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Abstract

We show that the Nakayama automorphism of a Frobenius algebraR over a fieldk is independen
of the field (Theorem 4). Consequently, thek-dual functor on leftR-modules and the bimodul
isomorphism type of thek-dual ofR, and hence the question of whetherR is a symmetrick-algebra,
are independent ofk. We give a purely ring-theoretic condition that is necessary and sufficien
a finite-dimensional algebra over an infinite field to be a symmetric algebra (Theorem 7).
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Let R be a finite-dimensional algebra over a fieldk. Thek-dualR̂ := Homk(R, k) has
a natural structure as an(R,R)-bimodule. We sayR is a Frobenius algebra if R � R̂ as
left R-modules, andR is asymmetric k-algebra if R � R̂ as(R,R)-bimodules. It is well
known thatR̂ is isomorphic to the injective hull ofR/ radR as leftR-modules, soR is
Frobenius iffR � E(R(R/ radR)) as leftR-modules. This purely ring-theoretic criterio
shows that the property ofR being Frobenius is independent of the fieldk over which we
are consideringR as an algebra. Motivated by this property, an arbitrary artinian ringS is
defined to be aFrobenius ring if S �E(S(S/ radS)) as leftS-modules, and this definitio
has led to a rich theory of Frobenius rings (see, for example, [3, Section 16]) that
dependent on the framework of linear algebra.
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0021-8693/$ – see front matter 2003 Elsevier Inc. All rights reserved.
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The facts above naturally raise several questions. Is the property ofR being a symmetric
k-algebra independent ofk? If R is symmetric, we know by Brauer’s equivalence theor
[3, 16.70] that thek-dual functor Homk(−, k) from left R-modules to rightR-modules is
independent ofk, i.e., the two functors defined by different fields are naturally equiva
On the level of modules, this means that the rightR-module isomorphism type of th
k-dual of any left moduleRX is independent ofk. Do these facts remain true ifR is only
Frobenius? The result above shows only that the isomorphism type of the dual of t
regular moduleRR is independent ofk.

The key to all of these questions is the Nakayama automorphism, a distingu
k-algebra automorphism of a Frobenius algebraR that measures how farR is from being
a symmetric algebra. (The automorphism is the identity iffR is symmetric.) We will show
that the Nakayama automorphism is independent ofk and derive affirmative answers
the questions above as corollaries. We will give a purely ring-theoretic condition t
equivalent to the property ofR being symmetric at least in the case whenk is infinite.
We hope that this will promote a ring-theoretic development of properties of symm
algebras that parallels the theory of Frobenius rings.

F.G. Frobenius himself pioneered the idea of comparing an algebra with its
in [1]. The main properties of Frobenius algebras and symmetric algebras were dev
by Nakayama in [4–6]. They have been the subject of continued interest beca
connections to such diverse areas as group representations, topological quantu
theories, Gorenstein rings in commutative algebra, Hopf algebras, coding theory, a
Yang–Baxter equation. For an excellent reference on the subject, see [3].

2. The Nakayama automorphism

In this section we show that the Nakayama automorphism of a Frobenius alge
independent of the ground field. As a corollary to the proof, we derive a simple
theoretic characterization of local symmetric algebras.

LetR be a finite-dimensional algebra over a fieldk. In [3, Theorem 3.15], we have:

Theorem 1. The following are equivalent:

(1) R is a Frobenius algebra, i.e., R � R̂ as left R-modules.
(2) There exists a linear functional λ :R→ k whose kernel contains no nonzero left ideals.
(3) There exists a hyperplane H ⊂ R (i.e., a subspace of codimension 1) containing no

nonzero left ideals.
(4) There exists a nondegenerate associative bilinear form B :R×R→ k. (“Associative”

means B(rs, t)= B(r, st).)

The equivalence of the first two conditions follows from takingλ to be the image
of 1 under the module isomorphism and vice versa. The equivalence of the seco
fourth condition follows from definingB(r, s) := λ(rs) andλ(r) := B(r,1). Since the las
condition is right–left symmetric, we could also include the right-handed analogues
other conditions above.
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Given one isomorphismϕ :R
∼−→ R̂, any other isomorphismϕ′ is obtained by

composition with an automorphism of the left regular moduleRR, which corresponds t
right multiplication by a unitu ∈ U(R). This affects the other conditions above as follow
the new functional isλ′ = uλ : r �→ λ(ru); the new hyperplane isH ′ = kerλ′ =Hu−1; and
the new form isB ′(r, s)= B(r, su).

