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1. Introduction

Conformal algebras, first introduced in [15], appear naturally in the context of formal 
distribution Lie algebras and play important roles in quantum field theory and conformal 
field theory (e.g., [4,7,17]). They also turn out to be effective tools in the study of 
infinite-dimensional Lie or associative algebras satisfying the locality property, and their 
representations [16].

In recent years, the structure theory, representation theory and cohomology theory of 
Lie conformal algebras have been extensively studied (e.g., [3,5–14,19,22]). In particular, 
simple finite Lie conformal algebras were classified in [8], which turn out to be isomor-
phic either to the Virasoro conformal algebra or the current Lie conformal algebra Cur g
associated to a simple finite-dimensional Lie algebra g. Finite irreducible conformal mod-
ules over the Virasoro conformal algebra were determined in [6] and of their extensions 
in [7]. The cohomology theory of conformal algebras with coefficients in an arbitrary 
module has been developed in [3,9]. However, the theory of simple infinite Lie conformal 
algebras is far from being well developed, it is more complicated than the theory of Lie 
or associative algebras (e.g., [13,14]).

In order to better understand the theory of simple infinite Lie conformal algebras, it 
is very natural to first study some important examples. It is well-known that the general 
Lie conformal algebra gcN (which is a simple infinite Lie conformal algebra) plays the 
same important role in the theory of Lie conformal algebras as the general Lie algebra 
glN does in the theory of Lie algebras. Thus the study of Lie conformal algebras related 
to the general Lie conformal algebra gcN has drawn lots of attention in literature (e.g., 
[1,2,12,18–21]). In particular, in [20], we study filtered Lie conformal algebras whose 
associated graded algebras are isomorphic to that of the general Lie conformal algebra 
gc1, and as a byproduct we obtain the first example of a finitely freely generated simple 
Z-graded Lie conformal algebra of linear growth that cannot be embedded into a general 
Lie conformal algebra gcN for any N , namely, the Lie conformal algebra gr gc1 (the 
associated graded conformal algebra of gc1, which is also called a Lie conformal algebra 
of Block type), see [20, Theorem 1.1]. Motivated by the facts that a simple Lie conformal 
algebra of rank one is isomorphic to the Virasoro conformal algebra Vir and that a finite 
simple Vir-module is of rank one [6–8], in this paper, we study Z-graded Lie conformal 
algebras G = ⊕∞

i=−1Gi satisfying the following reasonable conditions

(C1) G0 ∼= Vir, the Virasoro conformal algebra;
(C2) Each Gi for i ≥ −1 is a Vir-module of rank one;
(C3) G is simple.

To state the main result, we first give the following definitions.

Definition 1.1. Let α ∈ C, s = 1, 2. Denote by B(s, α) the Lie conformal algebra with 
C[∂]-basis {Gi | i ∈ Z≥−1} and the following λ-brackets,
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B(1, α) : [G−1λG−1] = 0, [G−1λG0] = (α− ∂)G−1, [G−1λGj ] = (j + 1)Gj−1, j ≥ 1,

[GiλGj ] =
(
(j − i)α + (i + j + 2)λ + (i + 1)∂

)
Gi+j , i, j ∈ Z+,

B(2, α) : [GiλGj ] =
(
(j − i)α + (i + j + 2)λ + (i + 1)∂

)
Gi+j , i, j ∈ Z≥−1. (1.1)

Definition 1.2. Let α ∈ C. Denote by B(α) = ⊕∞
i=−1Bi the Z-graded simple Lie conformal 

algebra with the λ-brackets [b0λbi] =
(
iα + (i + 2)λ + ∂

)
bi for i > 0, which satisfies

(i) B0 ∼= Vir, the Virasoro conformal algebra,

(ii) B−1 is a Vir-module of rank one,

(iii) Each Bi for i > 0 is a Vir-module of finite rank,

where b0 is the C[∂]-generator of B0 and bi is any one of C[∂]-generators of Bi for i > 0.

The main result of the present paper is the following.

Theorem 1.3.

(1) The Lie conformal algebra B(s, α) is simple for any α ∈ C and s = 1, 2.
(2) For α1, α2 ∈ C, s1, s2 ∈ {1, 2}, B(s1, α1) ∼= B(s2, α2) if and only if (s1, α1) =

(s2, α2).
(3) Let G = ⊕∞

i=−1Gi be a simple Lie conformal algebra satisfying conditions (C1) and
(C2). Then G ∼= B(s, α) for some α ∈ C and s = 1, 2.

(4) For any α ∈ C, the Lie conformal algebra B(α) does not have a nontrivial repre-
sentation on any finite C[∂]-module. In particular, B(α) is a finitely freely generated 
simple Lie conformal algebra of linear growth that cannot be embedded into gcN for 
any N .

Therefore, Theorem 1.3(4) provides another class B(α) of finitely freely generated 
simple Z-graded Lie conformal algebras of linear growth that cannot be embedded into 
a general Lie conformal algebra gcN for any N .

The paper is organized as follows. In section 2, we briefly recall some definitions 
and preliminary results. In section 3, we first study the structure of the Lie conformal 
algebra B(s, α), then we give the proof of Theorem 1.3(4). In order to classify Z-graded 
simple Lie conformal algebras G, some technical lemmas were given in section 4. Then in 
section 5, we use these technical lemmas to determine all simple Lie conformal algebras 
satisfying conditions (C1), (C2), and complete the proof of Theorem 1.3.

Throughout the paper, we denote by C, C∗, Z, Z+, Z≥−1 the sets of complex num-
bers, nonzero complex numbers, integers, nonnegative integers and integers greater than 
−2 respectively.
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2. Definitions and preliminary results

In this section, we summarize some basic definitions and results concerning Lie con-
formal algebras. More details can be found in [3,6,15].

