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We study the shape of the F-signature function of a d-dimen-
sional quotient singularity k�x1, . . . , xd�G, and we show that 
it is a quasi-polynomial. We prove that the second coefficient 
is always zero and we describe the other coefficients in terms 
of invariants of the finite acting group G ⊆ Gl(d, k). When 
G is cyclic, we obtain more specific formulas for the coeffi-
cients of the quasi-polynomial, which allow us to compute the 
general form of the function in several examples.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let (R, m, k) be a commutative complete Noetherian local domain of characteristic 
p > 0, and assume that the residue field k = R/m is perfect. For a positive integer e, 
let F e : R → R denote the e-th iterate of the Frobenius endomorphism on R. The map 
F e can be identified with the R-module inclusion R ↪→ R1/pe , where R1/pe is the ring 
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obtained by adjoining pe-th roots of elements in R. The main object of study of this 
article is the F-signature function of R, that is, the function

FS : N N

e frkR(R1/pe),

where frkR(R1/pe) denotes the maximal rank of a free R-summand of R1/pe or, equiva-
lently, the maximal rank of a free R-module P for which there is a surjection R1/pe →
P → 0.

The F-signature function has been introduced by Smith and Van den Bergh, in the 
context of rings with finite F-representation type [27]. Even though this function has 
several interesting properties, most of the efforts have been devoted to studying its 
leading term, called the F-signature of R, and denoted s(R) (see Section 2 for more 
precise definitions). Despite being a coarser invariant, s(R) already encodes a significant 
amount of information about the ring and its singularities. For example, R is regular 
if and only if s(R) = 1 [9], and R is strongly F-regular if and only if s(R) > 0 [1]. 
However, s(R) is typically very hard to compute explicitly, and it is known only in a 
few sporadic cases. Moreover, the techniques that allow to determine s(R) often do not 
allow to compute of the whole F-signature function. Therefore, even less is known about 
FS(e), with a few very special exceptions (for instance, see [4], or [26, Example 7]).

Another function that can be defined in the same setup is the Hilbert–Kunz function 
e �→ HK(e) = �R(R/m[pe]), where �R denotes the length of an R-module, and m[pe] is 
the ideal generated by the elements rpe , for r ∈ m. The Hilbert–Kunz function was first 
investigated by Kunz in [16] and [17]. In [20], Monsky showed that HK(e) = eHK(R)pde+
O(p(d−1)e), where eHK(R) is a positive real number called Hilbert–Kunz multiplicity and 
d is the Krull dimension of R. The main connection with the F-signature function can 
be best stated when R is a Gorenstein singularity with minimal multiplicity, in which 
case HK(e) = �R(R/(x1, . . . , xd))pde − FS(e) for all e ∈ N [9]. Here, x1, . . . , xd denotes 
any minimal reduction of the maximal ideal m. In the case when R is Gorenstein and 
minimal multiplicity, a knowledge of the function HK(e) therefore leads to that of the 
F-signature function FS(e). As the F-signature function, the Hilbert–Kunz function is 
also quite mysterious, and known only for very specific classes of rings. Among other 
results in this direction, see [3], [4], [6], [10], [17], [18], [21], [23].

In the effort of understanding the shape of the Hilbert–Kunz function, the question of 
whether there exists a “second coefficient” for HK(e) has caught the attention of several 
researchers. One says that HK(e) has a second coefficient if there exists β ∈ R such that 
HK(e) = eHK(R)pde + βp(d−1)e + O(p(d−2)e). Huneke, McDermott, and Monsky [11]
prove that, if R is excellent, normal, and F -finite, then this is the case. Chan and Kurano 
[6] prove that the same result holds if one replaces normal with regular in codimension 
one. Brenner [3] shows that, for standard graded normal domains of dimension two over 
an algebraically closed field, the second coefficient equals zero. In [18], Kurano proves 
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that the same conclusion holds for F-finite Q-Gorenstein local rings with algebraically 
closed residue field.

For the F-signature function, it is known that FS(e) = s(R)pde +O(p(d−1)e) (see [28], 
[22]). In their recent work, Polstra and Tucker ask whether a second coefficient for the 
F-signature function exists as well [22, Question 7.4]. We thank Polstra for pointing out 
to us that this is known to be true for some classes of rings, including rings that are 
Q-Gorenstein on the punctured spectrum and affine semigroup rings, as a consequence of 
the existence of a second coefficient for Hilbert–Kunz functions with respect to m-primary 
ideals [11]. Using this approach, Brinkmann [4] computes the F-signature function of 
2-dimensional ADE singularities, and shows that the second coefficient exists, and it is 
equal to zero. In this article, we prove that the same result holds for the larger class of 
d-dimensional quotient singularities (see Theorem A).

Throughout, k denotes an algebraically closed field, and G ⊆ Gl(d, k) is a finite group, 
that acts linearly on S = k�x1, . . . , xd�. We assume that the characteristic of k does not 
divide |G|, and we let R = SG be the ring of invariants under this action. We say that 
an element g of G is a c-pseudoreflection if, when viewed as an element of Gl(d, k), it 
has eigenvalue 1 with multiplicity c, and d − c eigenvalues different from 1. In particular, 
the only d-pseudoreflection is the identity. In what follows, we assume that the group G
is small, that is, G contains no (d − 1)-pseudoreflections.

There is a known connection between the F-signature of R and the acting group G: in 
our assumptions, s(R) = 1

|G| [30, Theorem 4.2]. In fact, even deeper connections can be 
established for the generalized F-signature of certain modules [12], even in a more general 
setup [13]. We further develop the relation established in [30], giving a description of the 
F-signature function of R in terms of c-pseudoreflections.

Theorem A (see Theorem 3.8 and Proposition 3.9). Let k be an algebraically closed field 
of positive characteristic p, and G be a finite small subgroup of Gl(d, k) such that p � |G|. 
Let S = k�x1, . . . , xd� be a power series ring, and let R = SG be the ring of invariants 
of S under the action of G. The F-signature function of R is a quasi-polynomial in pe:

FS(e) = ϕdp
de + ϕd−1p

(d−1)e + · · · + ϕ1p
e + ϕ0.

For 0 � c � d, ϕc = ϕc(e) is a function that takes values in Q, is bounded, and periodic 
of period at most |G| − 1. Moreover:

1. ϕc is identically zero if and only if G does not contain any c-pseudoreflections.
2. If pe ≡ 1 modulo |G|, then ϕc(e) = |Gc|

|G| , where Gc is the set of c-pseudoreflections.

In particular, we have that ϕd(e) = 1
|G| , and ϕd−1(e) = 0 for all e ∈ N.

We remark that, when G is Abelian, the fact that FS(e) is a quasi-polynomial with 
rational coefficients can be deduced from [5] and [29], since in this case R is toric.
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As quotient singularities have finite F-representation type [27], our methods actually 
yield more general formulas for the multiplicities mult(Mα, R1/pe), where the modules 
Mα run over the irreducible R-modules that appear in a direct sum decomposition of 
R1/pe , for e ∈ N. The multiplicity functions include the F-signature function, since 
M0 = R, and thus FS(e) = mult(M0, R1/pe). In analogy with FS(e), the aforemen-
tioned generalized F-signature of a module Mα is the leading coefficient ϕ(α)

d of the 
quasi-polynomial mult(Mα, R1/pe). In this sense, Theorem 3.8 generalizes the main re-
sult of [12].

In the second part of the article, we focus on the case when the group G is cyclic of 
order n. Viewing a generator g ∈ G as an element of Gl(d, k), one can assume that g is 
represented by a diagonal matrix, with n-th roots of unity on the diagonal. We can then 
associate to g a d-uple (t1, . . . , td) that records the multiplicative order of the elements 
on the diagonal. For every J ⊆ {1, . . . , d}, we set gJ to be the greatest common divisor 
of n, together with the integers {tj : j ∈ J}. For instance, g{1,...,d} = gcd(t1, . . . , td, n), 
while g{1} = gcd(t1, n).

Our second main result is a formula to explicitly compute the F-signature function 
of R in terms of the integers gJ , and functions e �→ θJ(e) which count the number 
of solutions of certain congruences (see Notation 4.7 for more details). Let Γi be the 
set of subsets of {1, 2, . . . , d} of cardinality i, and set ψi =

∑
J∈Γi

gJθJ . The functions 
ψi = ψi(e) are also bounded and periodic, of period at most |G| − 1.

Theorem B (see Theorems 4.11 and 4.13). In the setup of Theorem A, assume further 
that G is cyclic of order n. For all e ∈ N, write pe = kn + re, where 0 < re < n. With 
the notation introduced above, the functions ϕc can then be expressed as

ϕc(e) = 1
n

[
d∑

i=c

(−1)i−c

(
i

c

)
ψi(e)ri−c

e

]
.

As for Theorem A, also the formulas of Theorem B can be generalized to similar 
formulas for the functions ϕ(α)

c (e), which are the coefficients of the multiplicity functions 
mult(Mα, R1/pe) (see Theorem 4.11).

As a direct consequence of Theorem B, we obtain an explicit description of the F-
signature function of Veronese rings up to a bounded periodic function θ∅, defined in 
Notation 4.7. Recall that the (complete) d-dimensional Veronese ring of order n over 
a field k is the ring R = k�x1, . . . , xd�G, where G = Z/(n), and a generator g ∈ G is 
identified with the matrix diag(λ, . . . , λ) ∈ Gl(d, k), where λ is a primitive n-th root of 
unity in k. Alternatively, R can be viewed as the completion at the irrelevant maximal 
ideal of the k-subalgebra of k[x1, . . . , xd] generated by the monomials of degree n in the 
variables x1, . . . , xd.



