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Introduction

The theory of Garside groups and Garside monoids arose from the discovery of a fun-
damental element A,, the least common left and right multiple of the atoms, in the
positive braid monoid of the n-strand braid group %,. Garside’s observation [33] was
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soon generalized to Artin—Tits groups of spherical type [14,27] and eventually led to
the class of Garside groups [26,21], comprising all spherical Artin groups, all torus knot
groups ([26], Example 4), all one-relator groups with non-trivial centre [42], all braid
groups mp (W\V*8) of well-generated finite complex reflection groups W [7], and the
structure groups of unitary non-degenerate set-theoretic solutions of the quantum Yang—
Baxter equation [17,23,25]. Every Garside monoid has two lattice structures according
to left and right divisibility, and a Garside element A for which the sets of left and right
divisors coincide.

Shortly before a first general definition of Garside groups had been released [26], a new
development was initiated by Birman, Ko, and Lee’s discovery of a dual Garside structure
[10] on Artin’s braid groups. Again, the new concept was soon extended to all spherical
Artin groups [5]. For Artin groups of Euclidean type, the classical monoid of positive
elements no longer gives rise to a lattice, while the dual monoid still yields a Garside
structure for groups of type A, or C, [28,29]. Precisely, such a group is quasi-Garside [25]
in the sense that the set of atoms is not assumed to be finite. Beyond Euclidean groups,
a dual quasi-Garside structure for free groups was obtained by Bessis [6]. Using a careful
analysis of factorizations of Euclidean isometries into reflections [13], McCammond [39)]
recently proved that A, Cp, and Gy (see [48]) are the only Euclidean Artin groups which
admit a dual quasi-Garside structure. On the other hand, McCammond and Sulway [40]
embed the dual Artin monoid of any Euclidean type into a quasi-Garside monoid, which
implies, for instance, that irreducible Euclidean Artin groups are torsion-free and have
a trivial centre.

The framework of Garside structure is large, but many groups of a somewhat similar
type are not covered by that scheme. For example, braid groups with infinitely many
strands no longer admit a Garside element. Another failure occurs even for very small
groups like the fundamental group Z x Z of the Klein bottle, where the noetherian
property neither holds for the left- nor the right-hand ordering which both are linear.
As observed in [47], however, these and many other non-noetherian groups are right
£-groups, that is, groups with a lattice order, so that the right multiplications a — ab
are lattice automorphisms.

One of the advantages to study Garside-like groups as right ¢-groups comes from their
intimate connection with (two-sided) ¢-groups, providing a big source of inspiration and
a wealth of proof techniques from /¢-groups to be adapted to that wider scope. For the
theory of /-groups, the reader is referred to [4,8,19,37].

For example, the proof that braid groups are torsion-free caused a lot of trouble [31,
32,20,44] until Dehornoy eliminated the noetherian hypothesis to get a much simpler
proof [22]. In the wider context of right ¢-groups, the proof has now become trivial
([47], Proposition 3). Secondly, Picantin’s decomposition of the quasi-centre of a Garside
group [41] easily extends to right ¢-groups with a noetherian quasi-centre [47], where the
decomposition follows immediately from an old theorem of Birkhoff [9] on noetherian
£-groups. In the same paper [41], Picantin obtains an iterated crossed product represen-
tation for every Garside group. The factors of the crossed product act on each other,
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subject to compatibility conditions, which leads to some complication. “Iterated” means
that after a first maximal crossed product decomposition, the quasi-centre of the factors
need not be cyclic, so that each factor may further decompose into a crossed product,
until the whole process stops at groups with cyclic quasi-centre. This leads to a tree-like
structure of any Garside group.

In the present paper, we extend Picantin’s main result [41] to the context of right
£-groups and beyond, using a conceptual description of crossed products which reduces
all the technicalities to a minimum. To make this precise, we start with the familiar
case of Garside groups, and gradually extend the scope. Let us note first that there
are two extreme types of Garside-like groups: groups with cyclic quasi-centre which we
call quasi-cyclic, and the structure groups Gx of non-degenerate unitary set-theoretic
solutions R: X? — X? of the quantum Yang Baxter equation. For finite X, Chouraqui
[17] observed that the groups Gx are Garside groups. In [45] it was shown that the
solutions X are equivalent to a binary operation - on X with bijective left multiplications
satisfying the equation

(zy) (x-2)=(y 2) (y 2).

Such a structure (X;-) is called a cycle set. If -2 = x holds for all x € X, the cycle set
is said to be square-free [45].

For a Garside group G, our main result implies that G is an iterated crossed product
of quasi-cyclic groups, and that the tree structure of this iterated crossed product is
determined by the set X of atoms as a partial cycle set, that is, a partition X = | |,_; X;
and a product z -y on X which is defined whenever x and y belong to different subsets
X;. Furthermore, it is assumed that the above equation holds, whenever defined, and
that the left multiplication by = € X; is a permutation on X ~\ X;. So the X, are
singletons if and only if X is equivalent to a square-free cycle set, and in this case,
G is the structure group of the solution given by X. Otherwise, the X; are the atom
sets of quasi-cyclic Garside groups. A general Garside group can thus be regarded as
an intermediate structure between quasi-cyclic groups and structure groups of certain
solutions of the quantum Yang-Baxter equation.

It should be recalled that the concept of square-free cycle set arose from a conjecture
of Gateva-Ivanova [34] on n-generated semigroups of skew-polynomial type [35]. The
corresponding semigroup algebras are Artin—Schelter regular [2,3] of global dimension n,
and any such semigroup gives rise to a solution of the quantum Yang—Baxter equation
with a marvellous tree structure. In the language of cycle sets, this means that the
er Xi into
subsets X; which are invariant under left multiplication, and that |I| > 1 whenever

associated finite (square-free) cycle set X admits a decomposition X = | |

|X| > 1. Since every X, is again a square-free cycle set, the iterated decompositions
make X into a tree. The conjecture that every finite square-free cycle set comes from
such an Artin—Schelter regular algebra was verified in [45]. Via partial cycle sets, the tree
structure reappears in the iterated crossed product decomposition of a Garside group.
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Beyond Garside groups, we prove that the quasi-centre of any right ¢-group G is a
(two-sided) f-group (Proposition 5), removing the archimedean hypothesis in a similar
result of [47]. The quasi-centre N(G) consists of the elements u € G which are normal
in the sense that the positive cone (with respect to the current fixed order) is invariant
under conjugation with u. In particular, a Garside element is the same as a strong order
unit, a normal element u > 1 such that the interval [1, u] generates the group. If N(G) is
noetherian, this immediately gives a decomposition of N(G) into a cardinal sum of cyclic
groups. Based on this decomposition of N(G), we obtain a crossed product representation
for right ¢-groups G with a noetherian quasi-centre such that G is the smallest convex
subgroup containing N(G) (Theorem 2).

