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Abstract

We show that the Nakayama automorphism of a Frobenius algebvar a fieldk is independent
of the field (Theorem 4). Consequently, thelual functor on leftR-modules and the bimodule
isomorphism type of the-dual of R, and hence the question of whettiers a symmetrid-algebra,
are independent df. We give a purely ring-theoretic condition that is necessary and sufficient for
a finite-dimensional algebra over an infinite field to be a symmetric algebra (Theorem 7).
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1. Introduction

Let R be a finite-dimensional algebra over a figéldThe k-dual R:= Homy (R, k) has
a natural structure as aR, R)-bimodule. We sayR is aFrobenius algebra if R ~ R as
left R-modules, andR is asymmetric k-algebra if R ~ R as(R, R)-bimodules. It is well
known thatR is isomorphic to the injective hull oR/radR as left R-modules, saR is
Frobenius iffR ~ E(g(R/radR)) as left R-modules. This purely ring-theoretic criterion
shows that the property a@t being Frobenius is independent of the figldver which we
are considerin@ as an algebra. Motivated by this property, an arbitrary artinian $irg
defined to be &robeniusring if S >~ E(5(S/radS)) as leftS-modules, and this definition
has led to a rich theory of Frobenius rings (see, for example, [3, Section 16]) that is not
dependent on the framework of linear algebra.
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The facts above naturally raise several questions. Is the propeRtpeing a symmetric
k-algebra independent &f If R is symmetric, we know by Brauer’s equivalence theorem
[3, 16.70] that thé&-dual functor Hom(—, k) from left R-modules to rightR-modules is
independent of, i.e., the two functors defined by different fields are naturally equivalent.
On the level of modules, this means that the rightmodule isomorphism type of the
k-dual of any left module; X is independent of. Do these facts remain true K is only
Frobenius? The result above shows only that the isomorphism type of the dual of the left
regular module R is independent of.

The key to all of these questions is the Nakayama automorphism, a distinguished
k-algebra automorphism of a Frobenius algeRrénat measures how fat is from being
a symmetric algebra. (The automorphism is the identitRifs symmetric.) We will show
that the Nakayama automorphism is independerit ahd derive affirmative answers to
the questions above as corollaries. We will give a purely ring-theoretic condition that is
equivalent to the property aR being symmetric at least in the case whers infinite.

We hope that this will promote a ring-theoretic development of properties of symmetric
algebras that parallels the theory of Frobenius rings.

F.G. Frobenius himself pioneered the idea of comparing an algebra with its dual
in [1]. The main properties of Frobenius algebras and symmetric algebras were developed
by Nakayama in [4-6]. They have been the subject of continued interest because of
connections to such diverse areas as group representations, topological quantum field
theories, Gorenstein rings in commutative algebra, Hopf algebras, coding theory, and the
Yang—Baxter equation. For an excellent reference on the subject, see [3].

2. The Nakayama automor phism

In this section we show that the Nakayama automorphism of a Frobenius algebra is
independent of the ground field. As a corollary to the proof, we derive a simple ring-
theoretic characterization of local symmetric algebras.

Let R be a finite-dimensional algebra over a fiéldn [3, Theorem 3.15], we have:

Theorem 1. The following are eguivalent:

(1) R isaFrobeniusalgebra, i.e, R ~ R asleft R-modules.

(2) Thereexistsalinear functional A : R — k whose kernel containsno nonzero left ideals.

(3) There exists a hyperplane H C R (i.e., a subspace of codimension 1) containing no
nonzero left ideals.

(4) There exists a nondegenerate associative bilinear form B: R x R — k. (“Associative”
means B(rs,t) = B(r, st).)

The equivalence of the first two conditions follows from takihgo be the image
of 1 under the module isomorphism and vice versa. The equivalence of the second and
fourth condition follows from definin@(r, s) := A(rs) andi(r) := B(r, 1). Since the last
condition is right—left symmetric, we could also include the right-handed analogues of the
other conditions above.
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Given one isomorphisny: R —> R, any other isomorphismy’ is obtained by
composition with an automorphism of the left regular modei, which corresponds to
right multiplication by a uniz € U (R). This affects the other conditions above as follows:
the new functional i$/ = ux : r — A(ru); the new hyperplane i#’ = ker)’ = Hu~1; and
the new form isB’(r, s) = B(r, su).