A similar theorem [3, Theorem 16.54] applies to symmetrick-algebras:

Theorem 2. The following are equivalent:

(1) R is a symmetric algebra, i.e., R � R̂ as (R,R)-bimodules.
(2) There exists a functional λ :R→ k such that kerλ contains no nonzero left ideals and

λ(rs)= λ(sr) ∀r, s ∈ R.
(3) There exists a hyperplane H ⊂ R containing the commutators [R,R] = {∑i (risi −

siri): ri, si ∈ R} and containing no nonzero left ideals.
(4) There exists a nondegenerate associative symmetric bilinear form B :R×R→ k.

If the conditions of Theorem 1 hold, the nondegeneracy of the formB implies that
there is a uniquek-linear mapσ :R → R defined byB(r, s) = B(s,σ (r)) ∀r, s ∈ R. It is
easy to check thatσ is actually ak-algebra automorphism ofR; we call it theNakayama
automorphism of R. ReplacingB with a new formB ′ defined by the unitu gives us the
new automorphismσ ′ : r �→ uσ(r)u−1. So the Nakayama automorphism is determined
to composition with inner automorphisms; equivalently, it is a well-defined element o
group of outer automorphisms ofR. The algebra is symmetric iffσ can be taken to b
the identity, iff the Nakayama automorphism determined by an arbitrary nondege
associative bilinear form is an inner automorphism.

If we use the linear functionalλ to defineσ instead of the formB, thenσ is defined by
the equation

λ(rs)= λ
(
sσ (r)

)
(∀r, s ∈R).

We are now ready to prove that the Nakayama automorphism is independent of th
field. We warm up with the local case. The argument is similar to that for the genera
but much easier, and it gives us a criterion for a local algebra to be symmetric.

Theorem 3. If R is a local Frobenius k-algebra then σ is independent of k.

Proof. Let k1 and k2 be two fields over whichR is a finite-dimensional algebra, an
supposeσ1 is a Nakayama automorphism ofR as ak1-algebra. Thenσ1 arises from
a k1-linear functionalλ1 :R→ k1 via the equation

λ1(rs)= λ1
(
sσ1(r)

)
(∀r, s ∈ R).

Thus,C := {∑(risi − siσ1(ri)): ri, si ∈ R} ⊆ kerλ1. Note thatC is closed unde
multiplication by any element from the centerZ(R), and in particular thatC is a subspace
with respect to bothk1 andk2.
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Now sinceR is local Frobenius,RR is the only principal indecomposable leftR-
module, and soRR has a simple socleS by [3, Theorem 16.4]. ThenS �⊂ kerλ1, soS �⊂ C.

SinceS andC are bothk2-subspaces, we can define ak2-linear functionalλ2 :R→ k2
that is 0 onC but not onS. Then sinceS �⊂ kerλ2, kerλ2 contains no nonzero left ideal
and the Nakayama automorphismσ2 of R as a Frobeniusk2-algebra is defined by

λ2(rs)= λ2
(
sσ2(r)

)
(∀r, s ∈ R).

In other words,σ2(r) is uniquely defined by

rs − sσ2(r) ∈ kerλ2 (∀s ∈ R).

But rs − sσ1(r) ∈ C ⊆ kerλ2 (∀s), soσ2(r)= σ1(r) ∀r ∈R, as desired. ✷
The proof above gives us the promised ring-theoretic characterization of

symmetric algebras. Recall that the property ofR being Frobenius overk is independen
of k, and in fact, is equivalent to a ring-theoretic property.

Corollary 1. Let R be a local k-algebra. Then R is a symmetric k-algebra iff R is
a Frobenius k-algebra and soc(RR) �⊂ [R,R]. In particular, the truth of R being a
symmetric k-algebra is independent of k.

Proof. This follows from the proof of the theorem above. IfR is symmetric, then we ca
takeσ1 to be the identity, soS �⊂ C = [R,R]. Conversely, ifS �⊂ [R,R], then we can defin
λ2 as we did above to be 0 on[R,R] but not onS. The resultingσ2 will be the identity,
proving thatR is a symmetric algebra.✷

We now pass to the general case and show that the Nakayama automorphis
respect to the two fields remains the same. This turns out to be easy if the fields a
finite-dimensional over their intersection (necessarily a field). The case in which th
no convenient intersection is harder and uses the assumption that the fields be infi
we do not have a single proof to cover both cases.