A. Caminata, A. De Stefani / Journal of Algebra 523 (2019) 311–341 315
Corollary C (see Corollary 4.16). Let R be a d-dimensional Veronese ring of order n
over an algebraically closed field of characteristic p > 0. For e ∈ N, write pe = kn + re. 
The F-signature function of R is

FS(e) = pde − rde
n

+ θ∅,

where θ∅ is the number of integral d-uples (a1, . . . , ad), contained inside the d-dimensional 
cube [0, re − 1]d, that satisfy a1 + . . . + ad ≡ 0 modulo n. In particular, if re = 1, then

FS(e) = pde − 1
n

+ 1.

This paper is structured as follows: in Section 2, we recall the main definitions and 
results concerning the F-signature function and Auslander’s correspondence, that we use 
extensively throughout the article. In Section 3, we study the F-signature function of 
quotient singularities, and prove Theorem A. In Section 4 we focus on the cyclic case 
to obtain Theorem B, and deduce a formula for Veronese rings. Finally, in Section 5 we 
provide several examples, to explicitly illustrate how Theorem A and Theorem B allow 
to compute the F-signature function of some specific quotient singularities.

2. Background

2.1. F-signature function

Let R be a commutative Noetherian ring of prime characteristic p > 0. For a positive 
integer e, let F e : R → R denote the e-th iterate of the Frobenius endomorphism on 
R, that is, the map that raises every element of R to its pe-th power. Given a finitely 
generated R-module M , we denote by eM the module M , whose R-module structure is 
pulled back via F e. More explicitly, for em1,

em2 ∈eM and r ∈ R we have

em1 +em2 =e(m1 + m2) and r ·em1 =e(rp
e

m1).

When the ring R is reduced, the Frobenius endomorphism F e : R → R can be identified 
with the natural inclusion R ↪→ R1/pe , where R1/pe is the ring obtained by adding pe-th 
roots of elements in R. In particular, eR can be identified with R1/pe .

Throughout, we assume that (R, m, k) is a complete local domain with perfect residue 
field. Let K be the fraction field of R. By the rank of a finitely generated R-module M , 
we mean the dimension of the K-vector space M ⊗R K. We let frkR(R1/pe) denote the 
maximal rank of a free R-module P for which there is a surjection R1/pe → P → 0.

We now introduce the main object of study of this article.

Definition 2.1 (Smith-Van den Bergh, Huneke–Leuschke). Let (R, m, k) be a complete 
local domain with perfect residue field. The F-signature function of R is defined as
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FS : N N

e frkR(R1/pe).

The F-signature function has been introduced and first studied by Smith and Van den 
Bergh, with main focus on rings with finite F-representation type [27]. See the end of the 
section for a more precise definition. Successively, in [9], Huneke and Leuschke focused 
on an asymptotic normalized version of this function: they defined the F-signature of 
R as the limit s(R) = lime→∞

FS(e)
pde , where d is the Krull dimension of R. It is easy 

to see that 0 � s(R) � 1 always holds, but the convergence of such a limit is far from 
trivial. The existence of the F-signature in full generality was a major open problem, 
until Tucker gave a proof in [28]. In joint work with Polstra and Yao, the second author 
generalized the definition of F-signature to a more general setup, where the ring does 
not need to be local [7].

Remark 2.2. In Definition 2.1, the assumption that R is a complete domain and k is 
perfect can be greatly weakened. However, the type of rings we will investigate in this 
article are of this form. Therefore, we do not provide the most general definition here.

Let (R, m, k) be a complete Noetherian local ring with perfect residue field. The 
category of finitely generated R-modules satisfies the Krull–Remak–Schmidt property. 
It follows that every finitely generated R-module can be uniquely decomposed (up to 
isomorphism) as a direct sum of indecomposable finitely generated R-modules. In our 
running assumptions, R is F-finite. This means that, for each e ∈ N, the module R1/pe is 
finitely generated, hence a direct sum of finitely generated indecomposable R-modules. 
We say that R has finite F-representation type (FFRT for short) if there exists a finite 
set N of indecomposable R-modules such that for every e ∈ N the R-module R1/pe

is isomorphic to a direct sum of elements of N . In other words, if R has FFRT and 
N = {M0 = R, M1, . . . , Mr}, then for all e ∈ N we can write

R1/pe ∼= M
c0,e
0 ⊕M

c1,e
1 · · · ⊕M cr,e

r

for some uniquely determined integers c0,e, . . . , cr,e.

Notation 2.3. For α ∈ {0, . . . , r}, we denote mult(Mα, R1/pe) = cα,e and we call it the 
multiplicity of Mα inside R1/pe . In particular for α = 0, we have M0 = R and the 
function mult(R, R1/pe) = frkR(R1/pe) = FS(e) is the F-signature function of R.

The notion of FFRT and the functions e �→ mult(Mα, R1/pe) were introduced by 
Smith and Van den Bergh [27]. They proved that if R is strongly F-regular then the 
limit

lim mult(Mα, R
1/pe)

de
e→∞ p
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exists, and is strictly positive. Around the same time, Seibert [25] studied a similar 
problem and proved the existence of the previous limit, assuming that R has finite 
Cohen–Macaulay type.

As already pointed out for the F-signature function, in this article we are inter-
ested in studying the functions mult(Mα, R1/pe), rather than the asymptotic behavior 
of mult(Mα,R1/pe )

pde .

2.2. Non-modular representation theory in positive characteristic

In this subsection, we recall some basic definitions and results on non-modular repre-
sentation theory in positive characteristic.

We fix an algebraically closed field k of positive characteristic p and a finite subgroup 
G ⊆ Gl(d, k) such that p � |G|. When we say that (V, ρ) is a k-representation of G, we 
will always mean a finite-dimensional k-linear representation of G, i.e., a group homo-
morphism ρ : G → Gl(V ), where V is a finite-dimensional k-vector space. By abuse 
of notation, we will sometimes just call V the representation, meaning that a map ρ is 
given as well. The dimension of the representation is just the k-dimension of V . Thanks to 
Mashke’s theorem, the category of k-representations of G has the Krull–Remak–Schmidt 
property, with the indecomposable objects being the irreducible representations. In other 
words, any representation V can be uniquely decomposed (up to isomorphism) as a direct 
sum of irreducible representations:

V ∼= V c0
0 ⊕ · · · ⊕ V cr

r ,

where V0, . . . , Vr are pairwise non-isomorphic irreducible representations.

Notation 2.4. The natural number ci is called the multiplicity of Vi inside V , and we 
denote it by mult(Vi, V ) = ci. We will use the notation V0 to denote the trivial repre-
sentation of G given by g ∈ G �→ 1 ∈ Gl(1, k) = k∗.

Finally, we recall that the number of non-isomorphic irreducible k-representations of 
G is finite and equal to the number of conjugacy classes of G.

Definition 2.5 (Frobenius twist). Let k be a perfect field, and V be a k-vector space. For 
any positive integer e, we denote by V 1/pe = {v1/pe : v ∈ V } the k1/pe = k-vector space 
with sum and scalar multiplication given by

v
1/pe

1 + v
1/pe

2 = (v1 + v2)1/p
e

, and a · v1/pe

1 = (ap
e

v1)1/p
e

for a ∈ k and v1/pe

1 , v1/pe

2 ∈ V 1/pe . If V is a k-representation of a group G, then the 

composition G ↪→ Gl(V ) Φ−→ Gl(V 1/pe) shows that V 1/pe is also a representation of G, 
where Φ is given by Φ(g)(v1/pe) = (gv)1/pe , for g ∈ G, v ∈ V . We call this representation 
the e-th Frobenius twist of V .
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Remark 2.6. Let v1, . . . , vs be a basis of V , and assume that the representation V of G
is given by a matrix (fi,j(g)), where fi,j(g) ∈ k for all g ∈ G. Explicitly, this means that 
for g ∈ G we have g · vj =

∑s
i=1 fi,j(g)vj . Since k is algebraically closed, the elements 

v
1/pe

1 , . . . , v1/pe

s form a k-basis of V 1/pe , and the matrix representation of the Frobenius 
twist V 1/pe is given by 

(
fi,j(g)1/p

e).
Remark 2.7. Observe that, if (fi,j(g)) is in diagonal form, then every element fi,i(g) that 
appears on the main diagonal is a primitive m-th root of unity in k, where m divides 
the order of g in G. Since k is algebraically closed, and p does not divide m, the map 
(−)1/pe : μm(k) → μm(k) is an isomorphism of groups, where μm(k) denotes the group 
of m-th roots of unity in k. In particular, fi,i(g)1/p

e is also a primitive m-th root of unity 
in k.

We fix an isomorphism φ : μ|G|(k) → μ|G|(C) between the groups of |G|-th roots of 
unity in k and |G|-roots of unity in C. Let (V, ρ) be a k-representation of G of dimension 
s � 1 and let g be an element of G. Since G is finite and k is algebraically closed, 
the matrix ρ(g) is diagonalizable in k. We denote by λ1, . . . , λs the eigenvalues of ρ(g), 
counted with multiplicity. Observe that since ordG(g) divides |G|, λ1, . . . , λs are elements 
of μ|G|(k).

