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actions of T. Kobayashi [T. Kobayashi, J. Math. Soc. Japan 59 (2007)
669–691] for type A groups. This paper extends his results to
the exceptional groups. First, we classify a pair of Levi subgroups
(L, H) of any compact exceptional simple Lie group G such that
G = LGσ H where σ is a Chevalley–Weyl involution. This implies
that the natural L-action on the generalized flag variety G/H
is strongly visible, and likewise the H-action on G/L and the
G-action on (G × G)/(L × H) are strongly visible. Second, we find a
generalized Cartan decomposition G = LB H with B in Gσ by using
the herringbone stitch method which was introduced by Kobayashi.
Applications to multiplicity-free representations are also discussed.
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1. Introduction and statement of main results

We give a classification of a pair of Levi subgroups (L, H) of any connected compact exceptional
Lie group G such that G = LGσ H holds where σ is a Chevalley–Weyl involution of G . This can be
interpreted as a generalization of the Cartan decomposition to the non-symmetric setting. (We refer
the reader to [2–4,9,13] and references therein for some aspects of the Cartan decomposition from ge-
ometric and group theoretic viewpoints.) The motivation for considering such kind of decomposition
comes from the notion of visible action on complex manifolds, which was introduced by T. Kobayashi.
It is a geometric condition for the propagation theorem of the multiplicity-freeness property, and clas-
sification theory of (strongly) visible action has been recently made in the linear case [14], symmetric
case [10] and some other non-symmetric cases [15].

A generalization of the Cartan decomposition for symmetric pairs has been used in various
contexts including analysis on symmetric spaces, however, there was no analogous result for non-
symmetric cases before Kobayashi’s paper [9]. Motivated by visible actions on flag varieties of type A,
he introduced a generalization of the Cartan decomposition for the unitary group U(n) taking the
form:

G = LB H,

where B is a subset of the orthogonal group O(n). He completely classified a pair of Levi subgroups
(L, H) satisfying U(n) = LO(n)H , and gave a slice B explicitly for each of such pairs (L, H) by the
herringbone stitch method [9].

More generally, we consider the following problem: Let G be a connected compact Lie group, T a
maximal torus, and σ a Chevalley–Weyl involution of G with respect to T . (We recall that an involu-
tive automorphism σ of a connected compact Lie group G is said to be a Chevalley–Weyl involution
if there exists a maximal torus T of G such that σ(t) = t−1 for any t ∈ T [18].)

1) Classify all the pairs of Levi subgroups L and H with respect to t such that the multiplication
map ψ : L × Gσ × H → G is surjective.

2) Find a “good” representative B ⊂ Gσ such that G = LB H in the case ψ is surjective.

Here Gσ = {g ∈ G: σ(g) = g}. We call such a decomposition G = LB H a generalized Cartan decomposi-
tion. Let us note that the role of H and L is symmetric. The surjectivity of ψ implies that the subgroup
L acts on G/H in a (strongly) visible fashion (see Definition 6.1). At the same time the H-action on
G/L, and the diagonal G-action on (G × G)/(L × H) are strongly visible. Then the propagation the-
orem of multiplicity-freeness property [8, Theorem 4.3] leads us to three multiplicity-free theorems
(triunity à la [6]):

Restriction G ↓ L: IndG
H (Cλ)|L,

Restriction G ↓ H : IndG
L (Cλ)|H ,

Tensor product: IndG
H (Cλ) ⊗ IndG

L (Cμ).

Here IndG
H (Cλ) denotes a holomorphically induced representation of G from a unitary character Cλ

of H by the Borel–Weil theorem. See [6–8,10,11] for the general theory on the application of visible
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actions (including the vector bundle setting), and also Section 6 for an application of our results to
the exceptional groups.

For compact classical Lie groups of types B, C and D, the aforementioned problems will be treated
in separated papers (partly by using invariant theory for quivers). In this article we deal with excep-
tional Lie groups, and thus give a complete solution to the above problems for all compact Lie groups.
Here we remark that a classification of a triple (G, L, H) satisfying G = LGσ H for any connected com-
pact simple Lie group G has already been published in [17] with a sketch of the proof. This is now
the detailed version for the exceptional case.

In order to state our main results, we label the Dynkin diagrams of type E6 and type E7 following
Bourbaki [1] (see Figs. 3.2 and 3.3). For a subset Π ′ of a simple system Π , we denote by LΠ ′ the Levi
subgroup whose root system is generated by Π ′ , and by (Π ′)c for the complement of Π ′ in Π .

Theorem 1.1. Let G be a connected compact Lie group with an exceptional simple Lie algebra g, Π a simple
system of the root system Δ(gC, tC) with respect to a Cartan subalgebra t of g, and σ a Chevalley–Weyl
involution of G with respect to t. Take proper subsets Π ′ and Π ′′ of Π . Then the following two conditions are
equivalent.

(i) G = LΠ ′ Gσ LΠ ′′ .
(ii) Up to switch of Π ′ and Π ′′ , one of the below conditions is satisfied.

I. g = e6 , (Π ′)c = {αi}, (Π ′′)c = {α1,α6}, i = 1 or 6.
II. g = e6 , (Π ′)c = {αi}, (Π ′′)c = {α j}, i = 1 or 6, j 	= 4.

III. g = e7 , (Π ′)c = {α7}, (Π ′′)c = {αi}, i = 1,2 or 7.

In particular, there are no such pair (Π ′,Π ′′) for g = e8 , f4 or g2 .

Cases I, II and III amount to

I. g = e6, lΠ ′ = so(10) ⊕R, lΠ ′′ = so(8) ⊕R
2.

II. g = e6, lΠ ′ = so(10) ⊕R, lΠ ′′ = so(10) ⊕R, su(6) ⊕R or su(2) ⊕ su(5) ⊕R.
III. g = e7, lΠ ′ = e6 ⊕R, lΠ ′′ = so(12) ⊕R, su(7) ⊕R or e6 ⊕R.

As a corollary of Theorem 1.1, we obtain three kinds of multiplicity-free theorems for repre-
sentations of exceptional Lie groups (see Corollary 6.4 for the restrictions to Levi subgroups and
Corollary 6.5 for the tensor products). In the course of the proof, we find explicitly a slice B that gives
a generalized Cartan decomposition G = LΠ ′ BLΠ ′′ (see Propositions 3.2, 3.3, 3.5, 3.6, 3.8 and 3.10) by
using the herringbone stitch method [9]. The ‘slice’ B plays an important role in dealing with more
delicate cases (vector bundle cases) in the application to representation theory, which is not discussed
in this article.

Special feature of exceptional Lie groups. Here we mention some new features in dealing with excep-
tional groups, which arise both in the proof and in the main results:

• (In the proof.) In order to find explicit generalized Cartan decompositions in the exceptional case,
our argument relies on the root systems rather than matrix computations that were effectively
used in the classical case.

