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The classification of the nilpotent Jacobians with some 
structure has been an object of study because of its relation-
ship with the Jacobian conjecture. In this paper we classify 
the polynomial maps in dimension n of the form H =
(u(x, y), u2(x, y, x3), . . . , un−1(x, y, xn), h(x, y)) with JH nil-
potent. In addition we prove that the maps X + H are 
invertible, which shows that for this kind of maps the Jacobian 
conjecture is verified.
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1. Introduction

Let k be a field of characteristic zero and k[X] = k[x1, · · · , xn] the polynomial ring in 
n variables over k. Since the remarkable works of H. Bass et al. [1] and A.V. Yagzhev [16]
concerning the Jacobian Conjecture, the study of polynomial maps H : kn → kn such 
that its Jacobian matrix JH is nilpotent has grabbed the attention of many authors. 
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Although the previously mentioned works establish that, in order to study the conjecture, 
it is sufficient to focus on maps of the form X + H where H is homogeneous of degree 
3, the classification of maps with nilpotent Jacobian of any degree, even inhomogeneous, 
has an interest which goes beyond the Jacobian Conjecture. For example it led various 
authors to formulate the following problem:

(Homogeneous) Dependence Problem. Let H = (H1, . . . , Hn) ∈ k[X]n (homogeneous of 
degree d ≥ 1) such that JH is nilpotent and H(0) = 0. Does it follow that H1, . . . , Hn

are linearly dependent over k or equivalently does it follow that the rows of JH are 
linearly dependent over k?

An affirmative answer was given in the following cases: rank JH ≤ 1 in [1], hence 
if n = 2 and in case H is homogeneous of degree 3 when n = 3 by D. Wright in [15]
(resp. when n = 4 by E. Hubbers in [14]). In dimension three an affirmative answer to 
the homogeneous dependence problem (in any degree) was given by M. de Bondt and A. 
van den Essen in [2]. On the other hand M. de Bondt in [3] constructed homogeneous 
examples in all dimensions ≥ 5 of nilpotent Jacobians with over k linearly independent
rows.

Although the answer to the dependence problem turned out to be negative in general, 
studying this problem payed off in several ways. For example the assumption that the 
answer to the dependence problem would be positive led the authors in [11] to construct 
a large class of polynomial maps H such that JH is nilpotent. Several of these examples 
were subsequently used to find counterexamples to various conjectures, such as Meisters’ 
Cubic Linearization Conjecture [9], the DMZ-Conjecture [12], the long standing Markus-
Yamabe Conjecture and the Discrete Markus Yamabe Problem [6].

The first negative answer to the dependence problem was found by the second author 
in [8], namely

H = (y − x2, z + 2x(y − x2),−(y − x2)2).

Remarkably, searching for more negative examples in dimension three, the authors of [5]
showed that, looking for such examples of the form

(u(x, y), v(x, y, z), h(u(x, u), v(x, y, z)))

the above example is, apart from a linear coordinate change, essentially the only example. 
This example was generalized in Proposition 7.1.9 [10] to give nilpotent Jacobians in all 
dimensions, with over k linearly independent rows. It was shown in [4] that for these 
examples H and each λ < 0, the corresponding dynamical system ẋ = F (x), where 
F (x) = λx +H(x), has orbits which escape to infinity, hence are counterexamples to the 
Markus-Yamabe Conjecture.

Recently, in [17], Dan Yan completely classified all H of the form

(u(x, y), v(x, y, z), h(x, y))
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with nilpotent Jacobian and over k linearly independent rows. Again they all turned out 
to be linearly equivalent to the first example found by the second author. These results 
confirm a conjecture of the first author which asserts that if JH is nilpotent, with over 
R linearly independent rows, then the corresponding dynamical system ẋ = F (x), where 
F (x) = λx +H(x) and λ < 0, has orbits which escape to infinity. To get more evidence for 
this last conjecture it is therefore natural to look for nilpotent Jacobians in dimensions 
≥ 4.

In this paper we pursue this idea and generalize the recent result of Dan Yan to all 
dimensions n ≥ 3. More precisely, we study maps of the form

H = (u(x, y), u2(x, y, x3), u3(x, y, x4), · · · , un−1(x, y, xn), h(x, y))

The main result of this paper, Theorem 1, completely classifies all such H, which Jacobian 
is nilpotent. Moreover, in the last section we give a very detailed description of these 
maps. This enables us to show that the corresponding maps F = X+H, which Jacobian 
determinant equal 1, are invertible. So we confirm the Jacobian Conjecture for these 
maps. A priori, from the construction of the H’s it is not at all obvious why F should 
be invertible. The delicate proof we give below is, in our opinion, a strong indication 
that the Jacobian Conjecture might be true after all (in spite of several statements of 
the second author in the past). More evidence in favor of the Jacobian Conjecture can 
be found in the works of Zhao and his co-authors, in which the Jacobian Conjecture is 
firmly embedded in the framework of Mathieu-Zhao spaces (see [18], [19], [20], [13] and 
[7]).

2. The nilpotency of JH

In this section we establish a characterization of the nilpotency of JH with H a 
polynomial map of the form H = (u(x, y), u2(x, y, x3), . . . , un−1(x, y, xn), h(x, y)). One 
easily verifies that an equivalent way to present these maps is by describing their Jacobian 
matrix. More precisely, H is of the above form if and only if its Jacobian matrix JH is 
of the form

JH = (ui,j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 0 · · · 0
∗ ∗ ∗ 0 · · · 0
∗ ∗ 0 ∗ · · · 0

∗ ∗ 0 0
. . .