In the absence of a noetherian property, we have to deal with right £-groups in general.
By [47], Theorem 1, a right ¢-group is determined by its negative cone, which is a
self-similar left and right hoop. Recall that a left hoop [46] is a monoid H with a binary
operation — such that the following are satisfied for all a,b,c € H:

a—a=1
ab—>c=a— (b—c)

(a = b)a = (b— a)bd.

The multiplication of H and the operation — determine each other. So a left hoop can be
regarded as a special type of monoid. If H is right cancellative, it is called self-similar.
(For equational descriptions of self-similarity, see Proposition 1.) Every left hoop is a
A-semilattice with respect to the partial order

a<b <= a—b=1 (0)

and satisfies the left Ore condition. Therefore, a self-similar left hoop H admits a group
of left fractions G(H) which, in a sense, can be viewed as a “quarter of an ¢-group”, that
is to say, “one half” of a right ¢-group. Indeed, the negative cone of a right ¢-group G
has a second operation ~, satisfying

b<La~c < ab<c < a<b-—eg,

which makes the negative cone G~ into a self-similar right hoop. Accordingly, there is
a second partial order, similar to (0). We will show, however, that Picantin’s concept of
crossed product extends to a framework of one-sided (self-similar) hoops (Theorem 1).

With respect to the binary operation —, every left hoop H is an L-algebra [46], that
is, the relation (0) is a partial order with greatest element 1, and the equations 1 — a = a
and

(@—b)—(a—e)=(0b—a)—>(b—¢
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hold for all a,b,c € H. Note the equivalence of this equation with the above mentioned
one for a cycle set (see the remark before Theorem 3). The “L” and the arrow notation
for L-algebras come from their origin in algebraic logic [46]. Since 1 stands for the
greatest element, the logical unit, the negative cone is the preferred one. Conversely,
every L-algebra X embeds into a self-similar left hoop S(X) such that X generates
S(X) as a monoid. Up to isomorphism, the self-similar closure S(X) of X is unique.

Now the concept of L-algebra allows a succinct description of the crossed product
of self-similar left hoops H;, i € I, as follows. Assume that the H; act on each other
by order automorphisms. We say that the actions are compatible if the wedge /\ H;,
the disjoint union | |, ; H; with the unit elements 1 € H; identified, is an L-algebra. As
the main equation defining an L-algebra depends on three variables, this compatibil-
ity does not involve more than three factors, as Picantin [41] observed in the context
of Garside monoids. The crossed product [X|;,.; H; of the H; is just the self-similar clo-
sure S(A,;c; M;) (Definition 5). By this definition, the infinite distributivity of a crossed
product, and the unique ordered factorization of its elements (Theorem 1) follow imme-
diately. Moreover, the lattice structure of a crossed product is the cardinal sum of its
factors (Corollary 1), which explains the distributivity of the lattice ordering for struc-
ture groups associated to the quantum Yang—Baxter equation. An intrinsic description
of crossed products in terms of the submonoids H; (Corollary 3) is proved in a few lines.
In essence, this shows that the pattern behind Picantin’s amazing result is a decompo-
sition theorem for L-algebras, extending the decomposition [45] of square-free cycle sets
(Theorem 3).

1. Preliminaries

A group G with a partial order < is said to be right partially ordered if
a<b = ac<bc (1)

holds for a,b,c € G. In terms of the positive cone Gt := {a € G| a > 1}, the partial
order can be expressed by a < b <= ba~!' € G, and then G is right partially ordered if
and only if P := G is a submonoid with trivial unit group P* = P n P~!. Every right
partial order < corresponds to a left partial order

= ahe G = b lacG, (2)

a<b:— bl<a
where G~ := {a € G| a < 1} denotes the negative cone of G. Thus, a right partially
ordered group G is a lattice with respect to < if and only if G is a lattice with respect
to X, and then we call G a right {-group [47]. A lattice-ordered group is a right ¢-group
where both partial orders < and < coincide. For the theory of lattice-ordered groups
(¢-groups for short), we refer to [8,19].
The negative cone of a right /-group G can be described as follows. Recall that a left
hoop [46] is a monoid M with a binary operation — satisfying
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a—a=1 (3)
ab—>c=a— (b—>c¢) (4)
(a > b)a=(b—a)b (5)

for a,b,c € M. By [46], Proposition 3, the unit element 1 of a left hoop M is a logical
unit, that is,

a—>a=a—>1=1, l—-a=a (6)

holds for every a € M. Note that an element 1 satisfying (6) is unique. Moreover, every
left hoop M is a A-semilattice with

anb=(a—ba=(b— a)b. (7)
In particular, this provides M with a partial order
a<b:e= a—->b=1 < JxeM:a=uxbd (8)

Therefore, Eq. (4) yields the adjointness relation ab < ¢ <= a < b — ¢, which shows
that the multiplication and the operation — determine each other. Furthermore, the
adjointness relation easily implies that

a—(bnrc)=(a—>b)A(a—c)

holds for all a,b,c € M (see [46], Proposition 4).
Recall that a monoid M is said to be right cancellative if the map a — ab is injective
for all b e M. By [46], Proposition 5, we have

Proposition 1. For a left hoop M, the following are equivalent.

a) M is right cancellative.

— ba = b holds for all a,be M.
— bc = ((¢c > a) — b)(a — ¢) holds for a,b,ce M.

C

(a)

(b) The map b+— (a — b) is surjective for all a € M.
(c) a

(d) a

A left hoop M is called self-similar [46] if the equivalent conditions of Proposition 1
are satisfied. Any left hoop M gives rise to a right hoop (M°P;~») (with multiplication
reversed). The equations (3)—(5) then turn into

a~a=1 9)
ab~c=b~ (a~c¢) (10)
a(a~>b) =b(b~ a). (11)

Accordingly, we call a right hoop self-similar if it is left cancellative.
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By [47], Theorem 1, the negative cone of a right ¢-group can be characterized as
a self-similar left and right hoop, and every self-similar left and right hoop arises in
this way. For brevity, self-similar left and right hoops are called right £-cones. To avoid
confusion, we warn the reader that a “left hoop” is not a “hoop”. In fact, hoops [12,11]
are even more special than left and right hoops: they are commutative, which means
that the two operations — and ~» coincide.

