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Abstract

The aim of this paper is to give a recursive formula to compute the product of a line bundle with the
structure sheaf of a Schubert variety in the equivariant K-theory of a flag variety.
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1. Introduction

Let G be a complex semi-simple connected group of rank r , B ⊂ G a Borel subgroup of G,
and H ⊂ B a maximal torus of B . We denote by R[H ] the ring of representations of H and
X = G/B the flag variety of G. The H -equivariant K-theory K(H,X) of X has an R[H ]-
basis [OXw

]H indexed by W = NG(H)/H the Weyl group of G, where [OXw
]H is the class

of the structure sheaf of the Schubert variety Xw . The Schubert variety Xw ⊂ X is the closure
of the B-orbit of w ∈ W . Let h be the Lie algebra of H , we denote by ρi ∈ h∗, 1 � i � r ,
the fundamental weights, and by h∗

Z
= ⊕

1�i�r Zρi ⊂ h∗ the weight lattice which is identi-
fied canonically with X(H), the group of characters of H . Then for all λ ∈ h∗

Z
, we denote by

eλ ∈ X(H) the corresponding character, and by LX
λ the canonical line bundle over X. The torus

H acts on LX
λ , and it defines a class [LX

λ ]H in K(H,X). In fact, K(H,X) is generated as an
R[H ]-algebra by these line bundles, and then K(H,X) is canonically isomorphic to the R[H ]-
algebra (R[H ]⊗Z R[H ])/I where I = 〈f ⊗1−1⊗f | f ∈ R[H ]W 〉. More precisely, K(H,X)

is generated by the line bundles Lρ1 , . . . ,Lρr ,L−ρ1 , . . . ,L−ρr , but we do not know the relations
in terms of polynomials in these generators. If we want to understand the link between the basis
{[OXw

]H }w∈W and this presentation, it is interesting to find a “Giambelli formula” which ex-

presses [OXw
]H in terms of {[LX

λ ]H }λ∈h∗
Z

and a “Chevalley formula,” i.e. to find the coefficients

qλ
w,v ∈ R[H ] satisfying:

[
LX

λ

]H [OXw
]H =

∑
v∈W

qλ
w,v[OXv

]H .

Such a formula has been known for a long time in cohomology (see [2] in ordinary coho-
mology and [8] in equivariant cohomology). In [13] Pittie and Ram give a Chevalley formula in
ordinary K-theory for a dominant weight λ by using L–S paths. Littelmann and Seshadri gen-
eralize this formula to H -equivariant K-theory in [11]. Such a formula was first given in the
case G = SL(n,C) by Fulton and Lascoux in [7] by using “tableaux” of shape λ. In [10] Lenart
and Postnikov give a formula which works for all weights (even for non dominant weights). The
aim of this paper is to find a new algorithm to compute these coefficients qλ

w,v . Our formula is
valid for all weights. The idea of this algorithm can be found in [1] in the setting of complex
cobordism.

Let us explain our main result (Theorem 4). Let {αi}1�i�r ⊂ h∗
Z

be a system of simple roots.
We denote by {si}1�i�r ⊂ W the corresponding simple reflections.

For all simple roots α, we define two Z-linear maps T 0
α and T 1

α from R[H ] to R[H ] by

T 1
α

(
eλ

) = esαλ,



766 M. Willems / Journal of Algebra 308 (2007) 764–779
T 0
α

(
eλ

) =

⎧⎪⎨
⎪⎩

0 if λ(α∨) = 0,

eλ + eλ−α + · · · + eλ−(λ(α∨)−1)α if λ(α∨) > 0,

−eλ+α − · · · − eλ−λ(α∨)α if λ(α∨) < 0,

for all characters eλ ∈ X(H), where α∨ ∈ h is the coroot of α.
We denote by W the monoid generated by the elements {si}1�i�r with the relations s2

i = si

and the braid relations of W . We denote by T :W → W the canonical bijection (of sets) between
W and W .

Then Theorem 4 can be formulated as follows.

Theorem. Let w = si1 · · · siN be a reduced decomposition of w ∈ W as a product of simple
reflections. For all ε = (ε1, . . . , εN ) ∈ {0,1}N , we define an element v(ε) of W by

v(ε) =
∏

1�j�N
εj =1

sij ∈ W.

Then, for all weights λ ∈ h∗
Z

, and all v ∈ W , the coefficient qλ
w,v ∈ R[H ] is given by the

formula

qλ
w,v =

∑
ε∈{0,1}N
v(ε)=T (v)

T ε1
αi1

· · ·T εN
αiN

(
eλ

)
.

To apply this formula, we need to find a reduced decomposition of w ∈ W , and all solutions
in {0,1}N for the equation v(ε) = T (v).

