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Fix a prime number p, and let N be a normal subgroup of
a finite p-solvable group G . Let b be a p-block of N and suppose
B is a p-block of G covering b. Let D be a defect group for
the Fong–Reynolds correspondent of B with respect to b and let
B̂ be the unique p-block of N NG (D) having defect group D and
inducing B . Suppose, further, that μ ∈ Irr(b), and let Irr0(B|μ) be
the set of irreducible characters in B of height zero that lie over μ.
We show that the number of characters in Irr0(B|μ) is equal to
the number of characters in

⋃
t Irr0(B̂|μt), where t runs through

the inertial group T of b in G . This result generalizes a theorem
of T. Okuyama and M. Wajima, which confirms the Alperin–McKay
conjecture for p-solvable groups.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Fix a prime p and let G be an arbitrary finite group. The McKay conjecture claims that, if P is a
Sylow p-subgroup of G , then G and NG(P ) have equal numbers of irreducible (complex) characters
of degree not divisible by p. Although this conjecture has been verified for many families of groups,
no general proof has yet been discovered. Perhaps, the most significant achievement concerning this
conjecture in recent years is a work by I.M. Isaacs, G. Malle and G. Navarro [6], in which they reduced
the McKay conjecture to a question about simple groups. Also, several strengthenings of the McKay
conjecture due to Isaacs and Navarro [5], Navarro [14] and A. Turull [18] have been proposed with
the hope of gaining some insight into the deeper underlying reason behind the conjecture.

Let now B be a p-block of G . Denote by Irr0(B) the set of irreducible characters in B of height
zero. The Alperin–McKay conjecture asserts that, if D is a defect group of B and B̂ is the p-block of
NG(D) which corresponds to B under the Brauer correspondence, then the numbers of characters in
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Irr0(B) and Irr0(B̂) are equal. Note that the Alperin–McKay conjecture implies the McKay conjecture
by simply summing over all of the p-blocks of maximal defect. The Alperin–McKay conjecture has
been shown to be valid for many families of groups. It was first proved for all p-solvable groups
by T. Okuyama and M. Wajima in [15]. In [17], B. Späth proves a reduction for the Alperin–McKay
conjecture in the same spirit as that for the McKay conjecture in [6].

Let N be a normal subgroup of G and let b be a p-block of N covered by B . Following [10],
a defect group D of B is an inertial defect group of B (with respect to b) if it is a defect group for the
Fong–Reynolds correspondent of B with respect to b.

Now let μ ∈ Irr(b). Write Irr0(B|μ) for the intersection Irr0(B) ∩ Irr(G|μ), where Irr(G|μ) is the
set of irreducible characters of G lying over μ. By [10, Theorem 4.4(i)], Irr0(B|μ) �= ∅ if and only if μ
is of height zero and μ extends to DN for some inertial defect group D of B . Also, when N = 1, then
μ is the trivial character of N and Irr0(B|μ) is the set of irreducible characters in B of height zero.
The aim of this paper is to prove the following generalization of Okuyama–Wajima’s result [15].

Theorem A. Let N be a normal subgroup of a p-solvable group G, and let B and b be p-blocks of G and N
respectively such that B covers b. Write T for the inertial group of b in G and let D be an inertial defect group
of B (with respect to b). If μ ∈ Irr(b) and B̂ is the unique p-block of N NG(D) with defect group D such that
B̂G = B, then |Irr0(B|μ)| = |⋃t∈T Irr0(B̂|μt)|.

Of course, by taking N = 1 in Theorem A, we recover Okuyama–Wajima’s theorem. We should,
nevertheless, mention that our proof of Theorem A depends on this result of Okuyama and Wajima.

The equality in Theorem A involves a union of sets of characters which is certainly not in general
a disjoint union. A disjoint union can be obtained as follows. Let N NT (D) act by conjugation on the
set {μt : t ∈ T }, and choose μ1 = μ, . . . ,μn , a complete set of representatives for the resulting orbits.
Then it is not hard to check that

⋃n
i=1 Irr0(B̂|μi) is a disjoint union, which equals

⋃
t∈T Irr0(B̂|μt).