• (In the main results.) For all classical compact groups G , there exist pairs of proper Levi subgroups
LΠ ′ and LΠ ′′ such that the multiplication mapping LΠ ′ × Gσ × LΠ ′′ → G is surjective [9,17]. How-
ever, none of the exceptional compact Lie groups G2, F4 or E8 admits such a pair of proper Levi
subgroups. This corresponds to the representation theoretic fact (cf. [12,16] and Section 6 in this
article) that #MF f (G, L) is finite for any Levi subgroup L of G if and only if G is of type E8, F4

or G2, where MF f (G, L) is the set of equivalence classes of finite dimensional irreducible repre-
sentations π of G such that the restrictions π |L to L are multiplicity-free.
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Organization of this article. This article is organized as follows. In Section 2 we discuss a slice for
symmetric pairs. In Section 3, we give a proof of the implication (ii) ⇒ (i) together with a generalized
Cartan decomposition G = LΠ ′ BLΠ ′′ by postponing the proofs of some technical lemmas to Section 4.
In Section 4, we deal with double coset decompositions of classical Lie groups, and complete the proof
for the implication (ii) ⇒ (i). The converse implication (i) ⇒ (ii) is proved in Section 5 by using the
fact that a strongly visible action gives rise to multiplicity-free representations, and classifications of
multiplicity-free tensor product representations by P. Littelmann [12] for the maximal parabolic case
and J.R. Stembridge [16] for the general case. An application to multiplicity-free representations is
discussed in Section 6.

In the following, we denote Lie groups by capital Latin letters and their Lie algebras by corre-
sponding small German letters. Also, for a given real Lie algebra g, we denote its complexification
by gC .

2. Construction of a slice for the symmetric case

Let g be a compact Lie algebra and τ an involution of g. Then we take a τ -stable Cartan subalgebra
h of g, and write h = t⊕ a where t= hτ and a= h−τ . Here, h−τ is defined by h−τ := {X ∈ h: τ (X) =
−X}. In this section, we shall see how to construct a maximal abelian subspace of g−τ , which is fixed
by σ . We begin by the following proposition.

Proposition 2.1. Let us suppose that there exists an automorphism σ of g, which preserves a and acts on t as
the multiplication by (−1), and that the Cartan subalgebra t⊕√−1a of the non-compact dual gτ ⊕√−1g−τ

is not maximally non-compact. Then for any root vector Xβ ∈ gC of any imaginary non-compact root β , there
exists Z ∈ t such that Ad(exp(Z))(Xβ + Xβ) is fixed by σ . Here we extend σ to gC holomorphically, and X
denotes the conjugate element with respect to g for any X ∈ gC .

Proof. Since both Xβ and σ(Xβ) belong to the root subspace g−β of −β , σ(Xβ) = e
√−1θ Xβ for some

θ ∈ R. Then we take Z ∈ t satisfying β(Z) = −√−1θ/2. (Here we note that β is imaginary.) For this
Z ∈ t, we have

σ
(
Ad

(
exp(Z)

)
(Xβ + Xβ)

) = σ
(
e−

√−1θ
2 Xβ + e

−√−1θ
2 Xβ

)
= e−

√−1θ
2

(
e
√−1θ Xβ

) + e
√−1θ

2
(
e−√−1θ Xβ

)
= e

√−1θ
2 Xβ + e−

√−1θ
2 Xβ

= Ad
(
exp(Z)

)
(Xβ + Xβ).

This completes the proof. �
By using Proposition 2.1, we can give a simpler proof of the following result, which was originally

proved in [10] by Berger’s classification of semisimple symmetric pairs.

Corollary 2.2. Let us suppose that (g,gτ ) is a Hermitian symmetric pair and that a = {0}, i.e., h = t. Let σ be
a Chevalley–Weyl involution of g with respect to t. Then there exists a maximal abelian subspace of g−τ , which
is fixed by σ .

Proof. Consider the non-compact dual gτ ⊕ √−1g−τ of g with respect to τ . Since we can construct
a maximally non-compact Cartan subalgebra by a succession of the Cayley transforms from t, the
corollary follows from Proposition 2.1. Here we note that we can choose strongly orthogonal roots in
a succession of the Cayley transforms if (g,gτ ) is a Hermitian symmetric pair. �
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Remark 2.3. From the proofs of Proposition 2.1 and Corollary 2.2, we can see the following: Retain
the setting of the proof of Corollary 2.2. We let {β1, . . . , βr} be a set of imaginary non-compact roots
(with respect to t ⊗ C), which may be used in a succession of the Cayley transforms for obtaining
a σ -fixed maximal abelian subspace a of g−τ . If some roots (with respect to t ⊗ C) α1, . . . ,αs are
strongly orthogonal to βi for any i (1 � i � r), then a semisimple subalgebra whose set of simple
roots is given by {α1, . . . ,αs} centralizes a.

Remark 2.3 can help us to determine a set of simple roots of the centralizer of a in the next
section.

3. Generalized Cartan decomposition

The aim of this section is to prove that (ii) implies (i) in Theorem 1.1 (by postponding some
technical lemmas to the next section). The idea is to use the herringbone stitch method [9] that
reduces unknown decompositions for non-symmetric pairs to the known Cartan decomposition for
symmetric pairs (Fact 3.1). We divide the proof to four parts (Sections 3.1–3.4).

In the following, kss denotes the semisimple part of k and Kss the analytic subgroup of K with Lie
algebra kss for a compact Lie group K . Also, we write G1 ≈ G2 if two Lie groups G1 and G2 are locally
isomorphic.

3.1. Decompositions for the symmetric case

In this subsection, we recall a well-known fact ([4, Theorem 6.10], [13, Theorem 1]) on the Cartan
decomposition for the symmetric case, and deal with Case II with j = 1 or 6 and Case III with i = 7
in Theorem 1.1.

Fact 3.1. Let K be a connected compact Lie group with Lie algebra k, and τ and τ ′ two involutions
of K . Let H and L be subgroups of K such that

(
K τ

)
0 ⊂ L ⊂ K τ and

(
K τ ′)

0 ⊂ H ⊂ K τ ′
.

Here F0 denotes the connected component of F containing the identity element for a Lie group F .
We take a maximal abelian subspace a in

k−τ ,−τ ′ := {
X ∈ k: τ (X) = τ ′(X) = −X

}
.

Suppose that ττ ′ is semisimple on the center z of k. Then we have

K = L exp(a)H .

By combining this fact with Corollary 2.2, we immediately obtain the following (cf. [10]).