The equations (3)—(5) and (d) of Proposition 1 can be visualized by the following

Hasse diagram (cf. [21], Fig. 1.2):
1
/ Y

YAZ

TY A Z

For every covering relation a < b there is a unique atom x with a = xb. The upper
square of the diagram shows how y — z is obtained for a pair of distinct atoms vy, z. For
a right f-cone, the operation ~ is obtained similarly by reversing the partial order:

a
b c
d

This explains the relation z(z ~ y) = y(y ~ x) as well as (18) in Section 3.

For a right ¢-cone M, Eqgs. (5) and (11) imply the left and right Ore condition. As M
is left and right cancellative, it follows that M has a (left and right) group of fractions
G(M). We call a right f-cone M and its group of fractions noetherian [47] if ascending
sequences ag < a1 < as < --- Or ag X a1 X az <X --- become stationary, that is,
ap, = apy1 for some n € N. Note that M is noetherian if and only if G(M) satisfies the
ascending and descending chain condition for bounded sequences with respect to <, or
equivalently, with respect to <. Clearly, a noetherian right ¢-cone M is atomic in the
sense that every element of M can be represented as a product of maximal elements
x < 1, also called atoms. The set of atoms of M will be denoted by X(M). If M is
noetherian, it may still happen that a bounded interval has finite chains of arbitrary
length. Therefore, we call M bounded atomic [47] if every element of M can be written
as a product of atoms such that the number of factors in any such product is bounded.
Every bounded atomic right ¢-cone is noetherian, but not vice versa.
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An element u of a right f-group G is called normal if uG*tu~! = G*. The set of
normal elements is a partially ordered subgroup N(G), the quasi-centre [47] of G. If, in
addition, every a € G satisfies a < u™ for some n € N, we call u a strong order unit
[47]. A quasi-Garside group [25] is then equivalent to a right ¢-group with a strong order
unit and a bounded atomic positive cone. If the number of atoms is finite, such a group
is called Garside [21,25].

For the next section, we recall the concept of L-algebra [46], that is, a set X with
a binary operation — such that (0) is a partial order with greatest element 1, and the
equations 1 — x = x and

(z—y) - (r—=2)=@Hy—)—>(Yy—2)

hold for all x,y,z € X. A morphism f: X — Y of L-algebras is a map which satisfies
flx - y) = f(z) — f(y) and f(1) = 1. For an inclusion morphism f: X — Y we call
X a L-subalgebra of Y.

Every left hoop is an L-algebra. By [46], Section 2, the multiplication of a left hoop
is uniquely determined by the underlying L-algebra. In other words, left hoops form a
special class of L-algebras. An L-algebra X is called self-similar [46] if for each z € X,
the map y — (x — y) is a bijection from {y € X |y < x} onto X. By [46], Theorem 1 and
Proposition 5, an L-algebra is self-similar if and only if it is a self-similar left hoop. Every
L-algebra X has a self-similar closure S(X), a unique self-similar left hoop generated by
X as a monoid [46]. In other words, an L-algebra X has a unique partial multiplication
which is everywhere defined if and only if X is self-similar. Typical examples of L-algebras

are intervals [a, 1] in an abelian ¢-group G where a~*

is a strong order unit of G. Here
the self-similar closure coincides with the negative cone G~ of G. See also Examples 1

and 2 in the following section.
2. Crossed products of self-similar left hoops

For any set M, we denote the group of permutations on M by &(M). Thus &(M)
is a subgroup of the monoid MM of maps M — M. If M is partially ordered, we write
G* (M) for the group of order automorphisms of M.

If M is a self-similar left hoop, the natural action of & (M) on M gives rise to a
retro-action of M on &% (M), given by

(a — m)(b) :=m(a) — 7(ba) (12)
for a,be M and 7 € & (M). Namely, we have

Proposition 2. Let M be a self-similar left hoop. The retro-action is a well-defined monoid
homomorphism M — 6+(M)6+(M) which satisfies the 1-cocycle condition
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a— mo = (¢(a) = 7)(a— )
for allae M and 7,0 &Y (M).
Proof. We show first that the inverse of the map (12) is given by
(a—m)7H(e) i= 0 — 7 en(a).
Indeed, a — 7 ((n(a) — m(ba))w(a)) = a —» 7~ Y(xw(a) A w(ba)) = a — 7 (n(ba)) =
a — ba = b by Proposition 1, and 7(a) — 7((a — 7)"!(c)a) = n(a) — cw(a) = c. Thus

a — 7 is bijective. Egs. (4) and (7) imply that b < ¢ == a — b < a — ¢ holds in M.
Hence a — m € & (M). For a,b,ce M and m € &+ (M), we have 1 - m = 7 and

(ab — m)(c) = 7(ab) — w(cab) = (w(ab) — w(b)) — (7(ab) — 7(cab))
= (m(b) = w(ab)) — (m(b) — 7(cab)) = (b — w)(a) — (b — m)(ca)
=(a— (b—m))(c).

Thus a — (a — 7) is a monoid homomorphism.

Finally, (a — 70)(b) = mo(a) — mo(ba) = mo(a) — 7((e(a) — o(ba))o(a)) = mo(a) —
m((a — 0)(b)o(a)) = (o(a) — m)(a — 0)(b) for all be M. [

Note that & (M) is just a monoid, not a left hoop. For left hoops, we consider a
stronger type of action.

Definition 1. Let H and M be left hoops. An action of H on M is given by a monoid
homomorphism o: H — &*(M). For h € H and a € M, we write h — a := o(h)(a).

For mutual actions of self-similar left hoops, the retro-action has to be taken into
account. Proposition 2 leads to the following

Definition 2. Let M; and Ms be self-similar left hoops. We say that two mutual actions
0ji: M; — &1 (M;) with {i,j} = {1,2} are compatible if the 1-cocycle conditions

a; — ajb; = ((bj — a;) — a;)(a; — b)
are satisfied for a1,b, € My and as, by € M.

It is easily checked that two mutual actions o, ;: M; — &7 (M) are compatible if and
only if the diagrams
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M; &t (M)
oij(a;) 0(a;)
M, s &* (M)

commute for all a; € M; and {i,j} = {1,2}, where g;: M; — 6+(Mj)6+(Mi) denotes
the retro-action. There is a simpler and more elegant description of compatibility.

