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1. Introduction

Let F be a non-archimedean local field of characteristic zero. Let G be a reductive 
group defined over F . An important way to characterize irreducible admissible repre-
sentations of G(F ) is to consider various kinds of models. For example, non-degenerate 
Whittaker models of generic representations play significant roles in the theory of lo-
cal factors of representations of G(F ) and in the theory of automorphic forms. Given 
a reductive dual pair (G, H), and consider the local theta correspondence between 
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representations of G(F ) and of H(F ), an interesting question is that how models of 
representations of G(F ) and of H(F ) are related under local theta correspondence.

In [5], Jiang, Nien and Qin proved that under the local theta correspondence, for cer-
tain representations, the generalized Shalika model on SO4n(F ) is corresponding to the 
symplectic linear model on Sp4n(F ), and conjectured that it is true for general represen-
tations (see [6, p. 542]). In this paper, we prove some results related to this conjecture 
(see Theorem 2.1). More precisely, we introduce generalized symplectic linear models on 
Sp4m(F ), which generalizes the symplectic linear models, and study the relations be-
tween the generalized Shalika models on SO4n(F ) and the generalized symplectic linear 
models on Sp4m(F ) under the local theta correspondence. A special case (m = n) of 
this result is proved by Hanzer [4] independently. We also introduce generalized Shalika 
models on Sp4n(F ) and generalized orthogonal linear models on SO4m(F ), and study 
the relations between them under the local theta correspondence.

Mœglin [8], Gomez and Zhu [3] studied the local theta lifting of generalized Whit-
taker models associated to nilpotent orbits. Note that the generalized Shalika models 
are indeed generalized Whittaker models associated to certain nilpotent orbits, but the 
generalized symplectic/orthogonal linear models are not. For example, the generalized 
Shalika models on SO4n(F ) are generalized Whittaker models associated to the nilpo-
tent orbits parametrized by the partition [22n]. By [8] and [3], the full local theta lift 
on Sp2k(F ) has a nonzero generalized Whittaker model associated to a nilpotent orbit 
parametrized by the partition [32n1�], if 6n + � = 2k. In general it is not known whether 
the small theta lift on Sp2k(F ) (if nonzero) would also carry this model.

This paper is organized as follows. In Section 2, we give the definitions for various 
models for representations of split even special orthogonal groups and symplectic groups, 
and introduce the main result Theorem 2.1. In Sections 3 and 4, we prove Part (1) 
and Part (2) of Theorem 2.1 respectively. In Section 5, we consider the converse of 
Theorem 2.1, and discuss some related results.

2. Models of representations

In this section, we define various models for representations of split even special or-
thogonal groups and symplectic groups.

For any positive integer k, let vk be the k × k matrix with 1’s in the second diagonal 
and zero’s elsewhere. Let

SO2� = {g ∈ GL2� | tgv2�g = v2�}

be the split even special orthogonal group. And let SO2� = SO2�(F ). Let

Sp2� = {g ∈ GL2�|tgJ2�g = J2�}

be the symplectic group, where J2� =
(

0 v�
−v 0

)
. And let Sp2� = Sp2�(F ).
�
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Let P2n = M2nN2n be the Siegel parabolic subgroup of SO4n. Then elements in P2n
have the following form

(g,X) = m(g)n(X) =
(
g 0
0 g∗

)(
In X

0 In

)

where g ∈ GL2n(F ), g∗ = v2n
tg−1v2n, and X ∈ M(2n)×(2n)(F ) satisfying tX =

−v2nXv2n. The generalized Shalika group of SO4n is defined to be

H = H2n = M ′
2nN2n = {(g,X) ∈ P2n | g ∈ Sp2n}.

Define a character of H as follows

ψH((g,X)) = ψ(1
2 tr(J2nXv2n))

= ψ(1
2 tr(

(
−In 0
0 In

)
X)).

Then an irreducible admissible representation (σ, Vσ) of SO4n has a generalized Shalika 
model if

HomSO4n(Vσ, IndSO4n
H (ψH)) = HomH(Vσ, ψH) �= 0.

The nonzero elements in the Hom space are called generalized Shalika functionals or 
ψH-functionals of σ. In [10], Nien proved the uniqueness of the generalized Shalika mod-
els.