Proposition 3.2. (Case II with j = 1 or 6 and Case III with i = 7.) Let G be a connected compact Lie group, t a
Cartan subalgebra of g, σ a Chevalley–Weyl involution of G with respect to t and L, H Levi subgroups of G with
respect to a simple system of the root system Δ(gC, tC). Suppose that both L and H are Hermitian symmetric
subgroups of G. Then we have

G = L exp(a)H

where a is an abelian subspace of gσ .
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Since the surjectivity of the multiplication mapping LΠ ′ × Gσ × LΠ ′′ → G depends on neither the
coverings of the group G nor the choice of Cartan subalgebras and Chevalley–Weyl involutions, we
may and do work with connected simply connected compact exceptional Lie groups, and fix a Cartan
subalgebra and a Chevalley–Weyl involution in each of the subsections below.

3.2. Decompositions for the type E6 (non-maximal parabolic type)

In this subsection, we deal with Case I in Theorem 1.1. (See Fig. 3.1.)

Proposition 3.3. (Case I.) Let G be the connected simply connected compact simple Lie group of type E6 , t
a Cartan subalgebra of g and σ a Chevalley–Weyl involution of G with respect to t. Take two subsets Π ′ and
Π ′′ of a simple system Π as (Π ′)c = {αi} (i = 1 or 6) and (Π ′′)c = {α1,α6}. (We label the Dynkin diagram
following Bourbaki [1]. See Fig. 3.2 in Section 3.3.) Then we have

G = LΠ ′ BLΠ ′′

for a subset B ⊂ Gσ .

Proof. Let us explicitly write the root system Δ and the simple system Π of type E6 as follows (see
Plate V of [1]):

Δ = Δ(gC, tC) =
{

±εi ± ε j,
1

2

(
ε8 − ε7 − ε6 +

5∑
k=1

(−1)νkεk

)
: 1 � i < j � 5,

5∑
k=1

νk is even

}
,

Π = {αi : 1 � i � 6},
where α1 = 1

2
(ε1 + ε8) − 1

2
(ε2 + ε3 + ε4 + ε5 + ε6 + ε7), α2 = ε1 + ε2, α3 = ε2 − ε1,

α4 = ε3 − ε2, α5 = ε4 − ε3, α6 = ε5 − ε4.

We may and do assume that i = 6 since L{α1}c is conjugate to L{α6}c under the action of the Weyl
group, and hence that of Gσ [5, Theorem 6.57]. Let τ denote the involution of G , which corresponds
to LΠ ′ . By using two non-compact imaginary roots ε5 − ε4 and ε5 + ε4 for the Cayley transforms of
the compact Cartan subalgebra t of the non-compact dual gτ ⊕ √−1g−τ of g, we obtain a maximal
abelian subspace a of g−τ , which is fixed by σ (Corollary 2.2). We apply Fact 3.1 to (G, τ , τ ) as
follows.

G = Gτ exp(a)Gτ . (3.1)

Since the pair (g,gτ ) is Hermitian of non-tube type, there exists X ∈ gτ
ss such that R(Z + X) is the

center of Zgτ (a) where Z is a non-zero element of the center of gτ . Then we have the following
lemma on a representative of the double coset decomposition of Gτ

ss(≈ SO(10)) by exp(RX) · Mss and
Gτ

ss ∩ LΠ ′′ (≈ U(1) × SO(8)), where M(≈ U(4)) is the analytic subgroup of Gτ with Lie algebra Zgτ (a).

Lemma 3.4. There exists a subset B ′ of Gσ such that the multiplication mapping

(
exp(RX)Mss

) × B ′ × (
Gτ

ss ∩ LΠ ′′
) → Gτ

ss

is surjective.
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Fig. 3.1. Herringbone stitch used for LΠ ′ \ G/LΠ ′′ in Case I.

Fig. 3.2. Vogan diagrams of type E III and type E II.

We postpone the proof of this lemma to Lemma 4.1 in Section 4. The above surjection implies that
Gτ

ss = (exp(RX)Mss)B ′(Gτ
ss ∩ LΠ ′′ ), and thus we obtain

Gτ = M B ′LΠ ′′ . (3.2)

Then we put B = exp(a)B ′ , and substitute (3.2) to (3.1) as follows.

G = Gτ exp(a)
(
M B ′LΠ ′′

) = Gτ M exp(a)B ′LΠ ′′ = LΠ ′ BLΠ ′′ .

This completes the proof since B = exp(a)B ′ is contained in Gσ . �
3.3. Decompositions for type E6 (maximal parabolic type)

In this subsection, we discuss Case II with j = 2,3 or 5 in Theorem 1.1. Let G denote the con-
nected simply connected compact simple Lie group of type E6, t a Cartan subalgebra of g and σ a
Chevalley–Weyl involution of G with respect to t. We take a simple system Π of the root system
Δ(gC, tC), and two commuting involutions τ and τ ′ of gC , which preserve g and correspond to the
Vogan diagrams of type E III and type E II respectively (see Appendix C of [5]).

Then the fixed part of the involution ττ ′ is given by gττ ′ = R ⊕ so(10). Since the root system
Δ(gττ ′

C
, tC) of gττ ′

is contained in Δ(gC, tC), there exists γ ∈ Δ(gC, tC) such that {α3,α4,α5,α6, γ }
gives rise to a simple system of gττ ′

. We may and do assume that γ is connected to α4. We
take a maximal abelian subspace a of g−τ ,−τ ′

as follows: Let us explicitly write the simple system
Π(gττ ′

C
, tC) and the root system Δ(gττ ′

C
, tC) of gττ ′

C
(see Plate IV of [1]).

Π
(
gττ ′
C

, tC
) = {αi, γ : 3 � i � 6},

Δ
(
gττ ′
C

, tC
) = {± f i ± f j: 1 � i < j � 5},

where α3 = f4 − f5, α4 = f3 − f4, α5 = f2 − f3, α6 = f1 − f2, γ = f4 + f5.

Using two non-compact imaginary roots f2 + f3 and f4 + f5 for the Cayley transforms of the compact
Cartan subalgebra t of the non-compact dual gτ ,τ ′ ⊕√−1g−τ ,−τ ′

of gττ ′
, we obtain a maximal abelian

subspace a of g−τ ,−τ ′
, which is fixed by σ (Corollary 2.2). Then we consider the centralizer Z

gτ ,τ ′ (a)

of a in gτ ,τ ′
. For simplicity, we put m = Z

gτ ,τ ′ (a). We note the following decomposition of gττ ′
.

gττ ′ = gτ ,τ ′ ⊕ g−τ ,−τ ′ = RK1 ⊕ ((
gττ ′) )τ ⊕ g−τ ,−τ ′ = RK1 ⊕RK2 ⊕ (

gτ ,τ ′) ⊕ g−τ ,−τ ′
,
ss ss
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where K1 is a non-zero element of the center of gττ ′
, and K2 that of the center of ((gττ ′

)ss)
τ = u(5).