Let us describe our strategy. We follow the same method as in [14] to find restrictions to
fixed points in equivariant cohomology and K-theory. First we describe an R[H ]-basis of the
H -equivariant K-theory of a Bott–Samelson variety Γ and we decompose the class of a line
bundle [LΓ

λ ]H in this basis. To find this formula, we use the structure of iterated fibrations with
fiber CP 1 of Bott–Samelson varieties. Then we use the standard map g :Γ → X to deduce
a Chevalley formula in K(H,X). In [5,6] Haibao Duan also used Bott–Samelson varieties to
find formulas in Schubert calculus and we used this idea in [15,16] to find similar formulas in
the equivariant setting. In these two papers we study Bott towers i.e. all varieties which have a
structure of iterated fibrations with fiber CP 1.

The paper is organized as follows.
In Section 2, we recall basic definitions on semi-simple groups and their flag varieties.
In Section 3, we recall the definition of the Bott–Samelson variety associated to a sequence of

simple roots and we define a cell decomposition of this variety. For more details on this section,
see [9,15].

In Section 4, we recall the definition of the H -equivariant K-theory of an algebraic H -variety
and we introduce the notion of restriction to fixed points which will be the main tool of our
proofs.

In Section 5, we construct an R[H ]-basis of the H -equivariant K-theory of a Bott–Samelson
variety Γ and for all λ ∈ h∗

Z
, we decompose the line bundle LΓ

λ in this basis (Theorem 2).
In Section 6, if g :Γ → X is the standard map from a Bott–Samelson variety Γ to the flag va-

riety X, we describe the morphism g∗ induced in K-theory (Theorem 3) and we deduce from this
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result the main theorem of this paper (Theorem 4) which gives a Chevalley formula in equivariant
K-theory.

In Section 7, we restrict our calculations to ordinary K-theory (Theorem 5).

2. Preliminaries and notation

2.1. Root system

Let G be a connected and simply connected complex semi-simple group of rank r . We denote
by e the neutral element of G. Let B ⊂ G be a Borel subgroup of G and H ⊂ B the Cartan
subgroup of B . We denote by h ⊂ b ⊂ g the Lie algebras of H , B and G.

We choose a system of simple roots π = {αi}1�i�r ⊂ h∗ and simple coroots π∨ =
{α∨

i }1�i�r ⊂ h, such that

b = h ⊕
⊕

α∈Δ+
gα and g = h ⊕

⊕
α∈Δ+

(gα ⊕ g−α),

where for λ ∈ h∗, gλ = {x ∈ g such that [h,x] = λ(h)x, ∀h ∈ h}, and where we define Δ+ by
Δ+ = {α ∈ ∑r

i=1 Nαi such that α �= 0 and gα �= 0}. We set Δ = Δ+ ∪ Δ− where Δ− = −Δ+.
We call Δ+ (respectively Δ−) the set of positive roots (respectively negative).

We associate to (g,h) the Weyl group W ⊂ Aut(h∗) generated by the simple reflections
{si}1�i�r defined by

∀λ ∈ h∗, si(λ) = λ − λ
(
α∨

i

)
αi.

By dualizing, we get an action of W on h.
If we denote by S the set of simple reflections, the couple (W,S) is a Coxeter system. Thus

we have a notion of Bruhat order denoted by u � v and a notion of length denoted by l(w) ∈ N.
We denote by 1 the neutral element of W .

We have Δ = Wπ , and for β = wαi ∈ Δ+, we set sβ = wsiw
−1 ∈ W (which does not depend

on the couple (w,αi) satisfying β = wαi ), and β∨ = wα∨
i ∈ h.

We define the fundamental weights ρi ∈ h∗ (1 � i � r) by

ρi

(
α∨

j

) = δi,j , for all 1 � i, j � r,

and the weight lattice h∗
Z

by

h∗
Z

=
⊕

1�i�r

Zρi ⊂ h∗.

2.2. Flag varieties

Let NG(H) be the normalizer of H in G, the quotient group NG(H)/H can be identified
to W . We set X = G/B . It is a flag variety. The group G acts on X by multiplication on the left.
This action yields an action of B and H on X. The set of fixed points of this action of H on X can
be identified to W . For w ∈ W , we define C(w) = B ∪BwB and for all simple roots α, we define
the subgroup Pα of G by Pα = C(sα). We have the Bruhat decomposition of G = ⊔

w∈W BwB
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and if we define Xw = BwB/B , then X = ∐
w∈W Xw . For all w ∈ W , the Schubert cell Xw is

isomorphic to Cl(w). Thus we get an H -equivariant cell decomposition of X where all cells have
even real dimension.

For all w ∈ W , the Schubert variety Xw is the closure of the cell Xw . It is an irreducible
H -equivariant subvariety of X of complex dimension l(w). In general Schubert varieties are not
smooth. For all w ∈ W , we have the decomposition

Xw =
∐

w′�w

Xw′ .

