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A criterion for the existence of a birational embedding of an 
algebraic curve into a projective plane with two Galois points 
is presented. Several novel examples of plane curves with two 
inner Galois points as an application are described.
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1. Introduction

The notion of Galois point was introduced by Hisao Yoshihara in 1996, to investigate 
the function fields of algebraic curves ([5,9]). For about twenty years, many interesting 
results have been obtained by several authors (Yoshihara, Miura, Takahashi, Fukasawa, 
et al., see also [11]). One of the most interesting problems in the theory of Galois point is 
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to determine the number of Galois points for any plane curve. For smooth plane curves, 
the number of Galois points is completely determined ([3,9]). On the other hand, there 
are not so many known examples of (singular) plane curves with two Galois points (see 
the Tables in [11]). It is important to find a condition for the existence of two Galois 
points.

Let C be a (reduced, irreducible) smooth projective curve over an algebraically closed 
field k of characteristic p ≥ 0 with k(C) as its function field. We consider a rational map 
ϕ from C to P2, which is birational onto its image. For a point P ∈ P

2, if the function 
field extension k(ϕ(C))/π∗

P k(P1) induced by the projection πP is Galois, then P is called 
a Galois point for ϕ(C). Furthermore, if a Galois point P is a smooth point of ϕ(C)
(resp. is contained in P2 \ϕ(C)), then P is said to be inner (resp. outer). The associated 
Galois group at P is denoted by GP .

The following proposition is presented after discussions with Takahashi [7], Terasoma 
[8] and Yoshihara [10].

Proposition 1. Let C be a smooth projective curve. Assume that there exist two finite 
subgroups, G1 and G2, of the full automorphism group Aut(C) such that G1 ∩G2 = {1}
and C/Gi

∼= P
1 for i = 1, 2. Let f and g be generators of function fields of C/G1 and 

C/G2, respectively. Then, the rational map

ϕ : C ��� P
2; (f : g : 1)

is birational onto its image, and two points P1 = (0 : 1 : 0) and P2 = (1 : 0 : 0) are 
Galois points for ϕ(C).

For both points P1 and P2 to be inner, or outer, we need additional conditions. In 
this article, we present the following criterion.

Theorem 1. Let C be a smooth projective curve and let G1 and G2 be different finite 
subgroups of Aut(C). Then, there exist a morphism ϕ : C → P

2 and different inner 
Galois points ϕ(P1) and ϕ(P2) ∈ ϕ(C) such that ϕ is birational onto its image and 
Gϕ(Pi) = Gi for i = 1, 2, if and only if the following conditions are satisfied.

(a) C/G1 ∼= P
1 and C/G2 ∼= P

1.
(b) G1 ∩G2 = {1}.
(c) There exist two different points P1 and P2 ∈ C such that

P1 +
∑
σ∈G1

σ(P2) = P2 +
∑
τ∈G2

τ(P1)

as divisors.
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Remark 1. For outer Galois points, we have to replace (c) by

(c’) There exists a point Q ∈ C such that 
∑

σ∈G1
σ(Q) =

∑
τ∈G2

τ(Q) as divisors.

We present the following application for rational or elliptic curves.

Theorem 2. Let p �= 2. Then, there exist the following morphisms ϕ : P1 → P
2, which 

are birational onto their images.

(1) degϕ(C) = 5 and there exist two Galois points ϕ(P1) and ϕ(P2) ∈ ϕ(C) such that 
Gϕ(Pi)

∼= Z/4Z for i = 1, 2, if p �= 3.
(2) degϕ(C) = 5 and there exist two Galois points ϕ(P1) and ϕ(P2) ∈ ϕ(C) such that 

Gϕ(Pi)
∼= (Z/2Z)⊕2 for i = 1, 2.

(3) degϕ(C) = 5 and there exist two Galois points ϕ(P1) and ϕ(P2) ∈ ϕ(C) such that 
Gϕ(P1)

∼= Z/4Z and Gϕ(P2)
∼= (Z/2Z)⊕2.

(4) degϕ(C) = 6 and there exist two Galois points ϕ(P1) and ϕ(P2) ∈ ϕ(C) such that 
Gϕ(Pi)

∼= Z/5Z for i = 1, 2.

Theorem 3. Let p �= 3 and let E ⊂ P
2 be the curve defined by X3 + Y 3 + Z3 = 0. 