...
∗ ∗ 0 0 · · · ∗
∗ ∗ 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where H = (u1(x1, x2), u2(x1, x2, x3), . . . , un−1(x1, x2, xn), un(x1, x2)) and ui,j = ∂ uj .
∂xi
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Proposition 1. JH nilpotent if and only if

u1,1 + u2,2 = 0

u1,1u2,2 − u1,2u2,1 − u2,3u3,2 = 0

u2,3(u1,1u3,2 − u1,2u3,1 − u3,4u4,2) = 0

u2,3u3,4(u1,1u4,2 − u1,2u4,1 − u4,5u5,2) = 0

· · ·

u2,3u3,4 · · ·un−1,n(u1,1un,2 − u1,2un,1) = 0

Proof (started). Let S be a new variable and put T := S−1. Then JH is nilpotent 
if and only if −JH is nilpotent if and only if det (SIn + JH) = Sn if and only if 
d(T ) := det (In +TJH) = 1. Since d(T ) is a polynomial in k[x1, x2, · · · , xn][T ] of degree 
n in T and d(0) = 1, the statement that d(T ) = 1 is equivalent to the fact that for each 
1 ≤ i ≤ n the coefficient of T i in d(T ) is equal to zero. We will show that the coefficient 
of T 1 being zero gives the first equation, the coefficient of T 2 the second and so on. We 
use some linear algebra to see this. Therefore put Dn := In + TJH. For 1 ≤ k ≤ n

denote by Dn(k) the k-th column of Dn. Then

Dn(1) = T

⎛
⎜⎝

u1,1
...

un,1

⎞
⎟⎠ + e1, Dn(2) = T

⎛
⎜⎝

u1,2
...

un,2

⎞
⎟⎠ + e2,

and

Dn(k) = ek + Tuk−1,kek−1, for all 3 ≤ k ≤ n

where ei is the i-th standard basis vector in kn.
Write (a1, · · · , an)t instead of Dn(1) and (b1, · · · , bn)t instead of Dn(2) and put ci =

Tui,i+1, for 2 ≤ i ≤ n − 1. So a1 = 1 + Tu1,1, ai = Tui,1, for 2 ≤ i ≤ n, b1 = Tu1,2, 
b2 = 1 + Tu2,2 and bi = Tui,2 for 3 ≤ i ≤ n.

Lemma 1. Let dn := det Dn. Then

dn = a1b2 − a2b1 +
n−1∑
k=2

(−c2) · · · (−ck)(a1bk+1 − b1ak+1)

Proof. Using the Laplace expansion of dn along the n-th column of Dn we get

dn = dn−1 + (−cn−1)detAn−1
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where An−1 is the (n − 1) × (n − 1) matrix obtained from Dn by deleting the (n − 1)-th 
row and n-th column. One easily verifies that det An−1 = (−c2) · · · (−cn−2)(a1bn−b1an). 
So

dn = dn−1 + (−c2) · · · (−cn−1)(a1bn − b1an)

The result now follows by induction on n. �
Proof (finished). An easy calculation gives that

a1b2 − a2b1 = 1 + T (u1,1 + u2,2) + T 2(u1,1u2,2 − u1,2u2,1)

and if 2 ≤ k ≤ n − 1, then

(−c2) · · · (−ck)(a1bk+1 − b1ak+1) =

(−1)ku2,3 · · ·uk,k+1(T kuk+1,2 + T k+1(u1,1uk+1,2 − u1,2uk+1,1))

Using the previous lemma, it is left to the reader to deduce that, apart from a minus 
sign, the coefficient of T k in dn gives the k-th equation of Proposition 1, which concludes 
the proof. �
Corollary 1. Notations as in Proposition 1. If u2,3 = 0, then JH is nilpotent if and only 
if there exist λ1, λ2, c1, c2 ∈ k and f(T ) ∈ k[T ] such that u1 = λ2f(λ1x1 + λ2x2) + c1
and u2 = −λ1f(λ1x1 + λ2x2) + c2.

Proof. By Proposition 1 we get that JH is nilpotent if and only if u1,1 + u2,2 = 0 and 
u1,1u2,2 − u1,2u2,1 = 0. Since u2,3 = 0 the result follows from Theorem 7.2.25 [10]. �

So from now on we may assume that u2,3 �= 0. Since un,n+1 = 0, there exists 3 ≤ r ≤ n

such that ui,i+1 �= 0 for all 2 ≤ i ≤ r − 1 and ur,r+1 = 0. By Proposition 1, we have the 
following equations

u1,1 + u2,2 = 0,

u1,1u2,2 − u1,2u2,1 = u2,3u3,2,

u2,3(u1,1u3,2 − u1,2u3,1 − u3,4u4,2) = 0,
...

u2,3 · · ·ur−2,r−1(u1,1ur−1,2 − u1,2ur−1,1 − ur−1,rur,2) = 0,

u2,3 · · ·ur−1,r(u1,1ur,2 − u1,2ur,1) = 0.

Since u2,3 �= 0, . . . , ur−1,r �= 0, these equations become
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u1,1 + u2,2 = 0 (1),

u1,1u2,2 − u1,2u2,1 = u2,3u3,2 (2),

u1,1u3,2 − u1,2u3,1 = u3,4u4,2 (3),

...

u1,1ur−1,2 − u1,2ur−1,1 = ur−1,rur,2, (r-1),

u1,1ur,2 − u1,2ur,1 = 0 (r).

Corollary 2. Let u2,3 �= 0 and r as above. If u1,2 = 0, then JH is nilpotent if and only if 
u ∈ k and ui,2 = 0 for all 2 ≤ i ≤ r.

Proof. The if-part follows from the equations (1) · · · (r). Conversely, assume that the 
equations (1) · · · (r) hold. Since u1,2 = 0 equation (r) gives u1,1ur,2 = 0. Assume u1,1 �= 0. 
Then ur,2 = 0. So equation (r − 1) implies that ur−1,2 = 0. Continuing in this way we 
arrive at u3,2 = 0 and then by (2) that u2,2 = 0. This contradicts equation (1), since by 
assumption u1,1 �= 0. Consequently u1,1 = 0, i.e. u ∈ k. It follows from (1) that u2,2 = 0
and that equation (r) is satisfied. Furthermore, for each 2 ≤ i ≤ r − 1 equation (i)
becomes ui,i+1ui+1,2 = 0, from which the desired result follows. �
3. A lemma of Dan Yan

The following result was proved by Dan Yan (see [17, Lemma 2.1]) for the case that the 
field k is algebraically closed. We will extend her result to arbitrary fields of characteristic 
zero. To keep this paper self-contained we give a short proof.