2.3. The monoid W

We define the monoid W as the monoid generated by the elements {si}1�i�r with the relations
s2
i = si and the braid relations of W :

⎧⎪⎨
⎪⎩

s2
i = si ,

si sj · · ·︸ ︷︷ ︸
mi,j terms

= sj si · · ·︸ ︷︷ ︸
mi,j terms

if mi,j < ∞,

where mi,j is the order of sisj in W .
We denote by T :W → W the bijection defined by T (w) = si1 · · · sil if w = si1 · · · sil is a

reduced decomposition of w (i.e. l = l(w)).

3. Bott–Samelson varieties

Let N � 1 be a positive integer. We use the notation of Section 2.

3.1. Definition

Let μ1, . . . , μN be a sequence of N simple roots (repetitions may occur). We define

Γ (μ1, . . . ,μN) = Pμ1 ×B Pμ2 ×B · · · ×B PμN
/B,

as the space of orbits of BN acting on Pμ1 × Pμ2 × · · · × PμN
by

(g1, g2, . . . , gN)(b1, b2, . . . , bN) = (
g1b1, b

−1
1 g2b2, . . . , b

−1
N−1gNbN

)
, bi ∈ B, gi ∈ Pμi

.

It is an irreducible complex projective variety of dimension N . We denote by [g1, g2, . . . , gN ]
the class of (g1, g2, . . . , gN) in Γ (μ1, . . . ,μN) and by gμi

∈ Pμi
a representative of the reflection

of NPμi
(H)/H � Z/2Z.

We define a left action of B on Γ (μ1, . . . ,μN) by

b[g1, g2, . . . , gN ] = [bg1, g2, . . . , gN ], b ∈ B, gi ∈ Pμi
.

By restricting this action to H , we get an action of H on Γ (μ1, . . . ,μN).
In the following two sections we denote Γ (μ1, . . . ,μN) by Γ .
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3.2. Cell decomposition

For ε ∈ {0,1}N , we denote by Γε ⊂ Γ the set of classes [g1, g2, . . . , gN ] satisfying for all
integers 1 � i � N

gi ∈ B if εi = 0, gi /∈ B if εi = 1.

For ε = (ε1, ε2, . . . , εN) ∈ {0,1}N , we denote by l(ε) the cardinal of {1 � i � N, εi = 1}. It
is called the length of ε. We define a partial order on {0,1}N by

ε � ε′ ⇔ (∀1 � i � N, εi = 1 ⇒ ε′
i = 1).

The following proposition is obvious.

Proposition 1.

(i) For all ε ∈ {0,1}N , Γε is a complex affine space of dimension l(ε) which is invariant under
the action of B , and this action induces a linear action of the torus H on Γε .

(ii) For all ε ∈ {0,1}N , Γ ε = ∐
ε′�ε Γε′ .

(iii) Γ = ∐
ε∈{0,1}N Γε .

(iv) For all ε ∈ {0,1}N , Γ ε can be identified with the Bott–Samelson variety Γ (μi, εi = 1) and
is an irreducible smooth subvariety of Γ .

For ε ∈ {0,1}N and 1 � i � N , we define

vi(ε) =
∏

1�j�i
εj =1

sμj
∈ W,

where, by convention,
∏

∅ = 1. We set v(ε) = vN(ε) ∈ W .
Moreover, we define the root αi(ε) ∈ Δ by

αi(ε) = vi(ε)μi.

Let Γ H be the set of fixed points of the action of H on Γ , we can identify Γ H with {0,1}N
thanks to the following lemma.

Lemma 1.

(i) Γ H � ∏
1�i�N NPμi

(H)/H � ∏
1�i�N {e, gμi

} � {0,1}N , where we identify e with 0 and
gμi

with 1.
(ii) For all ε ∈ {0,1}N , Γε is the B-orbit of ε ∈ Γ H .

(iii) For (ε, ε′) ∈ ({0,1}N)2

ε ∈ Γ ε′ ⇔ ε � ε′,

and if we denote by T ε
ε′ the tangent space to Γ ε′ at ε, then the weights of the representation

of H in T ε
ε′ are {−αi(ε)}i, ε′

i=1.
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3.3. Fibrations of Bott–Samelson varieties

For all 2 � k � N , let denote by πk :Γ (μ1, . . . ,μk) → Γ (μ1, . . . ,μk−1) the projection de-
fined by

πk

([g1, . . . , gk]
) = [g1, . . . , gk−1].

If we denote by π1 :Γ (μ1) → {point} the trivial projection, we get the following diagram:

Γ (μ1, . . . ,μN)

πN

Γ (μ1, . . . ,μN−1)

πN−1

...

π3

Γ (μ1,μ2)

π2

Γ (μ1) � CP 1

π1

{point}

where each projection πk is a fibration with fiber CP 1 (see [15] for more details).