A similar theorem [3, Theorem 16.54] applies to symmekraigebras:

Theorem 2. The following are equivalent:

(1) Risasymmetric algebra, i.e, R~ R as (R, R)-bimodules.

(2) Thereexistsa functional 1 : R — k such that kerx contains no nonzero left ideals and
A(rs) = A(sr) Vr,s € R.

(3) There exists a hyperplane H C R containing the commutators [R, R] = {>_; (ris; —
siri). ri,s; € R} and containing no nonzero left ideals.

(4) There exists a nondegenerate associative symmetric bilinear formB: R x R — k.

If the conditions of Theorem 1 hold, the nondegeneracy of the fBrimplies that
there is a uniqué-linear mapo : R — R defined byB(r,s) = B(s,o(r)) Vr,s € R. Itis
easy to check that is actually ak-algebra automorphism at; we call it theNakayama
automorphism of R. ReplacingB with a new formB’ defined by the unit: gives us the
new automorphism’: r — uo (r)u—1. So the Nakayama automorphism is determined up
to composition with inner automorphisms; equivalently, it is a well-defined element of the
group of outer automorphisms &. The algebra is symmetric iF can be taken to be
the identity, iff the Nakayama automorphism determined by an arbitrary nondegenerate
associative bilinear form is an inner automorphism.

If we use the linear functional to defines instead of the fornB, theno is defined by
the equation

Ars) = A(sa(r)) (Vr,s € R).

We are now ready to prove that the Nakayama automorphism is independent of the base
field. We warm up with the local case. The argument is similar to that for the general case
but much easier, and it gives us a criterion for a local algebra to be symmetric.

Theorem 3. If R isalocal Frobeniusk-algebra then o isindependent of k.
Proof. Let k1 and k2 be two fields over whichR is a finite-dimensional algebra, and
supposes; is a Nakayama automorphism & as aki-algebra. Therr; arises from
aki-linear functionali; : R — k1 via the equation
Ai(rs) =r1(so1(r)) (Vr,s €R).
Thus, C := {d (risi — sio1(ri)): ri,si € R} C keri1. Note thatC is closed under

multiplication by any element from the centé(R), and in particular thaf is a subspace
with respect to botl; andk,.
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Now since R is local FrobeniusgR is the only principal indecomposable leR-
module, and s@ R has a simple soclg& by [3, Theorem 16.4]. TheS ¢ keri1, soS ¢ C.

SinceS andC are bothkp-subspaces, we can definéalinear functionalky: R — k2
that is 0 onC but not onS. Then sinceS ¢ kerlz, keri, contains no nonzero left ideals,
and the Nakayama automorphismof R as a Frobeniukp-algebra is defined by

Ao(rs) = Aa(so2(r)) (Vr,s €R).
In other wordsg»(r) is uniquely defined by
rs —soa(r) e kerka (Vs € R).
Butrs —so1(r) € C Ckerks (Vs), S002(r) = o1(r) Vr € R, as desired. O

The proof above gives us the promised ring-theoretic characterization of local
symmetric algebras. Recall that the propertyRobeing Frobenius ovet is independent
of k, and in fact, is equivalent to a ring-theoretic property.

Corollary 1. Let R be a local k-algebra. Then R is a symmetric k-algebra iff R is
a Frobenius k-algebra and soqgR) ¢ [R, R]. In particular, the truth of R being a
symmetric k-algebraisindependent of .

Proof. This follows from the proof of the theorem above Rfis symmetric, then we can
takeo to be the identity, s§ ¢ C = [R, R]. Conversely, ifS ¢ [R, R], then we can define
A2 as we did above to be 0 dR, R] but not onS. The resultings2 will be the identity,
proving thatR is a symmetric algebra.O

We now pass to the general case and show that the Nakayama automorphism with
respect to the two fields remains the same. This turns out to be easy if the fields are both
finite-dimensional over their intersection (necessarily a field). The case in which there is
no convenient intersection is harder and uses the assumption that the fields be infinite, so
we do not have a single proof to cover both cases.