Lemma 2. Let k be a field of characteristic zero, q ∈ k[x1, x2] and 0 �= w(q) ∈ k[q]
such that qx2 |we1qx1

e2 for some e1, e2 ≥ 1. If p � qx2 for every p ∈ k[x1]\k, then q =
P (x2 + b(x1)), for some P (T ) ∈ k[T ] and b(x1) ∈ k[x1].

Let p ∈ k[x1, x2] be irreducible. If 0 �= a ∈ k[x1, x2] we denote by vp(a) the number 
of factors p in a. So vp(a) ≥ 0 and one easily verifies that if a, b ∈ k[x1, x2]\{0}, then 
vp(ab) = vp(a) + vp(b). If px2 �= 0, then p � px2 (look at degrees). One easily deduces

If px2 �= 0 and d := vp(g) ≥ 1, then vp(gx2) = d− 1. (3.1)

Proof. First assume that k is algebraically closed.
i) We show that qx2 |qx1 : let p be irreducible and vp(qx2) = e ≥ 1. Then px2 �= 0, for 
if px2 = 0, then p ∈ k[x1]\k divides qx2 , contradicting the hypothesis. Also by the 
hypothesis p|qx1 or p|w(q). We prove that in both cases pe|qx1 . Since this holds for all 
prime factors p of qx2 we get qx2 |qx1 .



Á. Castañeda, A. van den Essen / Journal of Algebra 566 (2021) 283–301 289
Case 1. p|qx1 . Then d := vp(qx1) ≥ 1. So by (3.1) vp(qx1x2) = d − 1. Since vp(qx2) = e we 
get vp(qx1x2) ≥ e − 1. So d ≥ e, whence pe|qx1 .

Case 2. p|w(q). Since k is algebraically closed we can write w(q) as a product of factors 
q + c, with c ∈ k. So p|q + c, for some c ∈ k. Then d := vp(q + c) ≥ 1. So by (3.1)
e = vp(qx2) = d − 1, i.e. d = e + 1. Hence pe+1|q + c. So pe|qx1 .

ii) Let r := degx2q. Then r ≥ 1. Since degx2 qx1 ≤ degx2 qx2 + 1, it follows from qx2 |qx1

that qx1 = (c1(x1)x2 + c0(x1))qx2 , for some ci ∈ k[x1]. The coefficient of x2
r gives 

q′r(x1) = c1(x1)rqr(x1). Hence degx1 qr(x1) = 0, i.e. qr ∈ k∗. So 0 = c1(x1)rqr, whence 
c1(x1) = 0. So qx1 = c0(x1)qx2 , i.e. (∂x1 − c0(x1)∂x2)q = 0. Let b′(x1) = c0(x1). Then 
q ∈ k[x2 + b(x1)], as desired.

iii) Now let k be an arbitrary field of characteristic zero. From linear algebra one knows 
that if k ⊆ L is a field extension, then any system of non-homogeneous linear equations 
in n variables with coefficients in k, which has a solution in Ln, also has a solution in kn. 
From this fact one readily deduces that if a(x1, x2), b(x1, x2) ∈ k[x1, x2] are such that 
b(x1, x2)|a(x1, x2) in L[x1, x2], then also b(x1, x2)|a(x1, x2) in k[x1, x2].

Finally assume that the hypothesis of Dan Yan’s lemma is satisfied for polynomials in 
k[x1, x2]. Then they are obviously satisfied in k[x1, x2], where k is an algebraic closure 
of k. It then follows from i) that qx2 |qx1 in k[x1, x2]. Hence, as observed above, qx2 |qx1

in k[x1, x2]. Then, by the argument given in ii), which does not use the algebraically 
closedness condition, we get the desired result. �
4. The equation u1(x1, x2) = p(x2 + a(x1))

In this section we assume the relations of Proposition 1 and show that u1(x1, x2) =
p(x2 + a(x1)) for some a(x1) ∈ k[x1] and p(T ) ∈ k[T ].

So we have the following situation: n ≥ 3, u1 = u1(x1, x2), ui = ui(x1, x2, xi+1) for 
all 2 ≤ i ≤ n − 1 and un = un(x1, x2). We define un+1 = 0. Put

D0 := ux2∂x1 − ux1∂x2

Then k[x1, x2]D0 = k[q] for some q ∈ k[x1, x2] (see [10, Theorem 1.2.25]). We may assume 
q(0) = 0. The equations in Proposition 1 can be written as

u1,1 + u2,2 = 0 (4.1)

−D0(u2) = u2,3u3,2 (4.2)

u2,3 · · ·ui−1,i(−D0(ui) − ui,i+1ui+1,2) = 0, for all 3 ≤ i ≤ n

We may assume that u1,2 �= 0 and u2,3 �= 0.
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Lemma 3. Let v = v0(x1, x2) +
∑d

i=1 vi(x1)si, with vd �= 0 and d ≥ 2. If v0x2 �= 0 and 
there exists w ∈ k[x1, x2, t] such that

D0(v) = −vswx2 (4.3)

then vd ∈ k∗, wx2 = − 1
dvd

v′d−1(x1)ux2 and vx2 = Q(q)x2 for some Q(T ) ∈ k[T ] with 
degT Q(T ) ≥ 1.

Proof. The coefficient of sd in (4.3) gives vd ∈ k∗ and the coefficient of sd−1 gives 
u1,2v

′
d−1(x1) = −dvdwx2 . So wx2 = − 1

dvd
v′d−1(x1)ux2 . Then the coefficient of s0

implies that D0(v0) = 1
dvd

v′d−1(x1)v1(x1)ux2 . Let b(x1) ∈ k[x1] with b′(x1)) =
1

dvd
v′d−1(x1)v1(x1). Then D0(v0) = D0(b(x1)). So v0 = b(x1) + Q(q), for some Q(T ) ∈

k[T ]. So vx2 = v0x2 = Q(q)x2 . Since v0x2 �= 0 we get degT Q(T ) ≥ 1. �
Let 3 ≤ r ≤ n be such that ui,i+1 �= 0 for all i < r and ur,r+1 = 0 (observe that 

un,n+1 = un,n+1(x1, x2) = 0, so such an r exists).