Definition 2.8. The Brauer character or simply the character of (V, ρ) is the function 
χV : G → C given by χV (g) = φ(λ1) + · · · + φ(λs).

We collect some properties of Brauer characters in the following proposition.

Proposition 2.9. Let V be a k-representations of G with character χV , and let Vi be an 
irreducible k-representation of G with character χVi

. Then the following facts hold:

1. χV (IG) = dimk V , where IG is the identity of G;
2. χV (g−1) = χV (g), the complex conjugate of χV (g), for every g ∈ G;
3. The multiplicity of Vi in V is given by

mult(Vi, V ) = 1
|G|

∑
g∈G

χVi
(g) · χV (g),

where χVi
(g) is the complex conjugate of χVi

(g).

We conclude with the following well-known definition.

Definition 2.10. An element g ∈ G ⊆ Gl(d, k) is called a pseudoreflection if the fixed 
subspace {v ∈ kd : gv = v} has dimension d − 1. The group G is called small if it does 
not contain any pseudoreflections.
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We observe that, since G is finite and k algebraically closed, then g ∈ G is a pseudo-
reflection if and only if it has an eigenvalue 1 of multiplicity d −1 and another eigenvalue 
λ 
= 1 of multiplicity 1.

3. F-signature function of quotient singularities

Let k be an algebraically closed field of positive characteristic p, and let G be a 
finite small subgroup of Gl(d, k) such that p � |G|. We consider a power series ring 
S = k�x1, . . . , xd� over k. The group G acts linearly on S with the action on the vari-
ables x1, . . . , xd given by matrix multiplication. This defines a unique k-representation 
of G of dimension d, which is called fundamental representation of G. We denote by 
R = SG the ring of invariants under this action. This is a d-dimensional complete nor-
mal domain, and it is called a quotient singularity. ADE singularities are 2-dimensional 
quotient singularities where G ⊆ Sl(2, k); see Examples 5.1, and 5.4 for some explicit 
rings of this form.

Smith and Van den Bergh showed that quotient singularities have FFRT. More pre-
cisely, let V0, . . . , Vr be a complete set of non-isomorphic irreducible representations of 
G and let Mα = (S ⊗k Vα)G for α = 0, . . . , r. In [27], they prove that R has FFRT by 
the set N = {M0, . . . , Mr}, that is, for every e ∈ N the R-module R1/pe is isomorphic to 
a finite direct sum of elements of N . R-modules of the form M = (S ⊗k W )G, where W
is a (not necessarily irreducible) representation of G, are called modules of covariants. 
Direct sums of modules of covariants are still modules of covariants, therefore by Smith 
and Van den Bergh’s result, R1/pe is a module of covariants as well. We are interested 
in its decomposition into irreducible modules.

Remark 3.1. The functor W �→ (S ⊗k W )G, which sends a k-representation W of G into 
the corresponding module of covariants, is called Auslander correspondence. This gives a 
one to one correspondence between irreducible k-representations of G and indecompos-
able R-direct summands of S. Moreover, one has dimk W = rankR(S ⊗k W )G (see [2]
for the original proof in dimension 2 or [19, Chapter 5] for a generalization to arbitrary 
dimension).

Theorem 3.2 (Smith-Van den Bergh). For any e ∈ N, let (S/m[pe])1/pe be the Frobenius 
twist of the representation S/m[pe]. Then

R1/pe ∼=
(
S ⊗k

(
(S/m[pe])1/p

e
))G

.

Moreover, if Vα is an irreducible k-representation of G and Mα = (S ⊗k Vα)G is the 
corresponding module of covariants, then

mult(Mα, R
1/pe

) = mult(Vα, (S/m[pe])1/p
e

).
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Remark 3.3. Notice that, if V0 is the trivial representation, then M0 = (S ⊗k V0)G = R

and therefore mult(V0, (S/m[pe])1/pe) = mult(R, R1/pe) = frkR(R1/pe) = FS(e) is the 
F-signature function of R.

Hashimoto and Nakajima [12] computed the limits

lim
e→∞

mult(Mα, R
1/pe)

pde
= rankR Mα

|G| .

The existence of the previous limits is also a consequence of [25,27], and the value for 
α = 0, i.e., the F-signature s(R), had been previously computed by Watanabe and 
Yoshida [30]. However, not much is known about the functions e �→ mult(Mα, R1/pe). 
The main result of this section is Theorem 3.8, where we prove that mult(Mα, R1/pe) is a 
quasi-polynomial in pe and the coefficient of p(d−1)e is always 0. Before stating our result, 
we need the following lemma, which is implicit in [12]. Since the methods employed will 
be useful, we present a complete proof here.

Lemma 3.4. Let G ⊆ Gl(d, k) be as above. For each g ∈ G, we denote by λg,1, . . . , λg,d ∈ k

its eigenvalues, counted with multiplicity. Let Vα be an irreducible k-representation of G
with Brauer character χVα

and associated R-module of covariants Mα = (S ⊗k Vα)G. 
The multiplicity of Mα into R1/pe can be expressed as

mult(Mα, R
1/pe

)

= 1
|G|

∑
g∈G

χVα
(g)

∑
(a1,...,ad)∈([0,pe−1]∩N)d

φ
(
((λg,1)1/p

e

)a1 · · · ((λg,d)1/p
e

)ad

)
.

Proof. By Theorem 3.2, the multiplicity mult(Mα, R1/pe) is equal to the multiplicity of 
the representation Vα into the Frobenius twist representation (S/m[pe])1/pe . By Propo-
sition 2.9, this is equal to

mult(Vα, (S/m[pe])1/p
e

) = 1
|G|

∑
g∈G

χVα
(g) · χ(S/m[pe])1/pe (g).

To compute the previous sum, we fix an element g of G. We may assume without loss 
of generality that the k-basis x1, . . . , xd of the fundamental representation is such that 
each xi is an eigenvector of g with eigenvalue λg,i ∈ k, that is, gxi = λg,ixi.

Now, observe that {xa1
1 · · ·xad

d : (a1, . . . , ad) ∈ ([0, pe−1] ∩N)d} is a k-basis of S/m[pe], 
where each element xa1

1 · · ·xad

d is an eigenvector of g with eigenvalue λa1
g,1 · · ·λad

g,d. It 
follows that {(x1/pe

1 )a1 · · · (x1/pe

d )ad : (a1, . . . , ad) ∈ ([0, pe − 1] ∩ N)d} is a basis of the 
Frobenius twist (S/m[pe])1/pe as a k1/pe-vector space. Since k is perfect, it is a k-basis as 
well. Moreover, each element (x1/pe

1 )a1 · · · (x1/pe

d )ad of the previous basis is an eigenvector 
of g with eigenvalue (λ1/pe

g,1 )a1 · · · (λ1/pe

g,d )ad . Thus, the character of (S/m[pe])1/pe is given 
by
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χ(S/m[pe])1/pe (g) =
∑

(a1,...,ad)∈([0,pe−1]∩N)d
φ
(
((λg,1)1/p

e

)a1 · · · ((λg,d)1/p
e

)ad

)
,

and the claim is proved. �
Definition 3.5. Let c ∈ {0, . . . , d} and let g be an element of G ⊆ Gl(d, k). We say that 
g is a c-pseudoreflection if it has eigenvalue 1 with multiplicity c, and d − c eigenvalues 
different from 1. Equivalently, a c-pseudoreflection is an element g ∈ GL(d, k) such that 
rank(Id − g) = d − c, where Id is the identity matrix of size d. We denote by Gc the 
subset of G consisting of all c-pseudoreflections.

Note that, since G ⊆ Gl(d, k) is a finite group whose order is invertible in k, and k is 
algebraically closed, each element of G is diagonalizable. Moreover, observe that we can 
decompose G as a disjoint union of the sets Gc.

Example 3.6. The only d-pseudoreflection corresponds to the identity of the group, and 
a (d − 1)-pseudoreflection is just a (standard) pseudoreflection, as in Definition 2.10.

Remark 3.7. In the literature, c-pseudoreflections are sometimes called (d −c)-reflections. 
In particular, (standard) pseudoreflections are sometimes called 1-reflections, rather than 
(d − 1)-pseudoreflections. We decided to adopt this convention in order to facilitate the 
readability of this article.

Theorem 3.8. Let k be an algebraically closed field of positive characteristic p, and let 
G be a finite small subgroup of Gl(d, k) such that p � |G|. Let S = k�x1, . . . , xd� be 
a power series ring, and R = SG be the ring of invariants under this action. Let Vα

be an irreducible k-representation of G, and Mα = (S ⊗k Vα)G be the corresponding 
indecomposable module of covariants. Then, the function e �→ mult(Mα, R1/pe) has the 
following shape

mult(Mα, R
1/pe

) = rankR Mα

|G| pde + ϕ
(α)
d−2p

(d−2)e + · · · + ϕ
(α)
1 pe + ϕ

(α)
0 ,

where ϕ(α)
c = ϕ

(α)
c (e) are functions that take values in Q, are bounded, and periodic of 

period at most |G| −1. Moreover, if G does not contain any c-pseudoreflections for some 
c ∈ {0, . . . , d − 2}, then ϕ(α)

c (e) = 0.