Then, there exists a morphism ϕ : E → P
2 such that ϕ is birational onto its image, 

degϕ(E) = 4, and there exist two inner Galois points for ϕ(E).

2. Proof of the main theorem

Proof of Proposition 1. Let P1 = (0 : 1 : 0) and P2 = (1 : 0 : 0). Then, the projection 
πP1 (resp. πP2) is given by (x : y : 1) 	→ (x : 1) (resp. (x : y : 1) 	→ (y : 1)), and hence, 
πP1 ◦ϕ = (f : 1) (resp. πP2 ◦ϕ = (g : 1)). We have to only show that k(C) = k(f, g). Since 
k(C)/k(f) is Galois, there exists a subgroup H1 of G1 such that H1 = Gal(k(C)/k(f, g)). 
Similarly, there exists a subgroup H2 of G2 such that H2 = Gal(k(C)/k(f, g)). Since 
G1 ∩G2 = {1}, H1 = H2 = {1}. Therefore, k(C) = k(f, g). �
Proof of Theorem 1. We consider the only-if part. Let ϕ(P1) and ϕ(P2) ∈ ϕ(C) be inner 
Galois points such that Gϕ(Pi) = Gi for i = 1, 2. Assertion (a) is obvious. To prove (b), 
we take a suitable system of coordinates so that ϕ(P1) = (0 : 1 : 0) and ϕ(P2) =
(1 : 0 : 0). Then, k(C)G1 = k(x) and k(C)G2 = k(y). For σ ∈ G1 ∩ G2, σ∗(x) = x and 
σ∗(y) = y. Since k(C) = k(x, y), σ = 1. Assertion (b) follows (see also [1, Lema 3.2] and
[2, Lemma 7]). Let D be the divisor induced by the intersection of ϕ(C) and the line 
ϕ(P1)ϕ(P2), where ϕ(P1)ϕ(P2) is the line passing through ϕ(P1) and ϕ(P2). We can 
consider the line ϕ(P1)ϕ(P2) as a point in the images of πP1 ◦ ϕ and πP2 ◦ ϕ. Since 
πP1 ◦ ϕ (resp. π2 ◦ ϕ) is a Galois covering and P2 ∈ ϕ−1(ϕ(C) ∩ ϕ(P1)ϕ(P2)) (resp. 
P1 ∈ ϕ−1(ϕ(C) ∩ ϕ(P1)ϕ(P2))),
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(πP1 ◦ ϕ)∗(ϕ(P1)ϕ(P2)) =
∑
σ∈G1

σ(P2)
(

resp. (πP2 ◦ ϕ)∗(ϕ(P1)ϕ(P2)) =
∑
τ∈G2

τ(P1)
)

as divisors (see, for example, [6, III.7.1, III.7.2, III.8.2]). On the other hand, it follows 
that (πP1◦ϕ)∗(ϕ(P1)ϕ(P2)) = D−P1 (resp. (πP2◦ϕ)∗(ϕ(P1)ϕ(P2)) = D−P2). Therefore,

D = P1 +
∑
σ∈G1

σ(P2) = P2 +
∑
τ∈G2

τ(P1),

which is nothing but assertion (c).
We then consider the if-part. Let D be the divisor

D = P1 +
∑
σ∈G1

σ(P2) = P2 +
∑
τ∈G2

τ(P1),

by (c). Let f and g ∈ k(C) be generators of k(C/G1) and k(C/G2) such that (f)∞ =
D−P1 and (g)∞ = D−P2, by (a), where (f)∞ is the pole divisor of f . Then, f, g ∈ L(D). 
Let ϕ : C → P

2 be given by (f : g : 1). Similar to Proposition 1, by (b), ϕ is birational 
onto its image. The sublinear system of |D| corresponding to 〈f, g, 1〉 is base-point-free, 
since supp(D) ∩ supp((f) +D) = {P1} and supp(D) ∩ supp((g) +D) = {P2}. Therefore, 
degϕ(C) = degD, and the morphism (f : 1) (resp. (g : 1)) coincides with the projection 
from the smooth point ϕ(P1) ∈ ϕ(C) (resp. ϕ(P2) ∈ ϕ(C)). �
3. Applications

First, we consider rational curves. In this case, condition (a) in Theorem 1 is always 
satisfied, by Lüroth’s theorem.