Proposition 2. If u1 and ui satisfy the equations of Proposition 1, then u1 = p(x2+a(x2)), 
for some p(T ) ∈ k[T ] with degT p(T ) ≥ 1 and a(x1) ∈ k[x1].

Proof. Let r be as above. Then ur,r+1 = 0 and u2,3, · · · , ur−1,r are all non-zero. So the 
above equations become

u1,1 + u2,2 = 0 (4.4)

−D0(ui) = ui,i+1ui+1,2, for all 2 ≤ i ≤ r − 1 (4.5)

D0(ur) = 0. (4.6)

From (4.6) we get ur = H(q), for some H(T ) ∈ k[T ]. Also u1 = p(q). So u1,2 = p′(q)qx2 ≡
0 (mod qx2). Since −D0(ui) = u1,1ui,2 −u1,2ui,1 we get −D0(ui) ≡ u1,1ui,2 (mod qx2). So 
by (4.5) we get

u1,1ui,2 ≡ ui,i+1ui+1,2 (mod qx2), for all 2 ≤ i ≤ r − 1. (4.7)

Since un = H(q) we get un,2 = H ′(q)qx2 ≡ 0 (mod qx2). So by (4.7) applied to i = r − 1
we get u1,1ur−1,x2 ≡ 0 (mod qx2). Then, multiplying (4.7) (i = r − 2) by u1,1, we get 
u1,1

2ur−1,2 ≡ 0 (mod qx2). Continuing in this way we find that u1,1
r−2u2,2 ≡ 0 (mod qx,2). 

Finally, (4.1) implies that u1,1
r−1 ≡ 0 (mod qx,2). Since u1,1 = p′(q)qx1 we get that 

qx,2|p′(q)r−1
qx1

r−1. Let d := degx2 q and let qd(x1) be the coefficient of x2
d. In Lemma 5

below we will show that qd(x1) ∈ k∗. So it follows from Lemma 2 that q = p(x2 +a(x1)), 
for some p(T ) ∈ k[T ] with degT p(T ) ≥ 1 and a(x1) ∈ k[x1], which completes the 
proof. �
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In order to prove that qd ∈ k∗ we need some preparations. By T ⊆ k[x1, x2] we denote 
the set of terms x1

ix2
j with i, j ≥ 0. On T we define the lexicographical ordering > as 

follows

x1
i1x2

j1 > x1
i2x2

j2 if j1 > j2 or, if j1 = j2 if i1 > i2

In other words, first look at the x2-degree and in case of equality at the x1-degree. This 
ordering is a total ordering. If 0 �= f ∈ k[x1, x2] we can write f as a finite sum of the 
form f =

∑
t∈T ctt, with all ct ∈ k∗. The greatest t appearing in f is called the leading 

term of f , denoted lt(f). The corresponding coefficient ct is called the leading coefficient 
of f , denoted lc(f). The following easy result is crucial

Lemma 4. Let u1, v ∈ k[x1, x2] with lt(u1) = x1
i1x2

j1 and lt(v) = x1
i2x2

j2 be such that 
i1, j1 ≥ 1, i2 ≥ 0 and j2 ≥ 1. Then

lt(u1,1vx2 − u1,2vx1) = x1
i1+i1−1x2

j1+j2−1, if i1j2 − i2j1 �= 0

Proof. The result follows easily from the fact that if u1 = x1
i1x2

j1 and v = x1
i2x2

j2

then (u1,1vx2 − u1,2vx1) = (i1j2 − i2j1)x1
i1+i1−1x2

j1+j2−1. �
Lemma 5. qd ∈ k∗.

Proof. i) Since u1,2 �= 0 and u1 = p(q) we get qx2 �= 0, so d ≥ 1 and N := degT p(T ) ≥
1. We must show that s := degx1 qd(x1) = 0. Therefore assume s ≥ 1. We use the 
lexicographical order described above and compute the leading terms of the ui, for all 
1 ≤ i ≤ m + 1. First, from u1 = p(q) it follows that lt(u1) = x1

sNx2
dN . Then, by (4.4)

we get lt(u2) = x1
sN−1x2

dN+1.
First assume that degx3 u2 ≥ 2. It then follows from Lemma 3 and (4.2) that u2,2 =

Q(q)x2 for some Q(T ) ∈ k[T ] with ρ := degT Q(T ) ≥ 1. So lt(u2,2) = x1
ρsx2

ρd−1. 
Consequently, sN − 1 = ρs and dN + 1 = ρd − 1. Multiplying the first equation by 
d, the second by s and then subtracting these new equations we get −dm − s = s, 
a contradiction. So we may assume that degx3 u2 = 1, i.e. u2,3 ∈ k∗. So there exists 
2 ≤ m ≤ n − 1, maximal such that λ2 := u2,3 ∈ k∗, · · · , λm := um,m+1 ∈ k∗. Observe 
m ≤ r − 1. We claim that for all 2 ≤ i ≤ m + 1 we have

lt(ui) = x1
(i−1)sN−(i−1)x2

(i−1)dN+1

We use induction on i, the case i = 2 is already done. So assume the case is proved for 
i < m + 1. It follows from (4.5) that

u1,1ui,2 − u1,2ui,1 = λiui+1,2. (4.8)

It then follows from Lemma 4 that the leading term of the left hand side is equal to 
x1

isN−ix2
idN . Then (4.8) gives that lt(ui+1) = x1

isN−ix2
idN+1, which proves the claim.
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ii) In particular we have lt(um+1) = x1
msN−mx2

mdN+1. On the other hand, by Lemma 3, 
there exists Q(T ) ∈ k[T ] such that um+1y = Q(q)x2 . So if degTQ(T ) = ρ, then we 
get lt(um+1,2) = x1

ρrx2
ρd−1. Consequently msN − m = ρr and mdN + 1 = ρd − 1. 