Proof. We fix e ∈ N. By Lemma 3.4 we can write the multiplicity of Mα in R1/pe as

mult(Mα, R
1/pe

)

= 1
|G|

∑
χα(g)

∑
e d

φ
(
((λg,1)1/p

e

)a1 · · · ((λg,d)1/p
e

)ad

)
,

g∈G (a1,...,ad)∈([0,p −1]∩N)
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where λg,1, . . . , λg,d are the eigenvalues of the element g ∈ G, and χα is the character 
of Vα.

We write the previous sum as

1
|G|

∑
g∈G

χα(g)
∑

(a1,...,ad)∈([0,pe−1]∩N)d
(φ((λg,1)1/p

e

))a1 · · · (φ((λg,d)1/p
e

))ad

= 1
|G|

∑
g∈G

χα(g)
∑

(a1,...,ad)∈([0,pe−1]∩N)d
(ξg,e,1)a1 · · · (ξg,e,d)ad ,

where ξg,e,i = φ((λg,i)1/p
e) ∈ C for all i = 1, . . . , d. Notice that since φ : μ|G|(k) →

μ|G|(C) and (−)1/pe : μ|G|(k) → μ|G|(k) are group isomorphisms, the order of ξg,e,i as 
root of unity in C is the same as the order of λg,i in k.

Now, rewrite the sum as

1
|G|

∑
g∈G

χα(g)
pe−1∑
a1=0

(ξg,e,1)a1 · · ·
pe−1∑
ad=0

(ξg,e,d)ad

= 1
|G|

∑
g∈G

χα(g)
d∏

i=1

pe−1∑
ai=0

(ξg,e,i)ai

= 1
|G|

d∑
c=0

∑
g∈Gc

χα(g)
d∏

i=1

pe−1∑
ai=0

(ξg,e,i)ai .

(1)

The last equality follows from the disjoint decomposition G =�d
c=0 Gc, where Gc is the 

set of c-pseudoreflections.
We analyze the last formula more closely. First, observe that each sum of the form ∑pe−1
ai=0(ξg,e,i)ai is equal to pe if λg,i = 1. In fact, in this case, ξg,e,i = 1 for all e. On the 

other hand, if λg,i 
= 1, then the function e �→
∣∣∣∑pe−1

ai=0(ξg,e,i)ai

∣∣∣ is bounded by a constant. 
In fact, λg,i 
= 1 if and only if ξg,e,i 
= 1 for all e, by Remark 2.7. We fix n = |G|, and 
write pe = kn + re, with 0 < re < n. Since ξg,e,i 
= 1, we have 

∑(j+1)n−1
ai=jn (ξg,e,i)ai = 0

for all j = 0, . . . , k − 1, and thus 
∑pe−1

ai=0(ξg,e,i)ai =
∑pe−1

ai=kn(ξg,e,i)ai .
Now, fix c ∈ {0, . . . , d}. Following the previous argument, for each, g ∈ Gc and all e we 

have exactly c eigenvalues in the set {ξg,e,1, . . . , ξg,e,d} which are equal to 1. Therefore,

d∏
i=1

pe−1∑
ai=0

(ξg,e,i)ai = ηg,cp
ce

for some function ηg,c = ηg,c(e) that, for all e ∈ N, satisfies |ηg,c(e)| < C for some C > 0
independent of e. Taking the sum over all g ∈ Gc, we obtain
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1
|G|

∑
g∈Gc

χα(g)
d∏

i=1

pe−1∑
ai=0

(ξg,e,i)ai = ϕ(α)
c pce,

where ϕ(α)
c = ϕ

(α)
c (e) = 1

|G|
∑

g∈Gc
χα(g)ηg,c(e). Note that 

∣∣∣ϕ(α)
c (e)

∣∣∣ can be also bounded 

by a constant independent of e, because |Gc| and 
∣∣∣χα(g)

∣∣∣ are independent of e. Inserting 

the last formula in (1), we get

mult(Mα, R
1/pe

) =
d∑

c=0
ϕ(α)
c pce.

This shows that mult(Mα, R1/pe) is a quasi-polynomial; the fact that mult(Mα, R1/pe) ∈
N for all e ∈ N now gives that the functions ϕ(α)

c take values in Q. In addition, it is clear 
from the description of ϕ(α)

c that Gc = ∅ implies ϕ(α)
c = 0. Therefore, since G does not 

contain any (d − 1)-pseudoreflections, we have Gd−1 = ∅, and consequently ϕ(α)
d−1(e) = 0

for all e ∈ N. Furthermore, ϕ(α)
d = rankR Mα

|G| follows from the fact that Gd = {IG}, and 

χα(IG) = dimk Vα = rankR Mα.
It is left to show that the functions e �→ ϕ

(α)
c (e) are periodic. It is enough to show that 

each function e �→
∑pe−1

ai=0(ξg,e,i)ai is periodic, for all g and i such that λg,i 
= 1. Since 
p � n, where n = |G|, we can find e′ such that pe′ ≡ 1 modulo n. Note that we can choose 
e′ to be the order of p in the group of units of Z/(n); in particular, we can assume that 
e′ � |G| − 1. Observe that λpe′

g,i = λg,i, because λn
g,i = 1. Since (φ−1(ξg,1,i))p = λg,i, we 

get (φ−1(ξg,1,i))pp
e′ = λg,i = (φ−1(ξg,1,i))p, and it follows that ξg,1,i = ξg,e′+1,i. Finally, 

since this is true for all g and i such that λg,i 
= 1, we have that ϕ(α)
c (e) = ϕ

(α)
c (e + e′)

for all e ∈ N. �
We postpone to Section 5 the presentation of some examples, which show how Theo-

rem 3.8 can be used to compute the F-signature function of specific quotient singularities 
(see e.g. Example 5.1 and Example 5.2).

We have shown in Theorem 3.8 that Gc = ∅ implies that ϕ(α)
c = 0 for all α. We 

can prove a converse statement, provided α = 0. In other words, the vanishing of the 
function ϕ(0)

c is equivalent to the absence of c-pseudoreflections. In order to simplify the 
notation, in the sequel when no confusion may arise, we will simply denote the function 
ϕ

(0)
c by ϕc.

Proposition 3.9. With the notations of Theorem 3.8, for any c ∈ {0, . . . , d − 2}, we have 
ϕc(e) = 0 for all e ∈ N if and only if G does not contain c-pseudoreflections.

Proof. The if part of the statement has been proved in Theorem 3.8, so it remains to 
prove the only if part. For this, fix e′ such that pe′ ≡ 1 modulo |G|. For g ∈ Gc we denote 

by λg,1, . . . , λg,d its eigenvalues, and we set ξg,e′,i = φ((λg,i)1/p
e′ ) ∈ C as in the proof 



324 A. Caminata, A. De Stefani / Journal of Algebra 523 (2019) 311–341
of Theorem 3.8. Since g is a c-pseudoreflection, there will be exactly c values from the 
set {ξg,e′,1, . . . , ξg,e′,d} that are equal to 1. Without loss of generality, we may assume 
that ξg,e′,1 = · · · = ξg,e′,c = 1. Using the formula for ϕc obtained inside the proof of 
Theorem 3.8, the assumption that ϕc(e′) = 0 gives

0 = 1
|G|

∑
g∈Gc

d∏
i=1

pe′−1∑
ai=0

(ξg,e′,i)ai

= 1
|G|

∑
g∈Gc

d∏
i=c+1

pe′−1∑
ai=0

(ξg,e′,i)ai(pe
′
)c

= 1
|G|

∑
g∈Gc

(
d∏

i=c+1
1
)

(pe
′
)c

= 1
|G| |Gc|(pe

′
)c,

which implies |Gc| = 0. In the previous chain of equalities from the second to the third 
line we used the fact that

pe′−1∑
ai=0

(ξg,e′,i)ai = ξ0
g,e′,i = 1,

which is true because of our choice of pe′ ≡ 1 modulo |G|. �
The following Corollary is a direct consequence of the proof of Proposition 3.9.

Corollary 3.10. For any e ∈ N such that pe ≡ 1 modulo |G|, we have

FS(e) = 1
|G|p

de + |Gd−2|
|G| p(d−2)e + · · · + |G1|

|G| p
e + |G0|

|G| .

In particular, if p ≡ 1 modulo |G|, then this is true for all e ∈ N so the F-signature 
function of R is a polynomial in pe with constant coefficients.

Remark 3.11. We state the results of this section in the complete local case; however, 
analogous versions are true in the graded setting. More precisely, let k be an algebraically 
closed field of characteristic p > 0, let S = k[x1, . . . , xd] with deg xi = 1, and let G ⊆
Gl(d, k) be a finite small group with p � |G| acting on S via linear changes of variables. We 
consider the corresponding invariant ring R = SG, which is N-graded. The multiplicity 
functions mult(Mα, R1/pe) are defined similarly to the local case (see [27, Section 3.1]
for more details). The Auslander correspondence between irreducible k-representations 
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of G and graded indecomposable R-direct summands of S is true also in this setting 
(see [14, Section 4] for a proof) and a graded version of Theorem 3.2 has been proved by 
Hashimoto and Nakajima [12, Proposition 2.2]. Therefore, Theorem 3.8, Proposition 3.9, 
and Corollary 3.10 hold in this setting as well with analogous proofs.