Finally, we mention that the analogue of Theorem A for Brauer characters is proved in [8].

2. Navarro nuclei and vertices

Let π be a set of primes and let π ′ be the complementary set of primes. Let G be a π -separable
group. Following Isaacs [3, Section 2], a character χ ∈ Irr(G) is called π -special provided that χ(1) is
a π -number and that for every S �� G and every irreducible constituent θ of χS , the determinantal
order o(θ) of θ is a π -number. π -Special characters were first introduced and studied by D. Gajen-
dragadkar in [1].

In Section 2 of [3], an irreducible character χ is said to be π -factorable if it can be written in the
form αβ , where α is π -special and β is π ′-special. If χ ∈ Irr(G) is π -factorable, we write χπ and
χπ ′ for the π -special and π ′-special factors, respectively.

A π -factorable normal pair in G is a pair (N, θ), where N � G and θ is π -factorable. We order the
set E(G) of π -factorable normal pairs by setting (N, θ) � (M, η) if N ⊆ M and θ lies under η. The set
of maximal elements of E(G) is denoted by E∗(G).

Now let χ ∈ Irr(G). By Corollary 2.3 in [12], there is, up to G-conjugacy, a unique pair (L, ζ ) ∈
E∗(G) such that χ lies over ζ and that if (N, θ) ∈ E(G) with θ under χ , there exists an element
g ∈ G such that (N, θ g) � (L, ζ ). We call such a pair a maximal p-factorable normal pair under χ .

The nucleus via normal pairs (W , γ ) of χ is constructed by Navarro in [12] in the following manner.
If χ is π -factorable, then (W , γ ) is just (G,χ). If χ is not π -factorable, select a maximal π -factorable
normal pair (L, ζ ) under χ . Now if I is the inertial group of ζ in G , [12, Corollary 2.4] implies that
I < G . Let ψ ∈ Irr(I|ζ ) be the Clifford correspondent of χ . We recursively define the nucleus via
normal pairs of χ to be any G-conjugate of any nucleus via normal pairs of ψ . For convenience, we
will simply refer to (W , γ ) as a normal nucleus of χ .

Note that the set of normal nuclei of χ is a G-conjugacy class of pairs. Also, if (W , γ ) is a normal
nucleus for χ , then γ G = χ and γ is π -factorable.

We now let π = {p} (a single prime), so that G is p-solvable. Suppose that χ has normal nucleus
(W , γ ). If Q ∈ Sylp(W ) and δ = (γp)Q , then δ ∈ Irr(Q ) by [1, Proposition 6.1]. The pair (Q , δ) is said
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to be a vertex for χ . Since (W , γ ) is unique up to conjugacy, then so is (Q , δ). This concept of vertex
was introduced and studied by Navarro in Section 3 of [12].

If P is a p-subgroup of G and ε ∈ Irr(P ), we denote by Irr(G|P , ε) the set of irreducible characters
of G having (P , ε) as a vertex.

3. Proof of the main theorem

We begin this section by fixing a prime number p. In order to prove the main theorem we need a
number of preliminary results. The first one is quite general and easy.

Lemma 3.1. Let H be a subgroup of a finite group G, b a p-block of H and θ ∈ Irr(b). Suppose θG is irreducible
and let B be the p-block of G to which θG belongs. Then bG is defined and equals B. Moreover, if θG is of height
zero, then θ is of height zero and B and b have a common defect group.

Proof. The fact that bG is defined and bG = B is immediate from [11, Lemma 5.3.1]. Now suppose
θG is of height zero. Let P be a defect group for b. Then by Lemma 5.3.3 in [11] P is contained in
some defect group D of B . Next θ(1)p � |H : P |p and, as θG has height zero, we have |G : H |pθ(1)p =
|G : D|p . Then

|G : D|p � |G : H|p|H : P |p = |G : P |p � |G : D|p .