Multiplying the first equation by d, the second by s and then subtracting these new 
equations we get −dm − s = s, a contradiction. So s = 0, as desired. �
5. The main result

Now we will describe the main result of this paper. Recall that

H = (u1(x, y), u2(x, y, x3), u3(x, y, x4), . . . , un−1(x, y, xn), un(x, y)). (5.1)

By Corollary 1 and Corollary 2, in order to describe all H in (5.1) such that JH is 
nilpotent, we may assume that u2,3 �= 0 and u1,2 �= 0. As seen before, it follows from 
u2,3 �= 0 that there exists 3 ≤ r ≤ n such that ui,i+1 �= 0 for all 2 ≤ i ≤ r − 1 and 
ur,r+1 = 0. Let di := degxi+1 ui, for all 2 ≤ i ≤ n − 1. So di ≥ 1 if 2 ≤ i ≤ r − 1.

Definition 1. P (T ) ∈ k[T ] of degree d ≥ 1 is called nice if the coefficient of T d−1 equals 
zero. The (leading) coefficient of T d will be denoted by pd.

Theorem 1. Let H be as in (5.1) with u2,3 �= 0, u1,2 �= 0 and r as above. Then JH is 
nilpotent if and only if the following conditions hold
(a)

u1(x1, x2) = p(x2 + a(x1)) and u2 = −a′(x1)u1 + P2(x3 + 1
d2pd2

b2(x1)),

for some p(T ) ∈ k[T ] with degT p(T ) ≥ 1, a(x1), b2(x1) ∈ k[x1] and P2(T ) ∈ k[T ]
nice of degree d2. If d2 ≥ 2, then a′′(x1) = 0.

(b) If 3 ≤ i ≤ r− 1 and ui−1 =
∑l

j=1 ci−1,j(x1)u1
j +Pi−1(xi + 1

di−1pdi−1
bi−1(x1)), with 

ci−1,j(x1), bi−1(x1) ∈ k[x1] and Pi−1(T ) nice of degree di−1, then

ui = − 1
di−1pdi−1

[ l∑
j=1

1
j + 1c

′
i−1,j(x1)u1

j+1 + b′i−1(x1)u1
]
+ Pi(xi+1 + 1

dipdi

bi(x1))

for some bi(x1) ∈ k[x1] and Pi(T ) ∈ k[T ], nice of degree di. If di−1 ≥ 2, then 
c′i−1,j(x1) = 0 for all j.

(c) If ur−1 =
∑l

j=1 cr−1,j(x1)u1
j + Pr−1(xr + 1

dr−1pdr−1
br−1(x1)), with cr−1,j(x1),

br−1(x1) ∈ k[x1] and Pr−1(T ) nice of degree dr−1, then

ur(x1, x2) = − 1
dr−1pdr−1

[ l∑ 1
j + 1c

′
r−1,j(x1)u1

j+1 + b′r−1(x1)u1
]
+ br,
j=1
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with c′r−1,j ∈ k for all j ≥ 1 and br ∈ k, b′r−1 ∈ k. If dr−1 ≥ 2, then c′r−1,j = 0 for 
all j.

(d) No extra conditions on ui if i > r.

To prove this theorem we need some preliminaries:

Theorem 2. Let v =
∑l

i=1 ci(x1)u1
i + P (s + 1

dpd
b(x1)), with P nice of degree d ≥ 1 and 

b(x1) ∈ k[x1]. Let v and w satisfy

D0(v) = −vswx2 (5.2)

D0(w) = −wtgx2 (5.3)

for some w ∈ k[x1, x2, t] with e := degt w ≥ 0 and g ∈ k[x1, x2, r].

i) If e = 0, then

w = − 1
dpd

( l∑
i=1

1
i + 1c

′
i(x1)u1

i+1 + b′(x1)u1
)

+ c(x1)

with b′(x1), c(x1) ∈ k and c′i(x1) ∈ k for all i.
ii) If e ≥ 1 there exist c(x1) ∈ k[x1] and Q(T ) ∈ k[T ], nice of degree e, with leading 

coefficient qe such that

w = − 1
dpd

( l∑
i=1

1
i + 1c

′
i(x1)u1

i+1 + b′(x1)u1
)

+ Q(t + 1
eqe

c(x1))

iii) Furthermore, if d ≥ 2, then c′i = 0 for all i.

Proof. Write v = v0(x1, x2) +
∑d

i=1 vi(x1)si and w = w0(x1, x2) + W , where W = 0 if 
e = 0 and W =

∑e
i=1 wi(x1, x2)ti, if e ≥ 1. Then vd = pd ∈ k∗, vy = v0x2 , wx2 = w0x2

(by (5.2)) and we ∈ k∗ (by (5.3)), if e ≥ 1.
First assume d ≥ 2. Then wx2 = − 1

dvd
v′d−1(x1)ux2 (by Lemma 3). So w0 =

− 1
dvd

v′d−1(x1)u + c(x1) for some c(x1) ∈ k[x1]. Put b(x1) = vd−1(x1). So, if e = 0, 
then w = − 1

dpd
b′(x1)u1 + c(x1) and if e = 1 then w = − 1

dpd
b′(x1)u1 + c(x1) + q1t, where 

q1 := w1. Substituting these formulas in (5.2) we get ux2

∑l
i=1 c

′
i(x1)u1

i = 0, which 
implies that all c′i = 0, since u contains x2. If e = 0, then wt = 0, so (5.3) implies that 
b′(x1), c(x1) ∈ k. This proves the case d ≥ 2, e ≤ 1.

Now let e ≥ 2. Then by Lemma 3, applied to (5.3), we get gx2 = − 1
ewe

w′
e−1(x1)u1,2. 

Substituting this formula into (5.3) we get

u1,1(−
1

v′d−1(x1)u1,2) − u1,2(w0x1 + ∂x1(W )) = − 1
w′

e−1(x1)u1,2∂t(W )

dvd ewe
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Also, using the formula for w0 obtained above, we have

w0x1 = − 1
dvd

v′d−1(x1)u1,1 + − 1
dvd

v′′d−1(x1)u1 + c′(x1)

So, combining the last two formulas, we get

−u1,2[−
1
dvd

v′′d−1(x1)u1 + c′(x1) + ∂x1(W )] = u1,2[−
1

ewe
w′

e−1(x1)∂t(W )]

Hence

1
dvd

v′′d−1(x1)u1 − c′(x1) = (∂x1 −
1

ewe
w′

e−1(x1)∂t)W ∈ k[x1, t]

Since u1,2 �= 0 we get v′′d−1(x1) = 0. So (∂x1 − 1
ewe

w′
e−1(x1)∂t)(c(x1) + W ) = 0, whence 

W = −c(x1) + Q(t + 1
ewe

we−1(x1)), for some Q(T ) ∈ k[T ]. Since w = w0 + W and 
w0 = − 1

dvd
v′d−1(x1)u1 + c(x1) we get the desired formula for w, using that vd−1 = b(x1)

and vd = pd and observing that Q(T ) is nice of degree e. The statement in iii) follows 
again from (5.2), using that wx2 = − 1

dvd
v′d−1(x1)u1,2.

