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We verify the inductive form of Dade’s conjecture for the finite simple groups
2G2�32m+1�, where m is a positive integer, for the prime p = 3. Together with work
by J. An (1994, Indian J. Math. 36, 7–27) this completes the verification of the
conjecture for this series of groups. © 2000 Academic Press
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1. INTRODUCTION

In [7, 8, 9] Dade presents a series of conjectures, the strongest of which
(the inductive conjecture) he claims admits a reduction to finite simple
groups. The conjectures originate from the reformulation of Alperin’s
weight conjecture (see [1]) given by Knörr and Robinson in [11], and con-
sequently a verification of any of Dade’s conjectures implies that Alperin’s
weight conjecture holds. It should be noted, however, that the verification
of Dade’s conjecture for a given group does not imply that Alperin’s con-
jecture holds for that group. However, Alperin’s conjecture is known to
hold for finite groups with split BN-pairs in the defining characteristic and
so does indeed hold in this case (see [4]).

Let G be a finite group and p a prime. We say that a p-subgroup Q
of G is radical if Q = Op�NG�Q��, where Op�H� is the unique maxi-
mal normal p-subgroup of H. We say that a chain σ :Q0 < · · · < Qn of
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p-subgroups of G (where inclusions are strict) has length �σ � = n, and
write Gσ = NG�Q0� ∩ · · · ∩NG�Qn� for its stabilizer under the conjugation
action of G. Write σi for the p-chain Q0 < · · · < Qi and Vσ = Q0. We say
that the p-chain σ is radical if Qi = Op�NG�σi�� for each i, i.e., if Q0 is a
radical p-subgroup of G and Qi is a radical p-subgroup of NG�σi−1� for
each i 6= 0. Write R = R�G� for the set of radical p-chains of G and write
R�G � Q� = �σ ∈ R�G� x Vσ = Q�. Write R�G � Q�/G for a set of orbit
representatives under the action of G. If N GG and µ ∈ Irr�N� (the set of
irreducible characters of N), then denote by Irr�G; µ� the set of irreducible
characters of G covering µ.

Let R be a local principal ideal domain whose residue field k = R/J�R�
has characteristic p and whose field of fractions K has characteristic zero
and is a splitting field for G. For example, we could take �K;R;k� to be a
complete p-modular system in which R contains a primitive �G�th root of
unity.

As mentioned in [9], it suffices in verifying Dade’s inductive conjecture
for the groups 2G2�32m+1� to test them only for the invariant conjecture,
since Out�2G2�32m+1�� is cyclic and 2G2�32m+1� has trivial Schur multiplier
(see [6]). We state here only the invariant conjecture, and refer the reader
to [9] for a statement of the inductive conjecture.

Conjecture 1 (Dade’s invariant). Let B be a p-block of positive de-
fect of a finite group G satisfying Op�G� = 1, and suppose that G G E.
Write Irrd�Gσ;B� for the set of irreducible characters χ of Gσ lying
in p-blocks which are Brauer correspondents of B and whose degrees
satisfy χ�1�ppd = �G�p (we say that χ has defect d). If G G H ≤ E
and σ ∈ R�G�, then denote by Irrd�Gσ;B;H� the set of those char-
acters in Irrd�Gσ;B� with inertial subgroup NH�σ� in NE�σ�. Write
kd�Gσ;B;H� = �Irrd�Gσ;B;H��. Then∑

σ∈R�G�1�/G
�−1��σ �kd�Gσ;B;H� = 0:

An has verified the inductive conjecture for the groups 2G2�32m+1� for all
primes except p = 3 (see [2]), and so the results presented here complete
the verification of the conjecture for these groups.

Henceforth let G = 2G2�32m+1�. We make the trivial observation that G
has a split BN-pair of rank one and so the only radical 3-subgroups are the
trivial group 1 and the Sylow 3-subgroups of G. Let P ∈ Syl3�G� be the
unipotent radical, so that R�G � 1�/G may be taken to be �1; 1 < P� and
the conjecture reduces to checking that kd�G;B;H� = kd�NG�P�; B;H�
for each choice of B, H, and d.