Let Q2n = L2nV2n be the Siegel parabolic subgroup of Sp4n. Then elements in Q2n
have the following form

(g,X) = m(g)n(X) =
(
g 0
0 g∗

)(
In X

0 In

)

where g ∈ GL2n(F ), g∗ = v2n
tg−1v2n, and X ∈ M(2n)×(2n)(F ) satisfying tX = v2nXv2n. 

The generalized Shalika group of Sp4n is defined to be

H̃ = H̃2n = L′
2nV2n = {(g,X) ∈ P2n | g ∈ SO2n}.

Let

ψH̃((g,X)) = ψ(1
2 tr(X))

be a character of H̃. An irreducible admissible representation (π, Vπ) of Sp4n has a 
generalized Shalika model if

HomSp (Vπ, IndSp4n(ψ ˜)) = Hom ˜(Vπ, ψ ˜) �= 0.
4n H̃ H H H
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The nonzero elements in the Hom space are called generalized Shalika functionals or 
ψH̃-functionals of π.

Consider SO2n × SO4m−2n as a subgroup of SO4m (2m > n) via the embedding

(
(
A1 B1
C1 D1

)
,

(
A2 B2
C2 D2

)
) �→

⎛⎜⎝A1 0 0 B1
0 A2 B2 0
0 C2 D2 0
C1 0 0 D2

⎞⎟⎠ .

An irreducible admissible representation (σ, Vσ) of SO4m (2m ≥ n) has a generalized 
orthogonal linear model if

HomSO4m(F )(Vσ, IndSO4m(F )
SO2n(F )×SO4m−2n(F )(1)

= HomSO2n(F )×SO4m−2n(F )(Vσ, 1)

�= 0.

The nonzero elements in the Hom space are called generalized orthogonal linear func-
tionals of π.

Similarly, consider Sp2n×Sp4m−2n as a subgroup of Sp4m (2m > n) via the embedding

(
(
A1 B1
C1 D1

)
,

(
A2 B2
C2 D2

)
) �→

⎛⎜⎝A1 0 0 B1
0 A2 B2 0
0 C2 D2 0
C1 0 0 D2

⎞⎟⎠ .

An irreducible admissible representation (π, Vπ) of Sp4m (2m ≥ n) has a generalized 
symplectic linear model if

HomSp4m(Vπ, IndSp4m
Sp2n×Sp4m−2n

(1))

= HomSp2n×Sp4m−2n(Vπ, 1)

�= 0

The nonzero elements in the Hom space are called generalized symplectic linear func-
tionals of π. When m = n, the generalized symplectic linear model is usually called the 
symplectic linear model. In [11], Zhang proves the uniqueness of the symplectic linear 
models for the cases of n = 1, 2. The uniqueness of generalized symplectic linear models 
on Sp4m is unknown in general.

Let ωψ be the Weil representation corresponding to the reductive dual pair (O2k, Sp2�)
with O2k being split. Following is the main result of this paper.
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Theorem 2.1.

(1) Assume that σ is an irreducible admissible representation of SO4n with a nonzero 
generalized Shalika model, and π is an irreducible admissible representation of Sp4m
(2m ≥ n) which is corresponding to σ under the local theta correspondence, that is,

HomSO4n×Sp4m(ωψ, σ ⊗ π) �= 0.

Then π has a nonzero generalized symplectic linear model.
(2) Assume that π is an irreducible admissible representation of Sp4n with a nonzero 

generalized Shalika model, and σ is an irreducible admissible representation of SO4m
(2m ≥ n) which is corresponding to π under the local theta correspondence, that is,

HomSO4m×Sp4n(ωψ, σ ⊗ π) �= 0.

Then, σ has a nonzero generalized orthogonal linear model.

In [4], Hanzer proved the case of m = n for Theorem 2.1, Part (1), independently. 
Some results related to the converse of Theorem 2.1 will be discussed in Section 5.