Let R be a Frobenius ring with Jacobson radicalJ andR = R/J . Suppose, as abov
thatR can be considered as a finite-dimensional algebra over two different fieldsk1 andk2,
with respective Nakayama automorphismsσ1 andσ2.

Theorem 4. The Nakayama automorphism of R is independent of the ground field.

Proof of part I. Assume that the two fields are both finite-dimensional over some com
ground field. This case can be handled by a transfer-type argument, as suggested t
T.Y. Lam. By passing down to the common ground field and then up again, we can r
to the case in whichk2 ⊆ k1.

Let Tr :k1 → k2 be any nonzerok2-linear map. ConsideringR as a Frobeniusk1-
algebra, we have ak1-linear functionalλ1 :R → k1 whose kernel contains no nonze
left ideals. Thenλ2 := Tr◦λ1 :R → k2 is a k2-linear map, and we claim that kerλ2 also
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contains no nonzero left ideals. Indeed, ifr ∈R \ {0}, then∃s ∈ R such thatλ1(sr) �= 0, so
∃α ∈ k1 such that 0�= Tr(αλ1(sr))= Tr(λ1(αsr))= λ2(αsr).

Now σi(r) is defined (∀r ∈R) by the equation

rs − sσi(r) ∈ kerλi (∀s ∈R).

But kerλ1 ⊆ kerλ2, so (∀r ∈ R),

rs − sσ1(r) ∈ kerλ1 ⊆ kerλ2 (∀s ∈R),

showing thatσ2(r) must be equal toσ1(r). This finishes part I. ✷
For part II we first need two facts from linear algebra.

Lemma 1. Let U � V be finite-dimensional vector spaces over a field k and suppose
V decomposes into subspaces V = V1 ⊕ V2 ⊕ · · · ⊕ Vn with each Vi �⊂ U . Suppose that
|k| � n. Then U can be enlarged to a hyperplane U ′ such that Vi �⊂ U ′ for i = 1,2, . . . , n.

Proof. By enlargingU one dimension at a time, we may assume thatU is maximal
with respect to the property that noVi ⊆ U . We claim that now dimk V /U = 1. If not,
there exist at least|k| + 1 linear subspaces ofV/U corresponding to one-dimension
extensionsUi ⊃ U . By the maximality ofU and the Pigeonhole principle, someVi is
contained in two different extensions, sayU1 andU2. But this impliesVi ⊆U1 ∩U2 =U ,
a contradiction. ✷

(The assumption that|k| � n cannot be omitted. A three-dimensional vector sp
over the field of two elements contains the subspaceU = {0, (1,1,1)}, which cannot be
extended to a hyperplane without including one of the three coordinate axes.)

Lemma 2. Let D be a division ring, n a positive integer, and S = Mn(D). If I ⊆ S is any
nonzero left ideal, then I + [S,S] = S.

Proof. Let U = I + [S,S] and letEij denote the matrix units inS. Using a nonzero
element ofI , we can obtain a matrix inU that is nonzero in the(i, i) position and 0
off the ith row. For alld ∈ D and i �= j , dEij = (dEii)(Eij ) − (Eij )(dEii) ∈ U , and
d(Eii − Ejj ) = (dEij )(Eji) − (Eji)(dEij ) ∈ U . Repeated use of these identities sho
that an arbitrary matrix inS is a sum of matrices inU . ✷
Proof of Theorem 4, part II. We assume that there is no common ground field over w
k1 andk2 are both finite-dimensional. We need this assumption only because we will
to assume that both fields are infinite so that we can apply Lemma 1.

Fix a k1-linear functionalλ1 :R→ k1 with kernelH1 containing no nonzero left ideal
Then the Nakayama automorphism ofR as ak1-algebra is defined (∀r ∈R) by

rs − sσ1(r) ∈H1 (∀s ∈ R).
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As in the proof of Theorem 3, we set

C :=
{∑

i

(
risi − siσ1(ri)

)
: ri , si ∈R

}
⊆H1

and note thatC is closed under multiplication from the centerZ(R). In particular,C is
a subspace over bothk1 and k2. Let S := soc(RR) and note that sinceC ⊆ H1, S ∩ C
contains no nonzero left ideals. AlsoS ∩ C ⊆ S ∩ H1, which is ak1-subspace ofS of
codimension 1. (This is because dimk1R/H1 = 1 andS ∩H1 �= S becauseH1 contains no
nonzero left ideals.)