4. F-signature function of cyclic quotient singularities

Let S = k�x1, . . . , xd�, where k is an algebraically closed field of characteristic p > 0. 
Let G ⊆ Gl(d, k) be a finite small subgroup of order n, with p � n. Throughout this sec-
tion, we assume that G is cyclic. In particular, we may assume that G is generated by an 
element g = diag(λt1 , . . . , λtd), where λ ∈ k is a primitive n-th root of unity and t1, . . . , td
are non-negative integers. It is harmless to assume gcd(t1, . . . , td, n) = 1. Moreover, since 
G is small, we must have gcd(tj1 , . . . , tjd−1 , n) = 1 for all subsets {j1, . . . , jd−1} ⊆ [d]
of cardinality d − 1, where we adopt the notation [d] = {1, . . . , d}. The ring R = SG of 
invariants with respect to the action of G is called a cyclic quotient singularity, which 
we will denote by 1

n (t1, t2, . . . , td). In this setup, we can apply Theorem 3.8 to describe 
the functions e �→ mult(Mα, R1/pe). However, given the special structure of the group 
G, we can say more about these functions.

Remark 4.1. When G is a cyclic small group of order n, there are precisely n irreducible 
k-representations V0, . . . , Vn−1 of G, and they all have rank 1. Furthermore, for α ∈
{0, . . . , n − 1}, the Brauer character χVα

will be of the form ξj for some 0 � j � n − 1
and some primitive n-th root of unity ξ ∈ C. We will then assume, without loss of 
generality, that the irreducible k-representations are such that χVα

= ξα, for all α.

In what follows, we denote by P = [0, 1]d the unitary cube of side 1 inside Rd and, 
for each α ∈ {0, . . . , n − 1}, we let A(α) be the lattice

A(α) = {(a1, . . . , ad) ∈ Zd : t1a1 + t2a2 + . . . + tdad ≡ α mod n}. (2)

We start by relating the functions e �→ mult(Mα, R1/pe) to the number of lattice points 
inside multiples of the cube P.

Proposition 4.2. Let R be a 1
n (t1, t2, . . . , td)-cyclic singularity over an algebraically closed 

field, and let e ∈ N. Then

mult(Mα, R
1/pe

) = |(pe − 1)P ∩ A(α)|.

Proof. Since G is cyclic, its elements can be written as gj for j = 0, . . . , n − 1. In 
particular, observe that the eigenvalues of gj are λjt1 , λjt2 , . . . , λjtd . Let ξe = φ(λ1/pe)
be the image in C of the unique pe-root of λ in k. Notice that ξe is a primitive complex 
n-th root of unity, so by Remark 4.1 we may assume that χVα

= ξαe . Observe that 
χVα

= ξαe = ξ−α
e . Then from Lemma 3.4 we obtain
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mult(Mα, R
1/pe

) = 1
n

n−1∑
j=0

ξ−jα
e

∑
(a1,...,ad)∈([0,pe−1]∩N)d

ξj(t1a1+t2a2+...+tdad)
e

= 1
n

n−1∑
j=0

∑
(a1,...,ad)∈([0,pe−1]∩N)d

ξj(t1a1+t2a2+...+tdad−α)
e .

Since 
∑n−1

j=0 ξije = 0 for all i 
≡ 0 modulo n, the only contribution to the sum above 
is for (a1, . . . , ad) such that t1a1 + t2a2 + . . . + tdad ≡ α modulo n, in which case 
ξt1a1+t2a2+...+tdad−α
e = 1. Therefore

mult(Mα, R
1/pe

)

= 1
n

n−1∑
j=0

∑
t1a1 + t2a2 + . . . + tdad ≡ α mod n

(a1, . . . , ad) ∈ ([0, pe − 1] ∩ N)d

1

= |{(a1, . . . , ad) ∈ ([0, pe − 1] ∩ N)d : t1a1 + t2a2 + . . . + tdad ≡ α mod n}|
= |(pe − 1)P ∩ A(α)|. �

Proposition 4.2 exhibits a connection between the F-signature function of cyclic quo-
tient singularities and Erhart functions of rational polytopes. This is not surprising: in 
fact, cyclic quotient singularities are toric, and Von Korff proved that the F-signature 
function of toric rings is an Erhart function [29] (see also [5] for related results). How-
ever, while in Von Korff’s approach the lattice is Z and the polytope is not a cube, in 
Proposition 4.2 the lattice is more complicated, but the polytope is a cube. The advan-
tage of our method is that it allows to compute the coefficients of the quasi-polynomial 
mult(Mα, R1/pe) more explicitly, and to relate them to properties of the group G (see 
Theorem 4.11).

4.1. Congruences and partitions

In this subsection we recall some well-known facts about congruences modulo an 
integer. The results and the methods of this subsection are general in nature and inde-
pendent of the cyclic quotient singularities setting. However, the notation we introduce 
and lemmas we prove here will be used in the rest of Section 4.

The following Lemma about number of solutions of certain congruence relations is a 
well-known classical result, therefore we omit a proof.

Lemma 4.3. Let t1, . . . , ti, n, b be non-negative integers, with n 
= 0, and g =
gcd(t1, . . . , ti, n) that divides b. The congruence t1x1 + . . . + tixi ≡ b modulo n has 
g · ni−1 incongruent solutions (x1, . . . , xi) ∈ Z/(n)⊕i.

We now introduce some notation that will largely be used in the rest of this section.
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Notation 4.4. Fix positive integers d, n and p > 1, with gcd(p, n) = 1. Fix a natural 
number e, and write pe = nk + re, with 0 < re < n. For every 0 � i � d we let 
Γi = {J ⊆ [d] : |J | = i}. For J ∈ Γi, we let CJ =

∏d
j=1 ([0, bj ] ∩ N) ⊆ Nd, with

bj =

⎧⎪⎨
⎪⎩

n− 1 if j ∈ J

re − 1 if j /∈ J

For example, we have C[d] = ([0, n − 1] ∩ N)d, and C∅ = ([0, re − 1] ∩ N)d.
Now let 1 � i � d. For J = {j1, . . . , ji} ⊆ Γi, with j1 < j2 < . . . , ji, we let σJ : J → [i]

be the map defined as σJ(j�) = � for all 1 � � � i. For s = (s1, . . . , si) ∈ Ni, we define a 
vector vJ,s = ((vJ,s)1, . . . , (vJ,s)d) ∈ Nd in the following way:

(vJ,s)j =

⎧⎪⎨
⎪⎩

sσJ (j) if j ∈ J

k if j /∈ J

Finally, for convenience, we set ([0, k − 1] ∩ N)0 = {�}, and v∅,� = (k, . . . , k).

Given a set C ⊆ Nd and a d-uple (a1, . . . , ad), we denote by C + (a1, . . . , ad) the 
Minkowski sum {(c1 + a1, . . . , cd + ad) : (c1, . . . , cd) ∈ C}. We will call it the shift of the 
set C by (a1, . . . , ad). With the notation we have introduced, we can partition the set 
([0, pe − 1] ∩ N)d into shifts of sets of the form CJ , for J ⊆ [d].

Lemma 4.5. We have the following partition:

([0, pe − 1] ∩ N)d =
d�

i=0
�
J∈Γi

(
�

s∈([0,k−1]∩N)i
(CJ + nvJ,s)

)
,

where � denotes a disjoint union of sets.

Proof. For s ∈ ([0, k−1] ∩N)i, each CJ +nvJ,s is contained in ([0, pe−1] ∩N)d. Therefore, 
the union of such sets is contained in ([0, pe−1] ∩N)d as well. To see the other containment, 
let (a1, . . . , ad) ∈ ([0, pe − 1] ∩N)d. Let J = {j1, . . . , ji}, with j1 < . . . < ji, be the set of 
j ∈ [d] such that aj < kn.

• If J = ∅, then (a1, . . . , ad) ∈ ([kn, pe − 1] ∩N)d = C∅ + v∅,�, and the claim is proved 
in this case.

• If J 
= ∅, for each j� ∈ J , write aj� = sj�n + rj� , with 0 � rj� < n, and set 
s = (sj1 , . . . , sji). Then one can check directly from the definitions that (a1, . . . , ad) ∈
CJ + nvJ,s.
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Either way, this shows that (a1, . . . , ad) belongs to the right-hand side of the equation, 
and concludes the proof of the equality between the two sets. It is also straightforward, 
and we leave it to the reader, to check that all the sets CJ + nvJ,s appearing on the 
right-hand side of the equation are disjoint. �
Remark 4.6. Note that, on the right-hand side of the equation of Lemma 4.5, the sets CJ

and the vectors vJ,s depend on e. At this stage, we have decided to keep the dependence 
of these objects on e implicit, since we believe this should not be source of confusion, 
while adding it to the notation would only make the statement harder to read. We will 
return to the dependence of these sets on e in Proposition 4.9.

To better illustrate our notation and the statement of Lemma 4.5, we represent the 
described partition of ([0, pe − 1] ∩ N)d in the case when d = p = 2 and e = n = 3. 
Observe that, with these choices, we have k = re = 2.

Fig. 1. Case d = p = 2, e = n = 3.

We need some additional notation.

Notation 4.7. Fix positive integers d, n and p, with gcd(p, n) = 1, and non-negative 
integers t1, . . . , td. Let 0 � i < d be an integer, and J ∈ Γi. Write J = {j1, . . . , ji}, 
and let gJ = gcd(tj1 , . . . , tji , n), where for convenience we set g∅ = n. We let [d] � J =
{jh1 , . . . , jhd−i

}.
Given a positive integer e, write pe = kn +re, with 0 < re < n. For α ∈ {0, . . . , n −1}, 

let
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B(α)
J (e) =

{
(a1, . . . , ad−i) ∈ ([0, re − 1] ∩ N)d−i :

d−i∑
�=1

a�th�
≡ α mod gJ

}
.