Proposition 3. Let H and M be self-similar left hoops. Two actions H — & (M) and
M — &*(H) are compatible if and only if the equation

(h=a) = (h—u) = (a— h) = (a = u) (13)
holds forae M, he H, andue H u M.
Proof. For u € M, we have
(h—>a)—> (h—>uw)(h—a)=((h—a)A(h—>u)=h—(aru)=h—>(a— ua.
Since M is right cancellative, this shows that Eq. (13) with u € M is equivalent to
h— (a = u)a= ((a > h) - (a = u)(h — a).

By Proposition 1(b), every element of v € M is of the form v = a — u for some u € M.
Therefore, Eq. (13) with u € M can be written as

h—va = ((a— h) —>v)(h— a).
Since Eq. (13) is symmetric in a and h, this completes the proof. [

Definition 3. For a family of L-algebras X;, i € I, we define the wedge /\,.; X; to be
the partially ordered set obtained from the disjoint union of the X; by identifying the
unit elements 1 of the X;. So each X; can be regarded as a subset of A, ; X;. For

I={1,...,n}, we also write X1 A --- A X,, instead of A\,.; X;.

el

By Definition 3, Proposition 3 yields

Corollary. Let H and M be self-similar left hoops. Two actions H — & (M) and M —
ST (H) are compatible if and only if they make H A M into an L-algebra.

Accordingly, the concept of compatible actions naturally extends as follows.

Definition 4. Let M;, i € I, be a family of self-similar left hoops. We say that a system of
actions oj,;: M; — &% (M;) for i = j is compatible if it makes /\,.; M; into an L-algebra.
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Recall that every L-algebra X admits a self-similar closure [46], that is, a self-similar
left hoop S(X) with X as an L-subalgebra such that X generates S(M) as a monoid.
By [46], Theorem 3, S(X) is unique up to isomorphism.

Example 1. The simplest example is given by the L-algebra X, := {1,a} with a < 1. The
self-similar closure S(X,) is the negative cone of the ¢-group G(S(X,)) = Z. It consists
of the powers 1 > a > a® > a® > -+ with a™ — a” = a® ™ for m < n.

Further examples can be found in [46,47]. Here is a new one.’

Example 2. Let V be a finite dimensional vector space over a field K, and let (,): VxV —
K be an anisotropic bilinear form, that is (x,z) # 0 unless x = 0. For z,y € V, we define

oY=y —
VYT @)

ifx #0, and 0 — y := y. It is easily checked that the equation

(z—y) = (r—=2)=@Hy—)—>(Yy—2)

holds for all z,y,z € V. Note that for  # 0, the one-dimensional subspace K(z — y)
is determined by the subspaces Kz and Ky. Furthermore, x — y = 0 if and only if
Kz = Ky. Hence — induces a partial binary operation on the projective space P(V)
which is defined for all pairs of distinct points in P(V).

Recall that an L-algebra is said to be discrete [47] if every element 2 < 1 is maximal.
We adjoin 0 to the projective space P(V') such that 0 becomes a logical unit in )Z'(V) =
P(V) u {0}. With the Gram determinant

A= (xvx)(:%y) - (x,y)(y,a?),

we have

@H%wﬂw=@wy
Hence z — y = 0 if and only if A = 0. For z,y # 0, this implies that Kz = Ky if and
only if K(z — y) = K(y — ). Thus X(V) is a discrete L-algebra.

Using [47], Theorem 4, it can be shown that the self-similar closure of X (V) is the
negative cone of a quasi-Garside group. If {xy, ..., 2, } is a basis of V, with corresponding
points P; := Kx;, then Py A --- A P, is a Garside element of )N((V), and the elements of
the interval [Py A -+ A P,,0] in S(X(V)) can be identified with the subspaces of P(V)

! I am indebted to Carsten Dietzel for the idea behind this example.
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with reverse inclusion as partial order. So the empty space stands for the logical unit 0,
while P(V) corresponds to the Garside element Py A --- A P,

For finite fields K, there are no anisotropic forms of ranks > 3. On the other hand,
notably for K = R, there are many non-symmetric bilinear forms with non-isomorphic
L-algebras which determine the same quadratic form x +— (z,z). In particular, the
bilinear form (, ) is symmetric if and only if the associated quasi-Garside group is
lattice-ordered.

Definition 5. Let M;, ¢ € I, be a family of self-similar left hoops with a compatible
system of actions o ;: M; — &% (M;). We define the crossed product [X]7_; M;, or simply
[Xl;e; M;, of the M; to be the self-similar closure S(/\,.; M;). If I = {1,...,n}, we also
write M7 X - - - X M,,.

So there are natural embeddings M, —
with j = 4, the implication

M;. Since M; acts bijectively on the M;

el

a; < a; = Clj:1 (14)
holds for a; € M; and a; € M; with ¢ = j.

Theorem 1. Let M = M; be a crossed product of self-similar left hoops.

iel

(a) Every a € M can be uniquely written in the form a = a; A -+ A a, with n € N and
aj € My, ~ {1} for distinct iy, ... i, € I. (The case a = 1 is covered by n = 0.)

(b) If I is totally ordered, any a € M can be uniquely written in the form a = ay - - - ay
with n € N and a; € My, ~ {1} for distinct iy < ... <4, in I.

Proof. a) For b € M; and ¢ € M; with i = j, the equation ¢ — & = b has a unique
solution = € M;. Let us write z = b°. Thus ¢ — b¢ = b (which is also (¢ — b)¢). In
particular, Eq. (7) yields

be = b° A c. (15)

So the existence of a representation a = a; A --- A a, follows. To prove uniqueness, let
J c I be finite and aq,...,a, € UjEJ M;. For i e I and b e M;, we verify the implication

ap A Aap <b<l = die (16)

For |J| = 1, this follows by (14). Proceeding by induction on |J|, we can assume that
A1y...,0p_1 € UkEJ\{j} Mj, for some j € J. With ¢ := a3 A -+ A an_1, this gives
(an — ¢)an, < b. So (ap, = a1) A - A (ap = ap—1) = a, — ¢ < a, — b. Since
a, — ay € UkeJ\{j} My, for £ < n, and a, — b € M,;, the inductive hypothesis gives
ieJ~{jtora,—>b=1.
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Now let a; A -+ A ap = by A -+ A by, be two representations as in (a). If n = 0 or
m = 0, the meets on both sides are empty, and there is nothing to prove. Thus, we
assume that m,n > 0. So there is a unique j € {1,...,n} with a;, b,, € M; for some i € I.
After rearrangement of the a;, we can assume that j = n. As above, this implies that
(an > a1) A+ A(ap = an—1) < ay — by,. Hence (16) gives a,, < by,, and by symmetry,
an = by,. By induction, this shows that the representation in (a) is unique.