Now, assume d = 1. So v =
∑l

i=1 ci(x1)u1
i + p1s + b(x1). Using (5.2) we get

−u1,2(
l∑

i=1
c′i(x1)u1

i + b′(x1)) = p1wx2 = p1w0x2

So

w0 = − 1
p1

( l∑
i=1

1
i + 1c

′
i(x1)u1

i+1 + b′(x1)u1
)

+ c(x1), (5.4)

for some c(x1) ∈ k[x1]. So, if e = 0, (5.3) implies again that b′(x1), c(x1) ∈ k and all 
c′i(x1) ∈ k. So this case is done. Also the case e = 1 is done, using that w = w0 + q1t. 
So assume that e ≥ 2. Then, as observed above gx2 = − 1

ewe
w′

e−1(x1)u1,2. By (5.3) and 
(5.4) we get

(− 1
p1

)
[ l∑
i=1

c′′i (x1)ui+1 + b′′(x1)u1
]
+ c′(x1) = −(∂x1 −

1
ewe

w′
e−1(x1)∂t)(W ) ∈ k[x1, t]

Since u1 contains x2 we get that b′′(x1) = 0 and all c′′i (x1) = 0. So

(∂x1 −
1

ewe
w′

e−1(x1)∂t)(W + c(x1)) = 0

Hence W = −c(x1) +Q(t + 1
ewe

we−1(x1)), for some Q(T ) ∈ k[T ], which is nice of degree 
e. Then the formula for w follows from w = w0 + W and (5.4). �
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Now we prove the main result of this paper

Proof of Theorem 1. As seen above the proof of Corollary 2, the nilpotency of JH is 
equivalent to the following equations

u1,1 + u2,2 = 0 (1),

u1,1u2,2 − u1,2u2,1 = u2,3u3,2 (2),

u1,1u3,2 − u1,2u3,1 = u3,4u4,2 (3),
...

u1,1ur−1,2 − u1,2ur−1,1 = ur−1,rur,2, (r-1),

u1,1ur,2 − u1,2ur,1 = 0 (r).

First assume that JH is nilpotent. So to prove the theorem we need to solve the r
equations above. Let 2 ≤ j ≤ r − 1 and write

uj = uj0(x1, x2) +
dj∑
i=1

uji(x1, x2)xi
j+1

As uj,j+1 �= 0, we obtain dj ≥ 1 and if i ≥ 1 it follows from (j) and u1,2 �= 0 that 
uji = uji(x1). So uj,2 = uj0,2. Moreover we obtain from equation (j) that ujdj

∈ k∗.

(a) By Proposition 2 we have that u1 = p(x2 + a(x1)) for some p(T ) ∈ k[T ] with 
degT p(T ) ≥ 1 and a(x1) ∈ k[x1]. From (1) we get u20 = −a′(x1)u1 + c(x1), with 
c(x) ∈ k[x]. So if d2 = 1, then u2 has the desired form. If d2 ≥ 2, then u2 =
−a′(x1) + c(x1) +U2, where U2 =

∑d2
i=1 u2i

(x1)xi
3. It follows from (2) and Lemma 3

that u3,2 = − 1
d2pd2

b′2(x1)u2,2, for some b2(x1) ∈ k[x1]. Substituting these formulas 
in (2), an easy calculation gives

a′′(x1)u1 − c′(x1) = (∂x1 −
1

d2pd2

b′2(x1)∂x3)U2 ∈ k[x1, x3]

Since u1 contains x2 we get a′′(x1) = 0 and hence

(∂x1 −
1

d2pd2

b′2(x1)∂x3)(U2 + c(x1)) = 0

So U2 = −c(x1) + P2(x3 + 1
d2pd2

b2(x1)), for some P2(T ) ∈ k[T ], nice of degree d2. 
Since u2 = −a′(x1) + c(x1) + U2 it follows that u2 has the desired form.

(b) This case follows directly from Theorem 2 ii) and iii)
(c) ur is obtained by using Theorem 2 i).
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(d) This follows immediately from the equations (1), · · · , (r), which do not contain ui

with i > r.

Conversely, it is left the reader to verify that the formulas obtained in (a) · · · (d) indeed 
satisfy the equations (1) · · · (r), which shows that the corresponding H has a nilpotent 
Jacobian matrix. �
6. Invertibility

Throughout this section

H = (u(x, y), u2(x, y, x3), u3(x, y, x4), · · · , un−1(x, y, xn), un(x, y))

In the previous sections we completely described all such maps H with the property 
that JH is nilpotent. For the corresponding maps F = X +H we have that det JF = 1. 
So if the Jacobian Conjecture is true, F must be invertible. The main result of this 
section (Theorem 3 below) confirms this. More precisely we show that F is a product of 
elementary maps (see definition below), i.e.

Before we state the next result, we make some preliminary remarks. Recall that a 
polynomial map is called elementary if it is of the form (x1, · · · , xi−1, xi+a, xi+1, · · · , xn)
for some a ∈ k[x] not containing xi. We denote such a map for short as (xi + a). 
The subgroup of Autkk[x1, · · · , xn] generated by these elementary maps is denoted by 
E(k, n). Two polynomial maps F and G are called elementary equivalent if there exist 
E1, E2 ∈ E(k, n) such that G = E1 ◦ F ◦E2. Since the Ei are invertible we have that F
is invertible if and only if G is invertible.

Theorem 3. If H is as above and JH is nilpotent, then F ∈ E(k, n).

So to prove Theorem 3 it suffices to show that F is elementary equivalent to the 
identity map.