Since the pair ((gττ ′
)ss, ((g

ττ ′
)ss)

τ ) = (so(10),u(5)) is Hermitian of non-tube type, there exists K3 ∈
(gτ ,τ ′

)ss ∩ t such that R(K2 + K3) ⊕ mss gives rise to the centralizer of a in ((gττ ′
)ss)

τ . Hence we
obtain

m = RK1 ⊕R(K2 + K3) ⊕mss. (3.3)

The subalgebra gτ ′
has two simple factors su(2) and su(6). So, we write gτ ′ = g′ ⊕g′′ where g′ = su(2)

and g′′ = su(6). Then we decompose gτ ′
as follows.

gτ ′ = gτ ′,τ ⊕ gτ ′,−τ = (
g′)τ ⊕ (

g′′)τ ⊕ gτ ′,−τ = RZ1 ⊕ (
g′′)τ ⊕ gτ ′,−τ

=RZ1 ⊕RZ2 ⊕ (
gτ ,τ ′)

ss ⊕ gτ ′,−τ .

Here Z1 is a non-zero element of (g′)τ , and Z2 that of the center of (g′′)τ = u(5). Then we give
generalized Cartan decompositions for Case II with j = 2 and j = 3 or 5 separately.

3.3.1. Case II with j = 2
Proposition 3.5. (Case II with j = 2.) Let G,g, t, σ ,Π,τ and τ ′ be as in the beginning of this subsection. Take
two subsets Π ′ and Π ′′ of the simple system Π of the root system Δ(gC, tC) as (Π ′)c = {αi} and (Π ′′)c =
{α2} where i = 1 or 6. Then we have

G = LΠ ′ BLΠ ′′

for a subset B ⊂ Gσ .

Proof. Let G ′ and G ′′ be the analytic subgroups of Gτ ′
with Lie algebras g′ = su(2) and g′′ = su(6)

respectively. We apply Fact 3.1 to (G, τ , τ ′):

G = Gτ exp(a)Gτ ′ = Gτ exp(a)G ′G ′′. (3.4)

Here a is the maximal abelian subspace of g−τ ,−τ ′
, which is constructed in the above. Since (g′,RZ1)

is also a symmetric pair, we can again use Fact 3.1 as follows.

G ′ = exp(RZ1)exp
(
a′)exp(RZ1), (3.5)

where a′ is the σ -fixed one-dimensional subspace of g′ . Since the vector space RZ1 ⊕RZ2 coincides
with RK1 ⊕ RK2, there are real numbers a and b such that Z1 = aK1 + bK2. Then we have the
following equality.

(
exp(RZ1)exp

(
a′)exp(RZ1)

)
G ′′ = (

exp
(
R
(
aK1 + b(K2 + K3)

))
exp

(
a′)exp(RZ1)

)
G ′′. (3.6)

Put B = exp(a)exp(a′). By combining (3.5) and (3.6) with (3.4), we obtain

G = Gτ exp(a)G ′G ′′ by (3.4)

= Gτ exp(a)
(
exp(RZ1)exp

(
a′)exp(RZ1)

)
G ′′ by (3.5)

= Gτ exp(a)
(
exp

(
R
(
aK1 + b(K2 + K3)

))
exp

(
a′)exp(RZ1)

)
G ′′ by (3.6)

= Gτ exp
(
R
(
aK1 + b(K2 + K3)

))
exp(a)exp

(
a′)exp(RZ1)G ′′ by (3.3)

= Gτ B exp(RZ1)G ′′.
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Since exp(RZ1)G ′′ coincides with LΠ ′′ and Gτ is conjugate to LΠ ′ under the Weyl group and hence
under Gσ ([5, Theorem 6.57]), we have shown the proposition. �
3.3.2. Case II with j = 3 or 5
Proposition 3.6. (Case II with j = 3 or 5.) Let G,g, t, σ ,Π,τ and τ ′ be as in the beginning of this subsec-
tion. Take two subsets Π ′ and Π ′′ of the simple system Π of the root system Δ(gC, tC) as (Π ′)c = {αi} and
(Π ′′)c = {α j} where (i, j) = (1,3), (1,5), (6,3) or (6,5). Then we have

G = LΠ ′ BLΠ ′′

for a subset B ⊂ Gσ .

Proof. Retain the notations G ′, G ′′,a, Z1, Z2, K1, K2,a and b in the proof of Proposition 3.5. We have
the following lemma on a representative of the double coset of G ′′(≈ SU(6)) by exp(RZ2)Mss(≈ U(1)×
SU(2)2) and (G ′′)τ0 (≈ U(5)), where M is the analytic subgroup of Gτ ′

with Lie algebra m = Z
gτ ,τ ′ (a).

Lemma 3.7. There exists a subset B ′ of Gσ such that the multiplication mapping

(
exp(RZ2)Mss

) × B ′ × (
G ′′)τ

0 → G ′′

is surjective.

We postpone the proof of this lemma to Lemma 4.2 in Section 4. As in the proof of Proposition 3.5,
there are real numbers c and d such that Z2 = cK1 + dK2. Hence we have

G ′G ′′ = G ′(exp
(
R(cK1 + dK2)

)
Mss B ′(G ′′)τ

0

)
by Lemma 3.7

= exp
(
R(cK1 + dK2)

)
G ′Mss B ′(G ′′)τ

0

= exp

(
R

(
cK1 + dK2 − d

b
Z1

))
G ′Mss B ′(G ′′)τ

0 by Z1 ∈ g′

= exp(RK1)G ′Mss B ′(G ′′)τ
0 by Z1 = aK1 + bK2. (3.7)

Here, we note that a direct computation shows b 	= 0. Put B = exp(a)B ′ . Substituting (3.7) to (3.4), we
obtain

G = Gτ exp(a)G ′G ′′ by (3.4)

= Gτ exp(a)
(
exp(RK1)G ′Mss B ′(G ′′)τ

0

)
by (3.7)

= Gτ exp(RK1)Mss exp(a)B ′G ′(G ′′)τ
0 by RK1,mss ⊂ Zg(a)

= Gτ BG ′(G ′′)τ
0 .

This completes the proof since Gτ and G ′(G ′′)τ0 are conjugate to LΠ ′ and LΠ ′′ respectively by elements
of Gσ . �
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Fig. 3.3. Vogan diagrams of type E VII and type E V.

3.4. Decompositions for type E7

In this subsection we discuss Case III with i = 1 or 2 in Theorem 1.1. Let G denote the connected
simply connected compact simple Lie group of type E7, t a Cartan subalgebra of g, and σ a Chevalley–
Weyl involution of G with respect to t. We fix a simple system Π of the root system Δ(gC, tC). (For
the labeling of the Dynkin diagram, see Fig. 3.3.) We give the proofs for Case III with i = 1 and with
i = 2 separately.