Mœglin [8], Gomez and Zhu [3] considered the local theta lifting of generalized Whit-
taker models associated to nilpotent orbits. It turns out a nonzero generalized Shalika 
model for an irreducible admissible representation σ of SO4n is indeed a generalized 
Whittaker model associated to a nilpotent orbit parametrized by the partition [22n]. 
Then they showed that the full local theta lift of σ on Sp2k has a nonzero generalized 
Whittaker model associated to a nilpotent orbit parametrized by the partition [32n1�], 
if 6n + � = 2k. Note that this later model is not a generalized symplectic linear model. 
And, in general it is not known that whether the small theta lift would also carry this 
model.

3. Proof of Theorem 2.1, Part (1)

In this section, we prove Theorem 2.1, Part (1), using a method similar to that in [7, 
Section 2.1].

Assume that σ is an irreducible admissible representation of SO4n with a nonzero 
generalized Shalika model, and π is an irreducible admissible representation of Sp4m
(2m ≥ n) which is corresponding to σ under the local theta correspondence, i.e.,

HomSO4n×Sp4m(ωψ, σ ⊗ π) �= 0.

Since σ has a nonzero generalized Shalika model, i.e., HomH(Vσ, ψH) �= 0, we have 
that

HomH×Sp (F )(ωψ, ψH ⊗ π) �= 0.

4m
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Let V be a 4n-dimensional vector space over F , with the nondegenerate symmet-
ric from v4n. Fix a basis {e1, . . . , e2n, e−2n, . . . , e−1} of V over F , such that (ei, ej) =
(e−i, e−j) = 0, (ei, e−j) = δij , for i, j = 1, . . . , 2n. Let V + = SpanF {e1, . . . , e2n}, 
V − = SpanF {e−1, . . . , e−2n}, then V = V + + V − is a complete polarization of V . 
Let W be a 4m-dimensional symplectic vector space over F , with the symplectic from 

J4m =
(

0 v2m
−v2m 0

)
. Fix a basis

{f1, . . . , f2m, f−2m, . . . , f−1}

of W over F , such that (fi, fj) = (f−i, f−j) = 0, (fi, f−j) = δij , for i, j = 1, . . . , 2m. Let 
W+ = SpanF {f1, . . . , f2m}, W− = SpanF {f−1, . . . , f−2m}, then W = W+ + W− is a 
complete polarization of W . Then, we realize the Weil representation ωψ in the space 
S(V − ⊗W ) ∼= S(W 2n).

First, we compute the Jacquet module JN2n,ψH|N2n
(S(W 2n)). By [9, Section 2.7], for 

φ ∈ S(W 2n),

ωψ(n(X), 1)φ(y1, . . . , y2n) = ψ(1
2 tr(Gr(y1, . . . , y2n)v2nX))φ(y1, . . . , y2n), (3.1)

where Gr(y1, . . . , y2n) is the Gram matrix of vectors y1, . . . , y2n. Since tX = −v2nXv2n,

ψ(1
2 tr(Gr(y1, . . . , y2n)v2nX))

= ψ(x11(y1, y2n) + · · · + xnn(yn, yn+1) + x12(y2, y2n) + · · · ), (3.2)

where 1
2 tr(Gr(y1, . . . , y2n)v2nX) involves all xij terms except x1,2n, x2,2n−1, . . . , x2n,1, 

since they are zeros. And,

ψH(n(X)) = ψ(1
2 tr(

(
−In 0
0 In

)
X)) = ψ(−(x11 + · · · + xnn)). (3.3)

By comparing (3.2), (3.3), let

C0 = {(y1, . . . , y2n) ∈ W 2n|Gr(y1, . . . , y2n) = −J2n}.

Then, by (3.1), (3.2) and (3.3), we claim that

JN2n,ψH|N2n
(S(W 2n)) ∼= S(C0). (3.4)

Indeed, let C = W 2n\C0, which is an open set, since C0 is closed in W 2n. By [1, 
Section 1.8], there is an exact sequence

0 → S(C) i−→ S(W 2n) r−→ S(C0) → 0,
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where i is the canonical embedding that extends any function supported in C by zero to 
the whole space W 2n, and r is the restriction map to C0. By the exactness of Jacquet 
functors, there is also an exact sequence

0 → JN2n,ψH|N2n
(S(C)) i∗−→ JN2n,ψH|N2n

(S(W 2n)) r∗−−→ JN2n,ψH|N2n
(S(C0)) → 0.