First we consider the case u2x3 = 0, described in Corollary 1.

Proposition 3. Notations as in Corollary 1. Then F ∈ E(k, n).

Proof. First let n > 3. By the description given in Corollary 1 we get

(F1, F2) = (x + λ2f(λ1x + λ2y) + c1, y − λ1f(λ1x + λ2y) + c2

Fi = xi + ui(x, y, xi+1) for all 3 ≤ i ≤ n− 1 and Fn = xn + un(x, y)

Let T be the translation (x −c1, x −c2, x3, · · · , xn). Replacing F by T ◦F we may assume 
that c1 = c2 = 0. Furthermore we may assume that λ1 = λ2 = 0: if for example λ1 �= 0
let S be the invertible linear map
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(λ1x + λ2y, y, x3, · · · , xn)

Then S ◦F ◦S−1 = (x, y, F ′
2, · · · , F ′

n), with F ′
i = xi + ũi(x, y, xi+1) for all 3 ≤ i < n and 

F ′
n = xn + ũn(x, y). So we may assume

F = (x, y, x3 + u3(x, y, x4), · · · , xn−1 + un−1(x, y, xn), xn + un(x, y)

Finally, let En = (x, y, · · · , xn−1, xn − un(x, y)). Then

En ◦ F = (x, y, x3 + u3(x, y, x4), · · · , xn−1 + un−1(x, y, xn), xn)

Now one readily verifies that this map belongs to E(k, n), which implies the proposition 
in case n > 3. The case n = 3 is left to the reader. �

Next we consider the case u2x3 �= 0 and uy = 0, described in Corollary 2.

Proposition 4. Notations as in Corollary 2. Then F ∈ E(k, n).

Proof. By the description of Corollary 2 we get

(F1, · · · , Fr) = (x + u, y + u2(x, x3), · · · , xr−1 + ur−1(x, xr), xr + ur(x))

Fn = xn +un(x, y) and if there exists r < i < n, then Fi = xi +ui(x, y, xi+1). Replacing 
F by (x −u) ◦F we may assume that F1 = x. Then, replacing F by (xr −ur(x)) ◦F , we 
may assume that ur = 0. Next, replacing F by (xr−1 −ur−1(x, xr)) ◦F , we may assume 
that ur−1 = 0. Continuing in this way we arrive at (F1, · · · , Fr) = (x, y, x3, · · · , xr). So if 
r = n we are done. Now let r < n. Then consider (xn−un(x, y)) ◦F . So we may assume 
that un = 0. Next consider (xn−1 − un−1(x, y, xn)) ◦F etcetera. Finally we arrive at the 
identity map, which proves the proposition. �

So from Proposition 3 and Proposition 4 it follows, that in order to prove Theorem 3, 
we may assume from now on that uy �= 0 and u2x3 �= 0 and that we have an r as 
above. First we claim F is invertible if and only if (F1, · · · , Fr) is invertible: if r = n

there is nothing to prove, so assume r < n. Using that F1, · · · , Fr ∈ k[x1, · · · , xr], 
Fn = xn + un(x, y) and Fi = xi + ui(x, y, xi+1) for all i > r, it is an easy exercise to 
show that F is elementary equivalent to the map

(F1, · · · , Fr, xr+1, · · · , xn)

Furthermore, since the polynomials F1, · · · , Fr ∈ k[x1, · · · , xr] it is well-known that 
(F1, · · · , Fr, xr+1, · · · , xn) is invertible if and only if (F1, · · · , Fr) is. This implies our 
claim. So it suffices to show that (F1, · · · , Fr) ∈ E(k, r).

Using the notations of Theorem 1 we introduce some new notations. First, if 2 ≤ i < r

let li denote the coefficient of T di in Pi(T ) and Li := dili. Furthermore, put d1 := 2, 
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L1 := 1, lr = 0 and b1(x) := a(x). Let s ≥ 2 be maximal such that ds−1 ≥ 2. So 2 ≤ s ≤ r

and di = 1 if s ≤ i < r. Hence Li = li if s ≤ i < r. Finally define

γk,t := L−1
s−1+(t−1) · · ·L

−1
s−1+(t−k), for all 1 ≤ k ≤ t ≤ r − s + 1

One readily verifies that

γ1,t = L−1
s−1+t−1 and γk,t−1 = Ls−1+t−1γk+1,t, if 1 ≤ k ≤ t− 1 (∗)

Then the next result follows by induction on t, using Theorem 1 and (*).

Proposition 5. If 1 ≤ t ≤ r − s + 1, then

us−1+t =
t∑

k=1

(−1)k 1
k!γk,tb

(k)
s−1+t−k(x)uk + ls−1+txs+t + bs−1+t(x)

with b(r−s+2)
s−1 = · · · = b

(2)
r−1 = b

(1)
r = 0.

Corollary 3. Let F = (x + u, x2 + u2, · · · , xr + ur). Then for every 1 ≤ t ≤ r − s there 
exists Et ∈ E(k, r) such that F ◦ Et = (F1, · · · , Fr−t−1, F̃r−t, F̃r−t+1, · · · , F̃r) where 
F̃r−i = xr−i + br−i(F1) + lr−ixr−i+1, for all 0 ≤ i < t and

F̃r−t =
r−s−t+1∑

k=1

(−1)kγk,r−s−t+1
[ 1
k!b

(k)
r−t−ku

k + 1
(k + 1)!b

(k+1)
r−t−ku

(k+1) + · · ·

+ 1
(k + t)!b

(k+t)
r−t−ku

k+t
]
+ br−t(F1) + lr−txr−t+1 + xr−t

Proof. By induction on t. First the case t = 1. From Proposition 5 (with t = r − s + 1) 
and lr = 0 we get Fr = xr + [ur] + br, where

[ur] :=
r−s+1∑
k=1

(−1)k 1
k!γk,r−s+1b

(k)
r−k(x)uk

with br ∈ k and b(k+1)
r−k (x) = 0 for all 1 ≤ k ≤ r − s + 1. From Proposition 5 (with 

t = r − s) we get

Fr−1 = xr−1 +
r−s∑
k=1

(−1)k 1
k!γk,r−sb

(k)
r−1−k(x)uk + lr−1xr + br−1(x)

