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to a partial cycle set, closely related to a class of set-
theoretic solutions of the quantum Yang–Baxter equation. 
The decomposition of finite square-free solutions is related 
to the crossed product representation of the corresponding
structure group.
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Introduction

The theory of Garside groups and Garside monoids arose from the discovery of a fun-
damental element Δn, the least common left and right multiple of the atoms, in the 
positive braid monoid of the n-strand braid group Bn. Garside’s observation [33] was 
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soon generalized to Artin–Tits groups of spherical type [14,27] and eventually led to 
the class of Garside groups [26,21], comprising all spherical Artin groups, all torus knot 
groups ([26], Example 4), all one-relator groups with non-trivial centre [42], all braid 
groups π1pW zV regq of well-generated finite complex reflection groups W [7], and the 
structure groups of unitary non-degenerate set-theoretic solutions of the quantum Yang–
Baxter equation [17,23,25]. Every Garside monoid has two lattice structures according 
to left and right divisibility, and a Garside element Δ for which the sets of left and right 
divisors coincide.

Shortly before a first general definition of Garside groups had been released [26], a new 
development was initiated by Birman, Ko, and Lee’s discovery of a dual Garside structure 
[10] on Artin’s braid groups. Again, the new concept was soon extended to all spherical 
Artin groups [5]. For Artin groups of Euclidean type, the classical monoid of positive 
elements no longer gives rise to a lattice, while the dual monoid still yields a Garside 
structure for groups of type rAn or rCn [28,29]. Precisely, such a group is quasi-Garside [25]
in the sense that the set of atoms is not assumed to be finite. Beyond Euclidean groups, 
a dual quasi-Garside structure for free groups was obtained by Bessis [6]. Using a careful 
analysis of factorizations of Euclidean isometries into reflections [13], McCammond [39]
recently proved that rAn, rCn, and rG2 (see [48]) are the only Euclidean Artin groups which 
admit a dual quasi-Garside structure. On the other hand, McCammond and Sulway [40]
embed the dual Artin monoid of any Euclidean type into a quasi-Garside monoid, which 
implies, for instance, that irreducible Euclidean Artin groups are torsion-free and have 
a trivial centre.

The framework of Garside structure is large, but many groups of a somewhat similar 
type are not covered by that scheme. For example, braid groups with infinitely many 
strands no longer admit a Garside element. Another failure occurs even for very small 
groups like the fundamental group Z ¸ Z of the Klein bottle, where the noetherian 
property neither holds for the left- nor the right-hand ordering which both are linear. 
As observed in [47], however, these and many other non-noetherian groups are right 
�-groups, that is, groups with a lattice order, so that the right multiplications a ÞÑ ab

are lattice automorphisms.
One of the advantages to study Garside-like groups as right �-groups comes from their 

intimate connection with (two-sided) �-groups, providing a big source of inspiration and 
a wealth of proof techniques from �-groups to be adapted to that wider scope. For the 
theory of �-groups, the reader is referred to [4,8,19,37].

For example, the proof that braid groups are torsion-free caused a lot of trouble [31,
32,20,44] until Dehornoy eliminated the noetherian hypothesis to get a much simpler 
proof [22]. In the wider context of right �-groups, the proof has now become trivial 
([47], Proposition 3). Secondly, Picantin’s decomposition of the quasi-centre of a Garside 
group [41] easily extends to right �-groups with a noetherian quasi-centre [47], where the 
decomposition follows immediately from an old theorem of Birkhoff [9] on noetherian 
�-groups. In the same paper [41], Picantin obtains an iterated crossed product represen-
tation for every Garside group. The factors of the crossed product act on each other, 
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subject to compatibility conditions, which leads to some complication. “Iterated” means 
that after a first maximal crossed product decomposition, the quasi-centre of the factors 
need not be cyclic, so that each factor may further decompose into a crossed product, 
until the whole process stops at groups with cyclic quasi-centre. This leads to a tree-like 
structure of any Garside group.

In the present paper, we extend Picantin’s main result [41] to the context of right 
�-groups and beyond, using a conceptual description of crossed products which reduces 
all the technicalities to a minimum. To make this precise, we start with the familiar 
case of Garside groups, and gradually extend the scope. Let us note first that there 
are two extreme types of Garside-like groups: groups with cyclic quasi-centre which we 
call quasi-cyclic, and the structure groups GX of non-degenerate unitary set-theoretic 
solutions R : X2 Ñ X2 of the quantum Yang–Baxter equation. For finite X, Chouraqui 
[17] observed that the groups GX are Garside groups. In [45] it was shown that the 
solutions X are equivalent to a binary operation ¨ on X with bijective left multiplications 
satisfying the equation

px ¨ yq ¨ px ¨ zq “ py ¨ xq ¨ py ¨ zq.

Such a structure pX; ̈ q is called a cycle set. If x ̈ x “ x holds for all x P X, the cycle set 
is said to be square-free [45].

For a Garside group G, our main result implies that G is an iterated crossed product 
of quasi-cyclic groups, and that the tree structure of this iterated crossed product is 
determined by the set X of atoms as a partial cycle set, that is, a partition X “

Ů

iPI Xi

and a product x ̈ y on X which is defined whenever x and y belong to different subsets 
Xi. Furthermore, it is assumed that the above equation holds, whenever defined, and 
that the left multiplication by x P Xi is a permutation on X � Xi. So the Xi are 
singletons if and only if X is equivalent to a square-free cycle set, and in this case, 
G is the structure group of the solution given by X. Otherwise, the Xi are the atom 
sets of quasi-cyclic Garside groups. A general Garside group can thus be regarded as 
an intermediate structure between quasi-cyclic groups and structure groups of certain 
solutions of the quantum Yang–Baxter equation.

It should be recalled that the concept of square-free cycle set arose from a conjecture 
of Gateva-Ivanova [34] on n-generated semigroups of skew-polynomial type [35]. The 
corresponding semigroup algebras are Artin–Schelter regular [2,3] of global dimension n, 
and any such semigroup gives rise to a solution of the quantum Yang–Baxter equation 
with a marvellous tree structure. In the language of cycle sets, this means that the 
associated finite (square-free) cycle set X admits a decomposition X “

Ů

iPI Xi into 
subsets Xi which are invariant under left multiplication, and that |I| ą 1 whenever 
|X| ą 1. Since every Xi is again a square-free cycle set, the iterated decompositions 
make X into a tree. The conjecture that every finite square-free cycle set comes from 
such an Artin–Schelter regular algebra was verified in [45]. Via partial cycle sets, the tree 
structure reappears in the iterated crossed product decomposition of a Garside group.
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Beyond Garside groups, we prove that the quasi-centre of any right �-group G is a 
(two-sided) �-group (Proposition 5), removing the archimedean hypothesis in a similar 
result of [47]. The quasi-centre NpGq consists of the elements u P G which are normal
in the sense that the positive cone (with respect to the current fixed order) is invariant 
under conjugation with u. In particular, a Garside element is the same as a strong order 
unit, a normal element u ě 1 such that the interval r1, us generates the group. If NpGq is 
noetherian, this immediately gives a decomposition of NpGq into a cardinal sum of cyclic 
groups. Based on this decomposition of NpGq, we obtain a crossed product representation 
for right �-groups G with a noetherian quasi-centre such that G is the smallest convex 
subgroup containing NpGq (Theorem 2).