Finally, for all e ∈ N, we define θ(α)
J (e) to be the cardinality of the set B(α)

J (e).
In other words, θ(α)

J (e) counts the number of incongruent (d − i)-uples (a1, . . . , ad−i)
in Z/(re)⊕(d−i) such that their lift (a1, . . . , ad−i) to Z, with 0 � a� � re − 1, satisfies ∑d−i

�=1 a�th�
+ agJ = α for some a ∈ Z. For convenience, we set θ(α)

[d] (e) = 1 for all 
α = 0, . . . , n − 1, and e ∈ N. For i ∈ {0, . . . , d} and α ∈ {0, . . . , n − 1}, consider the 
following functions

e ∈ N �→ ψ
(α)
i (e) =

∑
J∈Γi

gJθ
(α)
J (e).

When no confusion may arise, we will simply denote θ(0)
J and ψ(0)

J by θJ and ψJ .

The functions θ(α)
J count the number of solutions of certain diophantine equations in 

linearly bounded regions. This problem has been studied in the context of integer linear 
programming. The interested reader may consult [24] for an introduction to this research 
area. A recursive formula for θ(α)

J can be also deduced from [8].

Remark 4.8. For all J ∈ Γi, α ∈ {0, . . . , n −1}, and e ∈ N, we have bounds 0 � θ
(α)
J (e) �

rd−i
e . The upper bound is clear from the range where (a1, . . . , ad−i) varies. When α = 0, 

the lower bound can be improved to 1 � θ
(0)
J (e) for all J and all e, since the (d − i)-uple 

(0, . . . , 0) always belongs to B(0)
J (e). Note that the upper bound θ(α)

J (e) = rd−i
e is always 

achieved, independently of α, when gJ = 1. Moreover, if re = 1, then for all J and all e
we have θ(α)

J (e) = 0 when α 
= 0, while θ(0)
J (e) = 1.

Proposition 4.9. We adopt the notation introduced in 4.4 and 4.7. For α ∈ {0, . . . , n −1}, 
we consider the lattice A(α) defined in (2). Let 0 � i � d be an integer, and J ∈ Γi. 
Write J = {j1, . . . , ji} and let gJ = gcd(tj1 , . . . , tji , n). For e ∈ N, write pe = kn + re, 
with 0 < re < n. Then

∣∣∣(CJ + nvJ,s) ∩ A(α)
∣∣∣ = |CJ ∩ A(α)| = θ

(α)
J (e)gJni−1,

for all s ∈ ([0, k − 1] ∩ N)i.

Proof. To prove the first equality, let s ∈ ([0, k − 1] ∩ N)i be arbitrary. Then

(a1, . . . , ad) ∈ (CJ + nvJ,s) ∩ A(α)

⇐⇒
{

(a1, . . . , ad) − nvJ,s ∈ CJ

t a + t a + . . . + t a ≡ α mod n
1 1 2 2 d d
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⇐⇒
{

(a1, . . . , ad) − nvJ,s ∈ CJ

t1(a1 − n(vJ,s)1) + . . . + td(ad − n(vJ,s)d) ≡ α mod n

⇐⇒ (a1, . . . , ad) − nvJ,s ∈ CJ ∩ A(α)

Since the one described is a one-to-one correspondence between points in the two sets, 
our claim is proved. In particular, 

∣∣(CJ + nvJ,s) ∩ A(α)
∣∣ is independent of s. To explicitly 

express the cardinality of these sets, we note that

CJ ∩ A(α) = {(a1, . . . , ad) ∈ CJ : t1a1 + t2a2 + . . . + tdad ≡ α mod n}

= {(a1, . . . , ad) :

∑
�∈J

t�a� ≡ α−
∑
�/∈J

t�a� mod n, 0 � a� � n− 1 if � ∈ J, 0 � a� � re − 1 if � /∈ J}

= �
0 � a� � re − 1

� /∈ J

{(aj1 , . . . , aji) ∈ ([0, n− 1] ∩ N)i :
∑
�∈J

t�a� ≡ α−
∑
�/∈J

t�a� mod n}.

Observe that, for a given choice of a (d − i)-uple (a�)�/∈J , the congruence 
∑

�∈J t�a� ≡
α−

∑
�/∈J t�a� modulo n has a solution (aj1 , . . . , aji) if and only if gJ divides α−

∑
�/∈J a�t�. 

In turn, this happens if and only if (a�)�/∈J ∈ B(α)
J , as defined in Notation 4.7. For every 

such (a�)�/∈J ∈ B(α)
J , we have gJni−1 incongruent solutions, by Lemma 4.3. Summing up, 

we have

|CJ ∩ A(α)|

=
∑
� /∈ J

(a�) ∈ B(α)
J

∣∣∣∣∣
{

(aj1 , . . . , aji) ∈ ([0, n− 1] ∩ N)i :
∑
�∈J

t�a� ≡ α−
∑
�/∈J

t�a� mod n

}∣∣∣∣∣

= θ
(α)
J (e) ·

∣∣∣∣∣
{

(aj1 , . . . , aji) ∈ ([0, n− 1] ∩ N)i :
∑
�∈J

t�a� ≡ α−
∑
�/∈J

t�a� mod n

}∣∣∣∣∣

= θ
(α)
J (e) · gJni−1. �

Remark 4.10. To illustrate the statement of Proposition 4.9, we refer to the specific 
example of Fig. 1, in the case t1 = 1, t2 = 2, and α = 0.



A. Caminata, A. De Stefani / Journal of Algebra 523 (2019) 311–341 331
The points inside (CJ + vJ,s) ∩A(0) are depicted as red stars. Observe that, as stated 
in Proposition 4.9, the number of red stars contained in each (CJ + vJ,s) ∩ A(0) is the 
same for every fixed J . For example, if J = [2], there are θ(0)

J (3) · gJ · 32−1 = 3 red stars 
in each region. (For interpretation of the colors in the figure, the reader is referred to 
the web version of this article.)

4.2. F-signature function of cyclic quotient singularities

Let S = k�x1, . . . , xd�, where k is an algebraically closed field of characteristic p > 0. 
Let G be a finite small cyclic group of order n, with p that does not divide n, and 
R = SG be the ring of invariants under the action of G. Given that rankR(Mα) = 1
for all 0 � α � n − 1 by Remark 4.1, Theorem 3.8 allows us to write the multiplicity 
functions as follows:

mult(Mα, R
1/pe

) = pde

n
+ ϕ

(α)
d−2p

(d−2)e + . . . + ϕ
(α)
1 pe + ϕ

(α)
0 ,

where the functions ϕ(α)
c are bounded and periodic. The main goal of this section is to 

give a more explicit description of the functions ϕ(α)
c in case G is cyclic. To achieve this 

goal, we combine the results we obtained in Section 3 and Subsection 4.1.

Theorem 4.11. Let S = k�x1, . . . , xd�, where k is an algebraically closed field of char-
acteristic p > 0. Let G be a finite small cyclic group of order n, with p that does not 
divide n, and R = SG be a 1

n (t1, . . . , td) cyclic quotient singularity. For all e ∈ N, write 
pe = kn + re, where 0 < re < n. With the notation introduced in 4.7, for e ∈ N we have

ϕ(α)
c (e) = 1

n

[
d∑

i=c

(−1)i−c

(
i

c

)
ψ

(α)
i ri−c

e

]
.

Proof. Combining Proposition 4.2, Lemma 4.5 and Proposition 4.9 we see that

mult(Mα, R
1/pe

) = |[0, pe − 1]d ∩ A(α)|
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=

∣∣∣∣∣
d�

i=0
�
J∈Γi

(
�

s∈([0,k−1]∩N)i
((CJ + nvJ,s) ∩ A(α))

)∣∣∣∣∣

=
d∑

i=0

∑
J∈Γi

⎛
⎝ ∑

s∈([0,k−1]∩N)i
|(CJ + nvJ,s) ∩ A(α)|

⎞
⎠

=
d∑

i=0

∑
J∈Γi

ki|CJ ∩ A(α)| by Proposition 4.9

=
d∑

i=0

∑
J∈Γi

kiθ
(α)
J gJn

i−1 by Proposition 4.9

=
d∑

i=0
kini−1ψ

(α)
i .

Now recall that k = pe−re
n , so that (nk)i =

∑i
c=0(−1)i−c

(
i
c

)
pceri−c

e . Substituting this 
into the formula gives

mult(Mα, R
1/pe

) =
d∑

i=0

(
pe − re

n

)i

ni−1ψ
(α)
i

= 1
n

d∑
i=0

i∑
c=0

(−1)i−c

(
i

c

)
ψ

(α)
i ri−c

e pce

=
d∑

c=0

1
n

[
d∑

i=c

(−1)i−c

(
i

c

)
ψ

(α)
i ri−c

e

]
pce changing the order of the sum.