3.4. Line bundles

We denote by X(H) the group of characters of H . For all integral weights λ ∈ h∗
Z

, we de-
note by eλ :H → S1 the corresponding character. This way we get an isomorphism between the
additive group h∗

Z
and X(H).

Since H � B/U , where U is the unipotent radical of B , we can extend to B all characters
eλ ∈ X(H) (in fact X(H) � X(B)). Then for all λ ∈ h∗

Z
, we denote by LΓ

λ the B-equivariant line
bundle over Γ defined as the space of orbits of BN acting on Pμ1 × Pμ2 × · · · × PμN

× C by

(g1, g2, . . . , gN , v)(b1, b2, . . . , bN) = (
g1b1, b

−1
1 g2b2, . . . , b

−1
N−1gNbN, eλ

(
b−1
N

)
v
)
,

bi ∈ B, gi ∈ Pμi
, v ∈ C.

4. Equivariant K-theory

Let Z be a complex algebraic H -variety, we denote by ZH ⊂ Z the set of fixed points of the
action of H on Z.
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We denote by K0(H,Z) the Grothendieck group of H -equivariant complex vector bundles of
finite rank over Z. The tensor product of vector bundles defines a product on K0(H,Z). Since
K0(H,point) � R[H ], where R[H ] = Z[X(H)] is the representation ring of the torus H , we get
a R[H ]-algebra structure on K0(H,Z).

For all H -equivariant algebraic maps g :Z1 → Z2 we denote by g∗ :K0(H,Z2) → K0(H,Z1)

the morphism of R[H ]-algebras defined by pulling back vector bundles. In particular, the inclu-
sion ZH ⊂ Z gives a morphism i∗H :K0(H,Z) → K0(H,ZH ) called restriction to fixed points.
If the set of fixed points ZH is finite, K0(H,ZH ) can be identified with F(ZH ;R[H ]) the R[H ]-
algebra of all maps f :ZH �→ R[H ] and we get a morphism i∗H :K0(H,Z) → F(ZH ;R[H ]).
Moreover, if K0(H,Z) is a free R[H ]-module, then the morphism i∗H is injective. This is an
easy consequence of the localization theorem (see [3, Section 5.10]).

If we assume that Z is a complex projective smooth H -variety, then K0(H,Z) is isomorphic
to K0(H,Z) the Grothendieck group of H -equivariant coherent sheaves on Z (see [3, Chap-
ter 5]). In this case, we identify these two groups and we denote them by K(H,Z).

For all proper H -equivariant morphisms g :Z1 → Z2, we denote by g∗ :K0(H,Z1) →
K0(H,Z2) the direct image morphism. For all H -equivariant subvarieties Z′ ⊂ Z, we denote
by [OZ′ ]H ∈ K0(H,Z) the class of i∗(OZ′) where OZ′ is the structure sheaf of Z′ and i is the
inclusion of Z′ in Z.

5. K-theory of Bott–Samelson varieties

We use the notation of Section 3. Let N be a positive integer, and let μ1, μ2, . . . , μN be a
sequence of N simple roots. Let Γ be the Bott–Samelson variety Γ = Γ (μ1,μ2, . . . ,μN). For
1 � k � N , we denote Γ (μ1, . . . ,μk) by Γ k . By convention, Γ 0 = {point}. For 1 � k � N , let
πk be the projection Γ k → Γ k−1 defined in Section 3.3.

We denote by Γ k = ∐
ε∈{0,1}k Γ k

ε the cell decomposition defined in Section 3.2. For all ε ∈
{0,1}k , let denote by Γ k

ε the closure of Γ k
ε in Γ k .

5.1. A basis of the K-theory of Bott–Samelson varieties

For all integers 1 � k � N , Γ k is a complex projective smooth H -variety, and then we denote
by K(H,Γ k) its H -equivariant K-theory.

For all ε ∈ {0,1}k , we set OH
k,ε = [OΓ k

ε
]H ∈ K(H,Γ k), and for 1 � i � k, OH

k,i = OH

k,[ik]
,

where for 1 � j � k, [ik]j = 1 − δi,j .
Since Γ k = ∐

ε∈{0,1}k Γ k
ε is a cell decomposition of Γ k , the family {OH

k,ε}ε∈{0,1}k is a R[H ]-
basis of the module K(H,Γ k). Moreover, (Γ k)H is finite and isomorphic to {0,1}k . Thus we
have the following proposition.

Proposition 2.

(i) The H -equivariant K-theory of (Γ k)H can be identified with F({0,1}k;R[H ]).
(ii) K(H,Γ k) = ⊕

ε∈{0,1}k R[H ]OH
k,ε .

(iii) The restriction to fixed points i∗H :K(H,Γ k) → F({0,1}k;R[H ]) is injective.