In the absence of a noetherian property, we have to deal with right �-groups in general. 
By [47], Theorem 1, a right �-group is determined by its negative cone, which is a 
self-similar left and right hoop. Recall that a left hoop [46] is a monoid H with a binary 
operation Ñ such that the following are satisfied for all a, b, c P H:

a Ñ a “ 1

ab Ñ c “ a Ñ pb Ñ cq

pa Ñ bqa “ pb Ñ aqb.

The multiplication of H and the operation Ñ determine each other. So a left hoop can be 
regarded as a special type of monoid. If H is right cancellative, it is called self-similar. 
(For equational descriptions of self-similarity, see Proposition 1.) Every left hoop is a 
^-semilattice with respect to the partial order

a ď b ðñ a Ñ b “ 1 (0)

and satisfies the left Ore condition. Therefore, a self-similar left hoop H admits a group 
of left fractions GpHq which, in a sense, can be viewed as a “quarter of an �-group”, that 
is to say, “one half” of a right �-group. Indeed, the negative cone of a right �-group G
has a second operation �, satisfying

b ď a � c ðñ ab ď c ðñ a ď b Ñ c,

which makes the negative cone G´ into a self-similar right hoop. Accordingly, there is 
a second partial order, similar to (0). We will show, however, that Picantin’s concept of 
crossed product extends to a framework of one-sided (self-similar) hoops (Theorem 1).

With respect to the binary operation Ñ, every left hoop H is an L-algebra [46], that 
is, the relation (0) is a partial order with greatest element 1, and the equations 1 Ñ a “ a

and

pa Ñ bq Ñ pa Ñ cq “ pb Ñ aq Ñ pb Ñ cq
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hold for all a, b, c P H. Note the equivalence of this equation with the above mentioned 
one for a cycle set (see the remark before Theorem 3). The “L” and the arrow notation 
for L-algebras come from their origin in algebraic logic [46]. Since 1 stands for the 
greatest element, the logical unit, the negative cone is the preferred one. Conversely, 
every L-algebra X embeds into a self-similar left hoop SpXq such that X generates 
SpXq as a monoid. Up to isomorphism, the self-similar closure SpXq of X is unique.

Now the concept of L-algebra allows a succinct description of the crossed product 
of self-similar left hoops Hi, i P I, as follows. Assume that the Hi act on each other 
by order automorphisms. We say that the actions are compatible if the wedge

Ź

Hi, 
the disjoint union 

Ů

iPI Hi with the unit elements 1 P Hi identified, is an L-algebra. As 
the main equation defining an L-algebra depends on three variables, this compatibil-
ity does not involve more than three factors, as Picantin [41] observed in the context 
of Garside monoids. The crossed product

Ò

iPI Hi of the Hi is just the self-similar clo-
sure Sp

Ź

iPI Miq (Definition 5). By this definition, the infinite distributivity of a crossed 
product, and the unique ordered factorization of its elements (Theorem 1) follow imme-
diately. Moreover, the lattice structure of a crossed product is the cardinal sum of its 
factors (Corollary 1), which explains the distributivity of the lattice ordering for struc-
ture groups associated to the quantum Yang–Baxter equation. An intrinsic description 
of crossed products in terms of the submonoids Hi (Corollary 3) is proved in a few lines. 
In essence, this shows that the pattern behind Picantin’s amazing result is a decompo-
sition theorem for L-algebras, extending the decomposition [45] of square-free cycle sets 
(Theorem 3).

1. Preliminaries

A group G with a partial order ď is said to be right partially ordered if

a ď b ùñ ac ď bc (1)

holds for a, b, c P G. In terms of the positive cone G` :“ ta P G | a ě 1u, the partial 
order can be expressed by a ď b ðñ ba´1 P G`, and then G is right partially ordered if 
and only if P :“ G` is a submonoid with trivial unit group Pˆ “ P X P´1. Every right 
partial order ď corresponds to a left partial order

a ď b :ðñ b´1
ď a´1

ðñ a´1b P G`
ðñ b´1a P G´, (2)

where G´ :“ ta P G | a ď 1u denotes the negative cone of G. Thus, a right partially 
ordered group G is a lattice with respect to ď if and only if G is a lattice with respect 
to ď, and then we call G a right �-group [47]. A lattice-ordered group is a right �-group 
where both partial orders ď and ď coincide. For the theory of lattice-ordered groups 
(�-groups for short), we refer to [8,19].

The negative cone of a right �-group G can be described as follows. Recall that a left 
hoop [46] is a monoid M with a binary operation Ñ satisfying
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a Ñ a “ 1 (3)

ab Ñ c “ a Ñ pb Ñ cq (4)

pa Ñ bqa “ pb Ñ aqb (5)

for a, b, c P M . By [46], Proposition 3, the unit element 1 of a left hoop M is a logical 
unit, that is,

a Ñ a “ a Ñ 1 “ 1, 1 Ñ a “ a (6)

holds for every a P M . Note that an element 1 satisfying (6) is unique. Moreover, every 
left hoop M is a ^-semilattice with

a ^ b “ pa Ñ bqa “ pb Ñ aqb. (7)

In particular, this provides M with a partial order

a ď b :ðñ a Ñ b “ 1 ðñ Dx P M : a “ xb. (8)

Therefore, Eq. (4) yields the adjointness relation ab ď c ðñ a ď b Ñ c, which shows 
that the multiplication and the operation Ñ determine each other. Furthermore, the 
adjointness relation easily implies that

a Ñ pb ^ cq “ pa Ñ bq ^ pa Ñ cq

holds for all a, b, c P M (see [46], Proposition 4).
Recall that a monoid M is said to be right cancellative if the map a ÞÑ ab is injective 

for all b P M . By [46], Proposition 5, we have

Proposition 1. For a left hoop M , the following are equivalent.

(a) M is right cancellative.
(b) The map b ÞÑ pa Ñ bq is surjective for all a P M .
(c) a Ñ ba “ b holds for all a, b P M .
(d) a Ñ bc “ ppc Ñ aq Ñ bqpa Ñ cq holds for a, b, c P M .

A left hoop M is called self-similar [46] if the equivalent conditions of Proposition 1
are satisfied. Any left hoop M gives rise to a right hoop pMop; �q (with multiplication 
reversed). The equations (3)–(5) then turn into

a � a “ 1 (9)

ab � c “ b � pa � cq (10)

apa � bq “ bpb � aq. (11)

Accordingly, we call a right hoop self-similar if it is left cancellative.
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By [47], Theorem 1, the negative cone of a right �-group can be characterized as 
a self-similar left and right hoop, and every self-similar left and right hoop arises in 
this way. For brevity, self-similar left and right hoops are called right �-cones. To avoid 
confusion, we warn the reader that a “left hoop” is not a “hoop”. In fact, hoops [12,11]
are even more special than left and right hoops: they are commutative, which means 
that the two operations Ñ and � coincide.