In Section 2 we investigate the irreducible characters of NG�P�, the char-
acters of G having been investigated fully in [15]. In Section 3 we examine
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the action of the automorphisms of G on the irreducible characters of G
and NG�P�, and so verify the conjecture in this case. Blau and Michler have
verified a simpler form of the conjecture for these groups, and given the ac-
tion of outer automorphisms on the 3-regular classes (see [3]). Our results
may be viewed as an extension of theirs.

2. IRREDUCIBLE CHARACTERS OF NG�P�

We realize G as a twisted Chevalley group (see, for example, [5, 13]).
Write q = 32m+1, where m > 0.

Lemma 2. �P� = q3 and we may label its elements as x�t; u; v�, where
t; u; v ∈ �q, with multiplication given by

x�t1; u1; v1�x�t2; u2; v2� =
x�t1 + t2; u1 + u2 − t1t3f2 ; v1 + v2 − t2u1 + t1t3f+1

2 − t21 t3f2 �;
where f = 3m.

Conjugation within P is given by

x�t1; u1; v1�x�t2; u2; v2�x�t1; u1; v1�−1

= x�t2; u2 − t1t3f2 + t2t3f1 ; v2 − t2u1 + t1u2 + t1t3f+1
2 + t21 t3f2 + t3f1 t

2
2 �:

Z�P� = �x�0; 0; v� � v ∈ �q� and �Z�P�� = q. The subgroup

P1 = �x�0; u; v� ∈ P � u; v ∈ �q�
of order q2 is normal in P and P1 = P ′ = 8�P�, so P/P1 is elementary
abelian.

Proof. The description of the elements and their multiplication follows
from [5]. From this it is easily seen that x�t; u; v�−1 = x�−t;−u − t3f+1;
−v− tu+ t3f+2� for each t; u; v ∈ �q, and that the conjugation action is as
given. The rest follows easily.

We may calculate the conjugacy class lengths explicitly:

Lemma 3. P has q conjugacy classes of length 1, q − 1 of length q, and
3�q− 1� of length 1

3q
2.

Proof. Note that

x�t1; u1; v1�x�0; u2; 0�x�t1; u1; v1�−1 = x�0; u2; t1u2�;
so that each x�0; u2; 0� with u2 ∈ �×q lies in a distinct conjugacy class of
length q contained in P1. It is clear that we have q conjugacy classes of
length one, thus accounting for every element of P1.
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Suppose now that x�t2; u2; v2� ∈ P with t2 6= 0. If x�t1; u1; v1� ∈
CP�x�t2; u2; v2��, then t2t

3f
1 = t1t3f2 . Let φ: �q → �q be the additive endo-

morphism sending λ to t2λ3f − λt3f2 . If 0 6= λ ∈ ker�φ�, then λ3f = λt3f−1
2 .

Without loss of generality, assume t3f−1
2 = 1, so λ3f = λ. Hence

λ3m+1−1 = 1 = λq−1 = λ3m�3m+1−1�+3m−1

and

1 = λq−1 = λ3�3m−1��3m+1�+2 = λ2;

so �ker�φ�� = 3. This gives �CP�x�t2; u2; v2��� = 3q since we can choose
u1 to give t2u1 any value in �q. Hence we have found 3�q − 1� conjugacy
classes of length 1

3q
2. This accounts for all the elements of P .

We use the action of P on Irr�P1� to calculate the nature and degrees of
the irreducible characters of P .

Lemma 4. P has q linear characters, q− 1 irreducible characters of degree
q, and 3�q− 1� of degree 3m.