3.4.1. Case III with i = 2
Proposition 3.8. (Case III with i = 2.) Let G, Π and σ be as in the beginning of this subsection. Take two
subsets Π ′ and Π ′′ of Π as (Π ′)c = {α7} and (Π ′′)c = {α2}. Then we have

G = LΠ ′ BLΠ ′′

for a subset B ⊂ Gσ .

Proof. We take two commuting involutions τ and τ ′ of gC , which preserve g and correspond to the
Vogan diagrams of type E VII and type E V respectively (see Appendix C of [5]).

Then the fixed part of the involution ττ ′ is given by gττ ′ = su(2)⊕ so(12). Let α̃ denote the small-
est root of g = e7, and β̃ that of gτ ′ = su(8). Since the root system Δ(gττ ′

C
, tC) of gττ ′

is contained in
Δ(gC, tC), there exists γ ∈ Δ(gC, tC) such that {α1,α3,α4,α5,α6, β̃, γ } gives rise to a simple system
of gττ ′

. We note that γ is connected to α3 or α5. We may and do assume that γ is connected to α5.
Then we take a maximal abelian subspace a of g−τ ,−τ ′

as follows: Let us explicitly write the simple
system Π(gττ ′

C
, tC) and the root system Δ(gττ ′

C
, tC) of gττ ′

C
(see Plate I and Plate IV of [1]).

Π
(
gττ ′
C

, tC
) = {β̃} ∪ {αi, γ : 1 � i 	= 2 � 6},

Δ
(
gττ ′
C

, tC
) = {±β̃} ∪ {±εi ± ε j: 1 � i < j � 6},

where α1 = ε1 − ε2, α3 = ε2 − ε3, α4 = ε3 − ε4, α5 = ε4 − ε5, α6 = ε5 − ε6, γ = ε5 + ε6.

By using three non-compact imaginary roots ε1 + ε2, ε3 + ε4 and ε5 + ε6 for the Cayley transforms
of the compact Cartan subalgebra t of the non-compact dual gτ ,τ ′ ⊕ √−1g−τ ,−τ ′

of gττ ′
, we obtain

a maximal abelian subspace a of g−τ ,−τ ′
, which is fixed by σ (Corollary 2.2). We apply Fact 3.1 to

(G, τ , τ ′):

G = Gτ exp(a)Gτ ′
. (3.8)

We define a subgroup M(≈ SU(2)4) to be the analytic subgroup of G with Lie algebra Z
gτ ,τ ′ (a), the

centralizer of a in gτ ,τ ′
. Then we have the following lemma on the double coset of Gτ ′

(≈ SU(8)) by
M(≈ SU(2)4) and LΠ ′′ (≈ U(7)).
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Fig. 3.4. Vogan diagrams of type E VII and type E VI.

Lemma 3.9. There exists a subset B ′ of Gσ such that the multiplication mapping

M × B ′ × LΠ ′′ → Gτ ′

is surjective.

We postpone the proof of this lemma to Lemma 4.3 in Section 4. Put B = exp(a)B ′ . Combining
Lemma 3.9 with (3.8), we obtain

G = Gτ exp(a)
(
M B ′LΠ ′′

) = Gτ M
(
exp(a)B ′)LΠ ′′ = Gτ BLΠ ′′ .

This completes the proof since Gτ = LΠ ′ . �
3.4.2. Case III with i = 1
Proposition 3.10. (Case III with i = 1.) Let G, Π and σ be as in the beginning of this subsection. Take two
subsets Π ′ and Π ′′ of the simple system Π as (Π ′)c = {α7} and (Π ′′)c = {α1}. Then we have

G = LΠ ′ BLΠ ′′

for a subset B ⊂ Gσ .

Proof. We take two commuting involutions τ and τ ′ of gC , which preserve g and correspond to the
Vogan diagrams of type E VII and type E VI respectively (see Appendix C of [5]). (See Fig. 3.4.)

Then the fixed part of the involution ττ ′ is given by gττ ′ = R⊕ e6. Let us take a maximal abelian
subspace a of g−τ ,−τ ′

, which is fixed by σ as in the proof of Proposition 3.3. We also take the σ -fixed
one-dimensional subspace a′ of the normal subalgebra su(2) of gτ ′

. Put B = exp(a)exp(a′). By the
same argument as in the proof of Proposition 3.5 (we note that ((gττ ′

)ss, ((g
ττ ′

)ss)
τ ) = (e6,R⊕so(10))

is Hermitian of non-tube type), we obtain a generalized Cartan decomposition for Case III with i = 1:

G = LΠ ′ BLΠ ′′ . �
4. Completion of the proofs in Section 3

We have postponed the proofs of double coset decompositions for some subgroups of the excep-
tional compact simple Lie groups E6 and E7, which were used in the herringbone stitch method in
the previous section. This section gives the proofs of Lemmas 3.4, 3.7 and 3.9.

All of the compact Lie groups which appear in this section are of classical type. Thus we work
on (non-symmetric) generalized Cartan decompositions in the classical case. However, we have to be
careful how they are embedded in exceptional Lie groups.
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Fig. 4.1. Dynkin diagram of type D5.

4.1. Proof of Lemma 3.4

Retain the setting in the proof of Proposition 3.3. We note that simple systems of (gτ )ss ,
(gτ )ss ∩ lΠ ′′ and Zgτ (a)ss are given by {α1,α2,α3,α4,α5}, {α2,α3,α4,α5} and {α2,α3,α4} respec-
tively (Remark 2.3), and that X ∈ (gτ )ss centralizes Zgτ (a)ss . Let {Hi}6

i=1 ⊂ tC denotes the dual basis
of {αi}6

i=1 with respect to the Killing form. Then a direct computation shows that
√−1H1 has a non-

zero coefficient in X = ∑
1�i�5 ai

√−1Hi , i.e., a1 	= 0. Now we find that Lemma 3.4 follows from the
lemma below.

Lemma 4.1. Let L be a connected compact simple Lie group of type D5 , t a Cartan subalgebra of l and σ a
Chevalley–Weyl involution of L with respect to t. We label the Dynkin diagram of type D5 as in Fig. 4.1.

We take two subsets Φ ′ and Φ ′′ of the simple system Φ = {βi: 1 � i � 5} of l as (Φ ′)c = {β1} and (Φ ′′)c =
{β1, β5}, and define a one-dimensional abelian subgroup U by U := exp(R(

∑5
i=1 ai

√−1Hi)) with a1 	= 0
where {Hi}5

i=1 denotes the dual basis of {βi}5
i=1 with respect to the Killing form. Then we have

L = U (LΦ ′′)ss B ′LΦ ′ ,

for a subset B ′ of Lσ .

Proof. It suffices to consider the case where L = SO(10). We give a matrix realization of L as follows:

L = SO(10) = {
g ∈ SL(10,C): t g J10 g = J10,

t g g = I10
}
,

where Im denotes the identity matrix and Jm is defined by a bilinear form given by

C
m ×C

m →C, (x, y) �→ t x Jm y :=
m∑

i=1

xi ym+1−i.