b) Assume that b € M; and ¢ € M; with i = j. Define ’c := b — ¢. Then Eq. (5) can
then be rewritten as a relation be = (°c)(b¢) with c € M; and b¢ € M;. Hence, by Eq. (15),
the product representation in (b) is equivalent to the A-representation in (a). [

Remark. Crossed products of groups and monoids have been considered by several au-
thors [50,16,49,43,41,15,36,18]. Owing to the founders, they are also called Zappa—Szép
products. Gebhardt and Tawn [36] define an internal Zappa—Szép product of a pair of
submonoids G, H of a monoid K by the property that every element of K has a unique
representation gh = h'¢g’ with g, ¢’ € G and h, h' € H. They show that Picantin’s crossed
products [41] are of that type. On the other hand, they give an example of an internal
and external Zappa—Szép product in the sense of Brin [15] which is not a crossed product
in Picantin’s sense [41]. They prove that both concepts coincide for Garside monoids.

Definition 6. For a family of partially ordered sets M; with a distinguished element 1,
we define the cardinal sum |+;.; M; to be the partially ordered set of all (a;) € [ [,c; M;
with a; = 1 for almost all s € T (cf. [19]).

For example, if the M; are left hoops, |+|,.; M; is a A-semilattice. As an immediate

consequence of Theorem 1, we have

el

Corollary 1. As a A-semilattice, a crossed product [X|,.; M; of self-similar left hoops is

isomorphic to the cardinal sum |+, ; M;.
Secondly, crossed products are associative in the following sense.

Corollary 2. Let [X],.; M; be a crossed product of self-similar left hoops, and let I =
Lljes Z; be a partition. Then [X];c; M; = [X];; (ielj M;).

Proof. We only have to verify that for distinct j, k € J, any element a € [X], I M; acts
bijectively on ielk M;. Since b — (a — b) respects meets, it is enough to verify that a
acts bijectively on each M, with ¢ ¢ I;. By Eq. (4), this reduces to the case a € M; with
1 E Ij. ]

Note that the converse of Corollary 2 is false: a crossed product [X],c ; (Xl;e I M;) need
not give rise to a crossed product [X],.; M;. For example, M; X] (M, [X] M3) fails to be
a crossed product M; X] My [X] M3 whenever M, permutes Mo and M3, as is typical for
Garside groups arising from solutions of the quantum Yang-Baxter equation ([17,23];
[47], Theorem 2).
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As a third consequence, we get a simple characterization of crossed products. Recall
that a subset A of a partially ordered set 2 is convez if a < b < ¢ with a,c € A and
b € Q implies that b € A.

Corollary 3. Let M be a self-similar left hoop with self-similar L-subalgebras M;, i € I.
Then M = [X|,.; M; if and only if the following are satisfied.

(a) Ewvery element of M is of the form ay A --- A an with a; € | J,o; M.
(b) The M; are convex with M; ~ M; = {1} for distincti,j e I.

(c) Ifae M; and be M; with i = j, then a — be M;.

Proof. The necessity of (a)—(c) is obvious. As to the convexity of M;, assume that a >
be M; with a e M;. If i = j, then b - a = b — 1, which gives a = 1 € M;,.

Conversely, let (a)-(c) be satisfied. Then M is generated by A,.; M; = U;c; Mi.
For distinct ¢,j € I and a € M;, we have to verify that the map o4: M; — M; with
0a(b) := a — b is an order automorphism. Thus, assume that a — b < a — V' holds
for some b, € M;. Then 1 = (a —» b) - (a - V) = (b - a) - (b — V). Hence
b—a<b— V. By (b)and (c), this implies that b — V' € M; n M;. Thus (b) yields
b— b =1, that is, b < V. In particular, this shows that o, is injective.

To verify the surjectivity of g, let ¢ € M; be given. By (a), we have ca = by A--- A by,
for some by, € | Jye; My. Hence ¢ < a — (b1 A -+ A by) < (a — b;), and (b) implies that
a—b; e Mjforallie{l,...,n}. So, if b, € My, for k = j, then a — b; € M; n Mj, = {1},
which yields ca = a A b for some b € M;. Hence ca = (¢ — b)a, and thus c=a —b. [

Example 3. Let M, H be self-similar left hoops. By (8), the monoid automorphisms of
M form a subgroup Aut(M) of &1 (M). Hence every monoid homomorphism o: H —
Aut(M) defines an action of H on M, and by Definition 2, this action is compatible with
the trivial action of M on H. Conversely, if an action o: H — & (M) is compatible
with the trivial action of M on H, the image of o is in Aut(M). The crossed product
M [X] H then coincides with the semi-direct product M x H. Indeed, every element of
M X1 H is of the form z A a = (x — a)x = ax with a € H and z € M. So axz = (a — x)a,
which shows that the action o: H — Aut(M) is induced by conjugation.

3. The quasi-centre of a right £-group

In this section, we show that the quasi-centre N(G) = {a € G |aGta™! = G*} of a
right f-group G with positive cone G* is lattice-ordered and, under a weak noetherian
hypothesis, gives rise to a crossed product decomposition of G.

Proposition 4. Let G be a right {-group. For a € G, the following are equivalent.

(a) ae N(G).



132 W. Rump / Journal of Algebra 485 (2017) 118—-141

(b) The map b+— ab is an order isomorphism.
(¢c) VbeG:a<b < a<xb.
(d) VbeG:b<a < b<a

Proof. (a) = (b): We have b < ¢ opteat & gplate gt PN ab < ac
a

(b) = (c) <b&1<a‘1b&b_1<a_l<ﬁ)a<b.
(c):(d):Wehavebéa&agabila&a<abfla&aflbafl<a*1&
a71<b71&b<a.

. O 4@ @ W .
d=(a)l<b=a'<bt=awa''xa=ab!'<a<=1<aba O

The following proposition (see Proposition 20 of [47]) underlines the importance of the
quasi-centre for an arbitrary right ¢-group. For example, it implies that the quasi-centre
is always a distributive sublattice.

Proposition 5. The quasi-centre N(G) of a right £-group G is an £-subgroup of G.