Proof. Considering �q as an n = �2m+ 1�-dimensional vector space over
�3, write ζ ∈ �q as ζ = �ζ1; : : : ; ζn�. Write the elements of Irr�P1� as χx;y ,
x; y ∈ �q, where, for x�0; u; v� ∈ P1,

χx;y �x�0; u; v�� =
n∏
k=1

e2ukxkπi/3
n∏
j=1

e2vjyjπi/3:

Recall that
x�t1; u1; v1�x�0; u2; 0�x�t1; u1; v1�−1

= x�0; u2; t1u2� ∀ t1; u1; v1; u2 ∈ �q:

From this we see that for any x ∈ �q, we have IP�χx;0� = P and that for any
x ∈ �q, y ∈ �×q , we have IP�χx;y� = P1. This gives us q orbits of length one
and q − 1 orbits of length q. Representatives of the long orbits are χ0;y ,
y ∈ �×q .

By Clifford theory representatives of the long orbits induce to give dis-
tinct irreducible characters of P of degree q. Also χ0;0 = 1P1

extends to P
in q distinct ways to give q linear characters of P . Since P1 is the derived
subgroup of P , every linear character of P is an extension of χ0;0.

Now consider the characters χx;0, where x ∈ �×q . We show that all ir-
reducible characters of P covering such characters of P1 have the same
degree.

Fix µ = χx;0, x ∈ �×q . Since IP�χx;0� = P , there is a degree preserv-
ing 1–1 correspondence Irr�P; µ� ↔ Irr� ̂�P/P1�; µ̂�, where ̂�P/P1� is a cen-
tral extension of P/P1 with kernel A (i.e., A ≤ Z� ̂�P/P1�� ∩ ̂�P/P1�

′
and
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̂�P/P1�/A ∼= P/P1) and µ̂ ∈ Irr�A� (see, for example, [10, Chap. 11]). We
may take A to be a cyclic p-group (see [12]). However, the Schur multi-
plier of an elementary abelian group is itself elementary abelian, and so
�A� = 3. Note that µ̂ is non-trivial since we may not extend µ to P (as all
the linear characters of P cover χ0;0). This demonstrates that the degrees
of the elements of Irr�P; χx;0� are independent of the choice of x ∈ �×q .
Since P possesses 5q − 4 conjugacy classes we then have �Irr�P; χx;0�� = 3,
and so all irreducible characters of P lying over χx;0 must have the same
degree, which must be 3m, as required.

We examine the action of NG�P� on the irreducible characters of P
to calculate the irreducible character degrees of NG�P�. We note that
by using Ward’s character table for G (see [15]) and the fact that the
Knörr–Robinson reformulation of Alperin’s weight conjecture is known
to hold for finite groups with split BN-pairs in the defining characteris-
tic (see [11, 5.3]), we may already observe that NG�P� possesses q + 7
conjugacy classes.

Lemma 5. NG�P� has irreducible characters of degrees 1; q − 1,
3m�q− 1�/2, 3m�q − 1�; q�q − 1� with multiplicity q − 1; 1; 4; 2; 1,
respectively.

Proof. By the results of [13] NG�P� = PW , where W ∼= �×q acts tran-
sitively on the non-trivial elements of P/P1 and of Z�P�. Hence W acts
transitively on the q − 1 non-trivial linear characters of P , and so by Clif-
ford’s theorem we obtain q − 1 linear characters of NG�P� and one ir-
reducible character of degree q − 1 (where the linear characters are the
irreducible characters of NG�P�/P regarded as characters for NG�P�, and
the irreducible character of degree q− 1 is λNG�P�, where λ is a non-trivial
linear character of P). The irreducible characters of degree q of P are
also permuted transitively by W , giving one irreducible character of de-
gree q�q − 1�. Since k�NG�P�� = q + 7 we are left with 6. The remain-
ing irreducible characters must cover the irreducible characters of P of
degree 3m.