Definition 2.1. A Lie conformal algebra is a C[∂]-module A with a λ-bracket [·λ·] which 
defines a C-bilinear map A ×A → A[λ], where A[λ] = C[λ] ⊗A is the space of polynomials 
of λ with coefficients in A, such that for x, y, z ∈ A,

[∂xλy] = −λ[xλy], [xλ∂y] = (∂ + λ)[xλy] (conformal sesquilinearity), (2.1)

[xλy] = −[y−λ−∂x] (skew-symmetry), (2.2)

[xλ[yμz]] = [[xλy]λ+μz] + [yμ[xλz]] (Jacobi identity). (2.3)

A subset S ⊂ A is called a generating set if S generates A as a C[∂]-module. If there 
exists a finite generating set, then A is called finite. Otherwise, it is called infinite.

For a given Lie conformal algebra A, from [15], we know that there is an important 
Lie algebra associated to it. For each j ∈ Z+, regarding [aλb] ∈ C[λ] ⊗ A as a formal 
polynomial in λ, we can define the jth product a(j)b by the coefficient of λj in [aλb], i.e. 
a(j)b for all a, b ∈ A as follows:

[aλb] =
∑
j∈Z+

(a(j)b)
λj

j! . (2.4)

Now we can give the definition of this Lie algebra.

Definition 2.2. An annihilation algebra of a Lie conformal algebra A is a Lie algebra with 
C-basis {a(n) | a ∈ A, n ∈ Z+} and relations

[a(m), b(n)] =
∑
j∈Z+

(
m

j

)
(a(j)b)(m+n−j), ∂(a(n)) = −na(n−1).

The Virasoro conformal algebra Vir is the simplest nontrivial Lie conformal algebra. 
It is a free C[∂]-module of rank one with generator L and can be defined by

Vir = C[∂]L : [LλL] = (∂ + 2λ)L. (2.5)

It is known that any simple Lie conformal algebra of free rank one over C[∂] is isomorphic 
to Vir [8].

The general Lie conformal algebra gcN can be defined as the infinite rank C[∂]-module 
C[∂, x] ⊗ glN , with the λ-bracket
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[f(∂, x)Aλ g(∂, x)B] = f(−λ, x+∂+λ)g(∂+λ, x)AB−f(−λ, x)g(∂+λ, x−λ)BA, (2.6)

for f(∂, x), g(∂, x) ∈ C[∂, x], A, B ∈ glN , where glN is the space of N ×N matrices, and 
we have identified f(∂, x) ⊗A with f(∂, x)A. If we set Jn

A = xnA, then

[Jm
A λJ

n
B ] =

m∑
s=0

(
m

s

)
(λ + ∂)sJm+n−s

AB −
n∑

s=0

(
n

s

)
(−λ)sJm+n−s

BA ,

for m, n ∈ Z+, A, B ∈ glN , where 
(m
s

)
= m(m −1) · · · (m −s +1)/s! if s ≥ 0 and 

(m
s

)
= 0

otherwise, is the binomial coefficient.

Definition 2.3. A module over a Lie conformal algebra A is a C[∂]-module M with a 
λ-action ·λ· : A ×M → M [[λ]], where M [[λ]] is the set of formal power series of λ with 
coefficients in M , such that for x, y ∈ A, v ∈ M ,

xλ(yμv) − yμ(xλv) = [xλy]λ+μv, (2.7)

(∂x)λv = −λxλv, xλ(∂v) = (∂ + λ)xλv. (2.8)

An A-module M is called conformal if xλv ∈ M [λ] for x ∈ A, v ∈ M and finite if M is 
finitely generated over C[∂].

According to [6], we know that all free nontrivial conformal Vir-modules of rank one 
over C[∂] are MΔ,α for Δ, α ∈ C, where

MΔ,α = C[∂]v : Lλv = (α + ∂ + Δλ)v. (2.9)

The module MΔ,α is irreducible if and only if Δ 	= 0.

3. Graded Lie conformal algebras B(s, α)

It is straightforward to verify that (1.1) indeed defines Lie conformal algebras B(1, α)
and B(2, α). Furthermore, the annihilation algebra of B(2, α) is the Lie algebra A =
spanC{Gi,m | i, m ∈ Z≥−1} with Lie brackets

[Gi,m, Gj,n] = (j − i)αGi+j,m+n+1 +
(
(j + 1)(m + 1) − (n + 1)(i + 1)

)
Gi+j,m+n.

When α = 0, this Lie algebra has close relation to the Block-type Lie algebras studied 
in [12,19].

Now we study the structure of the Lie conformal algebra B(s, α) for α ∈ C and 
s = 1, 2. First we need some definitions. For any x ∈ B(s, α), we define the operator 
(adx)λ : B(s, α) → B(s, α)[λ] such that (adx)λ(y) = [xλy] for any y ∈ B(s, α). An 
element x ∈ B(s, α) is locally nilpotent if for any y ∈ B(s, α), there exists 1 ≤ n ∈ Z+
such that (adx)nλ(y) = 0. We have
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Lemma 3.1. The set of locally nilpotent elements of B(s, α) is equal to C[∂]G−1.

Proof. Denote by N the set of locally nilpotent elements of B(s, α). First by (1.1) and 
conformal sesquilinearity, we have the following for a0(∂), cj(∂) ∈ C[∂],

[a0(∂)G−1λcj(∂)Gj ] =

⎧⎪⎪⎨
⎪⎪⎩

(α− ∂)a0(−λ)cj(∂ + λ)G−1 if s = 1, j = 0,

(j + 1)a0(−λ)cj(∂ + λ)Gj−1 if s = 1, 1 ≤ j ∈ Z,

(j + 1)(α + λ)a0(−λ)cj(∂ + λ)Gj−1 if s = 2, 0 ≤ j ∈ Z.