Proof of Theorem 2. (1). Let σ, τ ∈ Aut(P1) be represented by

(
1 −1
1 1

)
,

(
0 1
−1

2 1

)

respectively, by assuming p �= 2. Let G1 = 〈σ〉, G2 = 〈τ〉, P1 = (2 : 1) and P2 = (−1 : 1). 
If p �= 3, then P1 �= P2. Note that

{σi(P2)|i = 1, 2, 3} = {(1 : 0), (1 : 1), (0 : 1)} = {τ i(P1)|i = 1, 2, 3}.

Condition (c) in Theorem 1 is satisfied. Furthermore, σ4 = 1 and τ4 = 1. We prove 
condition (b) in Theorem 1. Assume by contradiction that σi = τ j for some i, j. If i = 1 or 
3, then there exists an integer l such that (σi)l = σ. Then, τ jl(0 : 1) = σ(0 : 1) = (−1 : 1). 
However, there exists no integer i such that τ i(0 : 1) = (−1 : 1). This is a contradiction. 
Therefore, i = 2 and j = 2. However, σ2(1 : 0) = (0 : 1) �= (1 : 1) = τ2(1 : 0).
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(2). Let α �= 0, 1, −1 and let σα, τα ∈ Aut(P1) be represented by
(

0 1
α 0

)
,

(
1 − 1

α

1 −1

)
,

respectively. Let Gα = 〈σα, τα〉. Since σατα = τασα, Gα
∼= (Z/2Z)⊕2. We take α′ �=

0, 1, −1, α. Let G1 = Gα, G2 = Gα′ , P1 = (1 : α′) and P2 = (1 : α). Note that

{σα(P2), τα(P2), σατα(P2)} = {(1 : 1), (0 : 1), (1 : 0)} = {σα′(P1), τα′(P1), σα′τα′(P1)}.

Condition (c) in Theorem 1 is satisfied. Condition (b) is obviously satisfied in this case.
(3). We take σ as in (1) and σα, τα as in (2). Let P1 = (1 : α) and P2 = (1 : −1). Note 

that

{σi(P2)|i = 1, 2, 3} = {(1 : 0), (1 : 1), (0 : 1)} = {σα(P1), τα(P1), σατα(P1)}.

Furthermore, σ2 /∈ 〈σα, τα〉. Similar to the proof of (2), the assertion follows by Theo-
rem 1.

(4). Let α2 + α− 1 = 0 and let σ, τ ∈ Aut(P1) be represented by
(

1 −1
1 −α

)
,

(
0 1

α− 1 1

)

respectively. Let G1 = 〈σ〉, G2 = 〈τ〉, P1 = (α : 2α − 1) and P2 = (1 : 1 + α). If p �= 2, 
then P1 �= P2. Note that

{σi(P2)|1 ≤ i ≤ 4} = {(1 : 0), (0 : 1), (1 : 1), (1 : α)} = {τ i(P1)|1 ≤ i ≤ 4}.

Condition (c) in Theorem 1 is satisfied. Furthermore, σ5 = 1 and τ5 = 1. Condition (b) 
is obviously satisfied. �
Remark 2. Let σ and τ ∈ Aut(P1) be as in the proof of Theorem 2(1). Let f :=∑3

i=0 σ
∗(t) ∈ k(P1) = k(t) and let g :=

∑3
i=0 τ

∗(t) ∈ k(t). Then, f ∈ k(P1/〈σ〉), 
g ∈ k(P1/〈τ〉), and

f = t− t + 1
t− 1 − 1

t
+ t− 1

t + 1 = t4 − 6t2 + 1
t(t− 1)(t + 1) ,

g = t + 2t− 1
2t + t− 1

2t− 1 − 1
2t− 2 = 4t4 − 12t2 + 8t− 1

2t(t− 1)(2t− 1) .

The birational embedding ϕ = (f : g : 1) : P1 → P
2 is represented by

(2(t4 − 6t2 + 1)(2t− 1) : (4t4 − 12t2 + 8t− 1)(t + 1) : 2t(t + 1)(t− 1)(2t− 1)).
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For Theorem 2(2),

f = t + σ∗
α(t) + τ∗α(t) + (σατα)∗(t) = t + α

t
+ α(t− 1)

t− α
+ t− α

t− 1 = (t2 − α)2

t(t− 1)(t− α)

and we have a birational embedding

((t2 − α)2(t− α′) : (t2 − α′)2(t− α) : t(t− 1)(t− α)(t− α′)).