Let R be a Frobenius ring with Jacobson radidaand R = R/J. Suppose, as above,
thatR can be considered as a finite-dimensional algebra over two differentXictohal,
with respective Nakayama automorphissasandos.

Theorem 4. The Nakayama automor phismof R is independent of the ground field.

Proof of part I. Assume that the two fields are both finite-dimensional over some common
ground field. This case can be handled by a transfer-type argument, as suggested to me by
T.Y. Lam. By passing down to the common ground field and then up again, we can reduce
to the case in whichky C kj.

Let Tr:ky — k2 be any nonzerd,-linear map. Consideringk as a Frobeniugk;-
algebra, we have &;-linear functionali;: R — k1 whose kernel contains no nonzero
left ideals. Them := Troi1: R — ko is akp-linear map, and we claim that ks also
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contains no nonzero left ideals. Indeed; & R \ {0}, then3s € R such thaf,1(sr) # 0, so
Jda € kg such that G£ Tr(ai1(sr)) = Tr(A1(asr)) = A2(asr).
Now o; (r) is defined ¥r € R) by the equation

rs —so;(r) ekerk; (Vs €R).
But keri1 C keriz, so (r € R),
rs —so1(r) e keriy Ckerdy (Vs €R),
showing thab(r) must be equal te1(r). This finishes part 1. O
For part 1l we first need two facts from linear algebra.

Lemma 1. Let U C V be finite-dimensional vector spaces over a field £ and suppose
V decomposesinto subspaces V =V1 @ V> @ --- @ V,, with each V; ¢ U. Suppose that
|k| > n. Then U can be enlarged to a hyperplane U’ suchthat V; ¢ U’ fori = 1,2, ..., n.

Proof. By enlargingU one dimension at a time, we may assume thiais maximal
with respect to the property that g € U. We claim that now dimmV /U = 1. If not,
there exist at leastk| + 1 linear subspaces df /U corresponding to one-dimensional
extensions/; D U. By the maximality ofU and the Pigeonhole principle, son is
contained in two different extensions, sély andU». But this impliesV; C U1 N U2 =U,

a contradiction. O

(The assumption that| > n cannot be omitted. A three-dimensional vector space
over the field of two elements contains the subspéce {0, (1, 1, 1)}, which cannot be
extended to a hyperplane without including one of the three coordinate axes.)

Lemma 2. Let D beadivisionring, n a positive integer, and S = M,, (D). If I C S isany
nonzero left ideal, then I +[S, S]1=S.

Proof. Let U =1 4+ [S, S] and letE;; denote the matrix units irf. Using a nonzero
element of/, we can obtain a matrix i/ that is nonzero in théi, i) position and 0
off the ith row. For alld € D andi # j, dE;j = (dE;;)(Eij) — (Eij)(dE;) e U, and
d(E;; — Ejj) = (dE;;)(Eji) — (Ej)(dE;j) € U. Repeated use of these identities shows
that an arbitrary matrix it§ is a sum of matrices ity. O

Proof of Theorem 4, part 1. We assume that there is no common ground field over which
k1 andk; are both finite-dimensional. We need this assumption only because we will need
to assume that both fields are infinite so that we can apply Lemma 1.

Fix aks-linear functional; : R — k1 with kernel H1 containing no nonzero left ideals.
Then the Nakayama automorphismmfs ak1-algebra is definedvf € R) by

rs —so1(r)e Hi (Vs € R).
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As in the proof of Theorem 3, we set

C .= {Z(ris,' — S,'G]_(V,’))Z ri,S; € R} C Hy

i

and note that is closed under multiplication from the cent&(R). In particular,C is
a subspace over both andky. Let S :=soqgR) and note that sinc€ € H;, SN C
contains no nonzero left ideals. AlsbnN C € S N Hi, which is aki-subspace of of
codimension 1. (This is because ¢in®/Hy = 1 andS N Hy # S becaused; contains no
nonzero left ideals.)