By Ree [13], W possesses an unique involution, h0, and CP�h0� =
�x�0; u; 0� � u ∈ �q�. Hence W/ < h0 > acts on P1/Z�P� with two orbits
of length �q − 1�/2 and one of length one (noting that by [13] W stabi-
lizes P1). It follows from Brauer’s theorem that W acts on the irreducible
characters χx;0, where x ∈ �×q , with two orbits, which must then both be of
length �q − 1�/2. Recall that each of these χx;0 is covered by three irre-
ducible characters of P . It follows that the irreducible characters of NG�P�
of height m must consist of two of degree 3m�q − 1� and four of degree
3m�q− 1�/2.
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3. DADE’S CONJECTURE

Blau and Michler give a description of the action of an arbitrary outer
automorphism on the semisimple classes of G:

Lemma 6 (Blau and Michler [3]). Out�G� is cyclic and consists of auto-
morphisms of the form τr , where τ is the Frobenius automorphism x→ x3.
We have �Out�G�� = 2m+ 1, and τr stabilizes P .

When r is an integer dividing 2m+ 1, τr fixes 3r 3-regular conjugacy classes
of G.

We give a combinatorial lemma included in [3]:

Lemma 7 [3]. Let A be a finite group acting on two sets S1 and S2 as a
permutation group. Let H ≤ A and write fi�H� = ��s ∈ Si � sa = s ∀ a ∈ H��
and mi�H� = ��s ∈ Si � CA�s� = H��.

If f1�H� = f2�H� for all H ≤ A then m1�H� = m2�H� for all H ≤ A.

We come to the main result of the paper:

Theorem 8. Dade’s inductive conjecture holds for G for the prime p = 3.

Proof. As remarked earlier it suffices to verify Conjecture 1 for G.
By [15] G possesses only one 3-block of defect zero, namely that containing
the Steinberg character, and CG�P� ⊂ P . Hence there is only one 3-block of
maximal defect (by a well-known result of block theory). But defect groups
are radical p-subgroups and the Sylow 3-subgroups are the only non-trivial
radical 3-subgroups of G, so the principal 3-block B is the unique 3-block
of non-zero defect. Suppose that G G E and choose t � 2m + 1 such that
τt generates E/G, where τ is as in Lemma 6. Let G GH ≤ E, and choose
r�2m+ 1 such that τr generates H/G.

From the character table forG (see [15, p. 87]), we have k6m+3�G;B� = q,
k5m+3�G;B� = 6 and k4m+2�G;B� = 1, this accounting for all the irre-
ducible characters of G in B.

Consider first the action of τr on Irr�G;B�. Examination of the character
table given in [15] gives us that τr fixes every 3-singular conjugacy class ofG;
hence by Lemma 6 τr fixes 3r + 8 conjugacy classes of G. So τr fixes 3r + 7
irreducible characters of B, by Brauer’s theorem. Further examination of
the character table and using the fact that τr has odd order reveals that τr

fixes every irreducible character of B of positive height, and so 3r irreducible
characters of height zero, i.e., fIrr6m+3�G;B���τr�� = 3r , fIrr5m+3�G;B���τr�� = 6,
and fIrr4m+2�G;B���τr�� = 1 in the notation of Lemma 7.

Now consider the action of τr on Irr�NG�P��. The 3-regular conjugacy
classes of NG�P� = PW are represented by the elements of W , and so τr

fixes 3r − 1 3-regular conjugacy classes of NG�P�. Hence τr fixes 3r − 1 ir-
reducible Brauer characters of NG�P�, and so 3r − 1 linear characters and
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the irreducible character of degree q− 1. It remains to examine the action
on the characters of positive height. Clearly the unique irreducible charac-
ter of degree q�q − 1� is fixed by τr , as are the two of degree 3m�q − 1�
since τr has odd order. Finally it is clear from the construction of the
remaining characters that τr cannot act on the four irreducible charac-
ters of degree 3m�q − 1�/2 with an orbit of length three, and so τr fixes
these also. Hence fIrr6m+3�NG�P�;B0���τr�� = 3r , fIrr5m+3�NG�P�;B0���τr�� = 6, and
fIrr4m+2�NG�P�;B0���τr�� = 1.

The result then follows from Lemma 7.

Remark. The above results also yield a verification of Robinson’s con-
jecture (see [14]) for G.
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