(3.1)

From this and using conformal sesquilinearity, we immediately obtain that C[∂]G−1 ⊂ N . 
Now let x =

∑∞
i=−1 bi(∂)Gi ∈ N , suppose max{i | bi(∂) 	= 0} = i0. If i0 ≥ 0, by (1.1), 

we have [Gi0λGj ] =
(
(j − i0)α + (i0 + j + 2)λ + (i0 + 1)∂

)
Gi0+j for j ∈ Z+. Then 

applying (adx)nλ to Gj , we can obtain that the coefficient of Gni0+j in the expression 
of (adx)nλ(Gj) is nonzero for any 1 ≤ n ∈ Z+ and j ∈ Z+. This is a contradiction with 
x ∈ N . Therefore we must have i0 = −1, then the lemma follows. �
Proof of Theorem 1.3(1) and (2). (1) Let J be a nonzero ideal of B(s, α) for some α ∈ C

and s = 1, 2. Then there exists at least one nonzero element x =
∑m

j=−1 bj(∂)Gj ∈ J for 
some bj(∂) ∈ C[∂], where m ∈ Z+ such that bm(∂) 	= 0. We claim that a0(∂)G−1 ∈ J

for some nonzero a0(∂) ∈ C[∂]. If m = −1, we immediately have the claim. Otherwise, 
we can apply the operator (adG−1)m+1

λ to x, we have the following for bm(∂) ∈ C[∂],

J � (adG−1)m+1
λ (x) =

{
(m + 1)!(α− ∂)bm(∂ + λ)G−1 if s = 1,

(m + 1)!(α + λ)mbm(∂ + λ)G−1 if s = 2.
(3.2)

Then we inductively deduce from (3.1) that all Gj ∈ J for j ∈ Z≥−1, i.e., J = B(s, α). 
Therefore, B(s, α) is simple.

(2) It is obvious that the sufficient condition holds. We only need to prove the necessary 
condition. For α1, α2 ∈ C, s1, s2 ∈ {1, 2}, we suppose B(s1, α1) ∼= B(s2, α2), {Gi | i ∈
Z≥−1} and {G′

i | i ∈ Z≥−1} are the C[∂]-bases of B(s1, α1) and B(s2, α2) respectively. 
By (1.1), we can immediately conclude that s1 = s2.

First suppose s1 = 1. Let ϕ : B(1, α1) −→ B(1, α2) be an isomorphism. By Lemma 3.1, 
we can assume ϕ(G−1) = a(∂)G′

−1 and ϕ(G0) =
∑∞

i=−1 bi(∂)G′
i for some a(∂), bi(∂) ∈

C[∂] with i ∈ Z≥−1. Applying the isomorphism ϕ to the both sides of [G−1λG0] =
(α1 − ∂)G−1, comparing the coefficients of G′

i−1 for 1 ≤ i ∈ Z and G′
−1 respectively, we 

can deduce that bi(∂) = 0 for 1 ≤ i ∈ Z and

(α2 − ∂)a(−λ)b0(λ + ∂) = (α1 − ∂)a(∂). (3.3)

By (1.1), we have [G0λG0] = (2λ + ∂)G0. Applying the isomorphism ϕ to this equation, 
then comparing the coefficients of G′

0, we can obtain that
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b0(−λ)b0(λ + ∂) = b0(∂). (3.4)

Comparing the degrees of λ in (3.4) and using the fact that ϕ is an isomorphism, we 
have b0(∂) = 1. Then by (3.3), we can conclude that α1 = α2.

Now suppose s1 = 2. Similarly, if B(2, α1) ∼= B(2, α2), we can also obtain that 
α1 = α2. Therefore, if ϕ : B(s, α1) −→ B(s, α2) is an isomorphism, then (s1, α1) =
(s2, α2). �

In order to prove Theorem 1.3 (4), we need some preparations. Assume V is a finitely 
freely C[∂]-generated nontrivial B(α)-module. Regarding V as a module over Vir, by [6, 
Theorem 3.2(1)], we can choose a composition series,

V = VN ⊃ VN−1 ⊃ · · · ⊃ V1 ⊃ V0 = 0,

such that for each i = 1, 2, ..., N , the composition factor V i = Vi/Vi−1 is either a rank 
one free module MΔi,βi

with Δi 	= 0, or else a 1-dimensional trivial module Cβi
with 

trivial λ-action and with ∂ acting as the scalar βi. Denote by v̄i a C[∂]-generator of V i

and vi ∈ Vi the preimage of v̄i. Then {vi | 1 ≤ i ≤ N} is a C[∂]-generating set of V , such 
that the λ-action of b0 on vi is a C[λ, ∂]-combination of v1, ..., vi.

Lemma 3.2. For all i 
 0, the λ-action of bi on v1 is trivial, namely, biλv1 = 0.

Proof. Assume i 
 0 is fixed and suppose biλv1 	= 0, and let ki ≥ 1 be the largest 
integer such that biλv1 	⊂ Vki−1[λ]. We consider the following possibilities.
Case 1: V1 = MΔ1,β1 , V ki

= MΔki
,βki

.
We can write

biλv1 ≡ pi(λ, ∂)vki
(modVki−1[λ]) for some pi(λ, ∂) ∈ C[λ, ∂]. (3.5)

Applying the operator b0μ to (3.5), we obtain

(βki
+∂+Δki

μ)pi(λ, μ+∂) =
(
iα+(1+ i)μ−λ

)
pi(λ+μ, ∂)+(β1 +λ+∂+Δ1μ)pi(λ, ∂).