Proof. Since N(G) is a subgroup, it suffices to show that N(G) is a sublattice. Thus, let
g,h € N(G) be given. For any a € G, we have ga > g and ha > h by Proposition 4(b).
Hence (g A h)a = ga A ha = g A h, and thus (g A h)GT(g A )1 < GT.

Now Proposition 4(b) implies that 1 < 1 v gh™! = g(¢g~' v h™!), which yields
(97! v h~1)~! < g. By symmetry, we obtain (¢~' v h=1)~! < g A h. Furthermore,
(g7tvh Y)gah)=ggarh)vh i (gah)=(1Agth)v (htganl) < 1. Hence
(gAh)"Yg7t v h™1)~t = 1. Conjugation with g A h yields (g7t v h= )" gah)™t =
Thus g A h < (g7 v h=1)7! < g A h, which proves that

grh= (gt vt
So it is enough to verify that g A h € N(G). Assume that (g A h)a(g A h)~™L € G*
for some a € G. Then g A h < (g A h)a < ga, which gives g~!(g A h) < a. Similarly,

h=Y(g A h) < a. So we obtain 1 = (g7 vhA ) (gAah) =g (gah)vh i grh)<a
which proves that g A h is normal. []

As usual, an interval [a,b] of a partially ordered set 2 with a < b consists of the
elements c € ) with a < ¢ <b.

Corollary. Let G be a right (-group, and let a,b € N(G) with a v b= 1.

(a) Ewvery element c € [ab, 1] is of the form ¢ = (c na) v (c Ab) =(cva) A (cvD).
(b) The maps c— ¢ v b and ¢ — ¢ A a give a lattice isomorphism [ab, a] = [b, 1].



W. Rump / Journal of Algebra 485 (2017) 118-141 133

Proof. Since a and b are normal, we have ac < a and be < b. Hence ¢ = (avb)c = acvbe <
(¢ Aa)v (cAb)<ec By Proposition 4, a(c v b) = ac v ab < c. Hence ¢ v b < a”lc, and
similarly, cva <b~lc. Thusc< (cva) A (cvb) <blernale= (b1 ral)e=c

b) This follows by the special case ¢ € [ab, a], respectively c € [b,1]. [

Definition 7. We call a right ¢-group G quasi-noetherian if N(G) is noetherian. The
elements of P(G) := X(N(G)™) will be called primes of G. We say that G has enough
normal elements if any a € G~ admits a normal element g < a. If, in addition, N(G) is
cyclic, we call G quasi-cyclic.

If G has enough normal elements, Proposition 4 implies that every g € G belongs to
some interval [a,b] with a,b € N(G). By definition, a quasi-cyclic right ¢-group G has a
unique smallest strong order unit. However, G itself need not be noetherian, and even if
G is noetherian, it need not be a Garside group.

Example 4. Let X be a set with a permutation 7 € &(X). Define z — y := 7(y) if
xz,y belong to different m-orbits, and z — y := z otherwise, if z = y. Adjoining a
logical unit 1, this makes X := X U {1} into a discrete L-algebra. The criterion [47],
Proposition 19, implies that S()Z') is modular as a lattice. (We take the opportunity
to correct an inaccuracy: in [47], the criterion states that the self-similar closure S(Y")
of a discrete L-algebra Y is modular if and only if (x —> y) - v = (y > ) —> v
with z,y,u,v € Y ~ {1} and z = y implies that there exists z € X with z — z = u
and y — z = v. The correct statement should either allow z € S(Y) or restrict the
assumption to (z — y) > u = (y — ) — v < 1.) Precisely, S()Z') is generated by X,
with relations 22 = y? whenever = and y belong to the same m-orbit. Furthermore, S ()N( )
is the negative cone of a right ¢-group.

Unless 7 is an involution, the lattice of G is not distributive, that is, G is not the
structure group of a cycle set. For any m-orbit P containing = € X, the meet A P exists
and coincides with z2 if |P| > 1, and these meets are the primes of G. They generate
the quasi-centre, and G has enough normal elements. The subgroup generated by each
m-orbit is quasi-cyclic. So there is no iteration in the crossed product decomposition of
G, or in other words, the underlying tree of this crossed product is of height 1. Example 6
will show that trees of infinite height also arise.

Note that G is always noetherian, while G is quasi-Garside if and only if 7 has finitely
many orbits.

Now we apply the results of Section 2 to quasi-noetherian right ¢-groups G. For any
a € N(G) n G, consider the right ¢-subgroup
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Theorem 2. Let G be a quasi-noetherian right -group with enough normal elements.

Then G~ = [X]pep(q) Gp -

Proof. By Proposition 4, each G, is a right ¢-subgroup of G. Birkhoft’s theorem [9]
implies that N(G) is a cardinal sum of the G, with p € P(G). To show that G~ is a
crossed product of the G, we apply Corollary 3 of Theorem 1. Condition (a) follows by
the corollary of Proposition 5, while (b) is trivial. To verify (c), assume that a € [p™, 1]
and b € [¢", 1] with distinct primes p,q € P(G). Since ¢" is normal, ¢"a < ¢" < b.
Whence ¢" <a—-b<1. [

Corollary 1. As a lattice, every quasi-noetherian right £-group G with enough normal
elements is a cardinal sum G = |i|p€P(G> Gp.

Proof. As G = N(G)G™, this follows immediately by Corollary 1 of Theorem 1. []

Corollary 2. For a quasi-noetherian right £-group G with distinct primes p,q € P(G) and
a€ G, the map 0,: G — G with 0,(b) := a — b is an order automorphism.

Proof. Since G4 has enough normal elements, Theorem 2 applies. [

If G is noetherian with enough normal elements, any atom = € X(G~) majorizes a
unique prime p € P(G), and the map = — p is a surjection 7: X(G~) — P(G). The
fibers of 7 give a partition

X@G)= || x@,). (17)

peP(G)

Corollary 2 implies that z — y € X(G_) holds for z € X(G) and y € X (G7) whenever
p = q. The operation z ~ y gives rise to similar permutations of the X (G, ), and both
operations x — y and x ~ y are related by a duality which was first observed in the
context of non-degenerate cycle sets ([45], Definition 1):

=y~ (y—r)=2=(r~y) = (y~ ) (18)

By [47], Proposition 4, Eq. (18) even holds for any pair of distinct atoms z,y € X(G™).
However, x — y or « ~ y need no longer be atoms if 7(z) = 7(y).