By [3, Theorem 16.14], we have an isomorphigmgS —> R, which is also an
isomorphism of leftR-modules. NowS N Hy C S contains no nonzero left ideals &,
hence no minimal left ideals, hence no nonz&gsubmodules. S@ (S N Hy) is aki-
hyperplane inR containing no nonzero left ideals.

Since R is a finite-dimensional algebra (over either field,is semisimple (by [2,
Theorem 4.14]), hence a symmetric algebra by [3, Example 16.59]. We comSitew as
a symmetricki-algebra. By Theorem & contains anothel;-hyperplaned that contains
no nonzero left ideals and contains the commutator subg@add]. Now by the discussion
following Theorem 1, we know thal = (¢(S N H1))u for someu € U (R).

Now (¢(SNC))u € (p(SN H))u=H, soU := (p(SNC))u +[R, R]1 C H. SinceH
contains no nonzero left ideals Ry U also contains no nonzero left ideals. But since both
(p(SN C))u and[R, R] areky-subspaces oR, U is akp-subspace oR. Our goal is to
enlargelU to aky-hyperplane containing no nonzero left ideals.

Let R have Artin-Wedderburn decomposititdl,, (D1) x --- x M, (D,), where the
D;’s are division rings. We decompose eakh:= M, (D;) into a sum of simple left
idealsV; ;, whereV; ; consists of matrices that are O except in jitle column. This gives
a decomposition oR into simple left ideals:

R=Vi1® @V, ® @V 1@ ®Vpp,.

Now we know that for alli, j, V; ; ¢ U. So by Lemma 1 we can enlardé to a ko-
hyperplanel’ C R while preservingV; ; ¢ U’ Vi, j. We claim thatU’ still contains no
nonzero left ideal ofR. Indeed, assume that’ does contain a nonzero left ideal &f
then it contains a minimal left ideal of one of tig’s, say R1. But U’ also contains the
commutator§R1, R1] since[R1, R1] € [R, R] € U C U’. Then by Lemma 2/’ contains
all of Ry, hence all theVy ;’s, a contradiction. S@J’ is indeed ak»-hyperplane ofR
containing no nonzero left ideals.

We now consider thé,-hyperplanel/’u~1 c R, which also contains no nonzero left
ideals of R. Moreover, sincgp(S N C))u €U € U’, we havep(SNC) € U'u~t. We
now pull U'u~1 back through the isomorphism: S — zR to get akp-hyperplane
H):= ~L(w'u=Y) c S containing no nonzero leR-submodules of, hence no nonzero
left ideals ofR. Also, sincep(SNC) C U'u1, H) containsS N C.

To finish the proof, we will extend?; to a kz-hyperplaneH, C R that containsC
and still contains no nonzero left ideals. We can then Hsdo define the Nakayama
automorphism with respect i@.
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Fig. 1.ko-subspaces aR.

To extend H;, considerS, C, H,, and R just askz-vector spaces as in Fig. 1.
DecomposeC as akp-vector space int@ = (SN C) @ C’. Then sinceC’ N S =0, we
can extend”’ to akz-vector spaces’ © C’ such thatR = S @ §'. DefineHz := H, @ 5,

a kp-hyperplane ofR since dim,(S/H,) = 1. Moreover,H, contains no nonzero left
ideals, since any nonzero left ideal € H, would contain a minimal left idegt L’ C
H>N S = H,. Most importantly,H> containsC.

We now define akp-functional A2: R — k2 with keri, = Hz. Then the Nakayama

automorphisnay of R as akp-algebra is definedvg € R) by

rs —soa(r) ekerio=Ho (Vs € R).

But sincers — so1(r) € C C H», we haveoa(r) = o1(r) for all r € R. This concludes the
proof of partll. O

3. Corollaries

We can now answer the questions posed in the introduction. We begin with a theorem
that does not require the Frobenius assumptionRLe¢ a ring that is a finite-dimensional
algebra over two field&; and k2. We denote byz9t and 9t the categories of left
R-modules and righR-modules, respectively.