(3.6)
Letting ∂ = 0, we have

pi(λ, μ) = 1
βki

+ Δki
μ

((
iα+ (1 + i)μ− λ

)
pi(λ+ μ, 0) + (β1 + λ+ Δ1μ)pi(λ, 0)

)
. (3.7)

Using this in (3.6) with λ = iα + (1 + i)μ and ∂ = −βki
− Δki

μ, we can deduce that

(i + 1)
(
(Δki

+ 1)μ + βki

)
pi
(
(i + 1 − Δki

)μ− βki
+ iα, 0

)
=

(
(i + 1 − Δ Δ )μ + β − β Δ

)
p
(
(i + 1)μ + iα, 0

)
.
1 ki 1 ki 1 i
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Suppose pi(λ, 0) has degree mi. Comparing the coefficients of μmi+1 in the above equa-
tion, we obtain (note that the following equation does not depend on the coefficients of 
pi(λ, μ))

(i + 1)(Δki
+ 1)(i + 1 − Δki

)mi = (i + 1 − Δ1Δki
)(i + 1)mi . (3.8)

When i is sufficiently large, one can easily see that (3.8) cannot hold if mi > 1 (note 
that Δ1, Δki

	= 0, and there are only finitely many choices for what Δki
can be, since 

1 ≤ ki ≤ N). Thus mi ≤ 1 if i 
 0. Then from (3.7), we obtain that pi(λ, μ) is 
a polynomial of degree ≤ 1. Thus suppose pi(λ, μ) = ai,0 + ai,1λ + ai,2μ. Then by 
comparing the coefficients of λμ, μ∂ and μ respectively in (3.6), we immediately have 
pi(λ, μ) = 0.
Case 2: V1 = Cβ1 , V ki

= MΔki
,βki

.
In this case, we can still assume (3.5). Applying the operator b0μ to (3.5), we obtain

pi(λ, μ + ∂)(βki
+ ∂ + Δki

μ) = (iα + (1 + i)μ− λ)pi(λ + μ, ∂). (3.9)

Taking μ = ∂ = 0, we get pi(λ, 0) = 0. Then letting ∂ = 0, we obtain pi(λ, μ) = 0.
Case 3: V1 = MΔ1,β1 , V ki

= Cβki
.

In this case, since ∂ acts on v̄ki
as the scalar βki

, i.e., ∂vki
≡ βki

vki
(modVki−1[λ]), 

we can write

biλv1 ≡ pi(λ)vki
(modVki−1[λ]) for some pi(λ) ∈ C[λ]. (3.10)

Applying the operator b0μ to (3.10), we obtain

0 =
(
iα + (1 + i)μ− λ

)
pi(λ + μ) + (β1 + λ + ∂ + Δ1μ)pi(λ). (3.11)

By comparing the coefficients of ∂, we immediately get pi(λ) = 0.
Case 4: V1 = Cβ1 , V ki

= Cβki
.

As above, we can still assume (3.10). Applying the operator b0μ to (3.10), in this case 
we obtain

0 =
(
iα + (1 + i)μ− λ

)
pi(λ + μ). (3.12)

It is obvious that pi(λ) = 0. �
Finally we can give the proof of Theorem 1.3(4). By induction on j ≤ N , we obtain 

biλvj = 0, i.e., the λ-action of bi is trivial. From this, we immediately obtain that the 
λ-action of B(α) on V is trivial since B(α) is a simple Lie conformal algebra. Then 
Theorem 1.3(4) follows.
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4. Some technical lemmas

Let G = ⊕∞
i=−1Gi be a simple Lie conformal algebra satisfying conditions (C1) and

(C2). The main problem to be addressed in this paper is to classify these Z-graded Lie 
conformal algebras. In order to solve the main problem, we need some preparations. 
Since G = ⊕∞

i=−1Gi satisfying conditions (C1) and (C2), denote by gi a C[∂]-generator 
of Gi, then {gi | i ∈ Z≥−1} is a C[∂]-generating set of G. By (2.9), we can suppose

[g−1λg−1] = 0, (4.1)

[g0λgj ] = (αj + ∂ + Δjλ)gj , (4.2)

[giλgj ] = gi,j(λ, ∂)gi+j , (4.3)

where αj , Δj ∈ C for j ∈ Z≥−1 and gi,j(λ, ∂) ∈ C[λ, ∂] for i, j ∈ Z≥−1 are polynomials 
of λ and ∂. From (4.3), we can see that gi+j can be generated by gi and gj for i, j ∈ Z≥−1. 
It is very natural to firstly consider the cases gi,j(λ, ∂) for i = 0, j ∈ Z≥−1 and i = 1, 
j = −1. This is also the aim of this section. Based on this, in the next section we will 
determine all gi,j(λ, ∂) for i, j ∈ Z≥−1 in the proof of Theorem 1.3(3). Since G is simple, 
we also know that

[g−1λgj ] 	= 0 for 1 ≤ j ∈ Z. (4.4)

Lemma 4.1. In (4.2), we have Δ0 = 2 and αj = jα1 for j ∈ Z≥−1; in particular, we get 
α0 = 0. Thus for j ∈ Z≥−1 we can suppose

g0,0(λ, ∂) = ∂ + 2λ, (4.5)

g0,j(λ, ∂) = jα1 + ∂ + Δjλ. (4.6)