Here xi and yi denote the i-th entries in x and y respectively. We take a Cartan subalgebra t of l as
diagonal matrices:

t=
⊕

1�i�5

R
√−1Ai,

where Ai := Ei,i − E11−i,11−i .
We define an involutive automorphism σ of L by

σ : L → L, g �→ ḡ, (4.1)

where ḡ denotes the complex conjugate of g ∈ L. Then σ is a Chevalley–Weyl involution of L with
respect to t. Note that Lemma 4.1 is independent of the choice of a Chevalley–Weyl involution since
LΦ ′ contains exp(t), and both U and (LΦ ′′ )ss are stable under the conjugation by any element of
exp(t).
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We let {εi}1�i�5 ⊂ (t⊗R C)∗ be the dual basis of {Ai}1�i�5. Then we define a set of simple roots
Φ := {β1, . . . , β5} by

βi := εi − εi+1 (1 � i � 4), β5 := ε4 + ε5.

Since the sets of the simple roots of LΦ ′′ and LΦ ′ are given by {β2, β3, β4} and {β2, β3, β4, β5} respec-
tively, LΦ ′′ and LΦ ′ take the forms:

LΦ ′′ =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

e
√−1θ

A
J4 A J4

e−√−1θ

⎞
⎟⎟⎠ ∈ SO(10): θ ∈R, A ∈ U(4)

⎫⎪⎪⎬
⎪⎪⎭ ,

LΦ ′ =
⎧⎨
⎩

⎛
⎝ e

√−1θ

A
e−√−1θ

⎞
⎠ ∈ SO(10): θ ∈ R, A ∈ SO(8)

⎫⎬
⎭ .

Here, all the entries in the blank space are zero. We give a proof of the lemma by the herring-
bone stitch method [9]. First, we show that L = LΦ ′′ B ′LΦ ′ for a subset B ′ of Lσ . Next, we prove that
LΦ ′′ B ′LΦ ′ coincides with U · (LΦ ′′ )ss B ′LΦ ′ . Then we can see that L = U · (LΦ ′′ )ss B ′LΦ ′ holds.

Let us show the first assertion that the group L can be written as LΦ ′′ B ′LΦ ′ with B ′ ⊂ Lσ . We
define an abelian subgroup B1 by

B1 := exp

(⊕
i=1,2

R(E1,4+i − E4+i,1 − E7−i,10 + E10,7−i)

)
.

Then we have the following decomposition of L by Fact 3.1.

L = LΦ ′ B1LΦ ′ . (4.2)

We define a symmetric subgroup K of (LΦ ′ )ss and an abelian subgroup B2 by

K := SO(6) × SO(2)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

1 0
A B

e
√−1θ

e−√−1θ

C D
0 1

⎞
⎟⎟⎟⎟⎟⎠ ∈ SO(10):

(
A B
C D

)
∈ SO(6), θ ∈R

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

B2 := exp
(
R(E2,6 − E6,2 − E5,9 + E9,5)

)
.

Then we obtain the following decomposition of LΦ ′ by using Fact 3.1.

LΦ ′ = LΦ ′′ B2 K .

It is easy to see that K and Kss satisfy LΦ ′′ B2 K = LΦ ′′ B2 Kss . Thus we have

LΦ ′ = LΦ ′′ B2 Kss. (4.3)

Let us set B ′ := B2 B1. The following is a proof of the first assertion.
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Fig. 4.2. Dynkin diagram of type A5.

L = LΦ ′ B1LΦ ′ by (4.2)

= (LΦ ′′ B2 Kss)B1LΦ ′ by (4.3)

= LΦ ′′ B2 B1 KssLΦ ′ by Kss ⊂ Z L(B1)

= LΦ ′′ B ′LΦ ′ .

Then we give a proof of the second assertion, that is, we shall prove that LΦ ′′ B ′LΦ ′ coincides with
U · (LΦ ′′ )ss B ′LΦ ′ . We define one-dimensional abelian subgroup T1 by

T1 := exp
(
R

√−1(E3,3 − E8,8)
) ⊂ LΦ ′′ .

Since T1 centralizes B ′ , U · (LΦ ′′ )ss B ′LΦ ′ is equal to U · ((LΦ ′′ )ss · T1)B ′LΦ ′ , and hence to U ·
((LΦ ′ )ss ∩ LΦ ′′ )B ′LΦ ′ . Further, U · ((LΦ ′ )ss ∩ LΦ ′′ ) is equal to LΦ ′′ because a1 	= 0 (we recall that
U = exp(R

∑5
i=1 ai

√−1Hi)). Consequently we have

U (LΦ ′′)ss B ′LΦ ′ = U · ((LΦ ′)ss ∩ LΦ ′′
)

B ′LΦ ′ = LΦ ′′ B ′LΦ ′ = L.

We have finished the proof. �
4.2. Proof of Lemma 3.7

Retain the setting of Section 3.3. We note that simple systems of g′′ , (g′′)τ and Z
gτ ,τ ′ (a) are given

by {α1,α3,α4,α5,α6}, {α3,α4,α5,α6} and {α3,α5} respectively (Remark 2.3), and that RZ2 is the
center of (g′′)τ . Now we can see that Lemma 3.7 follows from the lemma below.

Lemma 4.2. Let L be a connected compact simple Lie group of type A5 . We take a Cartan subalgebra t of l and
label the Dynkin diagram of l as in Fig. 4.2.

Let k be a Levi subalgebra whose root system is generated by {β2, β3, β4, β5}. We also define a reductive
subalgebra m by m := R⊕ su(2) ⊕ su(2) where a simple system of m is given by {β2, β4} and the center of m
coincides with that of k. Denote by K and M the analytic subgroups of L with Lie algebras k and m respectively.
Then we have

L = M B ′K

for a subset B ′ of Lσ where σ is a Chevalley–Weyl involution of L with respect to t.

Proof. It suffices to consider the case where L is simply connected. We realize L = SU(6) as a matrix
group:

L = {
g ∈ SL(6,C): gt ḡ = I6

}
.

Let us take the diagonal matrices consisting of purely imaginary numbers as a Cartan subalgebra t, and
the complex conjugation as a Chevalley–Weyl involution σ of L. Here we note that both K and M are
stable under the conjugation by any element of the maximal torus exp(t) (independence of the choice
of a Chevalley–Weyl involution). We define a simple system Φ of L by Φ := {εi − εi+1: 1 � i � 5}
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Fig. 4.3. Extended Dynkin diagram of type A7.

where εi are given by εi : diag(a1, . . . ,a6) �→ ai . The Levi subgroup K and the closed subgroup M take
the forms:

K =
{(

det(A)−1

A

)
∈ L: A ∈ U(5)

}
,

M =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

a−5

aA
aB

a

⎞
⎟⎠ ∈ L: a ∈ U(1), A, B ∈ SU(2)

⎫⎪⎬
⎪⎭ .