For all integers 1 � k � N and all λ ∈ h∗
Z

, we denote by Lk
λ the line bundle over Γ k defined in

Section 3.4 and by [Lk
λ]H its class in K(H,Γ k). For k = 0, [L0

λ]H = eλ ∈ R[H ] � K(H,point).
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We will decompose [Lk
λ]H in the R[H ]-basis {OH

k,ε}ε∈{0,1}k . For this we need restrictions to
fixed points.

5.2. Restrictions to fixed points

Proposition 3. For all integer 1 � k � N , λ ∈ h∗
Z

and (ε, ε′) ∈ ({0,1}k)2,

i∗H
([
Lk

λ

]H )
(ε) = ev(ε)λ,

i∗H
(
OH

k,ε′
)
(ε) =

{ ∏
1�i�k, ε′

i=0(1 − e−αi(ε)) if ε � ε′,
0 otherwise.

Proof. The first relation is obvious by definition of Lk
λ.

Let us prove the second relation.
If ε � ε′, the fixed point ε /∈ Γ k

ε′ , and then by the localization theorem,

i∗H
(
OH

k,ε′
)
(ε) = 0.

If ε � ε′, ε ∈ Γ k
ε′ . Since Γ k

ε′ and Γ k are smooth, we can use the self-intersection formula (see
[3, Proposition 5.4.10]) to get i∗H (OH

k,ε′)(ε) = i∗H (λ(T ∗
Γ k

ε′
Γ k))(ε), where T ∗

Γ k
ε′
Γ k is the normal

bundle of Γ k
ε′ in Γ k and for all vector bundles V , λ(V ) = ∑

0�i�dim(V )(−1)iΛi(V ).
Then Lemma 1 and the relation λ(V1 ⊕ V2) = λ(V1) ⊗ λ(V2) give us

i∗H
(
OH

k,ε′
)
(ε) =

∏
1�i�k, ε′

i=0

(
1 − e−αi(ε)

)
. �

Since i∗H is injective, we deduce the following formula.

Corollary 1. For all integers 1 � k � N and all ε ∈ {0,1}k ,

OH
k,ε =

∏
1�i�k, εi=0

OH
k,i . (1)

Remark 1. This corollary is also a consequence of the fact that

Γ k
ε =

⋂
1�i�k

ε′
i=0

Γ k

[ik]

is a transversal intersection.

5.3. Decomposition of line bundles

Theorem 1. For all integers 1 � k � N , and all λ ∈ h∗
Z

,

[
Lk

λ

]H = π∗
k

([
Lk−1

s λ

]H ) +OH
k,kπ

∗
k

([
Lk−1

λ,μ

]H )
,

μk k
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where

[
Lk−1

λ,μk

]H =

⎧⎪⎪⎨
⎪⎪⎩

0 if λ(μ∨
k ) = 0,

[Lk−1
λ ]H + [Lk−1

λ−μk
]H + · · · + [Lk−1

λ−(λ(μ∨
k )−1)μk

]H if λ(μ∨
k ) > 0,

−[Lk−1
λ+μk

]H − · · · − [Lk−1
λ−λ(μ∨

k )μk
]H if λ(μ∨

k ) < 0.

Proof. To prove this theorem, we check these relations after restriction to fixed points.
Let ε be an element of {0,1}k . We denote by ε the element of {0,1}k−1 corresponding to the

fixed point πk(ε) in Γ k−1 (by convention {0,1}0 = {0}, and v(0) = 1 ∈ W ).
If we use Proposition 3 for Γ k and Γ k−1, we find:

i∗H
([
Lk

λ

]H )
(ε) = ev(ε)λ,

i∗H
(
π∗

k

([
Lk−1

sμk
λ

]H ) +OH
k,kπ

∗
k

([
Lk−1

λ,μk

]H ))
(ε)

= ev(ε)sμk
λ + δεk,0

(
1 − e−v(ε)μk

)(
i∗H

([
Lk−1

λ,μk

]H ))
(ε).

If εk = 1, we have to check ev(ε)λ = ev(ε)sμk
λ. This is obvious since v(ε) = v(ε)sμk

.
If εk = 0, v(ε) = v(ε) and thus we have to check

eλ =

⎧⎪⎨
⎪⎩

esμk
λ if λ(μ∨

k ) = 0,

esμk
λ + (1 − e−μk )[eλ + eλ−μk + · · · + eλ−(λ(μ∨

k )−1)μk ] if λ(μ∨
k ) > 0,

esμk
λ − (1 − e−μk )[eλ+μk + · · · + eλ−λ(μ∨

k )μk ] if λ(μ∨
k ) < 0.

These relations hold since sμk
λ = λ − λ(μ∨

k )μk . �
Definition 1. Let β be a simple root, we define two Z-linear maps T 0

β and T 1
β from R[H ] to

R[H ] by

T 1
β

(
eλ

) = esβλ,

T 0
β

(
eλ

) =

⎧⎪⎨
⎪⎩

0 if λ(β∨) = 0,

eλ + eλ−β + · · · + eλ−(λ(β∨)−1)β if λ(β∨) > 0,

−eλ+β − · · · − eλ−λ(β∨)β if λ(β∨) < 0,

for all characters eλ ∈ X(H).

