namely H—Hx3—Hx3x0—Hx3x0x2—. . .

—Hx0—H. To see this, note that the walk can be re-written as Hw1—Hw2—Hw3— 
. . . —Hw6n−1—Hw1, with coset representatives w1 = 1, w2 = x3 = db = u−1acacab, 
followed by

w6j+3 = u−1v−jacac, w6j+4 = u−1v−jacab, w6j+5 = v−j−1ca,

w6j+6 = v−j−1cb, w6j+7 = v−j−1, w6j+8 = u−1v−j−1acacab,

for 0 ≤ j ≤ n − 2, and then w6n−3 = u−1v(ac)2, w6n−2 = u−1vacab, and w6n−1 = ca.
We now check that none of the edges of this closed walk is a loop. For multiplication 

by a generator xk to create a loop at some coset of H = 〈cb〉, however, the generator 
xk must be a conjugate of cb. Since none of x0 (= ab), x1 (= b) and x3 (= db) lies in 
the same conjugacy class as cb, this can happen only when xk = x2 = cb itself. On the 
other hand, if x2 fixes a coset Hwi, then xwi

2 = x2 and so wi commutes with x2 = cb, 
and therefore with c. But it is easy to see that the only coset representative wi that 
commutes with c is w1 = 1, and so there is no such loop. Hence the loop-free version 
of the Schreier coset graph contains a closed walk of odd length 6n − 1, and therefore 
cannot be bipartite.

A similar argument works for a closed walk of length 6n − 1 in the other Schreier 
coset graph, traced out by the word x0x2(x3x0x2)2n−1 on cosets of 〈x3〉 = 〈db〉. Hence 
the loop-free version of this graph is non-bipartite as well.

The case of θ2 is a little easier to deal with than θ1. Here we consider the two Schreier 
coset graphs for the action of Gn × C2 on the cosets of 〈cdb〉 and 〈db〉, respectively, via 
generators y0 = ab, y1 = b, y2 = cdb and y3 = db. The element y2y3y0 = cdbdbab = cab

has order 6, and it follows that y3y0(y2y3y0)5 = y2 ∈ 〈cdb〉 and y0y2(y3y0y2)5 = y3 ∈ 〈db〉. 
Applying the word y3y0(y2y3y0)5 to the cosets of 〈cdb〉 gives a circuit of length 17 in the 
first graph, and applying y0y2(y3y0y2)5 to the cosets of 〈db〉 gives a circuit of length 17
in the second graph. Again in both cases, the graph has a cycle of odd length and is 
therefore non-bipartite, as claimed.

(In fact, we believe the closed walks of length 17 and 6n − 1 described above are 
the shortest closed walks of odd length in the respective graphs, but we will not even 
attempt to prove that here.)

This completes the proof Theorem 5.1.
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Remark 5.6. The surfaces in Theorem 5.1 are not unique for each n, but are members of 
an infinite family of surfaces with the same properties. The reason for this is that the di-
mension of the Teichmüller space of NEC groups with signature (0; +; [−]; {(2, 2, 2, 3)}) is 
positive, and so there are infinitely many such groups that are non-conjugate in Aut (H). 
On the other hand, a consequence of Lemma 5.3 is that if S is a Riemann surface with 
maximal real symmetry such that Aut (S) ∼= Gn × C2, then its symmetry type is one of 
those occurring in Theorem 5.1.

Appendix A. Symmetry types of surfaces of genus 2 to 25 with maximal real symmetry

[Note: In these tables, u = ac and v = (ac)d (= adac).]

Genus 2 The Accola–Maclachlan curve of genus 2
Aut(S) ∼= 〈x, y, z | x2 = y2 = z2 = (xy)4 = (yz)6 = (xz)2 = (yxyz)2 = 1 〉
|Aut(S)| = 48 |Aut(Aut(S))| = 96 No. symmetry classes = 4
Representative symmetry τi Species |Aut(S/τi)|

x 3 12
y −1 4
z 1 8

(xy)2z 0 8

Genus 2 |G| = 12 |Aut(G × C2)| = 144 No. symmetry classes = 4
Additional relators: u2

Representative symmetry τi Species |Aut(S/τi)|
τ 3 12
cτ 3 12
dτ 1 4
cdτ 0 4

Genus 2 |G| = 12 |Aut(G × C2)| = 144 No. symmetry classes = 4
Additional relators: uv
Representative symmetry τi Species |Aut(S/τi)|

τ 1 12
cτ −1 4
dτ −1 4
cdτ 0 12

Genus 3 |G| = 24 |Aut(G × C2)| = 48 No. symmetry classes = 3
Additional relators: u3

Representative symmetry τi Species |Aut(S/τi)|
τ 4 24
cτ 2 4
cdτ 0 8

Genus 3 |G| = 24 |Aut(G × C2)| = 48 No. symmetry classes = 3
Additional relators: duvu
Representative symmetry τi Species |Aut(S/τi)|

τ −3 24
cτ −2 8
dτ −1 4

Genus 4 |G| = 36 |Aut(G × C2)| = 288 No. symmetry classes = 4
Additional relators: u2v2