The equations (3)–(5) and (d) of Proposition 1 can be visualized by the following 
Hasse diagram (cf. [21], Fig. 1.2):

For every covering relation a ă b there is a unique atom x with a “ xb. The upper 
square of the diagram shows how y Ñ z is obtained for a pair of distinct atoms y, z. For 
a right �-cone, the operation � is obtained similarly by reversing the partial order:

This explains the relation xpx � yq “ ypy � xq as well as (18) in Section 3.
For a right �-cone M , Eqs. (5) and (11) imply the left and right Ore condition. As M

is left and right cancellative, it follows that M has a (left and right) group of fractions 
GpMq. We call a right �-cone M and its group of fractions noetherian [47] if ascending 
sequences a0 ď a1 ď a2 ď ¨ ¨ ¨ or a0 ď a1 ď a2 ď ¨ ¨ ¨ become stationary, that is, 
an “ an`1 for some n P N. Note that M is noetherian if and only if GpMq satisfies the 
ascending and descending chain condition for bounded sequences with respect to ď, or 
equivalently, with respect to ď. Clearly, a noetherian right �-cone M is atomic in the 
sense that every element of M can be represented as a product of maximal elements 
x ă 1, also called atoms. The set of atoms of M will be denoted by XpMq. If M is 
noetherian, it may still happen that a bounded interval has finite chains of arbitrary 
length. Therefore, we call M bounded atomic [47] if every element of M can be written 
as a product of atoms such that the number of factors in any such product is bounded. 
Every bounded atomic right �-cone is noetherian, but not vice versa.
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An element u of a right �-group G is called normal if uG`u´1 “ G`. The set of 
normal elements is a partially ordered subgroup NpGq, the quasi-centre [47] of G. If, in 
addition, every a P G` satisfies a ď un for some n P N, we call u a strong order unit
[47]. A quasi-Garside group [25] is then equivalent to a right �-group with a strong order 
unit and a bounded atomic positive cone. If the number of atoms is finite, such a group 
is called Garside [21,25].

For the next section, we recall the concept of L-algebra [46], that is, a set X with 
a binary operation Ñ such that (0) is a partial order with greatest element 1, and the 
equations 1 Ñ x “ x and

px Ñ yq Ñ px Ñ zq “ py Ñ xq Ñ py Ñ zq

hold for all x, y, z P X. A morphism f : X Ñ Y of L-algebras is a map which satisfies 
fpx Ñ yq “ fpxq Ñ fpyq and fp1q “ 1. For an inclusion morphism f : X ãÑ Y , we call 
X a L-subalgebra of Y .

Every left hoop is an L-algebra. By [46], Section 2, the multiplication of a left hoop 
is uniquely determined by the underlying L-algebra. In other words, left hoops form a 
special class of L-algebras. An L-algebra X is called self-similar [46] if for each x P X, 
the map y ÞÑ px Ñ yq is a bijection from ty P X | y ď xu onto X. By [46], Theorem 1 and 
Proposition 5, an L-algebra is self-similar if and only if it is a self-similar left hoop. Every 
L-algebra X has a self-similar closure SpXq, a unique self-similar left hoop generated by 
X as a monoid [46]. In other words, an L-algebra X has a unique partial multiplication 
which is everywhere defined if and only if X is self-similar. Typical examples of L-algebras 
are intervals ra, 1s in an abelian �-group G where a´1 is a strong order unit of G. Here 
the self-similar closure coincides with the negative cone G´ of G. See also Examples 1
and 2 in the following section.

2. Crossed products of self-similar left hoops

For any set M , we denote the group of permutations on M by SpMq. Thus SpMq

is a subgroup of the monoid MM of maps M Ñ M . If M is partially ordered, we write 
S`pMq for the group of order automorphisms of M .

If M is a self-similar left hoop, the natural action of S`pMq on M gives rise to a 
retro-action of M on S`pMq, given by

pa Ñ πqpbq :“ πpaq Ñ πpbaq (12)

for a, b P M and π P S`pMq. Namely, we have

Proposition 2. Let M be a self-similar left hoop. The retro-action is a well-defined monoid 
homomorphism M Ñ S`pMqS

`
pMq which satisfies the 1-cocycle condition
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a Ñ π� “ p�paq Ñ πqpa Ñ �q

for all a P M and π, � P S`pMq.

Proof. We show first that the inverse of the map (12) is given by

pa Ñ πq
´1

pcq :“ a Ñ π´1
pcπpaqq.

Indeed, a Ñ π´1`

pπpaq Ñ πpbaqqπpaq
˘

“ a Ñ π´1pπpaq ^ πpbaqq “ a Ñ π´1pπpbaqq “
a Ñ ba “ b by Proposition 1, and πpaq Ñ π

`

pa Ñ πq´1pcqa
˘

“ πpaq Ñ cπpaq “ c. Thus 
a Ñ π is bijective. Eqs. (4) and (7) imply that b ď c ùñ a Ñ b ď a Ñ c holds in M . 
Hence a Ñ π P S`pMq. For a, b, c P M and π P S`pMq, we have 1 Ñ π “ π and

pab Ñ πqpcq “ πpabq Ñ πpcabq “ pπpabq Ñ πpbqq Ñ pπpabq Ñ πpcabqq

“ pπpbq Ñ πpabqq Ñ pπpbq Ñ πpcabqq “ pb Ñ πqpaq Ñ pb Ñ πqpcaq

“ pa Ñ pb Ñ πqqpcq.

Thus a ÞÑ pa Ñ πq is a monoid homomorphism.
Finally, pa Ñ π�qpbq “ π�paq Ñ π�pbaq “ π�paq Ñ π

`

p�paq Ñ �pbaqq�paq
˘

“ π�paq Ñ
π

`

pa Ñ �qpbq�paq
˘

“ p�paq Ñ πqpa Ñ �qpbq for all b P M . l

Note that S`pMq is just a monoid, not a left hoop. For left hoops, we consider a 
stronger type of action.

Definition 1. Let H and M be left hoops. An action of H on M is given by a monoid 
homomorphism σ : H Ñ S`pMq. For h P H and a P M , we write h Ñ a :“ σphqpaq.

For mutual actions of self-similar left hoops, the retro-action has to be taken into 
account. Proposition 2 leads to the following

Definition 2. Let M1 and M2 be self-similar left hoops. We say that two mutual actions 
σj,i : Mi Ñ S`pMjq with ti, ju “ t1, 2u are compatible if the 1-cocycle conditions

ai Ñ ajbj “
`

pbj Ñ aiq Ñ aj
˘

pai Ñ bjq

are satisfied for a1, b1 P M1 and a2, b2 P M2.

It is easily checked that two mutual actions σj,i : Mi Ñ S`pMjq are compatible if and 
only if the diagrams
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commute for all aj P Mj and ti, ju “ t1, 2u, where �j : Mj Ñ S`pMjqS
`

pMjq denotes 
the retro-action. There is a simpler and more elegant description of compatibility.

Proposition 3. Let H and M be self-similar left hoops. Two actions H Ñ S`pMq and 
M Ñ S`pHq are compatible if and only if the equation

ph Ñ aq Ñ ph Ñ uq “ pa Ñ hq Ñ pa Ñ uq (13)

holds for a P M , h P H, and u P H Y M .

Proof. For u P M , we have
`

ph Ñ aq Ñ ph Ñ uq
˘

ph Ñ aq “ ph Ñ aq ^ ph Ñ uq “ h Ñ pa ^ uq “ h Ñ pa Ñ uqa.

Since M is right cancellative, this shows that Eq. (13) with u P M is equivalent to

h Ñ pa Ñ uqa “
`

pa Ñ hq Ñ pa Ñ uq
˘

ph Ñ aq.

By Proposition 1(b), every element of v P M is of the form v “ a Ñ u for some u P M . 
Therefore, Eq. (13) with u P M can be written as

h Ñ va “
`

pa Ñ hq Ñ v
˘

ph Ñ aq.