From this expression, it follows that ϕ(α)
c = 1

n

[∑d
i=c(−1)i−c

(
i
c

)
ψ

(α)
i ri−c

e

]
, as desired. �

More generally, we have seen in Section 3 that the existence of c-pseudoreflections 
inside G determines the vanishing of the higher coefficients of mult(Mα, R1/pe). In the 
case of cyclic quotient singularities, we can relate this fact to the values gJ , for J ∈ Γc. 
A more precise statement is given in Theorem 4.13. Before that, we need the following 
lemma which follows from well-known identities between binomial coefficients.
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Lemma 4.12. Given integers 0 � c � d − 1, we have

d∑
i=c

(−1)i−c

(
d

i

)(
i

c

)
= 0.

The following Theorem can be viewed as an improvement of Proposition 3.9. Recall 
that θJ , ϕi and ψi denote the functions θ(0)

J , ϕ(0)
i and ψ(0)

i , respectively.

Theorem 4.13. With the notation of Theorem 4.11, consider an integer 1 � c � d − 1. 
Then the functions ϕd−1, . . . , ϕc are identically zero if and only if gJ = 1 for all J ∈ Γc. 
Moreover, if ϕ� is the first non-vanishing coefficient with 0 � � < d, and pe = kn + re, 
then

ϕ� =
−
(
d
�

)
rd−�
e + ψ�

n
.

Proof. Assume that gJ = 1 for all J ∈ Γc. This implies that gJ = 1 for all J ∈ Γi and 
c � i � d. It is then easy to see that there are no i-pseudoreflections for all c � i � d −1. 
By Theorem 3.8 we conclude that ϕi = 0 for all c � i � d − 1.

We now prove the converse. Fix e ∈ N such that re = 1. For such a value of e, by 
Theorem 4.11 we can express all the coefficients ϕc as follows:

ϕc(e) = 1
n

[
d∑

i=c

(−1)i−c

(
i

c

)
ψi(e)

]
.

In addition, again because re = 1, Remark 4.8 gives that θJ(e) = 1 for all J ⊆ [d] and 
e ∈ N. It follows that, ψi(e) =

∑
J∈Γi

gJ for all 0 � i � d. Observe that, for every i, 
we have |Γi| =

(
d
i

)
, and gJ � 1 for all J ∈ Γi. Therefore, we always have an inequality 

ψi �
(
d
i

)
, with equality that holds if and only if gJ = 1 for all J ∈ Γi.

Note that gJ = 1 for all J ∈ Γd−1, since G is assumed to be small. This will be the 
base case of our induction. Now let d − 2 � c � 1, and assume that gJ = 1 for all 
J ∈ Γc+1. Our previous observation implies that ψi =

(
d
i

)
for all i � c + 1. The formula 

for ϕc now gives

ϕc(e) = 1
n

[
d∑

i=c

(−1)i−c

(
i

c

)
ψi

]

= 1
n

[
d∑

i=c+1
(−1)i−c

(
i

c

)(
d

i

)
+ ψc

]

= 1
n

[
−
(
d

c

)
+ ψc

]
by Lemma 4.12.
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Since ϕc(e) = 0 by assumption, we conclude that ψc =
(
d
c

)
and, using again the obser-

vation made above, we conclude that gJ = 1 for all J ∈ Γc, as desired.
For the last part of the theorem, let ϕ� be the first non-zero coefficient, with 0 � � < d. 

By what shown above, we have that gJ = 1 for all J ∈ Γ�+1, and then θJ(e) = rd−i
e for 

all J ∈ Γi with d � i � � + 1 and e ∈ N, by Remark 4.8. It follows that ψi =
(
d
i

)
rd−i
e , 

again for d � i � � + 1 and e ∈ N. By Theorem 4.11, for all e ∈ N we finally have that

ϕ�(e) = 1
n

[
d∑

i=�

(−1)i−�

(
i

c

)
ψi

]

= 1
n

[
d∑

i=�+1

(−1)i−�

(
i

�

)(
d

i

)
rd−i
e ri−�

e + ψ�

]

= 1
n

[
rd−�
e

d∑
i=�+1

(−1)i−�

(
i

�

)(
d

i

)
+ ψ�

]

= 1
n

[
−
(
d

�

)
rd−�
e + ψ�

]
by Lemma 4.12. �

Proposition 3.9 shows that ϕc = 0 for some 0 � c � d − 2 implies that G contains 
no c-pseudoreflections. However, it is not true that if ϕc = 0 for one single such c, then 
gJ = 1 for all J ∈ Γc. Consider the following example.

Example 4.14. We fix n = st, where s, t > 1 are integers, and consider the 
1
n (1, 1, t, t)-cyclic singularity R over an algebraically closed field k of characteristic 
p � n. Clearly, we have g{t} = t > 1. We show that the coefficient ϕ1 of pe in the 
F-signature function of R is 0. This also follows from Theorem 3.8, since the cyclic group 
G = 1

n (1, 1, t, t) does not contain 1-pseudoreflections. We show it using the formula

ϕ1 = 1
n

[
d∑

i=1
(−1)i−1

(
i

1

)
ψir

i−1
e

]

given by Theorem 4.11. Let pe = kn + re, with 0 < re < n. Since gJ = 1 for J ∈ Γ4

and J ∈ Γ3, we have ψ4 = 1 and ψ3 = 4re. For j = 2, we have g{1,1} = g{1,t} = 1, 
and θ{1,1} = θ{1,t} = r2

e , so ψ2 = 5r3
e + reθ{t,t}g{t,t}. For j = 1, we have g{1} = 1, 

and θ{1} = r3
e , so ψ1 = 2r3

e + 2θ{t}g{t}. Now, observe that θ{t} counts the number of 
triples a1, a2, a3 ∈ {0, . . . , re − 1} such that a1 + a2 + ta3 ≡ 0 modulo g{t} = t. This is 
re-times the number of couples a1, a2 ∈ {0, . . . , re − 1} such that a1 + a2 ≡ 0 modulo 
t = g{t,t}, that is, θ{t,t}. Thus, we obtain θ{t} = reθ{t,t}. Finally, the coefficient of pe in 
the F-signature function of R is
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ϕ1 = 1
n

[
d∑

i=1
(−1)i−1

(
i

1

)
ψir

i−1
e

]
= 1

n

[
−4r3

e + 12r3
e − 10r3

e − 2reθ{t,t}t + 2r3
e + 2θ{t}t

]

= 1
n

[
−2reθ{t,t} + 2reθ{t,t}

]
= 0.

However, notice that in this case ϕ2 
= 0, as G contains a 2-pseudoreflection. For ex-
ample, choose n = 6, t = 3, and p ≡ 1 modulo 6, so that re = 1 for all e ∈ N. Then 
the F-signature function of the 1

6 (1, 1, 3, 3)-singularity is the polynomial in pe given by 
FS(e) = 1

6p
4e + 1

3p
2e + 1

2 .

Theorem 4.13 relates the vanishing of the coefficients ϕc = ϕ
(0)
c of mult(R, R1/pe)

to the invariants gJ of the group G. Since Theorem 4.11 gives analogous formulas for 
mult(Mα, R1/pe) when α 
= 0, one may expect that similar considerations about the 
vanishing coefficients ϕ(α)

c may hold true. It turns out that the vanishing of a coefficient 
ϕ

(α)
c for α 
= 0 is, in general a weaker condition than the vanishing of ϕ(0)

c . In fact, even 
the vanishing of all the coefficients ϕ(α)

i for c � i � d − 1 does not imply that G has no 
c-pseudoreflections.

To better illustrate what can be said in this direction, consider the following condi-
tions:

1. gJ = 1 for all J ∈ Γc.
2. G does not have any i-pseudoreflections (that is, Gi = ∅) for all c � i � d − 1.
3. The function ϕ(0)

i is identically zero for all c � i � d − 1.
4. The function ϕ(α)

i is identically zero for all c � i � d − 1 and all 0 � α � n − 1.
5. The function ϕ(α)

i is identically zero for all c � i � d − 1 and some 0 � α � n − 1.

Our previous results show that the first four conditions are equivalent, and clearly 4 
implies 5. However, 5 does not imply 1–4, as the following example shows.

Example 4.15. Let R be the 1
6 (1, 2, 3) cyclic quotient singularity over an algebraically 

closed field k of characteristic p ≡ 1 modulo 6. Observe that re = 1 for all e ∈ N, 
hence the functions e �→ mult(Mα, R1/pe) will actually be polynomials in pe. Using 
Theorem 4.11, one can compute

mult(Mα, R
1/pe

) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p3e

6 + pe

2 + 1
3 if α = 0

p3e

6 − pe

3 + 1
6 if α = 1, 5

p3e

6 − 1
6 if α = 2, 4

p3e

6 + pe

6 − 1
3 if α = 3

In particular, since ϕ(2)
1 = ϕ

(2)
2 = 0 but ϕ(0)

1 
= 0, this shows that (5) does not imply (3).
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Corollary 4.16. Let R be a 1
n (t1, . . . , td)-cyclic singularity over an algebraically closed field 

of characteristic p > 0. If gJ = gcd(t�, n) = 1 for all 1 � � � d then, with pe = kn + re, 
the multiplicity functions e �→ mult(Mα, R1/pe) can be written in the form

mult(Mα, R
1/pe

) = pde − rde
n

+ θ
(α)
∅ (e),

where θ(α)
∅ (e) =

∣∣{(a1, . . . , ad) ∈ ([0, re − 1] ∩ N)d : t1a1 + · · · + tdad ≡ α mod n
}∣∣. In 

particular, this applies to the case of a Veronese rings, which correspond to the choice 
t� = 1 for all �.