By [3, Theorem 16.14], we have an isomorphismϕ :RS
∼−→ RR, which is also an

isomorphism of leftR-modules. NowS ∩ H1 ⊂ S contains no nonzero left ideals ofR,
hence no minimal left ideals, hence no nonzeroR-submodules. Soϕ(S ∩ H1) is a k1-
hyperplane inR containing no nonzero left ideals.

SinceR is a finite-dimensional algebra (over either field),R is semisimple (by [2
Theorem 4.14]), hence a symmetric algebra by [3, Example 16.59]. We considerR now as
a symmetrick1-algebra. By Theorem 2,R contains anotherk1-hyperplaneH that contains
no nonzero left ideals and contains the commutator subspace[R,R]. Now by the discussion
following Theorem 1, we know thatH = (ϕ(S ∩H1))u for someu ∈U(R).

Now (ϕ(S ∩C))u⊆ (ϕ(S ∩H1))u=H , soU := (ϕ(S ∩C))u+ [R,R] ⊆H . SinceH
contains no nonzero left ideals inR, U also contains no nonzero left ideals. But since b
(ϕ(S ∩ C))u and[R,R] arek2-subspaces ofR, U is a k2-subspace ofR. Our goal is to
enlargeU to ak2-hyperplane containing no nonzero left ideals.

Let R have Artin–Wedderburn decompositionMn1(D1) × · · · × Mnr (Dr), where the
Di ’s are division rings. We decompose eachRi := Mni (Di) into a sum of simple lef
idealsVi,j , whereVi,j consists of matrices that are 0 except in thej th column. This gives
a decomposition ofR into simple left ideals:

R = V1,1 ⊕ · · · ⊕ V1,n1 ⊕ · · · ⊕ Vr,1 ⊕ · · · ⊕ Vr,nr .

Now we know that for alli, j , Vi,j �⊂ U . So by Lemma 1 we can enlargeU to a k2-
hyperplaneU ′ ⊂ R while preservingVi,j �⊂ U ′ ∀i, j . We claim thatU ′ still contains no
nonzero left ideal ofR. Indeed, assume thatU ′ does contain a nonzero left ideal ofR;
then it contains a minimal left ideal of one of theRi ’s, say R1. But U ′ also contains the
commutators[R1,R1] since[R1,R1] ⊆ [R,R] ⊆U ⊆U ′. Then by Lemma 2,U ′ contains
all of R1, hence all theV1,j ’s, a contradiction. SoU ′ is indeed ak2-hyperplane ofR
containing no nonzero left ideals.

We now consider thek2-hyperplaneU ′u−1 ⊂ R, which also contains no nonzero le
ideals ofR. Moreover, since(ϕ(S ∩ C))u ⊆ U ⊆ U ′, we haveϕ(S ∩ C) ⊆ U ′u−1. We
now pull U ′u−1 back through the isomorphismϕ :RS

∼−→ RR to get ak2-hyperplane
H ′

2 := ϕ−1(U ′u−1)⊂ S containing no nonzero leftR-submodules ofS, hence no nonzer
left ideals ofR. Also, sinceϕ(S ∩C)⊆ U ′u−1, H ′

2 containsS ∩C.
To finish the proof, we will extendH ′

2 to a k2-hyperplaneH2 ⊂ R that containsC
and still contains no nonzero left ideals. We can then useH2 to define the Nakayam
automorphism with respect tok2.
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Fig. 1.k2-subspaces ofR.

To extendH ′
2, considerS, C, H ′

2, and R just as k2-vector spaces as in Fig.
DecomposeC as ak2-vector space intoC = (S ∩ C) ⊕ C′. Then sinceC′ ∩ S = 0, we
can extendC′ to ak2-vector spaceS′ ⊇ C′ such thatR = S ⊕ S′. DefineH2 :=H ′

2 ⊕ S′,
a k2-hyperplane ofR since dimk2(S/H

′
2) = 1. Moreover,H2 contains no nonzero le

ideals, since any nonzero left idealRL ⊆ H2 would contain a minimal left idealRL′ ⊆
H2 ∩ S =H ′

2. Most importantly,H2 containsC.
We now define ak2-functional λ2 :R → k2 with kerλ2 = H2. Then the Nakayam

automorphismσ2 of R as ak2-algebra is defined (∀r ∈R) by

rs − sσ2(r) ∈ kerλ2 =H2 (∀s ∈ R).
But sincers − sσ1(r) ∈ C ⊆H2, we haveσ2(r)= σ1(r) for all r ∈ R. This concludes the
proof of part II. ✷

3. Corollaries

We can now answer the questions posed in the introduction. We begin with a th
that does not require the Frobenius assumption. LetR be a ring that is a finite-dimension
algebra over two fieldsk1 and k2. We denote byRM and MR the categories of lef
R-modules and rightR-modules, respectively.