Since Eq. (13) is symmetric in a and h, this completes the proof. l

Definition 3. For a family of L-algebras Xi, i P I, we define the wedge
Ź

iPI Xi to be 
the partially ordered set obtained from the disjoint union of the Xi by identifying the 
unit elements 1 of the Xi. So each Xi can be regarded as a subset of 

Ź

iPI Xi. For 
I “ t1, . . . , nu, we also write X1 ^ ¨ ¨ ¨ ^ Xn instead of 

Ź

iPI Xi.

By Definition 3, Proposition 3 yields

Corollary. Let H and M be self-similar left hoops. Two actions H Ñ S`pMq and M Ñ

S`pHq are compatible if and only if they make H ^ M into an L-algebra.

Accordingly, the concept of compatible actions naturally extends as follows.

Definition 4. Let Mi, i P I, be a family of self-similar left hoops. We say that a system of 
actions σj,i : Mi Ñ S`pMjq for i ­“ j is compatible if it makes 

Ź

iPI Mi into an L-algebra.
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Recall that every L-algebra X admits a self-similar closure [46], that is, a self-similar 
left hoop SpXq with X as an L-subalgebra such that X generates SpMq as a monoid. 
By [46], Theorem 3, SpXq is unique up to isomorphism.

Example 1. The simplest example is given by the L-algebra Xa :“ t1, au with a ă 1. The 
self-similar closure SpXaq is the negative cone of the �-group GpSpXaqq – Z. It consists 
of the powers 1 ą a ą a2 ą a3 ą ¨ ¨ ¨ with am Ñ an “ an´m for m ď n.

Further examples can be found in [46,47]. Here is a new one.1

Example 2. Let V be a finite dimensional vector space over a field K, and let p , q : V ˆV Ñ

K be an anisotropic bilinear form, that is px, xq ‰ 0 unless x “ 0. For x, y P V , we define

x Ñ y :“ y ´
py, xq

px, xq
x

if x ‰ 0, and 0 Ñ y :“ y. It is easily checked that the equation

px Ñ yq Ñ px Ñ zq “ py Ñ xq Ñ py Ñ zq

holds for all x, y, z P V . Note that for x ‰ 0, the one-dimensional subspace Kpx Ñ yq

is determined by the subspaces Kx and Ky. Furthermore, x Ñ y “ 0 if and only if 
Kx “ Ky. Hence Ñ induces a partial binary operation on the projective space PpV q

which is defined for all pairs of distinct points in PpV q.
Recall that an L-algebra is said to be discrete [47] if every element x ă 1 is maximal. 

We adjoin 0 to the projective space PpV q such that 0 becomes a logical unit in rXpV q :“
PpV q \ t0u. With the Gram determinant

Δ :“ px, xqpy, yq ´ px, yqpy, xq,

we have

px Ñ y, x Ñ yq “
Δ

px, xq
.

Hence x Ñ y “ 0 if and only if Δ “ 0. For x, y ‰ 0, this implies that Kx “ Ky if and 
only if Kpx Ñ yq “ Kpy Ñ xq. Thus rXpV q is a discrete L-algebra.

Using [47], Theorem 4, it can be shown that the self-similar closure of rXpV q is the 
negative cone of a quasi-Garside group. If tx0, . . . , xnu is a basis of V , with corresponding 
points Pi :“ Kxi, then P0 ^ ¨ ¨ ¨ ^ Pn is a Garside element of rXpV q, and the elements of 
the interval rP0 ^ ¨ ¨ ¨ ^ Pn, 0s in Sp rXpV qq can be identified with the subspaces of PpV q

1 I am indebted to Carsten Dietzel for the idea behind this example.
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with reverse inclusion as partial order. So the empty space stands for the logical unit 0, 
while PpV q corresponds to the Garside element P0 ^ ¨ ¨ ¨ ^ Pn.

For finite fields K, there are no anisotropic forms of ranks ě 3. On the other hand, 
notably for K “ R, there are many non-symmetric bilinear forms with non-isomorphic 
L-algebras which determine the same quadratic form x ÞÑ px, xq. In particular, the 
bilinear form p , q is symmetric if and only if the associated quasi-Garside group is 
lattice-ordered.

Definition 5. Let Mi, i P I, be a family of self-similar left hoops with a compatible 
system of actions σj,i : Mi Ñ S`pMjq. We define the crossed product

Òσ
iPI Mi, or simply 

Ò

iPI Mi, of the Mi to be the self-similar closure Sp
Ź

iPI Miq. If I “ t1, . . . , nu, we also 
write M1 b ¨ ¨ ¨ b Mn.

So there are natural embeddings Mi ãÑ
Ò

iPI Mi. Since Mi acts bijectively on the Mj

with j ­“ i, the implication

ai ď aj ùñ aj “ 1 (14)

holds for ai P Mi and aj P Mj with i ­“ j.

Theorem 1. Let M “
Ò

iPI Mi be a crossed product of self-similar left hoops.

(a) Every a P M can be uniquely written in the form a “ a1 ^ ¨ ¨ ¨ ^ an with n P N and 
aj P Mij � t1u for distinct i1, . . . , in P I. (The case a “ 1 is covered by n “ 0.)

(b) If I is totally ordered, any a P M can be uniquely written in the form a “ a1 ¨ ¨ ¨ an
with n P N and aj P Mij � t1u for distinct i1 ă . . . ă in in I.

Proof. a) For b P Mi and c P Mj with i ­“ j, the equation c Ñ x “ b has a unique 
solution x P Mi. Let us write x “ bc. Thus c Ñ bc “ b (which is also pc Ñ bqc). In 
particular, Eq. (7) yields

bc “ bc ^ c. (15)

So the existence of a representation a “ a1 ^ ¨ ¨ ¨ ^ an follows. To prove uniqueness, let 
J Ă I be finite and a1, . . . , an P

Ť

jPJ Mj . For i P I and b P Mi, we verify the implication

a1 ^ ¨ ¨ ¨ ^ an ď b ă 1 ùñ i P J. (16)

For |J | “ 1, this follows by (14). Proceeding by induction on |J |, we can assume that 
a1, . . . , an´1 P

Ť

kPJ�tju
Mk for some j P J . With c :“ a1 ^ ¨ ¨ ¨ ^ an´1, this gives 

pan Ñ cqan ď b. So pan Ñ a1q ^ ¨ ¨ ¨ ^ pan Ñ an´1q “ an Ñ c ď an Ñ b. Since 
an Ñ a� P

Ť

kPJ�tju
Mk for � ă n, and an Ñ b P Mi, the inductive hypothesis gives 

i P J � tju or an Ñ b “ 1.
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Now let a1 ^ ¨ ¨ ¨ ^ an “ b1 ^ ¨ ¨ ¨ ^ bm be two representations as in (a). If n “ 0 or 
m “ 0, the meets on both sides are empty, and there is nothing to prove. Thus, we 
assume that m, n ą 0. So there is a unique j P t1, . . . , nu with aj , bm P Mi for some i P I. 
After rearrangement of the ai, we can assume that j “ n. As above, this implies that 
pan Ñ a1q ̂ ¨ ¨ ¨ ^ pan Ñ an´1q ď an Ñ bm. Hence (16) gives an ď bm, and by symmetry, 
an ě bm. By induction, this shows that the representation in (a) is unique.

b) Assume that b P Mi and c P Mj with i ­“ j. Define bc :“ bc Ñ c. Then Eq. (5) can 
then be rewritten as a relation bc “ pbcqpbcq with bc P Mj and bc P Mi. Hence, by Eq. (15), 
the product representation in (b) is equivalent to the ^-representation in (a). l

Remark. Crossed products of groups and monoids have been considered by several au-
thors [50,16,49,43,41,15,36,18]. Owing to the founders, they are also called Zappa–Szép 
products. Gebhardt and Tawn [36] define an internal Zappa–Szép product of a pair of 
submonoids G, H of a monoid K by the property that every element of K has a unique 
representation gh “ h1g1 with g, g1 P G and h, h1 P H. They show that Picantin’s crossed 
products [41] are of that type. On the other hand, they give an example of an internal 
and external Zappa–Szép product in the sense of Brin [15] which is not a crossed product 
in Picantin’s sense [41]. They prove that both concepts coincide for Garside monoids.