It follows that P = D and that θ is of height zero. �
Lemma 3.2. Let B be a p-block of a p-solvable group G and let χ ∈ Irr(B) with vertex (Q , δ). Then:

(a) Q is contained in some defect group of B.
(b) χ ∈ Irr0(B) if and only if Q is a defect group for B and δ is linear.

Proof. Let (W , γ ) be a normal nucleus of χ such that Q ∈ Sylp(W ) and δ = (γp)Q . Now let b be
the block of W to which γ belongs. Since γ is p-factorable, [16, Lemma 2.10] tells us that Q is a
defect group for b. Also, as γ G = χ , we have that bG is defined and equals B by Lemma 3.1. Then Q
is contained in some defect group D of B by [11, Lemma 5.3.3]. This proves (a).

Next, we have

χ(1)p = |G : W |pγ (1)p

= |G : Q |pγp(1)

= |G : Q |pδ(1).

Since Q ⊆ D , it is clear that |G : D|p � |G : Q |pδ(1). It follows that χ ∈ Irr0(B) if and only if Q = D
and δ(1) = 1. This clearly proves (b). �

Our proof of the main theorem relies on a result of Navarro [13]. In order to state Navarro’s
theorem, we need some terminology and notation.

Let G be a p-solvable group and let N be a normal subgroup of G . Let Q be a p-subgroup of G
and δ ∈ Irr(Q ).

Assume that Q ∩ N ∈ Sylp(N) and that δ extends to Q N . Then Q ∈ Sylp(Q N) and so by [4, The-

orem F] δ extends to a p-special character δ̃ of Q N . Furthermore, by [1, Proposition 6.1], δ̃ is the
unique p-special extension of δ to Q N .

Let μ be a p-factorable character of N . In Section 5 of [13], (N,μ, Q , δ) is called a quadruple
provided that Q ∩ N ∈ Sylp(N), μp′ is Q -invariant, δ extends to Q N and μp lies under the unique
p-special extension δ̃ of δ to Q N .
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Suppose (N,μ, Q , δ) is a quadruple. The character μ is said to be good for χ ∈ Irr(G|Q , δ) if χ
has a normal nucleus (W , γ ) such that Q ∈ Sylp(W ), (γp)Q = δ, N ⊆ W and μ lies under γ . We
write Irr(G|Q , δ,μ) for the set of all χ ∈ Irr(G|Q , δ) for which μ is good. Also, for a block B of G , we
denote by Irr(B|Q , δ,μ) the intersection Irr(B) ∩ Irr(G|Q , δ,μ). We can now state Navarro’s result.
(See [13, Theorem 5.5].)

Theorem 3.3. Let N �G, where G is p-solvable and let Q be a p-subgroup of G and δ ∈ Irr(Q ). Write NG(Q , δ)

for the inertial group of δ in NG(Q ) and suppose μ is a p-factorable character of N. If B is a p-block of G and
(N,μ, Q , δ) is a quadruple, then

∣∣Irr(B|Q , δ,μ)
∣∣ �

∑
b

∣∣Irr(b|Q , δ,μ)
∣∣,

where b runs over the p-blocks of N NG(Q , δ) inducing B.

Proposition 3.4. Let N � G, where G is p-solvable and let B and b be p-blocks of G and N respectively such
that B covers b. Let D be a defect group of B and suppose μ ∈ Irr(b) is G-invariant and p-factorable. If B̂ is the
p-block of N NG(D) with defect group D such that B̂G = B, then |Irr0(B|μ)| � |Irr0(B̂|μ)|.

Proof. Since μ is G-invariant and p-factorable, [1, Proposition 7.1] implies that both μp and μp′ are
invariant in G . Also, b is G-stable and so by Proposition 4.2 in [7], D ∩ N is a defect group of b. Now
by [16, Lemma 2.10], it follows that D ∩ N ∈ Sylp(N).