Let Fi :RM → MR be theki -dual functor:Fi (RX) = (X̂i)R := Homki (X, ki). Let
R(R̂i)R be the bimodule Homki (R, ki).

Theorem 5. R(R̂1)R � R(R̂2)R as bimodules iff the functors F1 and F2 are naturally
equivalent.

Proof. By Brauer’s equivalence theorem [3, 16.70]), the functorFi is naturally equivalen
to the functorGi := HomR(−, RR̂i) on leftR-modules, proving the forward direction. Th
converse is essentially identical to [3, Theorem 16.71]. We apply the equivalenceG1 � G2
to the leftR-module homomorphismρr :RR → RR, whereρr is right multiplication by
some fixedr ∈R, as in Fig. 2. Then the map

Gi (ρr ) : HomR
(
RR,RR̂i

) → HomR
(
RR,RR̂i

)
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G1(RR)= HomR
(
RR,RR̂1

) ∼

G1(ρr )=r ·

G2(RR)= HomR
(
RR,RR̂2

)
G2(ρr )=r ·

G1(RR)= HomR
(
RR,RR̂1

) ∼
G2(RR)= HomR

(
RR,RR̂2

)
Fig. 2. The equivalenceG1 � G2 applied toρr :RR→ RR.

takes α to the map (s �→ α(sr)) = rα, so Gi (ρr ) is left multiplication by r on
HomR(RR,RR̂i). This gives us a commutative diagram of rightR-modules as in Fig. 2.

However, HomR(RR,RR̂i) � (R̂i )R as right R-modules under the isomorphis
α �→ α(1), so the isomorphism on the top and bottom rows is(R̂1)R � (R̂2)R. The
commutativity of the diagram shows that this isomorphism respects the leftR-action as
well, so we haveR(R̂1)R � R(R̂2)R as bimodules, as desired.✷

To apply this theorem, letσ be any automorphism ofR and letMR be a rightR-module.
We define the twisted rightR-moduleMRσ to be the same abelian group asM with the
R-action defined by

m ∗ r :=mσ(r) (∀r ∈ R, m ∈M).

(Thanks to Mark Davis for suggesting this definition.) Now letRX be a leftR-module
with k-dual X̂R := Homk(X, k). Let (X∗)R denote theR-dual HomR(RX,RR), the
isomorphism type of which is, of course, independent ofk.

Theorem 6. Let R be a Frobenius k-algebra with Nakayama automorphism σ . Then there
is a natural right R-module isomorphism X̂R � (X∗)Rσ .

Proof. We have an isomorphismRR � RR̂, say given by 1�→ λ. Then∀r ∈ R,

(λr)(s)= λ(rs)= λ
(
sσ (r)

) = (
σ(r)λ

)
(s) (∀s ∈ R),

so λr = σ(r)λ in R̂. Now by Brauer’s theorem, we have a natural isomorphismX̂R �
HomR(RX,RR̂) of right R-modules. The isomorphismRR � RR̂ of left R-modules then
gives us an abelian group isomorphism HomR(RX,RR) � HomR(RX,RR̂), which we
denote byα �→ α̂. Thenα̂ is given by

α̂(x)= (
α(x)

)
λ ∈ R̂. (1)

We claim that although “̂ ” is not in general an isomorphism of rightR-modules, it
satisfieŝαr = α̂σ−1(r). The theorem then follows by identifyinĝX with HomR(RX,RR̂)
and takingf : X̂→ HomR(RX,RR) to be the inverse of “̂.”

To prove the claim, letx ∈X, r ∈ R. Then inR̂, we have
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α̂r(x)= (
(αr)(x)

)
λ by Eq. (1),

= (
α(x)r

)
λ by theR-action on HomR(RX,RR),

= α(x)(rλ) by the associativity of theR-action onRR̂,

= α(x)
(
λσ−1(r)

)
as shown above,

= (
α(x)λ

)
σ−1(r) by associativity again,

= (
α̂(x)

)
σ−1(r) by Eq. (1),

= (
α̂σ−1(r)

)
(x) by theR-action on HomR

(
RX,RR̂

)
.

So α̂r = α̂σ−1(r), proving our claim and the theorem.✷
Corollary 2. If R is a Frobenius k-algebra, then the k-dual functor F := Homk(−, k) :
RM → MR is independent of k.