Example 5. The pure braid group &2, on n strands is the kernel of the natural epimor-
phism %,, - &,, from the braid group %, onto the symmetric group. Artin’s combing of
braids [1] gives rise to a split short exact sequence F,, — &1 S P, where F,, denotes
the free group with n generators and p is the projection which forgets the (n + 1)-th
strand. Thus £,,,1 =~ F,, x £, and by induction, &, 1 = F, x---x Fy x F}. The action
of &, on F, is induced by Artin’s action of 4, on F,, (see [38], Section 3). If we endow



W. Rump / Journal of Algebra 485 (2017) 118-141 135

F,, with Bessis’ dual quasi-Garside structure [6], the negative cone F), is stable under
the action of %, and the Garside element of F); is fixed under this action. Therefore,
Example 3 yields a crossed product decomposition

Py=F, XK, KEF

which makes &, into a quasi-Garside group. We remark that the semidirect product
P, =~ F, 1 x---x Fy x F} has also been used to make &2, into a totally ordered
group, using the Magnus expansion of free groups [38]. With a slight modification of the
argument, this implies that the fundamental group of the complement of a fibre-type
hyperplane arrangement admits a (two-sided) total ordering ([38], Theorem 19). The
pure braid group arises as a special case, first considered by Fadell and Neuwirth [31],
where the hyperplanes form the zero set of the discriminant of a polynomial.

The conjugation by normal elements yields another permutation of the atoms.

Proposition 6. Let G be a right £-group, and a € N(G). For any atom x € X(G™),

a ra=

. a— fora <z 1 a~x fora <z

(x >a)—>a fora<z (r~a)~a fora<z
Proof. Since a is normal, there are atoms y, z € X (G~) with aza™! = y and a~'za = 2.
Hence az = ya, and thus y = a — az = ((z — a) — a)(a — z). This gives the first
dichotomy. The second one follows by z = a ~ za = (a ~ z)((x ~ a) ~ a), using
Proposition 4. [

In general, the G}, of Theorem 2 need not be quasi-cyclic. If every convex subgroup of
G is quasi-normal, each G, may further decompose into a crossed product, which yields
a tree-like crossed product representation of G™:

G~ = o (Gpg)

peP(G) qeP(Gyp)

Remark. If G is noetherian, the partition (17) shows that the stacked crossed product
representation goes parallel to an iterated partition of the atoms. Starting with the
partition (17), each X (G,) admits a similar partition, and so on. Ultimately, this leads
to a partition

x(@) = |x(@G;) (19)

el

where each G; is a quasi-cyclic subgroup of G.
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In particular, z — y is a partial operation on X (G~) which is defined everywhere
unless « and y belong to one of the sets X (G;) of the refined partition (19). Apart from
this exception, the structure of X (G ™) is that of a cycle set.

Recall that a cycle set [45] is a set X with a binary operation - such that the left
multiplication y — x - y is bijective and the equation

(z-y)-(z-2)=(y-2) (y-2) (20)

holds for all z,y,z € X. If the square map = — =z - z is bijective, too, the cycle set X
is called non-degenerate. A cycle set X is said to be square-free [45] if the square map
x +— x - x is the identity. (So X is non-degenerate in this case.)

Definition 8. Let X be a set with a partition X = | |,_;
- such that x - y is defined for z € X; and y € X; with i = j. We call X a partial cycle

X, and a partial binary operation

set if for any z € X;, the left multiplication y — z - y is a permutation of Ujel\{i} Xj,
and Eq. (20) holds whenever the products on both sides are defined.

Thus, in the noetherian case, Corollary 2 of Theorem 2 states that (19) is a partial
cycle set with x -y := x — y. Since x - z is never defined, the concept of non-degeneracy
does not immediately apply to a partial cycle set. However, by [45], Proposition 2, a
cycle set (X;—) is non-degenerate if and only if it admits a dual, that is, a cycle set
structure (X;~») such that both operations are related by Eq. (18). In this sense, the
partial cycle set (19) is non-degenerate. On the other hand, the definition of a partial
cycleset X = | |,;
belongs to X;. Thus, in a negative sense, partial cycle sets are even “square-free”.

X; already implies that for z € X; and y ¢ X;, the product = -y never

Every non-degenerate cycle set (X, ) admits a unique extension to a cycle set on the
free abelian group Z(X), so that the equations

a-(b+c)=(a-b)+(a-c)

(21)
(a+b)-c=(a-b) (a-c)

hold for the extended operation on Z(*). On the same set ZX), there is another group
operation o, henceforth written as juxtaposition, given by the equation
a+b=(a-b)oa=(a-bd)a, (22)

which makes Z(X) into a group Gx, the structure group [30,45] of X. Chouraqui [17]
observed that Gx is a Garside group if X is finite. In general, Gx is a noetherian right
(-group with negative cone N(X) .

Remark. Note the similarity between Eq. (22) and the hoop equation (7): For distinct
atoms a,b, the sum a + b is equal to the meet a A b. Accordingly, the operation - in
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X corresponds to the operation — of a left hoop. Indeed, Eq. (24) of [47] states that
z -y = x — y holds for distinct atoms z,y. For x = y, however, both structures fall
apart: x — x = 1 in a left hoop, while for a cycle set X, the square map D(x) := - x is
a bijection if and only if X is non-degenerate. For details, see [47], Section 4.

Eq. (4) also has a striking analogue in G x, namely, the equation
ab-c=a-(b-c). (23)

So the structure group Gx of a non-degenerate cycle set X acts on X = X (G ), which

leads to a partition X = | |._; X; into orbits under Gx.

iel
Theorem 3. Let X be a square-free cycle set. The structure group Gx has enough normal
elements if and only if its orbits on X are finite. If Gx has finite orbits, then Y — AY
gives a bijection between the orbits Y < X and the primes of Gx.

Proof. Since Gx is generated by atoms, Eq. (23) shows that a subset Y — X is invariant
under Gx if and only if the equivalence y € Y < z -y € Y holds for all z = y in X. By
the above remark, this statement remains true if x - y is replaced by z — y. Now assume
that G x has enough normal elements, and let y € X be an atom. Then there is a normal
element a < y. For any x € X, this implies that az < a. Hence a < x — a <2 — y. By
[47], Proposition 6, Gx is distributive as a lattice. So the set of atoms y > a is finite,
which shows that the orbits of Gx are finite.