Define E1 = (x1, · · · , xr−1, xr − [ur]). Observe that [ur] ∈ k[x, x2] and r > 2. So E1 ∈
E(k, r). Furthermore F ◦ E1 = (F1, · · · , Fr−2, F̃r−1, xr + br), where
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F̃r−1 = xr−1 +
r−s∑
k=1

(−1)k 1
k!γk,r−sb

(k)
r−1−k(x)uk + lr−1xr

+
r−s+1∑
k=1

(−1)k+1 1
k! lr−1γk,r−s+1b

(k)
r−k(x)uk + br−1(x)

Now write

r−s+1∑
k=1

(−1)k+1 1
k! lr−1γk,r−s+1b

(k)
r−k(x)uk = lr−1γ1,r−s+1b

(1)
r−1u

+
r−s∑
k=1

(−1)k 1
(k + 1)! lr−1γk+1,r−s+1b

(k+1)
r−1−k(x)uk+1

and use that lr−1γk+1,r−s+1 = γk,r−s and lr−1γ1,r−s+1 = 1. Then we get

F̃r−1 = xr−1 +
r−s∑
k=1

(−1)kγk,r−s

[ 1
k!b

(k)
r−1−k(x)uk + 1

(k + 1)!b
(k+1)
r−1−k(x)uk+1]

+lr−1xr + b
(1)
r−1(x)u + br−1(x)

Since by Proposition 5 b
(2)
r−1(x) = 0, it follows from Taylor’s theorem that br−1(F1) =

br−1(x + u) = br−1(x) + b
(1)
r−1(x)u. This finishes the proof of the case t = 1

Now assume t ≥ 1 and that we already know the existence of a map Et, having 
the properties as described in the statement of this corollary. In particular we have 
F̃r−t = xr−t + [ur−t] + br−t(F1) + lr−txr−t+1. Observe that [ur−t] ∈ k[x, x2] and define

E′ := (x1, · · · , xr−t−1, xr−t − [ur−t], xr−t+1, · · · , xr)

Then a similar argument as given for the case t = 1 above, shows that (F ◦Et) ◦E′ has 
the desired form. �
Corollary 4. Let F = (x + u, x2 + u2, · · · , xr + ur). Then F is elementary equivalent to 
(F1, · · · , Fs−1, F̃s, xs+1, · · · , xr), where F̃s = xs + L−1

s−1bs−1(x).

Proof. By Corollary 3, with t = r − s, there exists E ∈ E(k, r) such that

F ◦E = (F1, · · · , Fs−1, F̃s, xs+1 + bs+1(F1)+ ls+1xs+2, · · · , xr−1 + br−1(F1)+ lr−1xr, xr)

where

F̃s = xs − L−1
s−1

[
b
(1)
s−1(x)u + 1

2!b
(2)
s−1(x)u2 + · · · + 1

(r − s + 1)!b
(r−s+1)
s−1 (x)ur−s+1]

+bs(F1) + lsxs+1
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Since b(r−s+2)
s−1 (x) = 0, by Proposition 5, it follows from Taylor’s theorem, using F1 =

x + u, that

bs−1(F1) = bs−1(x) + b(1)(x)u + 1
2!b

(2)
s−1(x)u2 + · · · 1

(r − s + 1)!b
(r−s+1)
s−1 (x)ur−s+1

So

F̃s = xs − L−1
s−1

[
bs−1(F1) − bs−1(x)

]
+ bs(F1) + lsxs+1

So if we define

E′ := (x1, · · · , xs−1, xs+L−1
s−1bs−1(x1)−bs(x1), xs+1−bs+1(x1), · · · , xr−1−br−1(x1), xr)

Then E′ ∈ E(k, r) and

E′ ◦ F ◦ E = (F1, · · · , Fs−1, xs + L−1
s−1bs−1(x) + lsxs+1, xs+1 + ls+1xs+2, · · · ,

xr−1 + lr−1xr, xr)

One readily verifies that E′ ◦ F ◦ E is elementary equivalent to

F ′ := (F1, · · · , Fs−1, xs + L−1
s−1bs−1(x), xs+1, · · · , xr)

which completes the proof. �
Now we are ready to prove

Proposition 6. Let F = (x + u, x2 + u2, · · · , xr + ur). Then F ∈ E(k, r).

Proof. We use induction on n(H):= the number of di ≥ 2. Since d1 = 2 we have n(H) ≥
1. First the case n(H) = 1. So s = 2. It follows from Corollary 4 that F is elementary 
equivalent to (F1, F̃2, x3, · · · , xr), where F̃2 = x2 + a(x) (L1=1 and b1(x) = a(x)). Since 
F1 = x + p(x2 + a(x)), the case n(H) = 1 follows.

So let n(H) > 1. Then s ≥ 3. Since ds−1 ≥ 2 it follows from Theorem 1 that 
us−1 = [us−1] + Ps−1(xs +L−1

s−1bs−1(x)), where [us−1] =
∑

cs−1,ju
j , with cs−1,j ∈ k for 

all j. So by Corollary 4 F is elementary equivalent to

F ′ := (F1, · · · , Fs−2, xs−1 + [us−1] + Ps−1(xs + L−1
s−1bs−1(x)), xs + L−1

s−1bs−1(x),

xs+1, · · · , xr)

Now define the elementary map

E′′ := (x1, · · · , xs−1, xs − L−1
s−1bs−1(x), xs+1, · · · , xr)
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Then

F ′ ◦ E′′ = (F1, · · · , Fs−2, xs−1 + [us−1] + Ps−1(xs), xs, · · · , xr)

Consequently, F ′◦E′′ is elementary equivalent to (F1, · · · , Fs−2, xs−1+[us−1], xs, · · · , xr). 
Finally put H̃ := (u1, · · · , us−2, [us−1], 0, · · · , 0). Then obviously H̃ is special and 
n(H̃) = n(H) − 1. It follows from Proposition 1 that J(H̃) is nilpotent. So by the 
induction hypothesis we get that F ′ ◦ E′′ ∈ E(k, r), which implies that F ∈ E(k, r), as 
desired. �
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