Definition 6. For a family of partially ordered sets Mi with a distinguished element 1, 
we define the cardinal sum

Ÿ

iPI Mi to be the partially ordered set of all paiq P
ś

iPI Mi

with ai “ 1 for almost all i P I (cf. [19]).

For example, if the Mi are left hoops, 
Ÿ

iPI Mi is a ^-semilattice. As an immediate 
consequence of Theorem 1, we have

Corollary 1. As a ^-semilattice, a crossed product 
Ò

iPI Mi of self-similar left hoops is 
isomorphic to the cardinal sum 

Ÿ

iPI Mi.

Secondly, crossed products are associative in the following sense.

Corollary 2. Let 
Ò

iPI Mi be a crossed product of self-similar left hoops, and let I “
Ů

jPJ Ij be a partition. Then 
Ò

iPI Mi –
Ò

jPJ

`
Ò

iPIj
Mi

˘

.

Proof. We only have to verify that for distinct j, k P J , any element a P
Ò

iPIj
Mi acts 

bijectively on 
Ò

iPIk
Mi. Since b ÞÑ pa Ñ bq respects meets, it is enough to verify that a

acts bijectively on each M� with � R Ij . By Eq. (4), this reduces to the case a P Mi with 
i P Ij . l

Note that the converse of Corollary 2 is false: a crossed product 
Ò

jPJ

`
Ò

iPIj
Mi

˘

need 
not give rise to a crossed product 

Ò

iPI Mi. For example, M1 b pM2 b M3q fails to be 
a crossed product M1 b M2 b M3 whenever M1 permutes M2 and M3, as is typical for 
Garside groups arising from solutions of the quantum Yang–Baxter equation ([17,23]; 
[47], Theorem 2).
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As a third consequence, we get a simple characterization of crossed products. Recall 
that a subset Δ of a partially ordered set Ω is convex if a ď b ď c with a, c P Δ and 
b P Ω implies that b P Δ.

Corollary 3. Let M be a self-similar left hoop with self-similar L-subalgebras Mi, i P I. 
Then M “

Ò

iPI Mi if and only if the following are satisfied.

(a) Every element of M is of the form a1 ^ ¨ ¨ ¨ ^ an with ai P
Ť

iPI Mi.
(b) The Mi are convex with Mi X Mj “ t1u for distinct i, j P I.
(c) If a P Mi and b P Mj with i ­“ j, then a Ñ b P Mj.

Proof. The necessity of (a)–(c) is obvious. As to the convexity of Mi, assume that a ě
b P Mi with a P Mj . If i ­“ j, then b Ñ a “ b Ñ 1, which gives a “ 1 P Mi.

Conversely, let (a)–(c) be satisfied. Then M is generated by 
Ź

iPI Mi “
Ť

iPI Mi. 
For distinct i, j P I and a P Mi, we have to verify that the map σa : Mj Ñ Mj with 
σapbq :“ a Ñ b is an order automorphism. Thus, assume that a Ñ b ď a Ñ b1 holds 
for some b, b1 P Mj . Then 1 “ pa Ñ bq Ñ pa Ñ b1q “ pb Ñ aq Ñ pb Ñ b1q. Hence 
b Ñ a ď b Ñ b1. By (b) and (c), this implies that b Ñ b1 P Mi X Mj . Thus (b) yields 
b Ñ b1 “ 1, that is, b ď b1. In particular, this shows that σa is injective.

To verify the surjectivity of σa, let c P Mj be given. By (a), we have ca “ b1 ^ ¨ ¨ ¨ ^ bn
for some bk P

Ť

�PI M�. Hence c ď a Ñ pb1 ^ ¨ ¨ ¨ ^ bnq ď pa Ñ biq, and (b) implies that 
a Ñ bi P Mj for all i P t1, . . . , nu. So, if bi P Mk for k ­“ j, then a Ñ bi P Mj XMk “ t1u, 
which yields ca “ a ̂ b for some b P Mj . Hence ca “ pa Ñ bqa, and thus c “ a Ñ b. l

Example 3. Let M, H be self-similar left hoops. By (8), the monoid automorphisms of 
M form a subgroup AutpMq of S`pMq. Hence every monoid homomorphism σ : H Ñ

AutpMq defines an action of H on M , and by Definition 2, this action is compatible with 
the trivial action of M on H. Conversely, if an action σ : H Ñ S`pMq is compatible 
with the trivial action of M on H, the image of σ is in AutpMq. The crossed product 
M b H then coincides with the semi-direct product M ¸ H. Indeed, every element of 
M bH is of the form x ̂ a “ px Ñ aqx “ ax with a P H and x P M . So ax “ pa Ñ xqa, 
which shows that the action σ : H Ñ AutpMq is induced by conjugation.

3. The quasi-centre of a right �-group

In this section, we show that the quasi-centre NpGq “ ta P G | aG`a´1 “ G`u of a 
right �-group G with positive cone G` is lattice-ordered and, under a weak noetherian 
hypothesis, gives rise to a crossed product decomposition of G.

Proposition 4. Let G be a right �-group. For a P G, the following are equivalent.

(a) a P NpGq.
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(b) The map b ÞÑ ab is an order isomorphism.
(c) @ b P G : a ď b ðñ a ď b.
(d) @ b P G : b ď a ðñ b ď a.

Proof. (a) ñ (b): We have b ď c 
(1)

ðñ cb´1 P G`
paq

ðñ acb´1a´1 P G`
(1)

ðñ ab ď ac.
(b) ñ (c): a ď b 

pbq
ðñ 1 ď a´1b 

(1)
ðñ b´1 ď a´1 (2)

ðñ a ď b.
(c) ñ (d): We have b ď a 

(1)
ðñ a ď ab´1a 

pcq
ðñ a ď ab´1a 

(2)
ðñ a´1ba´1 ď a´1 (1)

ðñ

a´1 ď b´1 (2)
ðñ b ď a.

(d) ñ (a): 1 ď b 
(1)

ðñ a´1 ď ba´1 (2)
ðñ ab´1 ď a 

pdq
ðñ ab´1 ď a 

(1)
ðñ 1 ď aba´1. l

The following proposition (see Proposition 20 of [47]) underlines the importance of the 
quasi-centre for an arbitrary right �-group. For example, it implies that the quasi-centre 
is always a distributive sublattice.

Proposition 5. The quasi-centre NpGq of a right �-group G is an �-subgroup of G.