Let F;: g9 — My be thek;-dual functor: F; (xX) = (X;)r := Hom. (X, k;). Let
r(Ri) g be the bimodule Hom(R, k;).

Theorem 5. g(R1)r ~ r(R2)r as bimodules iff the functors F1 and 7> are naturally
equivalent.

Proof. By Brauer’s equivalence theorem [3, 16.70]), the fundpis naturally equivalent
to the functolg; := Homg (—, Rl?i) on left R-modules, proving the forward direction. The
converse is essentially identical to [3, Theorem 16.71]. We apply the equivalenc€,

to the left R-module homomorphism, : kR — g R, wherep, is right multiplication by
some fixed- € R, as in Fig. 2. Then the map

Gi(pr) :HOmg (R, RR;) — Homg (xR, g R;)
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G1(gR) =Homg(gR, RR1) —— G2(gR) = Homg (g R, rR2)
J/Ql(pr)—r lgz(p,)_,u
G1(gR) =Homg (gR, RR1) —— G2(gR) = Homg (g R, rR2)

Fig. 2. The equivalencg, >~ G, applied top, : R R — gR.

takes « to the map (s — a(sr)) = ra, SO Gi(p,) is left multiplication by » on
Homg (g R, RI?,»). This gives us a commutative diagram of rigtvmodules as in Fig. 2.

However, Hom (xR, xR;) ~ (Ri))g as right R-modules under the isomorphism
a — a(1), so the isomorphism on the top and bottom rows )z ~ (R2)z. The
commutativity of the diagram shows that this isomorphism respects th&{efition as
well, so we havex (R1)g ~ r(R2)& as bimodules, as desiredo

To apply this theorem, let be any automorphism at and letM » be a rightR-module.
We define the twisted righR-module Mg- to be the same abelian group &swith the
R-action defined by

mxr:=mo(r) (reR, meM).

(Thanks to Mark Davis for suggesting this definition.) Now ket be a left R-module
with k-dual X := Hom(X, k). Let (X*)g denote theR-dual Hong(z X, rR), the
isomorphism type of which is, of course, independent.of

Theorem 6. Let R be a Frobenius k-algebra with Nakayama automorphismo . Then there
isanatural right R-module isomorphism Xz >~ (X*)go .

Proof. We have an isomorphisgR >~ rR, say given by 1> A. Thenvr € R,
(Ar)(s) =A(rs) = A(so (r)) = (a(r)A)(s) (Vs €R),

SoAr =o(r)A in R. Now by Brauer’'s theorem, we have a natural isomorphﬁmz

Homg (r X, g R) of right R-modules. The isomorphismR ~ z R of left R-modules then
gives us an abelian group isomorphism HgmX, g R) >~ Homg (g X, & R), which we
denote by — &. Thena is given by

&(x) = (@(x))r € R. (1)

We claim that although™” is not in general an isomorphism of rigi®-modules, it
satisfiestr = &o ~1(r). The theorem then follows by identifying with Homg (g X, r R)
and takingf : X — Homg(r X, rR) to be the inverse of ™.”

To prove the claim, let € X, r € R. Then inR, we have
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ar(x) = ((@r)(x))A by Eq. (1)
= (a(x)r)A by theR-action on Hom(z X, rR),
=a(x)(r)) by the associativity of th&-action ong R,
=a(x)(r071(r)) as shown above
= (« (x)k)a_l(r) by associativity again
= (&())o7t(r) byEq.(1)
= (&0 71())(x) by theR-action on Hom (r X, gR).

Soar = &o~1(r), proving our claim and the theoremg

Corollary 2. If R is a Frobenius k-algebra, then the k-dual functor F := Hony (—, k) :
RN — Mg isindependent of k.

Proof. Apply Theorems 4 and 6.0

Corollary 3. If R isa Frobenius k-algebra, then the bimoduleisomorphismtype of g R is
independent of k.