Remark 2. The operators T 0
β are called Demazure operators. Such operators were first defined

by Demazure in [4].
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Theorem 2. For all integers 1 � k � N and all λ ∈ h∗
Z

,

[
Lk

λ

]H =
∑

ε∈{0,1}k
Rλ,ε

μ1,...,μk
OH

k,ε,

where Rλ,ε
μ1,...,μk

= T
ε1
μ1T

ε2
μ2 · · ·T εk

μk
(eλ).

Proof. We prove this theorem by induction on k.
For k = 1, the theorem is a consequence of Theorem 1 in the case k = 1 and of the fact that

[L0
λ]H = eλ for all λ ∈ h∗

Z
.

We assume that the relation is proved for k−1 (1 � k−1 � N −1) and for all weights λ ∈ h∗
Z

.
We assume, for example, that λ(μ∨

k ) > 0. Then by Theorem 1, we get

[
Lk

λ

]H =
∑

ε∈{0,1}k−1

R
sμk

λ,ε
μ1,...,μk−1π

∗
k

(
OH

k−1,ε

) +
λ(μ∨

k )−1∑
j=0

∑
ε∈{0,1}k−1

OH
k,kR

λ−jμk,ε
μ1,...,μk−1

π∗
k

(
OH

k−1,ε

)
.

Since πk is a smooth H -equivariant morphism between smooth H -varieties, for all ε ∈
{0,1}k−1,

π∗
k

(
OH

k−1,ε

) = [O
π−1

k (Γ k−1
ε )

]H = OH
k,ε̃1,

where ε̃1 = (ε1, ε2, . . . , εk−1,1) ∈ {0,1}k . Moreover, by Corollary 1,

OH
k,kπ

∗
k

(
OH

k−1,ε

) = OH
k,kOH

k,ε̃1 = OH
k,ε̃0,

where ε̃0 = (ε1, ε2, . . . , εk−1,0) ∈ {0,1}k .
Then we get

[
Lk

λ

]H =
∑

ε∈{0,1}k
εk=1

R
sμk

λ,ε
μ1,...,μk−1OH

k,ε +
∑

ε∈{0,1}k
εk=0

λ(μ∨
k )−1∑

j=0

Rλ−jμk,ε
μ1,...,μk−1

OH
k,ε.

We obtain the statement since by definition

Rλ,ε
μ1,...,μk

=
⎧⎨
⎩

R
sμk

λ,ε
μ1,...,μk−1 if εk = 1,∑λ(μ∨

k )−1
j=0 R

λ−jμk,ε
μ1,...,μk−1 if εk = 0.

The argument works in the same way in the cases λ(μ∨
k ) = 0 and λ(μ∨

k ) < 0. �
Example 1. In type A2 (G = SL(3,C)), we decompose [LΓ

ρ1
]H in K(H,Γ ) where Γ =

Γ (α2, α1, α2).
Since ρ1(α

∨
2 ) = 0, we get

T 0
α

(
eρ1

) = 0 and T 1
α

(
eρ1

) = eρ1 .

2 2
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Since ρ1(α
∨
1 ) = 1, we find

T 0
α1

T 1
α2

(
eρ1

) = eρ1 and T 1
α1

T 1
α2

(
eρ1

) = eρ1−α1 = e−ρ1+ρ2 ,

since α1 = 2ρ1 − ρ2.
Since ρ1(α

∨
2 ) = 0 and (−ρ1 + ρ2)(α

∨
2 ) = 1, we find

T 0
α2

T 0
α1

T 1
α2

(
eρ1

) = 0, T 1
α2

T 0
α1

T 1
α2

(
eρ1

) = eρ1 ,

T 0
α2

T 1
α1

T 1
α2

(
eρ1

) = e−ρ1+ρ2, T 1
α2

T 1
α1

T 1
α2

(
eρ1

) = e−ρ1+ρ2−α2 = e−ρ2,

since α2 = −ρ1 + 2ρ2.
Then Theorem 2 gives us the following relation in K(H,Γ )

[
LΓ

ρ1

]H = e−ρ2OH
3,(1,1,1) + e−ρ1+ρ2OH

3,(0,1,1) + eρ1OH
3,(1,0,1).

Example 2. In the case G2, we decompose [LΓ
ρ2

]H in K(H,Γ ) where we take Γ =
Γ (α1, α2, α1, α2).

We compute T 1
α1

T 0
α2

T 0
α1

T 1
α2

(eρ2).
Since ρ2 = 3α1 + 2α2, and ρ2(α

∨
2 ) = 1, we get

T 1
α2

(
eρ2

) = e3α1+α2 .