Proof. From G0 ∼= Vir, by (2.5), we can conclude that Δ0 = 2, α0 = 0 in (4.2), thus (4.5)
holds. Now applying the operator g0μ to (4.3), using the Jacobi identity [g0μ[giλgj ]] =
[[g0μgi]λ+μgj ] + [giλ[g0μgj ]] and comparing the coefficients of gi+j for i, j ∈ Z≥−1, we 
obtain

(αj+i + ∂ + Δj+iμ)gi,j(λ, μ + ∂) − (αj + ∂ + λ + Δjμ)gi,j(λ, ∂)

=
(
αi − λ + (Δi − 1)μ

)
gi,j(λ + μ, ∂). (4.7)

Now taking μ = 0 in (4.7), one can immediately get that (αj+i − αj − αi)gi,j(λ, ∂) = 0
for all i, j ∈ Z≥−1. Then the lemma follows. �

In order to determine all the polynomials gi,j(λ, ∂), we would first like to deal with 
the case with i = 1 and j = −1. There is no need to compute g−1,1(λ, ∂) as it can be 
determined from g1,−1(λ, ∂) by skew-symmetry. Comparing the coefficients of gj+1 on 
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both sides of the Jacobi identity [g0λ[g1μgj ]] = [[g0λg1]λ+μgj ] +[g1μ[g0λgj ]], by (4.3) and 
Lemma 4.1, we have

(
(j + 1)α1 + ∂ + Δj+1λ

)
g1,j(μ, λ + ∂) − (jα1 + ∂ + μ + Δjλ)g1,j(μ, ∂)

=
(
α1 − μ + (Δ1 − 1)λ

)
g1,j(λ + μ, ∂). (4.8)

Taking ∂ = 0 and j = −1, by Lemma 4.1, we obtain

g1,−1(μ, λ) = 1
2λ

((
α1 − μ + (Δ1 − 1)λ

)
g1,−1(λ + μ, 0)

− (α1 − μ− Δ−1λ)g1,−1(μ, 0)
)
. (4.9)

Similarly, applying the operator g−1λ to [g1μgj ], using the Jacobi identity and comparing 
the coefficients of gj , by (4.3) and Lemma 4.1, we obtain

g−1,j+1(λ, ∂)g1,j(μ, λ + ∂) − g−1,j(λ, ∂ + μ)g1,j−1(μ, ∂)

=
(
jα1 + ∂ + Δj(λ + μ)

)
g−1,1(λ,−λ− μ). (4.10)

Setting j = −1 and replacing ∂, λ by −λ, −μ − ∂ in (4.10) respectively, by (2.2), (4.1),
(4.3) and Lemma 4.1, we can deduce that

(α1 − μ− ∂)g1,−1(μ, 0) =
(
α1 − μ + (Δ−1 − 1)∂

)
g1,−1(μ, ∂). (4.11)

Using (4.9) in the above formula, we get

(
α1 − μ + (Δ1 − 1)∂

)(
α1 − μ + (Δ−1 − 1)∂

)
g1,−1(μ + ∂, 0)

=
(
2∂(α1 − μ− ∂) + (α1 − μ− Δ−1∂)

(
α1 − μ + (Δ−1 − 1)∂

))
g1,−1(μ, 0). (4.12)

Letting μ = 0 implies the following,

(
α1 + (Δ1 − 1)∂

)(
α1 + (Δ−1 − 1)∂

)
g1,−1(∂, 0)

=
(
2∂(α1 − ∂) + (α1 − Δ−1∂)

(
α1 + (Δ−1 − 1)∂

))
g1,−1(0, 0). (4.13)

Taking ∂ = −μ in (4.12), and replacing μ by ∂, we obtain

(
− 2∂α1 + (α1 − Δ−1∂)

(
α1 + (Δ−1 − 1)∂

))
g1,−1(∂, 0)

= (α1 − Δ1∂)(α1 − Δ−1∂)g1,−1(0, 0). (4.14)

Since g1,−1(λ, ∂) is a polynomial of λ and ∂, we can write g1,−1(∂, 0) =
∑m

i=0 a
i
1,−1∂

i

for some ai1,−1 ∈ C with 0 ≤ i ≤ m. We need to consider whether or not α1 	= 0. First 
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assume α1 	= 0. If a0
1,−1 = 0, then comparing the degrees of ∂ on both sides of (4.14), 

we immediately have g1,−1(∂, 0) = 0, which implies that g1,−1(λ, ∂) = 0 by (4.9), a 
contradiction with (4.4). If a0

1,−1 	= 0, we have the following.

Lemma 4.2. Assume α1 	= 0 and a0
1,−1 	= 0. Then Δ−1 = 0, Δ1 = 3 or Δ−1 = 1, Δ1 = 3. 

Furthermore,

g1,−1(λ, ∂) =

⎧⎪⎪⎨
⎪⎪⎩
a0
1,−1 if Δ−1 = 0, Δ1 = 3,

a0
1,−1

α1

(
α1 − λ− ∂

)
if Δ−1 = 1, Δ1 = 3.

(4.15)

Proof. Since α1 	= 0 and g1,−1(0, 0) = a0
1,−1 	= 0, comparing the degrees of ∂ on both 

sides of (4.14), we get ai1,−1 = 0 for 2 ≤ i ≤ m. And we need to consider the following 
possibilities.
Case 1: Δ−1 = 0.

If Δ−1 = 0, by (4.14), we must have Δ1 = 3 and g1,−1(∂, 0) = a0
1,−1. Therefore, by

(4.9) we have g1,−1(λ, ∂) = a0
1,−1, i.e., the first case of (4.15) holds.