By (3.1), (3.2) and (3.3), for any (y1, . . . , y2n) ∈ C, the character

n(X) �→ ψ(1
2 tr(Gr(y1, . . . , y2n)v2nX)) − ψH(n(X))

is nontrivial. Hence, for φ ∈ S(C), there exists a large enough compact subgroup Nφ of 
N2n, such that∫

Nφ

(ωψ(n(X), 1) − ψH(n(X)))φ(y1, . . . , y2n)dX

=
∫
Nφ

(ψ(1
2 tr(Gr(y1, . . . , y2n)v2nX)) − ψH(n(X)))φ(y1, . . . , y2n)dX

=0.

So, JN2n,ψH|N2n
(S(C)) = 0, and

JN2n,ψH|N2n
(S(W 2n)) ∼= JN2n,ψH|N2n

(S(C0)) ∼= S(C0).

This proves the claim in (3.4).
Therefore,

HomM ′
2n×Sp4m

(S(C0), 1 ⊗ π) �= 0. (3.5)

Note that M ′
2n = {m(g) ∈ M2n|g ∈ Sp2n}.

By [9, Section 2.7], for φ ∈ S(C0), m(g) ∈ M ′
2n, h ∈ Sp4m,

ωψ(m(g), h)φ(y1, . . . , y2n) = φ((y1h, . . . , y2nh)v2ngv2n).

Note that by Witt Theorem, M ′
2n × Sp4m acts transitively on C0, and

(f−2m+n−1, . . . , f−2m, f2m, . . . , f2m−n+1)

is a representative. Let R be the stabilizer of this representative. Then

R = {(m(g),

⎛⎜⎝ a 0 b

0 g−1 0
c 0 d

⎞⎟⎠) | g ∈ Sp2n,

(
a b

c d

)
∈ Sp4m−2n}.
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Hence, S(C0) is isomorphic to the compactly induced representation

c-IndM ′
2n×Sp4m

R (1).

Therefore, by (3.5),

HomM ′
2n×Sp4m

(c-IndM ′
2n×Sp4m

R (1), 1 ⊗ π) �= 0,

that is,

HomM ′
2n×Sp4m

(1 ⊗ π̃, IndM ′
2n×Sp4m

R (1)) �= 0,

where π̃ is the contragredient of π. Note that in general, given admissible representations 
σ and τ of a connected reductive group G, one has

HomG(σ, τ) ∼= HomG(τ̃ , σ̃).

And note that

˜c-IndM ′
2n×Sp4m

R (1) ∼= IndM ′
2n×Sp4m

R (1),

since both M ′
2n × Sp4m and R are unimodular.

Then, by Frobenius Reciprocity, we have

HomR(1 ⊗ π̃, 1) �= 0,

that is,

HomSp2n(F )×Sp4m−2n(F )(π̃, 1) �= 0,

which means that π̃ has a nonzero generalized symplectic linear model. It follows from 
an argument as in the proof of [2, Theorem 17] that π also has a nonzero generalized 
symplectic linear model. Indeed, by [9, pp. 91–92], π̃ ∼= πδ, where δ = v4m, and πδ(g) =
π(δgδ−1) = π(δgδ). Hence, πδ has a nonzero generalized symplectic linear model. Assume 
that l is a nonzero generalized symplectic linear functional of πδ. Then, for any (g1, g2) ∈
Sp2n × Sp4m−2n, v ∈ Vπ,

l(π(g1, g2)v) = l(πδ(g1, g2)δv) = l(πδ(v2ng1v2n, v4m−2ng2v4m−2n)v) = l(v),

noting that (v2ng1v2n, v4m−2ng2v4m−2n) ∈ Sp2n×Sp4m−2n. So, l is also a nonzero gener-
alized symplectic linear functional of π. Therefore, π has a nonzero generalized symplectic 
linear model.

This completes the proof of Theorem 2.1, Part (1).
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4. Proof of Theorem 2.1, Part (2)

In this section, we prove Theorem 2.1, Part (2), using a similar argument as in Sec-
tion 3.

Assume that π is an irreducible admissible representation of Sp4n with a nonzero 
generalized Shalika model, and σ is an irreducible admissible representation of SO4m
(2m ≥ n) which is corresponding to π under the local theta correspondence, i.e.,

HomSO4m×Sp4n(ωψ, σ ⊗ π) �= 0.