Since (3α1 + α2)(α
∨
1 ) = 3, we find

T 0
α1

T 1
α2

(
eρ2

) = e3α1+α2 + e2α1+α2 + eα1+α2 .

Since (3α1 + α2)(α
∨
2 ) = −1, (2α1 + α2)(α

∨
2 ) = 0, (α1 + α2)(α

∨
2 ) = 1, we get

T 0
α2

T 0
α1

T 1
α2

(
eρ2

) = −e3α1+2α2 + eα1+α2 .

Since (3α1 + 2α2)(α
∨
1 ) = 0, (α1 + α2)(α

∨
1 ) = −1, we find

T 1
α1

T 0
α2

T 0
α1

T 1
α2

(
eρ2

) = −e3α1+2α2 + e2α1+α2 .

We compute the other terms in the same way, and we get

[
LΓ

ρ2

]H = e−3α1−α2OH
4,(1,1,1,1) + (

e−α2 + e−α1−α2 + e−2α1−α2
)
OH

4,(0,1,1,1)

+ (
e3α1+α2 + 1

)
OH

4,(1,0,1,1) − (
eα1+α2 + e2α1+α2 + e3α1+α2

)
OH

4,(0,0,1,1)

+ (
e3α1+2α2 + eα1+α2 + e−α1

)
OH

4,(1,1,0,1) + (
e2α1+α2 + eα1 + 1

)
OH

4,(0,1,0,1)

+ (−e3α1+2α2 + e2α1+α2
)
OH

4,(1,0,0,1) − e2α1+α2OH
4,(0,0,0,1)

+ eα2OH
4,(1,1,1,0) + (

e3α1+α2 + e2α1+α2 + eα1+α2
)
OH

4,(0,1,1,0) + e3α1+2α2OH
4,(1,0,1,0).
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6. Equivariant K-theory of flag varieties

6.1. Definitions

Since X is a complex irreducible smooth H -variety, we denote by K(H,X) its H -equivariant
K-theory.

For w ∈ W , we set OH
w = [OXw

]H ∈ K(H,X).

Since X = ∐
w∈W Xw is a cell decomposition of X, the family {OH

w }w∈W is a R[H ]-basis of
the module K(H,X). Moreover, XH is finite and isomorphic to W . Thus we have the following
proposition.

Proposition 4.

(i) The H -equivariant K-theory of XH can be identified with F(W ;R[H ]).
(ii) K(H,X) = ⊕

w∈W R[H ]OH
w .

(iii) The restriction to fixed points i∗H :K(H,X) → F(W ;R[H ]) is injective.

For all λ ∈ h∗
Z

, we denote by LX
λ the B-equivariant line bundle over X defined as the space of

orbits of B acting on G × C by

(g, v)b = (
gb, eλ

(
b−1)v)

, b ∈ B, g ∈ G, v ∈ C.

6.2. Link with Bott–Samelson varieties

Let μ1, . . . ,μN be a sequence of N simple roots. We set Γ = Γ (μ1, . . . ,μN) and we define
an H -equivariant map g from Γ to X by multiplication

g
([g1, . . . , gN ]) = g1 × · · · × gN [B].

For all ε ∈ {0,1}N , we define

v(ε) =
∏

1�j�N
εj =1

sμj
∈ W.

For all ε ∈ {0,1}N , we set OH
ε = OH

N,ε ∈ K(H,Γ ) (see Section 5.1). We have the following
theorem.

Theorem 3. For all ε ∈ {0,1}N ,

g∗
(
OH

ε

) = OH
T −1(v(ε))

,

where T is defined in Section 2.3.

Proof. By Theorem 8.1.13 and Corollary 8.2.3 of [9], the image of g is a Schubert variety Xw ,
where w ∈ W , and g∗(OH

ε ) = OH
w . By Lemma 2.3 of [14], w = T −1(v(ε)). �
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Example 3. In the case A2, if we take Γ = Γ (α2, α1, α2), we get the following relations:

g∗
(
OH

(0,0,0)

) = OH
1 ,

g∗
(
OH

(0,0,1)

) = OH
s2

,

g∗
(
OH

(0,1,0)

) = OH
s1

,

g∗
(
OH

(1,0,0)

) = OH
s2

,

g∗
(
OH

(1,0,1)

) = OH
s2

,

g∗
(
OH

(0,1,1)

) = OH
s1s2

,

g∗
(
OH

(1,1,0)

) = OH
s2s1

,

g∗
(
OH

(1,1,1)

) = OH
s2s1s2

.

Lemma 2. Let w = sμ1 · · · sμN
be a reduced decomposition of w ∈ W (N = l(w)). For all λ ∈ h∗

Z
,

g∗
([
LΓ

λ

]H ) = [
LX

λ

]H ×OH
w .