Case 2: Δ−1 = 1.
In this case, (4.14) shows that Δ1 = 3 and a1

1,−1 = −a0
1,−1
α1

. Using this in (4.9), we get 
the second case of (4.15).
Case 3: Δ−1 	= 0 and Δ−1 	= 1.

If Δ−1 	= 0 and Δ−1 	= 1, comparing the degrees of ∂ on both sides of (4.14), we 
know that g1,−1(∂, 0) = g1,−1(0, 0) 	= 0. Then comparing the coefficients of ∂i for i = 1, 2
on both sides of (4.14) respectively, we have Δ−1 + Δ1 = 3 and Δ−1 + Δ1 = 1, a 
contradiction. Hence the lemma follows. �

Now we deal with the case α1 = 0. If a0
1,−1 	= 0, taking α1 = 0 in (4.13) and (4.14) and 

comparing the coefficients of ∂2 on both sides respectively, we can deduce that Δ−1 = 0, 
Δ1 = 3 and g1,−1(∂, 0) = a0

1,−1. Then by (4.9) we immediately obtain the following.

Lemma 4.3. If α1 = 0 and a0
1,−1 	= 0, then Δ−1 = 0, Δ1 = 3 and g1,−1(λ, ∂) = a0

1,−1.

Now we can consider the most complicated case that α1 = 0 and a0
1,−1 = 0. In this 

case (4.13) and (4.14) turn into

(Δ1 − 1)(Δ−1 − 1)g1,−1(∂, 0) = 0, (4.16)

Δ−1(1 − Δ−1)g1,−1(∂, 0) = 0. (4.17)

Lemma 4.4. If α1 = 0 and a0
1,−1 = 0, then we can deduce that Δ−1 = 1, Δ1 = 3 and

g1,−1(λ, ∂) = a1
1,−1(λ + ∂) for a1

1,−1 ∈ C∗, (4.18)
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Proof. By (4.4) and (4.17), our discussion will be divided into the following two cases.
Case 1: Δ−1 = 0.

From (4.16), it follows that (Δ1 − 1)g1,−1(∂, 0) = 0. If Δ1 	= 1, then it is obvious that 
g1,−1(∂, 0) = 0. This together with (4.9) shows that g1,−1(λ, ∂) = 0, i.e., a contradiction 
with (4.4). Now we suppose Δ1 = 1. Taking λ = −μ 	= 0 in (4.9), using the fact that 
a0
1,−1 = 0, we obtain

g1,−1(μ,−μ) = −1
2 g1,−1(μ, 0). (4.19)

In addition, (4.11) shows that

g1,−1(μ, ∂) = g1,−1(μ, 0) for ∂ 	= −μ. (4.20)

Letting α1 = 0, Δ−1 = 0 and Δ1 = 1 in (4.12), we have μg1,−1(μ + ∂, 0) = (μ −
2∂)g1,−1(μ, 0) for μ + ∂ 	= 0. Then setting μ = 1 and ∂ = −μ + 1 in this formula 
respectively, we get

g1,−1(μ, 0) = (3 − 2μ)g1,−1(1, 0) for μ 	= 0, (4.21)

μg1,−1(1, 0) = (3μ− 2)g1,−1(μ, 0). (4.22)

Inserting (4.21) into (4.22) gives that (μ − 1)2g1,−1(1, 0) = 0 for μ 	= 0. It leads to 
g1,−1(1, 0) = 0. Then (4.19), (4.20) together with (4.21) show that g1,−1(λ, ∂) = 0, i.e., 
we also get a contradiction with (4.4).
Case 2: Δ−1 = 1.

Taking α1 = 0 and Δ−1 = 1 in (4.12), we have

μ
(
(Δ1 − 1)∂ − μ

)
g1,−1(μ + ∂, 0) = (μ + ∂)(2∂ − μ)g1,−1(μ, 0).

Letting ∂ = −μ + 1 in the above formula, then replacing μ by ∂, we can obtain

(2 − 3∂)g1,−1(∂, 0) = ∂(Δ1 − 1 − Δ1∂)g1,−1(1, 0). (4.23)

Recall that g1,−1(∂, 0) =
∑m

i=1 a
i
1,−1∂

i. Comparing the coefficients of ∂i for 1 ≤ i ≤ m +1
on both sides of (4.23), we deduce that ai1,−1 = 0 for 2 ≤ i ≤ m, a1

1,−1 = g1,−1(1, 0) and 
(Δ1 − 3)a1

1,−1 = 0. Thus we have that g1,−1(∂, 0) = a1
1,−1∂ and (Δ1 − 3)a1

1,−1 = 0. If 
a1
1,−1 = 0, it follows that g1,−1(∂, 0) = 0, then (4.9) leads to g1,−1(λ, ∂) = 0. Therefore, 

by (4.4) and (4.9), we have g1,−1(λ, ∂) = a1
1,−1(λ + ∂) 	= 0. And this lemma holds. �

5. Classification of graded Lie conformal algebras

In this section, we determine all gi,j(λ, ∂) for i, j ∈ Z≥−1, so that we can classify 
Z-graded simple Lie conformal algebras G = ⊕∞

i=−1Gi.
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Proof of Theorem 1.3(3). Applying g−1λ to [g0μgj ], by (2.3), we have the Jacobi identity 
[g−1λ[g0μgj ]] = [[g−1λg0]λ+μgj ] + [g0μ[g−1λgj ]]. Then comparing the coefficients of gj−1, 
by (4.3) and Lemma 4.1, we obtain

(jα1 + λ + ∂ + Δjμ)g−1,j(λ, ∂) −
(
(j − 1)α1 + ∂ + Δj−1μ

)
g−1,j(λ, ∂ + μ)