Proof. Since NpGq is a subgroup, it suffices to show that NpGq is a sublattice. Thus, let 
g, h P NpGq be given. For any a P G`, we have ga ě g and ha ě h by Proposition 4(b). 
Hence pg ^ hqa “ ga ̂ ha ě g ^ h, and thus pg ^ hqG`pg ^ hq´1 Ă G`.

Now Proposition 4(b) implies that 1 ď 1 _ gh´1 “ gpg´1 _ h´1q, which yields 
pg´1 _ h´1q´1 ď g. By symmetry, we obtain pg´1 _ h´1q´1 ď g ^ h. Furthermore, 
pg´1 _ h´1qpg ^ hq “ g´1pg ^ hq _ h´1pg ^ hq “ p1 ^ g´1hq _ ph´1g ^ 1q ď 1. Hence 
pg ^ hq´1pg´1 _ h´1q´1 ě 1. Conjugation with g ^ h yields pg´1 _ h´1q´1pg ^ hq´1 ě 1. 
Thus g ^ h ď pg´1 _ h´1q´1 ď g ^ h, which proves that

g ^ h “ pg´1
_ h´1

q
´1.

So it is enough to verify that g ^ h P NpGq. Assume that pg ^ hqapg ^ hq´1 P G`

for some a P G. Then g ^ h ď pg ^ hqa ď ga, which gives g´1pg ^ hq ď a. Similarly, 
h´1pg ^ hq ď a. So we obtain 1 “ pg´1 _ h´1qpg ^ hq “ g´1pg ^ hq _ h´1pg ^ hq ď a, 
which proves that g ^ h is normal. l

As usual, an interval ra, bs of a partially ordered set Ω with a ď b consists of the 
elements c P Ω with a ď c ď b.

Corollary. Let G be a right �-group, and let a, b P NpGq with a _ b “ 1.

(a) Every element c P rab, 1s is of the form c “ pc ̂ aq _ pc ̂ bq “ pc _ aq ̂ pc _ bq.
(b) The maps c ÞÑ c _ b and c ÞÑ c ̂ a give a lattice isomorphism rab, as – rb, 1s.
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Proof. Since a and b are normal, we have ac ď a and bc ď b. Hence c “ pa _bqc “ ac _bc ď
pc ̂ aq _ pc ̂ bq ď c. By Proposition 4, apc _ bq “ ac _ ab ď c. Hence c _ b ď a´1c, and 
similarly, c _ a ď b´1c. Thus c ď pc _ aq ̂ pc _ bq ď b´1c ̂ a´1c “ pb´1 ^ a´1qc “ c.

b) This follows by the special case c P rab, as, respectively c P rb, 1s. l

Definition 7. We call a right �-group G quasi-noetherian if NpGq is noetherian. The 
elements of P pGq :“ XpNpGq´q will be called primes of G. We say that G has enough 
normal elements if any a P G´ admits a normal element g ď a. If, in addition, NpGq is 
cyclic, we call G quasi-cyclic.

If G has enough normal elements, Proposition 4 implies that every g P G belongs to 
some interval ra, bs with a, b P NpGq. By definition, a quasi-cyclic right �-group G has a 
unique smallest strong order unit. However, G itself need not be noetherian, and even if 
G is noetherian, it need not be a Garside group.

Example 4. Let X be a set with a permutation π P SpXq. Define x Ñ y :“ πpyq if 
x, y belong to different π-orbits, and x Ñ y :“ x otherwise, if x ­“ y. Adjoining a 
logical unit 1, this makes rX :“ X \ t1u into a discrete L-algebra. The criterion [47], 
Proposition 19, implies that Sp rXq is modular as a lattice. (We take the opportunity 
to correct an inaccuracy: in [47], the criterion states that the self-similar closure SpY q

of a discrete L-algebra Y is modular if and only if px Ñ yq Ñ u “ py Ñ xq Ñ v

with x, y, u, v P Y � t1u and x ­“ y implies that there exists z P X with x Ñ z “ u

and y Ñ z “ v. The correct statement should either allow z P SpY q or restrict the 
assumption to px Ñ yq Ñ u “ py Ñ xq Ñ v ă 1.) Precisely, Sp rXq is generated by X, 
with relations x2 “ y2 whenever x and y belong to the same π-orbit. Furthermore, Sp rXq

is the negative cone of a right �-group.
Unless π is an involution, the lattice of G is not distributive, that is, G is not the 

structure group of a cycle set. For any π-orbit P containing x P X, the meet 
Ź

P exists 
and coincides with x2 if |P | ą 1, and these meets are the primes of G. They generate 
the quasi-centre, and G has enough normal elements. The subgroup generated by each 
π-orbit is quasi-cyclic. So there is no iteration in the crossed product decomposition of 
G, or in other words, the underlying tree of this crossed product is of height 1. Example 6 
will show that trees of infinite height also arise.

Note that G is always noetherian, while G is quasi-Garside if and only if π has finitely 
many orbits.

Now we apply the results of Section 2 to quasi-noetherian right �-groups G. For any 
a P NpGq X G´, consider the right �-subgroup

Ga :“
ď

nPN

ran, a´n
s.
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Theorem 2. Let G be a quasi-noetherian right �-group with enough normal elements. 
Then G´ “

Ò

pPP pGq
G´

p .

Proof. By Proposition 4, each Gp is a right �-subgroup of G. Birkhoff’s theorem [9]
implies that NpGq is a cardinal sum of the Gp with p P P pGq. To show that G´ is a 
crossed product of the G´

p , we apply Corollary 3 of Theorem 1. Condition (a) follows by 
the corollary of Proposition 5, while (b) is trivial. To verify (c), assume that a P rpn, 1s

and b P rqn, 1s with distinct primes p, q P P pGq. Since qn is normal, qna ď qn ď b. 
Whence qn ď a Ñ b ď 1. l

Corollary 1. As a lattice, every quasi-noetherian right �-group G with enough normal 
elements is a cardinal sum G “

Ÿ

pPP pGq
Gp.

Proof. As G “ NpGqG´, this follows immediately by Corollary 1 of Theorem 1. l

Corollary 2. For a quasi-noetherian right �-group G with distinct primes p, q P P pGq and 
a P G´

p , the map σa : G´
q Ñ G´

q with σapbq :“ a Ñ b is an order automorphism.

Proof. Since Gpq has enough normal elements, Theorem 2 applies. l

If G is noetherian with enough normal elements, any atom x P XpG´q majorizes a 
unique prime p P P pGq, and the map x ÞÑ p is a surjection π : XpG´q � P pGq. The 
fibers of π give a partition

XpG´
q “

ğ

pPP pGq

XpG´
p q. (17)

Corollary 2 implies that x Ñ y P XpG´
q q holds for x P XpG´

p q and y P XpG´
q q whenever 

p ­“ q. The operation x � y gives rise to similar permutations of the XpG´
q q, and both 

operations x Ñ y and x � y are related by a duality which was first observed in the 
context of non-degenerate cycle sets ([45], Definition 1):

px Ñ yq � py Ñ xq “ x “ px � yq Ñ py � xq. (18)

By [47], Proposition 4, Eq. (18) even holds for any pair of distinct atoms x, y P XpG´q. 
However, x Ñ y or x � y need no longer be atoms if πpxq “ πpyq.