Representative symmetry τi Species |Aut(S/τi)|
τ 3 36
cτ −3 12
dτ −1 4
cdτ 0 12
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Genus 5 |G| = 48 |Aut(G × C2)| = 576 No. symmetry classes = 6
Additional relators: u4

Representative symmetry τi Species |Aut(S/τi)|
τ 6 48
cτ 4 16
dτ 2 8
cdτ 0 8

(ca)2τ 0 16
(cda)3τ 0 48

Genus 5 |G| = 48 |Aut(G × C2)| = 576 No. symmetry classes = 6
Additional relators: (uv)2

Representative symmetry τi Species |Aut(S/τi)|
τ 4 48
cτ −2 8
dτ −2 8
cdτ 0 16

(cda)2τ 0 16
(ca)3τ 0 48

Genus 6 |G| = 60 |Aut(G × C2)| = 120 No. symmetry classes = 2
Additional relators: u5, duvuvu

Representative symmetry τi Species |Aut(S/τi)|
τ −6 60
cτ −2 4

Genus 9 |G| = 96 |Aut(G × C2)| = 1536 No. symmetry classes = 5
Additional relators: u3v3

Representative symmetry τi Species |Aut(S/τi)|
τ 4 96
cτ −2 8
dτ −2 8
cdτ 0 16

(cda)4τ 0 96

Genus 9 |G| = 96 |Aut(G × C2)| = 1536 No. symmetry classes = 5
Additional relators: (u2v)2

Representative symmetry τi Species |Aut(S/τi)|
τ 6 96
cτ −4 16
dτ −2 8
cdτ 0 8

(ca)4τ 0 96

Genus 10 |G| = 108 |Aut(G × C2)| = 864 No. symmetry classes = 4
Additional relators: u6, (uv)3

Representative symmetry τi Species |Aut(S/τi)|
τ 9 108
cτ −3 12
dτ −3 12
cdτ 0 12

Genus 11 |G| = 120 |Aut(G × C2)| = 720 No. symmetry classes = 4
Additional relators: u5

Representative symmetry τi Species |Aut(S/τi)|
τ 12 120
cτ 4 8
cdτ 0 8

(cda)5τ 0 120
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Genus 11 |G| = 120 |Aut(G × C2)| = 720 No. symmetry classes = 4
Additional relators: duvuvu
Representative symmetry τi Species |Aut(S/τi)|

τ −6 120
cτ −2 8
dτ −2 8

(ca)5τ 0 120

Genus 11 |G| = 120 |Aut(G × C2)| = 720 No. symmetry classes = 4
Additional relators: du2v2u2

Representative symmetry τi Species |Aut(S/τi)|
τ −6 120
cτ −2 8
dτ −2 8

(ca)5τ 0 120

Genus 13 |G| = 144 |Aut(G × C2)| = 576 No. symmetry classes = 6
Additional relators: u6, u2vuv2uv
Representative symmetry τi Species |Aut(S/τi)|

τ 12 144
cτ −6 24
dτ −2 8
cdτ 0 16

(ca)3τ 0 48
((ca)2d)2τ 0 48

Genus 13 |G| = 144 |Aut(G × C2)| = 576 No. symmetry classes = 6
Additional relators: (uv)3, u4v4

Representative symmetry τi Species |Aut(S/τi)|
τ 6 144
cτ −4 16
dτ −2 8
cdτ 0 24

(cda)3τ 0 48
((ca)2d)2τ 0 48

Genus 17 |G| = 192 |Aut(G × C2)| = 1536 No. symmetry classes = 6
Additional relators: u6, (uv)4
Representative symmetry τi Species |Aut(S/τi)|

τ 16 192
cτ −4 16
dτ −4 16
cdτ 0 16

(ca)3τ 0 48
(cda)4τ 0 64

Genus 17 |G| = 192 |Aut(G × C2)| = 1536 No. symmetry classes = 6
Additional relators: (uv)3, u8

Representative symmetry τi Species |Aut(S/τi)|
τ 12 192
cτ −4 16
dτ −4 16
cdτ 0 16

(ca)4τ 0 64
(cda)3τ 0 48

Genus 21 |G| = 240 |Aut(G × C2)| = 20 160 No. symmetry classes = 8
Additional relators: (u3v)2
Representative symmetry τi Species |Aut(S/τi)|

τ 12 240
cτ −4 16
dτ −4 16
cdτ 0 16

(ca)4daτ 0 16
(ca)5τ 0 240
(cda)5τ 0 240

((ca)2d)3τ 0 240
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Genus 25 |G| = 288 |Aut(G × C2)| = 4608 No. symmetry classes = 5
Additional relators: u4v4

Representative symmetry τi Species |Aut(S/τi)|
τ 6 288
cτ −4 16
dτ −2 8
cdτ 0 24

(cda)6τ 0 288

Genus 25 |G| = 288 |Aut(G × C2)| = 4608 No. symmetry classes = 5
Additional relators: u2vuv2uv
Representative symmetry τi Species |Aut(S/τi)|

τ 12 288
cτ −6 24
dτ −2 8
cdτ 0 16

(ca)6τ 0 288
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