=
(
α1 + λ− (Δ−1 − 1)μ

)
g−1,j(λ + μ, ∂). (5.1)

Taking j = 1 in (4.10), we have

g−1,2(λ, ∂)g1,1(μ, λ + ∂) − g−1,1(λ, ∂ + μ)g1,0(μ, ∂)

=
(
α1 + ∂ + Δ1(λ + μ)

)
g−1,1(λ,−λ− μ). (5.2)

By skew-symmetry, we have g−1,1(λ, ∂) = −g1,−1(−λ − ∂, ∂), so for convenience, we 
suppose a0

−1,1 = −a0
1,−1. By Lemma 4.2–4.4, we need to consider the following three 

cases.
Case 1: Δ−1 = 0, Δ1 = 3 and g1,−1(λ, ∂) = −a0

−1,1 	= 0.
Since we have skew-symmetry, by Lemma 4.1, we have g−1,1(λ, ∂) = a0

−1,1 and 
g1,0(λ, ∂) = −α1 + 3λ + 2∂. Then (5.2) turns into

g−1,2(λ, ∂)g1,1(μ, λ + ∂) = 3a0
−1,1(λ + 2μ + ∂).

Note that both g−1,2(λ, ∂) and g1,1(λ, ∂) are polynomials of λ and ∂, so by comparing 
the coefficients on both sides of the above formula, we can deduce that

g−1,2(λ, ∂) = a0
−1,2, (5.3)

g1,1(λ, ∂) =
3a0

−1,1

a0
−1,2

(2λ + ∂), (5.4)

where a0
−1,2 ∈ C∗. Setting j = 2 in (5.1) and noting that g−1,2(λ, ∂) = a0

−1,2 	= 0, we get

Δ2 = Δ1 + 1 = 4. (5.5)

By (4.10), (5.1) and (5.3)–(5.5), we can inductively deduce that

Δj = j + 2, (5.6)

g−1,j(λ, ∂) = a0
−1,j , (5.7)

g1,j(λ, ∂) =
a0
−1,1

2a0
−1,j+1

(j + 2)
(
(j − 1)α1 + (j + 3)λ + 2∂

)
, (5.8)

where 1 ≤ j ∈ Z and a0
−1,j ∈ C∗.

Now we want to determine gj,2(λ, ∂) for 2 ≤ j ∈ Z. Comparing the coefficients of gj+2
on both sides of [gjλ[g1μg1]] = [[gjλg1]λ+μg1] + [g1μ[gjλg1]], we obtain
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gj,2(λ, ∂)g1,1(μ, λ + ∂) − gj,1(λ, ∂ + μ)g1,j+1(μ, ∂)

= gj,1(λ,−λ− μ)gj+1,1(λ + μ, ∂).

From this, using (5.8) and skew-symmetry, we obtain, for 1 ≤ j ∈ Z,

gj,2(λ, ∂) =
−a0

−1,1a
0
−1,2

6a0
−1,j+1a

0
−1,j+2

(j + 2)(j + 3)
(
(j − 2)α1 − (j + 4)λ− (j + 1)∂

)
. (5.9)

Finally, we can determine all the polynomials gj,i(λ, ∂) as follows. Noting from 
[gjλ[g1μgi]] = [[gjλg1]λ+μgi] + [g1μ[gjλgi]], we obtain

gj,i+1(λ, ∂)g1,i(μ, λ + ∂) − gj,i(λ, ∂ + μ)g1,j+i(μ, ∂)

= gj,1(λ,−λ− μ)gj+1,i(λ + μ, ∂). (5.10)

By (5.8)–(5.10), we can inductively deduce, for 1 ≤ i ∈ Z, 1 ≤ j ∈ Z,

gj,i(λ, ∂) =
−a0

−1,1a
0
−1,2 · · · a0

−1,i

a0
−1,j+1a

0
−1,j+2 · · · a0

−1,j+i

× (j + 2)(j + 3) · · · (j + i + 1)
(i + 1)!

×
(
(j − i)α1 − (j + i + 2)λ− (j + 1)∂

)
. (5.11)

In order for the polynomials gj,i(λ, ∂) to have some suitable forms, for 1 ≤ j ∈ Z, we 
replace gj by g′j = (j+1)!

a0
−1,1a

0
−1,2···a0

−1,j
gj , so that g−1,j(λ, ∂) and gj,i(λ, ∂) have the following 

forms,

g−1,j(λ, ∂) = j + 1 for 1 ≤ j ∈ Z,

gj,i(λ, ∂) = (i− j)α1 + (i + j + 2)λ + (j + 1)∂ for 1 ≤ i ∈ Z, 1 ≤ j ∈ Z.

Since in this case Δ−1 = 0, using (4.6) and skew-symmetry, we obtain g−1,0(λ, ∂) =
α1 − ∂. By (4.6) and (5.6), it is not hard to check that the second equation of the above 
also holds for i = 0 or j = 0. Therefore, in this case we obtain G ∼= B(1, α) for some 
α ∈ C.
Case 2: Δ−1 = 1, Δ1 = 3, α1 = 0 and g1,−1(λ, ∂) = a1

−1,1(λ + ∂), where a1
−1,1 ∈ C∗.

In this case, using skew-symmetry, we obtain that g−1,1(λ, ∂) = a1
−1,1λ and 

g1,0(λ, ∂) = 3λ + 2∂. Then (5.2) turns into

g−1,2(λ, ∂)g1,1(μ, λ + ∂) = 3a1
−1,1λ(λ + 2μ + ∂).