Since π has a nonzero generalized Shalika model, that is,

HomH̃(Vπ, ψH̃) �= 0,

we have that

HomSO4m×H̃(ωψ, σ ⊗ ψH̃) �= 0.

Let V be a 4m-dimensional vector space over F , with the nondegenerate symmetric 
from v4m. Fix a basis {e1, . . . , e2m, e−2m, . . . , e−1} of V over F , such that (ei, ej) =
(e−i, e−j) = 0, (ei, e−j) = δij , for i, j = 1, . . . , 2m. Let V + = SpanF {e1, . . . , e2m}, 
V − = SpanF {e−1, . . . , e−2m}, then V = V + + V − is a complete polarization of V . 
Let W be a 4n-dimensional symplectic vector space over F , with the symplectic from 

J4n =
(

0 v2n
−v2n 0

)
. Fix a basis

{f1, . . . , f2n, f−2n, . . . , f−1}

of W over F , such that (fi, fj) = (f−i, f−j) = 0, (fi, f−j) = δij , for i, j = 1, . . . , 2n. 
Let W+ = SpanF {f1, . . . , f2n}, W− = SpanF {f−1, . . . , f−2n}, then W = W+ +W− is a 
complete polarization of W . Realize the Weil representation ωψ in the space S(V⊗W+) ∼=
S(V 2n).

First, as in Section 3, we need to compute the Jacquet module of the Weil represen-
tation JN2n,ψH|N2n

(S(V 2n)).
By [9, Section 2.6], for φ ∈ S(V 2n),

ωψ(n(X), 1)φ(x1, . . . , x2n) = ψ(1
2 tr(Gr(x1, . . . , x2n)Xv2n))φ(x1, . . . , x2n), (4.1)

where Gr(x1, . . . , x2n) is the Gram matrix of vectors x1, . . . , x2n. Since tX = v2nXv2n,

ψ(1
2 tr(Gr(x1, . . . , x2n)Xv2n)) (4.2)

= ψ(x11(x1, x2n) + · · · + xnn(xn, xn+1) + 1
2x1,2n(x1, x1) + · · · ), (4.3)
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where 1
2 tr(Gr(x1, . . . , x2n)Xv2n) involves all xij terms. And,

ψH(n(X)) = ψ(1
2 tr(X)) = ψ(x11 + · · · + xnn). (4.4)

By comparing (4.1), (4.2), let

C0 = {(x1, . . . , x2n) ∈ W 2n|Gr(x1, . . . , x2n) = v2n}.

Then, by (4.1), (4.2) and (4.4), a similar argument (details omitted) as in Section 3
shows that

JN2n,ψH|N2n
(S(V 2n)) ∼= S(C0).

Therefore,

HomSO4m×M ′
2n

(S(C0), σ ⊗ 1) �= 0. (4.5)

Note that M ′
2n = {m(g) ∈ M2n|g ∈ SO2n}.

By [9, Section 2.6], for φ ∈ S(C0), m(g) ∈ M ′
2n, h ∈ SO4m,

ωψ(h,m(g))φ(x1, . . . , x2n) = φ((h−1x1, . . . , h
−1x2n)g).

Note that by Witt Theorem, SO4m ×M ′
2n acts transitively on C0, and

(e2m−n+1, . . . , e2m, e−2m, . . . , e−2m+n−1)

is a representative. Let R be the stabilizer of this representative. Then

R = {

⎛⎜⎝ a 0 b

0 g−1 0
c 0 d

⎞⎟⎠)|g ∈ SO2n,

(
a b

c d

)
∈ SO4m−2n}.

Hence, S(C0) is isomorphic to the compactly induced representation

c-IndSO4m×M ′
2n(F )

R (1).

Hence, by (4.5),

HomSO4m×M ′
2n

(c-IndSO4m×M ′
2n

R (1), σ ⊗ 1) �= 0,

that is,

HomSO4m×M ′ (σ̃ ⊗ 1, IndSO4m×M ′
2n

R (1)) �= 0,

2n
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as in Section 3. By Frobenius Reciprocity, we have

HomR(σ̃ ⊗ 1, 1) �= 0,

that is,

HomSO2n×SO4m−2n(σ̃, 1) �= 0.