Proof. Apply Theorems 4 and 6.✷
Corollary 3. If R is a Frobenius k-algebra, then the bimodule isomorphism type of RR̂R is
independent of k.

Proof. Apply Corollary 2 and Theorem 5.✷
Corollary 3 suggests that there should be a ring-theoretic characterization ofRR̂R as

a bimodule analogous to the fact thatR̂R � E((R/ radR)R) as rightR-modules. We do
not yet have such a characterization.

Corollary 4. If R is any finite-dimensional k-algebra, then the property of R being
a symmetric k-algebra is independent of k.

Proof. We have seen that the question of whetherR is a Frobeniusk-algebra is
independent ofk. Now apply Corollary 3. ✷

4. Ring-theoretic characterization of symmetric algebras

We have seen in Corollary 4 that the property of ak-algebra being symmetric i
independent ofk, suggesting that it should be equivalent to a ring-theoretic propert
the local case, we saw in Corollary 1 that an algebra is symmetric iff its left socle i
contained in the commutators. In the general case, we have ring-theoretic conditio
symmetry if we assume that the ground fieldk is infinite.

We continue to assume thatR is a finite-dimensional algebra over a fieldk. As before,
let J = radR be the Jacobson radical andR =R/J . The following theorem is similar to [3
Theorem 16.14], which states thatR is Frobenius iff soc(RR)� RR and soc(RR) � RR.
We useS to denote soc(RR).
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Theorem 7. Suppose k is infinite. Then R is a symmetric k-algebra iff RSR � RRR as
(R,R)-bimodules and [R,R] contains no nonzero left ideals of R.

Proof. If R is symmetric, then we have a bimodule isomorphismϕ :RRR
∼−→ RR̂R .

Consideringϕ as an isomorphism of leftR-modules and restricting it toS, we have an
isomorphismϕ :S

∼−→ soc(RR̂). Note, however, thatϕ still respects the right action o
R on S and soc(RR̂). By [3, Example 3.41], we have soc(RR̂) = {f ∈ R̂: f (J ) = 0},
which is isomorphic as an(R,R)-bimodule to Homk(R, k). But sinceR is a semisimple
k-algebra, hence symmetric, Homk(R, k) � R as (R,R)-bimodules and hence also
(R,R)-bimodules. Composing all these, we have an(R,R)-bimodule isomorphismS �R.

The condition on[R,R] follows from Theorem 2, which gives us ak-linear functional
λ :R→ k such that[R,R] ⊆ kerλ, yet kerλ contains no nonzero left ideals ofR.

Conversely, supposeϕ :RSR
∼−→ RRR as (R,R)-bimodules and[R,R] contains no

nonzero left ideals ofR. We considerϕ([R,R] ∩ S)⊂ R, which contains no nonzero le
ideals ofR since[R,R] contains no nonzero left ideals ofR. Moreover, we claim tha
[R,R] ⊆ ϕ([R,R] ∩ S). Indeed, letx, y ∈ R (wherex, y ∈R), and suppose thaty = ϕ(b)

for someb ∈ S. Then using the fact thatϕ is a bimodule isomorphism, we have

xy − yx = xϕ(b)− ϕ(b)x = ϕ(xb− bx) ∈ ϕ([R,S]) ⊆ ϕ
([R,R] ∩ S)

.

Soϕ([R,R] ∩S) is ak-subspace ofR containing no nonzero left ideals and containing
commutators inR. By the same argument used in the proof of Theorem 4, part II, we
enlargeϕ([R,R] ∩ S) to ak-hyperplaneU ′ ⊂ R containing no nonzero left ideals. (He
we use the fact thatk is infinite.) Then we can pull back toH ′ := ϕ−1(U ′), ak-hyperplane
of S containing[R,R] ∩ S but containing no nonzero left ideals ofR. Then, again by the
same argument used in Theorem 4 (using[R,R] in place of theC that was used there), w
can extendH ′ toH , ak-hyperplane ofR containing[R,R] but containing no nonzero le
ideals. Then by Theorem 2,R is a symmetric algebra.✷

I do not know if Theorem 7 holds without the assumption thatk is infinite. The proof
of the forward implication did not use this assumption, so that half certainly remains
Conversely, an old result by Nakayama [7] states that for a finite-dimensional algeR
over a field, soc(RR) � RR iff soc(RR) � RR . So if RSR � RRR as (R,R)-bimodules,
thenR is certainly Frobenius, but it does not seem obvious whetherR must be symmetric
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