Then we define a subset B ′ of Lσ by B ′ := B1 B2 B3 where

B1 := exp
(
R(E1,2 − E2,1)

)
, B2 := exp

(
R(E1,4 − E4,1)

)
, B3 := exp

(
R(E1,6 − E6,1)

)
.

We identify L/K with CP 5 in the natural way. Through the identification, B ′ · K/K is identified with

{[x1 : x2 : 0 : x3 : 0 : x4] ∈ CP 5: xi ∈ R (1 � i � 4)
}
.

For any z = [z1 : · · · : z6] ∈ L/K , we may and do assume that arg z1 + 5 arg z6 = 0. Then there exists
g ∈ M such that

g · z = [|z1| :
√

|z2|2 + |z3|2 : 0 :
√

|z4|2 + |z5|2 : 0 : |z6|
] ∈ B ′ · K/K .

Thus we obtain

M · B ′ · K/K = L/K . �
4.3. Proof of Lemma 3.9

Retain the setting in the proof of Proposition 3.8. Since the set of simple roots of M is given by
{α1,α4,α6, β̃} (Remark 2.3) and that of LΠ ′ by {α2}c , we can see that Lemma 3.9 is followed by the
lemma below.

Lemma 4.3. Let L be a connected compact simple Lie group of type A7 , t a Cartan subalgebra of l and σ a
Chevalley–Weyl involution of L with respect to t. We label the extended Dynkin diagram of l as in Fig. 4.3 (see
Plate I of [1]).

Define a semisimple subalgebra m by m := su(2)4 whose simple system is given by {β2, β4, β6, β̃}, and a
Levi subalgebra k by k := R ⊕ su(7) whose simple system is given by {β1}c . Let M and K denote the analytic
subgroups of L with Lie algebras m and k respectively. Then we have

L = M B ′K

for a subset B ′ of Lσ .
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Proof. It suffices to consider the case where L is simply connected. We realize L = SU(8) as a matrix
group as follows.

L = {
g ∈ SL(8,C): gt ḡ = I8

}
.

Let us take the diagonal matrices consisting of purely imaginary numbers as a Cartan subalgebra t, and
the complex conjugation as a Chevalley–Weyl involution σ of L. Then we realize K = S(U(1) × U(7))

as follows:

K =
{(

det(A)−1

A

)
∈ L: A ∈ U(7)

}
.

We define a subgroup M ′ by

M ′ =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

D1
D2

D3
D4

⎞
⎟⎠ ∈ L: Di ∈ SU(2), 1 � i � 4

⎫⎪⎬
⎪⎭ = SU(2)4,

and a subset B ′ of Lσ by B ′ := B1 B2 B3 where

B1 := exp
(
R(E1,3 − E3,1)

)
, B2 := exp

(
R(E1,5 − E5,1)

)
, B3 := exp

(
R(E1,7 − E7,1)

)
.

We identify L/K with CP 7 in the natural way. Since SU(2) acts on S2 transitively, for any z = [z1 :
· · · : z8] ∈ L/K there exists m ∈ M ′ such that

m · z = [√|z1|2 + |z2|2 : 0 :
√

|z3|2 + |z4|2 : 0 :
√

|z5|2 + |z6|2 : 0 :
√

|z7|2 + |z8|2 : 0
] ∈ B ′ · K/K .

Thus we obtain

M ′ · B ′ · K/K = L/K .

Since M ′ is conjugate to M by an element of Lσ = SO(8), the lemma follows. �
Lemmas 4.1–4.3 complete the proofs in Section 3, and therefore we have finished the proof of the

implication (ii) ⇒ (i).

5. Proof of the implication (i) ⇒ (ii) of Theorem 1.1

In this section, we prove that the list in Theorem 1.1(ii) exhausts all the triple (g, lΠ ′ , lΠ ′′ ) sat-
isfying the condition (i) in Theorem 1.1, and thus complete the proof of the remaining implication
(i) ⇒ (ii) of Theorem 1.1.

In the classical case (see [9] for type A), invariant theory for quivers was used in the proof for the
classification of G = LΠ ′ Gσ LΠ ′′ , however, it is not obvious if the method is applicable to exceptional
groups. Instead we use the general theory that strongly visible actions give rise to multiplicity-free
representations [8], and then apply the classification theorems of multiplicity-free tensor product rep-
resentations by Littelmann [12] for the maximal parabolic case and Stembridge [16] for the general
case.

Proof of the implication (i) ⇒ (ii) of Theorem 1.1. Let G be a connected simply connected compact
simple Lie group, and GC its complexification. We fix a Cartan subalgebra and a simple system Π
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of g, and denote by B the corresponding Borel subgroup of GC . For a given subset Π ′ of Π , we
write PΠ ′ ⊃ B for a parabolic subgroup whose reductive part is given by the complexification of
a Levi subgroup LΠ ′ of G (we recall that Π ′ is a simple system of LΠ ′ ). Also, we denote by ωi a
fundamental weight of G , which corresponds to a simple root αi (we label the Dynkin diagrams of
type E6 and type E7 following Bourbaki [1] as in Section 3), and by πλ a finite dimensional irreducible
representation with highest weight λ.

We let λ be a unitary character of LΠ ′ , and extend it to a holomorphic character of PΠ ′ . By
the Borel–Weil theory, we can realize the contragradient representation π∗

λ of πλ as the space of
holomorphic sections O(GC/PΠ ′ ,L−λ) of the line bundle L−λ on GC/PΠ ′ .

Let us suppose that the condition (i) holds. Then the diagonal action of G on GC/PΠ ′ × GC/PΠ ′′
is strongly visible, and thus by Fact 6.3 below and the Borel–Weil theory,

the tensor product representation π∗
λ ⊗ π∗

μ is multiplicity-free · · ·♦

where λ and μ are any unitary characters of LΠ ′ and LΠ ′′ respectively.
On the other hand, we can extract the following results from the classification theorems [12] and

[16] on when πλ ⊗ πμ is multiplicity-free for the maximal parabolic case and for the general case,
respectively.

Fact 5.1. Let gC be a complex simple Lie algebra of type E6. Let I and J be non-empty subsets of
{1,2,3,4,5,6}. Then the tensor product of μ = ∑

i∈I miωi and ν = ∑
j∈ J n jω j is multiplicity-free for

arbitrary non-negative integers mi (i ∈ I) and n j ( j ∈ J ) if and only if one of the following conditions
holds up to switch of the factors I and J .

(i) I = {1} or {6}, J = { j} with j 	= 4.
(ii) I = {1} or {6}, J = {1,6}.