So, σ̃ has a nonzero generalized orthogonal linear model. It follows that σ also has 
a generalized orthogonal linear model, as in Section 3. Indeed, by [10, Lemma 4.2], 
σ̃ ∼= σδ2m , where

δ4m =

⎛⎜⎜⎜⎝
I2m−1 0 0 0

0 0 1 0
0 1 0 0
0 0 0 I2m−1

⎞⎟⎟⎟⎠ ,

and σδ4m(g) = σ(δ4mgδ−1
4m) = σ(δ4mgδ4m). So, σδ4m has a nonzero generalized orthogonal 

linear model. Assume that � is a nonzero generalized orthogonal linear functional of σδ2m . 
Then, for any (g1, g2) ∈ SO2n × SO4m−2n, v ∈ Vσ,

�(σ(g1, g2)v) = �(σδ4m(g1, g2)δ4mv) = �(σδ4m(δ2ng1δ2n, g2)v) = �(v),

noting that δ2ng1δ2n ∈ SO2n. Hence, � is also a nonzero generalized orthogonal linear 
functional of σ. Therefore, σ has a nonzero generalized orthogonal linear model.

This completes the proof of Theorem 2.1, Part (2).

5. About converse of Theorem 2.1

In this section, we discuss some results related to the converse of Theorem 2.1.
First, we discuss the converse of Theorem 2.1, Part (1). Assume that π is an irreducible 

admissible representation of Sp4m (2m ≥ n) with a nonzero generalized symplectic linear 
model, and σ is an irreducible admissible representation of SO4n, which is corresponding 
to π under the local theta correspondence, i.e.,

HomSO4n×Sp4m(ωψ, σ ⊗ π) �= 0.

Since π has a nonzero generalized symplectic linear model, that is,

HomSp2n×Sp4m−2n(Vπ, 1) �= 0,

we have that the space of SO4n × Sp2n × Sp4m−2n-equivariant homomorphisms

HomSO4n×Sp ×Sp (ωψ, σ) �= 0. (5.1)
2n 4m−2n
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As in Section 3, let V be a 4n-dimensional vector space over F , with the nondegenerate 
symmetric from v4n. Fix a basis

{e1, . . . , e2n, e−2n, . . . , e−1}

of V over F , such that (ei, ej) = (e−i, e−j) = 0, (ei, e−j) = δij , for i, j = 1, . . . , 2n. 
Let V + = SpanF {e1, . . . , e2n}, V − = SpanF {e−1, . . . , e−2n}, then V = V + + V − is a 
complete polarization of V . Fix a basis

{f1, . . . , f2m, f−2m, . . . , f−1}

of W over F , such that (fi, fj) = (f−i, f−j) = 0, (fi, f−j) = δij , for i, j = 1, . . . , 2m. Let

W1 = SpanF {f2m−n+1, . . . , f2m, f−2m, . . . , f−2m+n−1},

W2 = SpanF {f1, . . . , f2m−n, f−2m+n, . . . , f1}.

Then W = W1 + W2, and ωψ = ω1
ψ ⊗ ω2

ψ, where ω1
ψ

∼= S(V − ⊗ W1), and ω2
ψ

∼=
S(V − ⊗W2).

Then by (5.1),

HomSO4n×Sp2n×Sp4m−2n(ω1
ψ ⊗ ω2

ψ, σ) �= 0. (5.2)

Let Θ(1W1 , V ) = S(V − ⊗W1)Sp2n be the maximal quotient of S(V − ⊗W1) on which 
Sp2n acts trivially, and Θ(1W2 , V ) = S(V − ⊗ W2)Sp4m−2n be the maximal quotient of 
S(V − ⊗ W2) on which Sp4m−2n acts trivially. Then by (5.2), one can see that σ must 
satisfy the following condition

HomSO4n(Θ(1W1 , V ) ⊗ Θ(1W2 , V ), σ) �= 0.