Proof. Since OH
(1)

= 1 ∈ K(H,Γ ) where (1) = (1,1, . . . ,1) ∈ {0,1}N , and for all λ ∈ h∗
Z

,

g∗([LX
λ ]H ) = [LΓ

λ ]H , we have

g∗
([
LΓ

λ

]H ) = g∗
(
g∗([LX

λ

]H ) ×OH
(1)

) = [
LX

λ

]H × g∗
(
OH

(1)

) = [
LX

λ

]H ×OH
w ,

where the last equality is a consequence of Theorem 3.

6.3. A Chevalley formula

Theorems 2, 3 and Lemma 2 give us the following theorem.

Theorem 4. Let w = sμ1 · · · sμN
be a reduced decomposition of w ∈ W . For all λ ∈ h∗

Z
,

[
LX

λ

]H ×OH
w =

∑
ε∈{0,1}N

Rλ,ε
μ1,...,μN

OH
T −1(v(ε))

.

Example 4. In the case A2, if we take w = s2s1s2 and λ = ρ1, Examples 1, 3 and Theorem 4
give us the following relation in K(H,X)

[
LX

ρ1

]H ×OH
s2s1s2

= LX
ρ1

= e−ρ2OH
s2s1s2

+ e−ρ1+ρ2OH
s1s2

+ eρ1OH
s2

.

Example 5. In the case G2, if we take w = s1s2s1s2 and λ = ρ2, Example 2 and Theorem 4 give
us the following relation in K(H,X)
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[
LX

ρ2

]H ×OH
s1s2s1s2

= e−3α1−α2OH
s1s2s1s2

+ (
e−α2 + e−α1−α2 + e−2α1−α2

)
OH

s2s1s2

+ (
e3α1+α2 + 1

)
OH

s1s2
+ (−eα1+α2 − e2α1+α2 − e3α1+α2

)
OH

s1s2

+ (
e3α1+2α2 + eα1+α2 + e−α1

)
OH

s1s2
+ (

e2α1+α2 + eα1 + 1
)
OH

s2

+ (−e3α1+2α2 + e2α1+α2
)
OH

s1s2
− e2α1+α2OH

s2

+ eα2OH
s1s2s1

+ (
e3α1+α2 + e2α1+α2 + eα1+α2

)
OH

s2s1
+ e3α1+2α2OH

s1

= e−3α1−α2OH
s1s2s1s2

+ (
e−α2 + e−α1−α2 + e−2α1−α2

)
OH

s2s1s2

+ eα2OH
s1s2s1

+ (
e3α1+α2 + e2α1+α2 + eα1+α2

)
OH

s2s1
+ (

e−α1 + 1
)
OH

s1s2

+ (
eα1 + 1

)
OH

s2
+ e3α1+2α2OH

s1
.

Remark 3. Since ρ2 is a dominant weight (i.e. ρ2(α
∨
i ) � 0 for all simple roots αi ), we know

that we must find positive coefficients (i.e. a linear combination of characters with positive co-
efficients, see [12]). Unfortunately, our formula is not positive. In this example, we see that we
can find negative terms and then cancellations can occur. The formulas given by Pittie and Ram
in [13] and Littelmann and Seshadri in [11] are positive. In [10] Lenart and Postnikov give a
formula which works for all weights, and which is positive for dominant weights.

7. Ordinary K-theory

We denote by ψ the forgetful map K(H,X) → K(X), where K(X) � K0(X) � K0(X) is
the ordinary K-theory of X, and by ev :R[H ] → Z the Z-linear map defined by

ev
(
eα

) = 1 for all characters eα ∈ X(H).

For all w ∈ W , we denote by Ow ∈ K(X) the class of OXw
in K(X), and for all λ ∈ h∗

Z
, we

set [LX
λ ] = ψ([LX

λ ]H ) ∈ K(X). Since ψ(OH
w ) = Ow , ψ(eα) = ev(eα), and ψ is a ring homo-

morphism, Theorem 4 gives us the following theorem.

Theorem 5. Let w = sμ1 · · · sμN
be a reduced decomposition of w ∈ W . For all λ ∈ h∗

Z
,

[
LX

λ

] ×Ow =
∑

ε∈{0,1}N
ev

(
Rλ,ε

μ1,...,μN

)
OT −1(v(ε)).

Example 6. In the case A2, if we take w = s2s1s2 and λ = ρ1, Example 4 and Theorem 5 give
us the following relation in K(X)

[
LX

ρ1

] ×Os2s1s2 = [
LX

ρ1

] = Os2s1s2 +Os1s2 +Os2 .

Example 7. In the case G2, if we take w = s1s2s1s2 and λ = ρ2, Example 5 and Theorem 5 give
us the following relation in K(X)

[
LX

ρ2

] ×Os1s2s1s2 = Os1s2s1s2 + 3Os2s1s2 +Os1s2s1 + 3Os2s1 + 2Os1s2 + 2Os2 +Os1 .

This example was computed by Pittie and Ram in [13] by using L–S paths.
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