Since g−1,2(λ, ∂) and g1,1(λ, ∂) are polynomials of λ and ∂, we get from the above formula,

g−1,2(λ, ∂) = a1
−1,2λ, (5.12)

g1,1(λ, ∂) =
3a1

−1,1

a1 (2λ + ∂), (5.13)

−1,2
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for some a1
−1,2 ∈ C∗. Taking j = 2, Δ−1 = 1, Δ1 = 3 and α1 = 0 in (5.1), and noting 

that a1
−1,2 	= 0, we get

Δ2 = 4. (5.14)

Therefore, by (4.10), (5.1) and (5.12)–(5.14), we can inductively prove that

Δj = j + 2,

g−1,j(λ, ∂) = a1
−1,jλ,

g1,j(λ, ∂) =
a1
−1,1

2a1
−1,j+1

(j + 2)
(
(j + 3)λ + 2∂

)
,

where 1 ≤ j ∈ Z and a1
−1,j ∈ C∗. Similar to Case 1, the above three formulae together 

with (5.10) inductively show the following,

gj,i(λ, ∂) =
a1
−1,1a

1
−1,2 · · · a1

−1,i

a1
−1,j+1a

1
−1,j+2 · · · a1

−1,j+i

× (j + 2)(j + 3) · · · (j + i + 1)
(i + 1)!

×
(
(j + i + 2)λ + (j + 1)∂

)
,

for 1 ≤ i ∈ Z and 1 ≤ j ∈ Z. Replace gj by g′j = (j+1)!
a1
−1,1a

1
−1,2···a1

−1,j
gj for 1 ≤ j ∈ Z, so 

that g−1,j(λ, ∂) and gj,i(λ, ∂) have the following forms,

g−1,j(λ, ∂) = (j + 1)λ for 1 ≤ j ∈ Z,

gj,i(λ, ∂) = (i + j + 2)λ + (j + 1)∂ for 1 ≤ i ∈ Z, 1 ≤ j ∈ Z.

Using Lemma 4.1 and the fact that Δj = j + 2 for 1 ≤ j ∈ Z, we can immediately 
obtain that the above two formulae hold for all i, j ∈ Z≥−1. Therefore, we have proved 
that gj,i(λ, ∂) = (i + j + 2)λ + (j + 1)∂ for all i, j ∈ Z≥−1, which is equivalent to that 
G ∼= B(2, 0).
Case 3: Δ−1 = 1, Δ1 = 3, α1 	= 0 and g1,−1(λ, ∂) = −a0

−1,1
α1

(
α1−λ −∂

)
, where a0

−1,1 ∈ C∗.
In this case, by skew-symmetry, we get g−1,1(λ, ∂) = a0

−1,1
(
1 + 1

α1
λ
)

and g1,0(λ, ∂) =
−α1 + 3λ + 2∂. Then (5.2) leads to

g−1,2(λ, ∂)g1,1(μ, λ + ∂) = 3a0
−1,1(λ + 2μ + ∂)

(
1 + 1

α1
λ
)
.

Setting λ = 0, ∂ = 0 and λ = ∂ = 0 in the above formula respectively, noting that 
g−1,2(λ, ∂) and g1,1(λ, ∂) are polynomials of λ and ∂, we obtain

g−1,2(λ, ∂) = a0
−1,2

(
1 + 1

α1
λ
)
, (5.15)

g1,1(λ, ∂) =
3a0

−1,1

a0
(
2λ + ∂

)
, (5.16)
−1,2
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where a0
−1,2 ∈ C∗. Taking j = 2, Δ−1 = 1 and Δ1 = 3 in (5.1), noting that a0

−1,2 	= 0, 
we get

Δ2 = 4. (5.17)

By (4.10), (5.1) and (5.15)–(5.17), we can inductively deduce

Δj = j + 2,

g−1,j(λ, ∂) = a0
−1,j

(
1 + 1

α1
λ
)
,

g1,j(λ, ∂) =
a0
−1,1

2a0
−1,j+1

(j + 2)
(
(j − 1)α1 + (j + 3)λ + 2∂

)
,

where 1 ≤ j ∈ Z and a0
−1,j ∈ C∗. Similar to Case 1, from (5.10) and the above three 

formulae, it inductively follows that

gj,i(λ, ∂) =
a0
−1,1a

0
−1,2 · · · a0

−1,i

a0
−1,j+1a

0
−1,j+2 · · · a0

−1,j+i

× (j + 2)(j + 3) · · · (j + i + 1)
(i + 1)!

×
(
(i− j)α1 + (j + i + 2)λ + (j + 1)∂

)
,

for 1 ≤ i ∈ Z and 1 ≤ j ∈ Z. Since in this case α1 	= 0, by replacing gj by g′j =
(j+1)!αj

1
a0
−1,1a

0
−1,2···a0

−1,j
gj for 1 ≤ j ∈ Z, we obtain that g−1,j(λ, ∂) and gj,i(λ, ∂) have the 

following forms,

g−1,j(λ, ∂) = (j + 1)(α1 + λ) for 1 ≤ j ∈ Z,

gj,i(λ, ∂) = (i− j)α1 + (i + j + 2)λ + (j + 1)∂ for 1 ≤ i ∈ Z, 1 ≤ j ∈ Z.

By Lemma 4.1 and noting that Δj = j + 2 for 1 ≤ j ∈ Z, we can immediately conclude 
that the above two formulae hold for all i, j ∈ Z≥−1. Hence, we obtain that gj,i(λ, ∂) =
(i − j)α1 + (i + j + 2)λ + (j + 1)∂ for all i, j ∈ Z≥−1 and α1 	= 0. It follows that in this 
case, we have G ∼= B(2, α) for some α ∈ C∗.

Therefore, the above three cases together show that Theorem 1.3(3) holds. �
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