Next, we discuss the converse of Theorem 2.1, Part (2). Assume that σ is an irreducible 
admissible representation of SO4m (2m ≥ n) with a nonzero generalized orthogonal linear 
model, and π is an irreducible admissible representation of Sp4n, which is corresponding 
to σ under the local theta correspondence, that is,

HomSO4m×Sp4n(ωψ, σ ⊗ π) �= 0.

Since σ has a generalized orthogonal linear model, that is,

HomSO2n×SO4m−2n(Vσ, 1) �= 0,

we have that the space of SO2n × SO4m−2n × Sp4n-equivariant homomorphisms

HomSO2n×SO4m−2n×Sp (ωψ, π) �= 0. (5.3)
4n
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As in Section 4, let W be a 4n-dimensional symplectic vector space over F , with the 

symplectic from J4n =
(

0 v2n
−v2n 0

)
. Fix a basis

{f1, . . . , f2n, f−2n, . . . , f−1}

of W over F , such that (fi, fj) = (f−i, f−j) = 0, (fi, f−j) = δij , for i, j = 1, . . . , 2n. Let 
W+ = SpanF {f1, . . . , f2n}, W− = SpanF {f−1, . . . , f−2n}, then W = W+ + W− is a 
complete polarization of W . Let V be a 4m-dimensional vector space over F , with the 
nondegenerate symmetric from v4m. Fix a basis

{e1, . . . , e2m, e−2m, . . . , e−1}

of V over F , such that (ei, ej) = (e−i, e−j) = 0, (ei, e−j) = δij , for i, j = 1, . . . , 2m. Let

V1 = SpanF {e2m−n+1, . . . , e2m, e−2m, . . . , e−2m+n−1},

V2 = SpanF {e1, . . . , e2m−n, e−2m+n, . . . , e1}.

Then V = V1 +V2, and ωψ = ω1
ψ ⊗ω2

ψ, where ω1
ψ
∼= S(V1⊗W+), and ω2

ψ
∼= S(V2⊗W+).

Then by (5.3),

HomSO2n×SO4m−2n×Sp4n(ω1
ψ ⊗ ω2

ψ, π) �= 0. (5.4)

Let Θ(1V1 , W ) = S(V1 ⊗W+)SO2n be the maximal quotient of S(V1 ⊗W+) on which 
SO2n acts trivially, and Θ(1V2 , W ) = S(V2 ⊗ W+)SO4m−2n be the maximal quotient of 
S(V2 ⊗W+) on which SO4m−2n acts trivially. Then by (5.4), one can see that π must 
satisfy the following condition

HomSp4n(Θ(1V1 ,W ) ⊗ Θ(1V2 ,W ), π) �= 0.

We summarize the above discussions as follows.

Theorem 5.1.

(1) Assume that π is an irreducible admissible representation of Sp4m (2m ≥ n) with a 
nonzero generalized symplectic linear model, and σ is an irreducible admissible repre-
sentation of SO4n which is corresponding to π under the local theta correspondence, 
that is,

HomSO4n×Sp4m(ωψ, σ ⊗ π) �= 0.

Then, σ must satisfy the following condition

HomSO4n(Θ(1W1 , V ) ⊗ Θ(1W2 , V ), σ) �= 0. (5.5)
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(2) Assume that σ is an irreducible admissible representation of SO4m (2m ≥ n) with a 
nonzero generalized orthogonal linear model, and π is an irreducible admissible rep-
resentation of Sp4n which is corresponding to σ under the local theta correspondence, 
that is,

HomSO4m×Sp4n(ωψ, σ ⊗ π) �= 0.

Then π must satisfy the following condition

HomSp4n(Θ(1V1 ,W ) ⊗ Θ(1V2 ,W ), π) �= 0. (5.6)

From Theorem 2.1 and Theorem 5.1, we have the following properties for representa-
tions of SO4n or Sp4n with nonzero generalized Shalika models.

Corollary 5.2.

(1) Assume that σ is an irreducible admissible representation of SO4n with a nonzero 
generalized Shalika model, and σ occurs in the local theta correspondence of SO4n
with Sp4m (2m ≥ n). Then σ satisfies (5.5).

(2) Assume that π is an irreducible admissible representation of Sp4n with a nonzero 
generalized Shalika model, and π occurs in the local theta correspondence of Sp4n
with SO4m (2m ≥ n). Then π satisfies (5.6).
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