Proof. Apply Corollary 2 and Theorem 5.0

Corollary 3 suggests that there should be a ring-theoretic characterizatjoRzoés
a bimodule analogous to the fact thRt >~ E((R/radR)g) as rightR-modules. We do
not yet have such a characterization.

Corollary 4. If R is any finite-dimensional k-algebra, then the property of R being
a symmetric k-algebrais independent of k.

Proof. We have seen that the question of whetheris a Frobeniusk-algebra is
independent ok. Now apply Corollary 3. O

4. Ring-theoretic characterization of symmetric algebras

We have seen in Corollary 4 that the property ok-algebra being symmetric is
independent ok, suggesting that it should be equivalent to a ring-theoretic property. In
the local case, we saw in Corollary 1 that an algebra is symmetric iff its left socle is not
contained in the commutators. In the general case, we have ring-theoretic conditions for
symmetry if we assume that the ground figlg infinite.

We continue to assume thatis a finite-dimensional algebra over a fidldAs before,
let J = radR be the Jacobson radical aRd= R/J. The following theorem is similar to [3,
Theorem 16.14], which states th&tis Frobenius iff SOCRz) ~ Rz and SO€gR) ~ g R.

We usesS to denote SOk R).
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Theorem 7. Suppose k is infinite. Then R is a symmetric k-algebra iff gSg ~ grRg as
(R, R)-bimodulesand [R, R] contains no nonzero left ideals of R.

Proof. If R is symmetric, then we have a bimodule isomorphigng Ry AN RﬁR.
Consideringy as an isomorphism of lefR-modules and restricting it t§, we have an
isomorphismg : S —> soagR). Note, however, thap still respects the right action of
R on S and so¢zR). By [3, Example 3.41], we have sqeR) = {f € R: f(J) =0},
which is isomorphic as afR, R)-bimodule to Hom(R, k). But sincer is a semisimple
k-algebra, hence symmetric, HpR, k) ~ R as (R, R)-bimodules and hence also as
(R, R)-bimodules. Composing all these, we haveé RnR)-bimodule isomorphisns ~ R.

The condition or{ R, R] follows from Theorem 2, which gives uskalinear functional
AR — k such thalR, R] C kera, yet keri contains no nonzero left ideals &f

Conversely, suppose: g Sgr —5 rRg as (R, R)-bimodules and R, R] contains no
nonzero left ideals oR. We considep([R, R1N S) C R, which contains no nonzero left
ideals of R since[R, R] contains no nonzero left ideals & Moreover, we claim that
[R, R1 € ¢([R, R1NS). Indeed, lef, y € R (wherex, y € R), and suppose that= ¢ (b)
for someb € S. Then using the fact that is a bimodule isomorphism, we have

55— 3% = Tp(b) — p(b)F = ¢(xb — bx) € ¢([R, 1) C ¢ (IR, RIN ).

Sog([R, R1NS) is ak-subspace oR containing no nonzero left ideals and containing the
commutators ink. By the same argument used in the proof of Theorem 4, part I, we can
enlargep([R, R]1 N S) to ak-hyperplane/’ C R containing no nonzero left ideals. (Here
we use the fact thatis infinite.) Then we can pull back tH’ := ¢~1(U’), ak-hyperplane

of S containing[R, R] N S but containing no nonzero left ideals &f Then, again by the
same argument used in Theorem 4 (ugiRgR] in place of theC that was used there), we
can extendd’ to H, ak-hyperplane oRR containing[ R, R] but containing no nonzero left
ideals. Then by Theorem 2 is a symmetric algebra.O

| do not know if Theorem 7 holds without the assumption th# infinite. The proof
of the forward implication did not use this assumption, so that half certainly remains true.
Conversely, an old result by Nakayama [7] states that for a finite-dimensional algebra
over a field, sotrR) ~ gR iff SOC(RR) ~ Rgr. SO if gSr >~ rRr as(R, R)-bimodules,
thenR is certainly Frobenius, but it does not seem obvious whekh@ust be symmetric.
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