Example 5. The pure braid group Pn on n strands is the kernel of the natural epimor-
phism Bn � Sn from the braid group Bn onto the symmetric group. Artin’s combing of 
braids [1] gives rise to a split short exact sequence Fn ãÑ Pn`1

p
� Pn, where Fn denotes 

the free group with n generators and p is the projection which forgets the pn ` 1q-th 
strand. Thus Pn`1 – Fn¸Pn, and by induction, Pn`1 – Fn¸¨ ¨ ¨¸F2 ¸F1. The action 
of Pn on Fn is induced by Artin’s action of Bn on Fn (see [38], Section 3). If we endow 
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Fn with Bessis’ dual quasi-Garside structure [6], the negative cone F´
n is stable under 

the action of Bn, and the Garside element of F´
n is fixed under this action. Therefore, 

Example 3 yields a crossed product decomposition

P´
n – F´

n´1 b ¨ ¨ ¨ b F´
2 b F´

1

which makes Pn into a quasi-Garside group. We remark that the semidirect product 
Pn – Fn´1 ¸ ¨ ¨ ¨ ¸ F2 ¸ F1 has also been used to make Pn into a totally ordered 
group, using the Magnus expansion of free groups [38]. With a slight modification of the 
argument, this implies that the fundamental group of the complement of a fibre-type 
hyperplane arrangement admits a (two-sided) total ordering ([38], Theorem 19). The 
pure braid group arises as a special case, first considered by Fadell and Neuwirth [31], 
where the hyperplanes form the zero set of the discriminant of a polynomial.

The conjugation by normal elements yields another permutation of the atoms.

Proposition 6. Let G be a right �-group, and a P NpGq. For any atom x P XpG´q,

axa´1
“

#

a Ñ x for a ę x

px Ñ aq Ñ a for a ď x
a´1xa “

#

a � x for a ę x

px � aq � a for a ď x

Proof. Since a is normal, there are atoms y, z P XpG´q with axa´1 “ y and a´1xa “ z. 
Hence ax “ ya, and thus y “ a Ñ ax “

`

px Ñ aq Ñ a
˘

pa Ñ xq. This gives the first 
dichotomy. The second one follows by z “ a � xa “ pa � xq

`

px � aq � a
˘

, using 
Proposition 4. l

In general, the Gp of Theorem 2 need not be quasi-cyclic. If every convex subgroup of 
G is quasi-normal, each Gp may further decompose into a crossed product, which yields 
a tree-like crossed product representation of G´:

G´
“

ò

pPP pGq

ò

qPP pGpq

¨ ¨ ¨ pGpq¨¨¨q
´.

Remark. If G is noetherian, the partition (17) shows that the stacked crossed product 
representation goes parallel to an iterated partition of the atoms. Starting with the 
partition (17), each XpG´

p q admits a similar partition, and so on. Ultimately, this leads 
to a partition

XpG´
q “

ğ

iPI

XpG´
i q (19)

where each Gi is a quasi-cyclic subgroup of G.
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In particular, x Ñ y is a partial operation on XpG´q which is defined everywhere 
unless x and y belong to one of the sets XpG´

i q of the refined partition (19). Apart from 
this exception, the structure of XpG´q is that of a cycle set.

Recall that a cycle set [45] is a set X with a binary operation ¨ such that the left 
multiplication y ÞÑ x ̈ y is bijective and the equation

px ¨ yq ¨ px ¨ zq “ py ¨ xq ¨ py ¨ zq (20)

holds for all x, y, z P X. If the square map x ÞÑ x ¨ x is bijective, too, the cycle set X
is called non-degenerate. A cycle set X is said to be square-free [45] if the square map 
x ÞÑ x ̈ x is the identity. (So X is non-degenerate in this case.)

Definition 8. Let X be a set with a partition X “
Ů

iPI Xi and a partial binary operation 
¨ such that x ¨ y is defined for x P Xi and y P Xj with i ­“ j. We call X a partial cycle 
set if for any x P Xi, the left multiplication y ÞÑ x ¨ y is a permutation of 

Ů

jPI�tiu Xj , 
and Eq. (20) holds whenever the products on both sides are defined.

Thus, in the noetherian case, Corollary 2 of Theorem 2 states that (19) is a partial 
cycle set with x ̈ y :“ x Ñ y. Since x ̈ x is never defined, the concept of non-degeneracy 
does not immediately apply to a partial cycle set. However, by [45], Proposition 2, a 
cycle set pX; Ñq is non-degenerate if and only if it admits a dual, that is, a cycle set 
structure pX; �q such that both operations are related by Eq. (18). In this sense, the 
partial cycle set (19) is non-degenerate. On the other hand, the definition of a partial 
cycle set X “

Ů

iPI Xi already implies that for x P Xi and y R Xi, the product x ̈ y never 
belongs to Xi. Thus, in a negative sense, partial cycle sets are even “square-free”.

Every non-degenerate cycle set pX, ̈ q admits a unique extension to a cycle set on the 
free abelian group ZpXq, so that the equations

a ¨ pb ` cq “ pa ¨ bq ` pa ¨ cq

pa ` bq ¨ c “ pa ¨ bq ¨ pa ¨ cq
(21)

hold for the extended operation on ZpXq. On the same set ZpXq, there is another group 
operation ˝, henceforth written as juxtaposition, given by the equation

a ` b “ pa ¨ bq ˝ a “ pa ¨ bqa, (22)

which makes ZpXq into a group GX , the structure group [30,45] of X. Chouraqui [17]
observed that GX is a Garside group if X is finite. In general, GX is a noetherian right 
�-group with negative cone NpXq.

Remark. Note the similarity between Eq. (22) and the hoop equation (7): For distinct 
atoms a, b, the sum a ` b is equal to the meet a ^ b. Accordingly, the operation ¨ in 



W. Rump / Journal of Algebra 485 (2017) 118–141 137
X corresponds to the operation Ñ of a left hoop. Indeed, Eq. (24) of [47] states that 
x ¨ y “ x Ñ y holds for distinct atoms x, y. For x “ y, however, both structures fall 
apart: x Ñ x “ 1 in a left hoop, while for a cycle set X, the square map Dpxq :“ x ̈ x is 
a bijection if and only if X is non-degenerate. For details, see [47], Section 4.

Eq. (4) also has a striking analogue in GX , namely, the equation

ab ¨ c “ a ¨ pb ¨ cq. (23)

So the structure group GX of a non-degenerate cycle set X acts on X “ XpG´
Xq, which 

leads to a partition X “
Ů

iPI Xi into orbits under GX .

Theorem 3. Let X be a square-free cycle set. The structure group GX has enough normal 
elements if and only if its orbits on X are finite. If GX has finite orbits, then Y ÞÑ

Ź

Y

gives a bijection between the orbits Y Ă X and the primes of GX .

Proof. Since GX is generated by atoms, Eq. (23) shows that a subset Y Ă X is invariant 
under GX if and only if the equivalence y P Y ô x ̈ y P Y holds for all x ­“ y in X. By 
the above remark, this statement remains true if x ̈ y is replaced by x Ñ y. Now assume 
that GX has enough normal elements, and let y P X be an atom. Then there is a normal 
element a ď y. For any x P X, this implies that ax ď a. Hence a ď x Ñ a ď x Ñ y. By 
[47], Proposition 6, GX is distributive as a lattice. So the set of atoms y ě a is finite, 
which shows that the orbits of GX are finite.