Fact 5.2. Let gC be a complex simple Lie algebra of type E7. Let I and J be non-empty subsets of
{1,2,3,4,5,6,7}. Then the tensor product of μ = ∑

i∈I miωi and ν = ∑
j∈ J n jω j is multiplicity-free

for arbitrary non-negative integers mi (i ∈ I) and n j ( j ∈ J ) if and only if the following condition holds
up to switch of the factors I and J .

(i) I = {7}, J = { j} with j = 1,2 or 7.

Fact 5.3. Let gC be a complex simple Lie algebra of type E8, F4 or G2. Then there is no pair of
non-empty subsets I and J of {1, . . . , r} with r = rankg, which satisfies the following:

The tensor product of μ = ∑
i∈I miωi and ν = ∑

j∈ J n jω j is multiplicity-free for arbitrary non-
negative integers mi (i ∈ I) and n j ( j ∈ J ).

By the comparison of ♦ with Facts 5.1, 5.2 and 5.3, the triple (g,Π ′,Π ′′) must be in the list given
in Theorem 1.1(ii). Therefore the implication (i) ⇒ (ii) holds. �
6. Application to representation theory

In this section, we shall see a generalized Cartan decomposition leads to three kinds of multiplici-
ty-free representations by using the framework of visible actions (“triunity” à la [6]). The notion of
(strongly) visible actions on complex manifolds was introduced by T. Kobayashi. Let us recall the
definition [7]

Definition 6.1. We say a biholomorphic action of a Lie group G on a complex manifold D is strongly
visible if the following two conditions are satisfied:
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(1) There exists a real submanifold S such that (we call S a “slice”)

D ′ := G · S is an open subset of D.

(2) There exists an antiholomorphic diffeomorphism σ of D ′ such that

σ |S = idS , σ (G · x) = G · x for any x ∈ S.

Definition 6.2. In the above setting, we say the action of G on D is S-visible. This terminology will
be used also if S is just a subset of D .

Let G be a connected compact Lie group and L, H its Levi subgroups. Then G/L, G/H and (G ×
G)/(L × H) are complex manifolds. If the triple (G, L, H) satisfies G = LGσ H , the following three
group-actions are all strongly visible:

L � G/H, H � G/L, Δ(G)� (G × G)/(L × H).

Here Δ(G) is defined by Δ(G) := {(x, y) ∈ G × G: x = y}. The following fact [8, Theorem 4.3] leads us
to multiplicity-free representations:

Fact 6.3. Let G be a Lie group and V a G-equivariant Hermitian holomorphic vector bundle on a
connected complex manifold D . If the following three conditions from (1) to (3) are satisfied, then any
unitary representation that can be embedded in the vector space O(D,V) of holomorphic sections of
V decomposes multiplicity-freely:

(1) The action of G on D is S-visible. That is, there exist a subset S ⊂ D and an antiholomorphic
diffeomorphism σ of D ′ satisfying the conditions given in Definition 6.1. Further, there exists an
automorphism σ̂ of G such that σ(g · x) = σ̂ (g) · σ(x) for any g ∈ G and x ∈ D ′ .

(2) For any x ∈ S , the fiber Vx at x decomposes as the multiplicity-free sum of irreducible unitary
representations of the isotropy subgroup Gx . Let Vx = ⊕

1�i�n(x) V
(i)
x denote the irreducible de-

composition of Vx .
(3) σ lifts to an antiholomorphic automorphism σ̃ of V and satisfies σ̃ (V(i)

x ) = V(i)
x for any i (1 � i �

n(x)) for each x ∈ S .

By using the Borel–Weil theory together with Fact 6.3 and our generalized Cartan decompositions,
we obtain the following two corollaries of Theorem 1.1. Let G be a connected compact exceptional
simple Lie group and ωi (1 � i � rankg) its fundamental weights (we label the Dynkin diagrams
following Bourbaki [1] as in Section 3).

Corollary 6.4. If the triple (G, L, λ) is an entry in Table 6.1 or 6.2, then the restriction πλ|L of the irreducible
representation πλ of G with highest weight λ to L decomposes multiplicity-freely.

Corollary 6.5. The tensor product representation πλ ⊗ πμ of any two irreducible representations πλ and πμ

of G with highest weights λ and μ listed in Table 6.3 or 6.4 decomposes as a multiplicity-free sum of irreducible
representations of G.

We note that the condition (2) of Fact 6.3 is automatically satisfied since the fiber of a holomorphic
vector bundle is one-dimensional in the setting of the Borel–Weil theory.

Remark 6.6. Littelmann [12] classified for any simple algebraic group G over any algebraically closed
field of characteristic zero, all the pairs of maximal parabolic subgroups Pω and Pω′ corresponding



188 Y. Tanaka / Journal of Algebra 399 (2014) 170–189
Table 6.1
Maximal parabolic type.

G L λ Conditions

E6 L{αi }c aω j i = 1 or 6, j 	= 4
i 	= 4, j = 1 or 6

E7 L{αi }c aω j i = 7, j = 1,2 or 7
i = 1,2 or 7, j = 7

Here, a is arbitrary non-negative integer.

Table 6.2
Non-maximal parabolic type.

G L λ Conditions

E6 L{α1,α6}c aωi i = 1 or 6
E6 L{αi }c aω1 + bω6 i = 1 or 6

Here, a and b are arbitrary non-negative integers.

Table 6.3
Maximal parabolic type.

G (λ,μ) Conditions

E6 (aωi ,bω j) i = 1 or 6, j 	= 4
E7 (aωi ,bω j) i = 7, j = 1,2 or 7

Here, a and b are arbitrary non-negative integers.

Table 6.4
Non-maximal parabolic type.

G (λ,μ) Conditions

E6 (aω1 + bω6, cωi) i = 1 or 6

Here, a,b and c are arbitrary non-negative integers.

to fundamental weights ω and ω′ respectively such that the tensor product representation πnω ⊗
πmω′ decomposes multiplicity-freely for arbitrary non-negative integers n and m. (His classification
is exactly Table 6.3 and does not include Table 6.4 in the exceptional case.) Moreover, he found the
branching rules of πnω ⊗ πmω′ and the restriction of πnω to the maximal Levi subgroup Lω′ of Pω′
for any pair (ω,ω′) that admits a G-spherical action on G/Pω × G/Pω′ .

Remark 6.7. Stembridge [16] gave a complete list of a pair (μ,ν) of highest weights such that the
corresponding tensor product representation πμ ⊗ πν is multiplicity-free for any complex simple Lie
algebra. His method is combinatorial. He also classified all the pairs (μ, l) of highest weights and Levi
subalgebras with the restrictions πμ|l to Levi subalgebras multiplicity-free. Our approach has given a
geometric proof of a part of his work based on generalized Cartan decompositions.

We hope that further applications of Theorem 1.1 and Fact 6.3 to representation theory will be
discussed in a future paper.
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