Conversely, assume that Gx has finite orbits Y < X. Define p := A Y. For any z € X,
we have v — p = /\yey(x — y). For x ¢ Y, this gives x — p = p. If x € Y, we obtain
z — p = A(Y ~ {z}). Thus, in any case, p < ¥ — p, which yields pr < p. Hence
pG p~!
is, pxp~
acts bijectively on Y, too, which proves that p is normal. Thus Gx has enough normal

< G~. More precisely, the case x ¢ Y gives pr = (xr — p)z = (p — x)p, that

1 Lis bijective on X \ Y. So it

= p — x. Therefore, the conjugation = — pzp~

elements. Now let y € Y be given. For z € X, let o(z): X — X be the permutation
o(x)(z) := x - 2. Since Y is finite, we have o(z)~!(y) = o'(y) for some i € N. Therefore,
any element of Y is of the form o(z1) - - o(zy,)(y) with 1,...,2, € X. For every z € X,
and any normal element a € G with a < y, we have ax < a < y, hence a < z — y.
Thus a < p, which proves that p is prime. By the first paragraph, every prime p arises
in this way. Since Gx is distributive, each atom y > p belongs to Y. Whence Y — AY
is bijective. []

Corollary. Let X be a square-free cycle set. Assume that the structure group Gx has
enough normal elements. Then Gx is quasi-cyclic if and only if Gx = Z.

Proof. By Theorem 3, Gx has finite orbits, which are again cycle sets. Thus, if Gx is
quasi-cyclic, X must be finite, hence a singleton by [45], Theorem 1. []
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Example 5 in [45] shows that there are infinite square-free cycle sets with a single
orbit. Thus, if the structure group G x has infinite orbits, the concept “quasi-cyclic” has
to be replaced by “transitive” with respect to the action on X. The following example
shows that the corresponding tree may be of infinite height.

Example 6. Let X be the polynomial ring F5[t] over the prime field Fa, and let v: Fa[t] —
Z 1 {oo} be its t-adic valuation. For z,y € X, we define

x-y =y + T

For x = y, this gives v(x + y) = oo, that is, x - © = x if we agree that t* = 0. Since
v(z + (x-y)) = v(x + y), we have

- (r-y) =y

for all z,y € X. So the left multiplication y — x - y is bijective. To verify Eq. (20), we
have to show that

Z+tv<x+z)+1 _|_tv(y+z+t“(w+y)+1+tv(”’+z)+1)+1 _ Z+tv(y+z)+1 _|_tv(m+z+t“(w+y)+1+t”(y+z)+1)+1

holds for z,y, z € X. Substituting a := x + z and b := y + z, the equation becomes

tq)(a)+1 + tq)(b+t'v(a+b)+1+tu(a)+1)+1 _ t”(b)""l + tq)(a+tv(a+b)+1+tv(b)+1)+1

As this equation is symmetric in a and b, we can assume that v(a) < v(b). Thus, we have
to verify

v(a) = v(a + polatb)+1 o tv(b)+1)’ v(b) = v(b + polatb)+1 tv(a)+1)_

This follows since v(a + b) = v(a). So X is a square-free cycle set. Furthermore, one can
show that X is self-dual (18), that is, it satisfies

(x-y) - (y-2)=2x

for all z,y € X.

Now let y = ¥, yait’ € X with a; € Fy be given. For z := ] ait + (am + 1)t™
and m € N, we have v(x +y) = m. Thus x -y = y + t™*1. Therefore, X splits in two
orbits Xg := {x € X |v(z) = 0} and X; := {z € X | v(z) > 0}. Furthermore, the maps
x — tzr and x — 1 + tz are isomorphisms X =~- X; and X = X, respectively. Thus,

i<m

each orbit X; splits again into two orbits under Gx,, and so on.

Theorem 3 and its corollary shed some light upon the decomposition of a cycle set
into its orbits under the structure group. On the other hand, due to the partial cycle
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set structure (19) arising from an iterated crossed product representation, right ¢-groups
can be regarded as vast generalizations of the structure groups of cycle sets.

Note that the partial cycle set (19) completely describes the tree structure of G~ as
an iterated crossed product. One is tempted to believe that a partial cycle set like (19)
induces a cycle set structure on the index set I. However, the following example shows
that the “blocks” X; of a partial cycle set X = |
cycle set structure.

,er X do not always admit an induced

Example 7. Let X = {1,2,3,4,5,6} be the cycle set with left multiplications o,.(y) := z-y
given by o1 := (12)(35)(46), o2 := (12)(34)(56), and o3 = 04 = 05 = 06 := (34)(56).
The tree structure of X is given by

X

/

{1,2} {3,4,5,6}

7N

{3,4} {5,6}

The ultimate partition X = {1,2} 1 {3,4} 1 {5,6} does not induce a cycle set. In fact,
{1,2} - {3,4} is not well defined since 1-3 =5, while 2 -3 = 4.

Concluding remark. There are many ways to generate a right ¢-group G by an L-algebra.
In general, the negative cone G~ is the greatest L-algebra with this property. For quasi-
cyclic G, every non-trivial interval [u,1] with v € N(G) is such an L-algebra. If G is
quasi-noetherian with enough normal elements, Theorem 2 represents G as a crossed
product of right f-groups G;. Thus, if each G; is generated by an L-algebra X;, The-
orem 1 shows that the wedge of the X; (Definition 3) gives a generating L-algebra of
G. Now the reader may ask how L-algebras are related to Garside families and Garside
germs [24]. For a Garside group G, the set of primitive elements [21] in G~ is defined
to be the closure with respect to — of the set of atoms in G~. The elements of the
closure with respect to — and A are called simple [21]. Both sets are L-algebras and
generate G~ as a monoid. More generally, if G is quasi-Garside with Garside element A,
the Garside family of divisors of A is an L-algebra.

In contrast to L-algebras, Garside families are defined in the context of categories
rather than monoids. For L-algebras, such an extension is possible, but it has not been
carried out. Garside families formalize the subsets . of a category ¥ with epic mor-
phisms so that every f € € factors through a “longest” morphism in .¥ while this process,
applied to the remaining factor of f, yields a factorization f = sy ---s, with s; € <. If a
Garside family is closed with respect to right divisors (see [24], Definition 4.7), the am-
bient category % is completely determined by .7 as a germ, that is, with respect to the
partial multiplication in .. Similarly, every L-algebra X embeds uniquely into a monoid
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S(X), the self-similar closure of X, and there is a canonical morphism S(X) — G(X)
into a group, the structure group of X. Under favourable conditions, S(X) — G(X) is
an embedding and G(X) is a right ¢-group. Theorem 1 deals with such a case, and its
main point is that any crossed product representation of G(X) (or its negative cone) is
obtained on the level of L-algebras.
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