Remark 4.17. As already noted in Remark 3.11 for the results of Section 3, analogous 
versions of Theorems 4.11 and 4.13, as well as of Corollary 4.16, hold in the graded setup.

5. Examples

In this section, we present several examples in order to show how our results can be 
used to compute the F-signature function of specific quotient singularities.

Example 5.1 (singularity E6). Let k be an algebraically closed field with chark = p 
= 2, 3. 
The binary tetrahedral group BT of k is the subgroup of Sl(2, k) of order 24 generated 
by the matrices

A =
(
ik 0
0 i3

k

)
, B =

(
0 ik
ik 0

)
, C = 1√

2

(
ξk ξ3

k

ξk ξ7
k

)
,

where 
√

2 denotes a square root of 2 in k, ik is a primitive 4-th root of 1, and ξk is a 
primitive 8-th root of 1. The quotient singularity R = k�u, v�BT is called E6 singularity, 
and is isomorphic to the hypersurface k�x, y, z�/(x2 +y3 +z4). We compute its signature 
function using Theorem 3.8. Fix e ∈ N. The group BT consists of one 2-pseudoreflection 
(the identity matrix I) and 23 0-pseudoreflections. Therefore, we only need to compute

ϕ0(e) = 1
24

∑
g 
=I

∑
0�a,b<pe

(ξg,e,1)a(ξg,e,2)b, (3)

where ξg,e,i = φ((λg,i)1/p
e) ∈ C and λg,1, λg,2 ∈ k are the eigenvalues of g ∈ BT . Now, 

observe that

1. since BT ⊆ Sl(2, k) we have λg,2 = λ−1
g,1 for all g ∈ BT ;

2. two conjugate matrices have the same eigenvalues;
3. (−)1/pe and φ are group homomorphisms, therefore ξg,e,i is a root of unity in C of 

the same order of λg,i which is the same order of g.
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So we can split the sum over the elements of the group in (3) by conjugacy classes. In 
particular, BT has one element conjugate to −I, 6 elements conjugate to B, 4 elements 
conjugate to C, 4 to C2, 4 to C4, and 4 to C5. Thus, we can rewrite (3) as

ϕ0(e) = 1
24

∑
0�a,b<pe

(
(−1)a(−1)b + 6ia(−i)b + 8ηaη−b + 8η2aη−2b) ,

where i ∈ C and η ∈ C is a primitive 6-th root of 1. Notice that ϕ0(e) = ϕ0(e1) if 
pe ≡ pe1 modulo 12. Since gcd(p, 24) = 1, the only possible values of pe modulo 12
are 1, 5, 7 and 11. It is straightforward to check that for these values we have always 
ϕ0(e) = 23

24 . Therefore, the F-signature function of the E6 singularity is

FS(e) = 1
24p

2e + 23
24 ,

in accordance with Brinkmann’s result [4]. In a similar way, one may compute the F-
signature function of the quotient singularities E7 and E8.

Example 5.2 (3-rd Veronese subring of the singularity D4). Let k be an algebraically 
closed field with chark = p 
= 2, 3. We consider the group G obtained as extension of 
the binary dihedral group BD2 generated by the matrices A and B of Example 5.1 by 
the cyclic group C3 of order 3 generated by the matrix diag(ωk, ωk), where ωk ∈ k is 
a primitive 3-rd root of unity. In other words, we have a short exact sequence of finite 
groups

1 → BD2 → G → C3 → 1.

We can describe this group as G = {M ·N : M ∈ BD2, N ∈ C3}. In particular, it follows 
that since BD2 has order 8, G has order 24. Notice, however that G is not isomorphic to 
the group BT of Example 5.1, since for example it contains an element of order 12, while 
BT does not. The corresponding quotient singularity R = k�u, v�G ∼= (k�u, v�BD2)C3

can be seen as a 3-rd Veronese subring of the Kleinian singularity D4. We compute the 
F-signature function of R using Theorem 3.8. We proceed as in Example 5.1, and we 
obtain that if p ≡ 1 mod 6 then

FS(e) = 1
24p

2e + 23
24 ,

and if p ≡ 5 mod 6 then

FS(e) =

⎧⎨
⎩

1
24p

2e + 23
24 for e even,

1
24p

2e − 1
24 for e odd.

The following three examples are explicit applications of Corollary 4.16.
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Example 5.3 (2-dimensional Veronese ring). Let R = k�xn, xn−1y, · · · , xyn−1, yn� be 
the 2-dimensional n-th Veronese ring, with n � 2. In the notation of Section 4, this 
corresponds to the 1

n (1, 1) cyclic quotient singularity. By direct computation, one can 
see that

θ
(0)
∅ (e) =

∣∣{(a, b) ∈ ([0, rq − 1] ∩ N)2 : a + b ≡ 0 mod n
}∣∣ = max{1, 2re − n + 1}.

By Corollary 4.16, the F-signature function of R is then

FS(e) = p2e − r2
e

n
+ max{1, 2re − n + 1}.

Example 5.4 (singularity An−1). For n � 2, let R = k�xn, xy, yn� be a 2-dimensional 
An−1-type singularity. In our notation, this corresponds to the 1

n(1, n −1) cyclic quotient 
singularity. In this case, we have

θ
(0)
∅ (e) =

∣∣{(a, b) ∈ ([0, re − 1] ∩ N)2 : a− b ≡ 0 mod n
}∣∣ = re.

It follows from Corollary 4.16 that the F-signature function of R is

FS(e) = p2e − r2
e

n
+ re.

This is in accordance with [4] (see also [17, Example 4.3]).

Example 5.5 (3-dimensional Veronese ring). Let R be the 3-dimensional n-th Veronese 
ring, with n � 2. This corresponds to the 1

n (1, 1, 1) cyclic quotient singularity. We have

θ
(0)
∅ (e) =

∣∣{(a, b, c) ∈ ([0, re − 1] ∩ N)3 : a + b + c ≡ 0 mod n
}∣∣ = |A0| + |A1| + |A2| ,

where Ai =
{
(a, b, c) ∈ ([0, re − 1] ∩ N)3 : a + b + c = i · n

}
for i = 0, 1, 2. We have A0 =

{(0, 0, 0)}, and for i = 1, 2, Ai 
= ∅ if and only if 3(re − 1) � i · n.
We assume 3(re − 1) � n, and we compute |A1|. The number |A1| is equal to the 

number of ways we can place 3(re−1) −n objects in 3 boxes, where each box can contain 
at most re − 1 objects. If 0 � 3(re − 1) − n � re − 1, this number is |A1| =

(3re−n−1
2

)
. 

If re � 3(re − 1) − n � 2(re − 1), it is |A1| =
(3re−n−1

2
)
− 3

(2re−n−1
2

)
, where we have to 

subtract configurations where we put more than re − 1 objects in one box. We cannot 
have configurations where two boxes contain more than re − 1 objects, since this would 
imply 3(re − 1) − n � 2(re − 1) + 1, which is equivalent to re − 2 � n; a contradiction, 
since re < n. A similar reasoning yields |A2| =

(3re−2n−1
2

)
for 3(re − 1) � 2n. Note that, 

in this case, there are no configurations with more than re − 1 objects in one box, since 
this would mean that 3(re − 1) − 2n � re, which is equivalent to 2re − 2n − 3 � 0, again 
contradicting that re < n.
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Therefore, it follows from Corollary 4.16 that the F-signature function of R is

FS(e) = p3e − r3
e

n
+ 1 +

(
3re − n− 1

2

)
− 3

(
2re − n− 1

2

)
+

(
3re − 2n− 1

2

)
,

with the convention that a binomial coefficient 
(
u
2
)

= 0 whenever u < 2.

Our results allow us to compute several of examples of interest, such as the examples 
of Iyama and Yoshino from [15].

Example 5.6 (Iyama-Yoshino’s singularities). If R is the 1
3 (1, 1, 1) cyclic quotient singu-

larity, then by Example 5.5 the F-signature function of R is

FS(e) = p3e − 1
3 + 1

if p ≡ 1 mod 3, and

FS(e) =

⎧⎨
⎩

p3e−1
3 + 1 for e even

p3e−8
3 + 1 for e odd

if p ≡ 2 mod 3. On the other hand, for the cyclic quotient singularity 1
2 (1, 1, 1, 1), it 

follows from Corollary 4.16 and the fact that re = 1 for all e that the F-signature function 
is

FS(e) = p4e − 1
2 + 1.

We conclude the paper providing one final example, the Klein four group embedded 
in SL(3, k). For the F-signature function of its ring of invariants, that turns out being 
rather easy to compute with our techniques, we see an example where the last coefficient 
ϕ0 can be zero.

Example 5.7 (Klein four group). Let k be a field of prime characteristic p � 3. The 
Klein four group Z/(2) × Z/(2) can be realized as a subgroup of SL(3, k) with no 
2-pseudoreflections as follows:

G =
{(1

1
1

)
,

(1
−1

−1

)
,

(−1
1

−1

)
,

(−1
−1

1

)}
,

where the entries which are not listed should be treated as zeros. It can be shown 
that the ring of invariants under this action of G is isomorphic to k�x2, y2, z2, xyz�. 
By Theorem 3.8, because there are no 0-pseudoreflections, the only coefficient in the 
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F-signature function that we have to determine is ϕ1. A straightforward computation 
gives ϕ1(e) = 3 for all e, therefore

FS(e) = p3e

4 + 3pe

4 .
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