Conversely, assume that GX has finite orbits Y Ă X. Define p :“
Ź

Y . For any x P X, 
we have x Ñ p “

Ź

yPY px Ñ yq. For x R Y , this gives x Ñ p “ p. If x P Y , we obtain 
x Ñ p “

Ź

pY � txuq. Thus, in any case, p ď x Ñ p, which yields px ď p. Hence 
pG´p´1 Ă G´. More precisely, the case x R Y gives px “ px Ñ pqx “ pp Ñ xqp, that 
is, pxp´1 “ p Ñ x. Therefore, the conjugation x ÞÑ pxp´1 is bijective on X � Y . So it 
acts bijectively on Y , too, which proves that p is normal. Thus GX has enough normal 
elements. Now let y P Y be given. For x P X, let σpxq : X Ñ X be the permutation 
σpxqpzq :“ x ̈ z. Since Y is finite, we have σpxq´1pyq “ σipyq for some i P N. Therefore, 
any element of Y is of the form σpx1q ̈ ¨ ¨σpxnqpyq with x1, . . . , xn P X. For every x P X, 
and any normal element a P G with a ď y, we have ax ď a ď y, hence a ď x Ñ y. 
Thus a ď p, which proves that p is prime. By the first paragraph, every prime p arises 
in this way. Since GX is distributive, each atom y ě p belongs to Y . Whence Y ÞÑ

Ź

Y

is bijective. l

Corollary. Let X be a square-free cycle set. Assume that the structure group GX has 
enough normal elements. Then GX is quasi-cyclic if and only if GX – Z.

Proof. By Theorem 3, GX has finite orbits, which are again cycle sets. Thus, if GX is 
quasi-cyclic, X must be finite, hence a singleton by [45], Theorem 1. l
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Example 5 in [45] shows that there are infinite square-free cycle sets with a single 
orbit. Thus, if the structure group GX has infinite orbits, the concept “quasi-cyclic” has 
to be replaced by “transitive” with respect to the action on X. The following example 
shows that the corresponding tree may be of infinite height.

Example 6. Let X be the polynomial ring F2rts over the prime field F2, and let v : F2rts Ñ
Z \ t8u be its t-adic valuation. For x, y P X, we define

x ¨ y :“ y ` tvpx`yq`1.

For x “ y, this gives vpx ` yq “ 8, that is, x ¨ x “ x if we agree that t8 “ 0. Since 
vpx ̀ px ̈ yqq “ vpx ̀ yq, we have

x ¨ px ¨ yq “ y

for all x, y P X. So the left multiplication y ÞÑ x ¨ y is bijective. To verify Eq. (20), we 
have to show that

z` tvpx`zq`1
` tvpy`z`tvpx`yq`1

`tvpx`zq`1
q`1

“ z` tvpy`zq`1
` tvpx`z`tvpx`yq`1

`tvpy`zq`1
q`1

holds for x, y, z P X. Substituting a :“ x ̀ z and b :“ y ` z, the equation becomes

tvpaq`1
` tvpb`tvpa`bq`1

`tvpaq`1
q`1

“ tvpbq`1
` tvpa`tvpa`bq`1

`tvpbq`1
q`1.

As this equation is symmetric in a and b, we can assume that vpaq ă vpbq. Thus, we have 
to verify

vpaq “ vpa ` tvpa`bq`1
` tvpbq`1

q, vpbq “ vpb ` tvpa`bq`1
` tvpaq`1

q.

This follows since vpa ̀ bq “ vpaq. So X is a square-free cycle set. Furthermore, one can 
show that X is self-dual (18), that is, it satisfies

px ¨ yq ¨ py ¨ xq “ x

for all x, y P X.
Now let y “

ř

iPN ait
i P X with ai P F2 be given. For x :“

ř

iăm ait
i ` pam ` 1qtm

and m P N, we have vpx ` yq “ m. Thus x ¨ y “ y ` tm`1. Therefore, X splits in two 
orbits X0 :“ tx P X | vpxq “ 0u and X1 :“ tx P X | vpxq ą 0u. Furthermore, the maps 
x ÞÑ tx and x ÞÑ 1 ` tx are isomorphisms X ÝÑ„ X1 and X ÝÑ„ X0, respectively. Thus, 
each orbit Xi splits again into two orbits under GXi

, and so on.

Theorem 3 and its corollary shed some light upon the decomposition of a cycle set 
into its orbits under the structure group. On the other hand, due to the partial cycle 
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set structure (19) arising from an iterated crossed product representation, right �-groups 
can be regarded as vast generalizations of the structure groups of cycle sets.

Note that the partial cycle set (19) completely describes the tree structure of G´ as 
an iterated crossed product. One is tempted to believe that a partial cycle set like (19)
induces a cycle set structure on the index set I. However, the following example shows 
that the “blocks” Xi of a partial cycle set X “

Ů

iPI Xi do not always admit an induced 
cycle set structure.

Example 7. Let X “ t1, 2, 3, 4, 5, 6u be the cycle set with left multiplications σxpyq :“ x ̈y
given by σ1 :“ p12qp35qp46q, σ2 :“ p12qp34qp56q, and σ3 “ σ4 “ σ5 “ σ6 :“ p34qp56q. 
The tree structure of X is given by

The ultimate partition X “ t1, 2u \ t3, 4u \ t5, 6u does not induce a cycle set. In fact, 
t1, 2u ̈ t3, 4u is not well defined since 1 ̈ 3 “ 5, while 2 ̈ 3 “ 4.

Concluding remark. There are many ways to generate a right �-group G by an L-algebra. 
In general, the negative cone G´ is the greatest L-algebra with this property. For quasi-
cyclic G, every non-trivial interval ru, 1s with u P NpGq is such an L-algebra. If G is 
quasi-noetherian with enough normal elements, Theorem 2 represents G as a crossed 
product of right �-groups Gi. Thus, if each Gi is generated by an L-algebra Xi, The-
orem 1 shows that the wedge of the Xi (Definition 3) gives a generating L-algebra of 
G. Now the reader may ask how L-algebras are related to Garside families and Garside 
germs [24]. For a Garside group G, the set of primitive elements [21] in G´ is defined 
to be the closure with respect to Ñ of the set of atoms in G´. The elements of the 
closure with respect to Ñ and ^ are called simple [21]. Both sets are L-algebras and 
generate G´ as a monoid. More generally, if G is quasi-Garside with Garside element Δ, 
the Garside family of divisors of Δ is an L-algebra.

In contrast to L-algebras, Garside families are defined in the context of categories 
rather than monoids. For L-algebras, such an extension is possible, but it has not been 
carried out. Garside families formalize the subsets S of a category C with epic mor-
phisms so that every f P C factors through a “longest” morphism in S while this process, 
applied to the remaining factor of f , yields a factorization f “ s1 ¨ ¨ ¨ sn with si P S . If a 
Garside family is closed with respect to right divisors (see [24], Definition 4.7), the am-
bient category C is completely determined by S as a germ, that is, with respect to the 
partial multiplication in S . Similarly, every L-algebra X embeds uniquely into a monoid 
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SpXq, the self-similar closure of X, and there is a canonical morphism SpXq Ñ GpXq

into a group, the structure group of X. Under favourable conditions, SpXq Ñ GpXq is 
an embedding and GpXq is a right �-group. Theorem 1 deals with such a case, and its 
main point is that any crossed product representation of GpXq (or its negative cone) is 
obtained on the level of L-algebras.
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