Remark 3. According to [4, Theorem 1], if p = 0, C = P
1 and degϕ(C) = 6, then the 

number of inner Galois points is bounded by two. Our curve in Theorem 2(4) attains 
this bound.

Next, we consider elliptic curves. Let p �= 3. Note that if an elliptic curve E admits a 
Galois covering ψ over P1 of degree three, then E has an embedding ϕ : E → P

2 such 
that the image is the Fermat cubic.

We prove it here. Let Q be a (total) ramification point of ψ. Then, ψ∗(ψ(Q)) = 3Q, the 
complete linear system |3Q| is of dimension 2, and the induced morphism ϕ|3Q| : E → P

2

is an embedding. Since ψ corresponds to some (base-point-free) sublinear system of |3Q|, 
ψ is considered as the projection from some point P ∈ P

2 \ ϕ|3Q|(E). (This implies that 
P is an outer Galois point for ϕ|3Q|(E).) For a suitable system of coordinates, we can 
assume that P = (1 : 0 : 0). Let σ ∈ Aut(E) be an automorphism of order three 
induced by ψ. Since σ∗(3Q) = 3Q, there exists a linear transformation η of P2 such that 
σ = ϕ−1

|3Q|ηϕ|3Q|. Note that ϕ∗
|3Q|η

∗(y) = ϕ∗
|3Q|(y). For a suitable system of coordinates, 

η is given by (X : Y : Z) 	→ (ωX : Y : Z), where w2 +w+1 = 0 (see [9]). Then, ϕ|3Q|(E)
is defined by X3 +G(Y, Z) = 0 for some homogeneous polynomial G ∈ k[Y, Z] of degree 
three. Since the action of Aut(P1) ∼= PGL(2, k) on the projective line defined by X = 0
is 3-transitive, we have the defining equation X3 + c(Y 3 +Z3) = 0 for some c ∈ k \ {0}. 
Therefore, ϕ|3Q|(E) coincides with the Fermat curve, up to a projective equivalence.

To consider the case where degϕ(E) = 4, we assume that E ⊂ P
2 is the curve defined 

by X3 + Y 3 + Z3 = 0.

Proof of Theorem 3. Let σ be the automorphism of E given by (X : Y : Z) 	→ (ωX :
Y : Z), where ω2 + ω + 1 = 0. Then, σ is of order three and E/〈σ〉 ∼= P

1. We take 
a point Q ∈ E \ {XY Z = 0} such that σ(Q) �= Q and σ2(Q) �= Q. Note that there 
exists an involution η such that η(Q) = σ(Q), by the linear system |Q + σ(Q)|. We take 
τ := ησ2η. Then, τ(Q) = σ(Q), τ is of order three and E/〈τ〉 ∼= P

1. Let G1 = 〈σ〉 and 
G2 = 〈τ〉. Then, condition (a) in Theorem 1 is satisfied for G1 and G2. Furthermore, we 
take P1 = τ2(Q) and P2 = σ2(Q). To prove (b) and (c) in Theorem 1, we have to only 
show that σ2(Q) �= τ2(Q).

Assume by contradiction that τ2(Q) = σ2(Q). Then, η(σ2(Q)) = σ2(Q), and hence, 
σ2(Q) is a ramification point of the double covering induced by |Q + σ(Q)|. It follows 
that 2σ2(Q) ∼ Q + σ(Q), and hence, 3σ2(Q) ∼ Q + σ(Q) + σ2(Q) =: D. Since D is 
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given by E ∩ Qσ(Q) and the linear system |D| is complete, where Qσ(Q) is the line 
passing through Q and σ(Q), σ2(Q) is a total inflection point. Then, Q is also a total 
inflection point, because σ is a linear transformation of P2. It is impossible because all 
total inflection points of this curve lie on the locus defined by XY Z = 0.

By Theorem 1, the assertion follows. �
Remark 4. According to [4, Theorem 1], if p = 0 and degϕ(C) = 4, then the number 
of inner Galois points is bounded by four. When C is an elliptic curve, it is not known 
whether or not the bound is sharp.
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