We may clearly assume that Irr0(B|μ) �= ∅. Let χ ∈ Irr0(B|μ). Then by Lemma 3.2(b), χ has ver-
tex (D, δ), where δ is linear. Let (W , γ ) be a normal nucleus for χ such that D ∈ Sylp(W ) and
(γp)D = δ. As μ is p-factorable and G-invariant, it follows by the construction of the normal nucleus
that N ⊆ W and μ lies under γ . So, in particular, μp lies under γp . Now since γp is linear, we must
have (γp)N = μp .

We have DN ⊆ W . Then, in light of [1, Proposition 6.1], the restriction (γp)DN is the unique
p-special extension δ̃ of δ to DN . Now δ̃N = μp and we have that (N,μ, D, δ) is a quadruple. Also,
notice that μ is good for χ . Hence χ ∈ Irr(B|D, δ,μ).

Let 
 = {(D, δ): (D, δ) is a vertex of some χ ∈ Irr0(B|μ)}. It is clear that NG(D) acts by conjuga-
tion on 
. Let {(D, δ1), . . . , (D, δm)} be a complete set of representatives of the orbits of this action.
Then Irr(B|D, δi,μ) �= ∅ for each i, and Irr0(B|μ) ⊆ ⋃m

i=1 Irr(B|D, δi,μ). So, in particular,

∣∣Irr0(B|μ)
∣∣ �

m∑
i=1

∣∣Irr(B|D, δi,μ)
∣∣.

For each i, write Ei for
⋃

β Irr(β|D, δi,μ), where β runs over the blocks of N NG(D, δi) inducing B .
Then, by Theorem 3.3, we have |Irr(B|D, δi,μ)| � |Ei |, for all i. Therefore

∣∣Irr0(B|μ)
∣∣ �

m∑
i=1

|Ei |. (1)

Next, we have that μp′ is invariant in DN . Then by [1, Proposition 4.3], there exists a unique
p′-special character μ̃p′ of DN that lies over μp′ , and, in fact, μ̃p′ extends μp′ .

Let i ∈ {1, . . . ,m}. Then if δ̃i is the unique p-special extension of δi to DN , we have that the
character δ̃iμ̃p′ is p-factorable. Also, in view of Theorem 5.4 in [13], Ei ⊆ Irr(N NG (D, δi)|δ̃iμ̃p′). Now
we claim that N NG(D, δi) is the inertial group Ii of δ̃iμ̃p′ in N NG(D).

Since μp′ is G-invariant and μ̃p′ is the unique p′-special character of DN over μp′ , note that μ̃p′
is invariant in N NG(D). Then, in light of [1, Proposition 7.1], it follows that Ii equals the inertial group
J i of δ̃i in N NG(D). Now to prove our claim, as N ⊆ J i , it suffices to show that J i ∩NG(D) = NG(D, δi).
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Let x ∈ NG(D). Then δ̃i
x ∈ Irr(DN) and (δ̃i

x
)D = ((δ̃i)D)x = δx

i . If x ∈ J i , we get δi = δx
i and so x ∈

NG(D, δi). Next assume x ∈ NG(D, δi). Then (δ̃i
x
)D = δi . But since δ̃i is the unique p-special extension

of δi to DN , we are forced to have δ̃i
x = δ̃i . Hence x ∈ J i . We have thus proved our claim.

Now let Fi = {θ N NG (D): θ ∈ Ei}. By Theorem 6.11 in [2], Fi ⊆ Irr(N NG (D)) and character induction
defines a bijection from Ei onto Fi . Consequently

|Fi | = |Ei |. (2)

Next, we show that Fi ⊆ Irr0(B̂|μ).
Let β be a block of N NG(D, δi) such that βG = B and Irr(β|D, δi,μ) �= ∅. Next let θ ∈

Irr(β|D, δi,μ). Then θ N NG (D) is irreducible. Let β ′ be the block of N NG(D) to which θ N NG (D) be-
longs. By Lemma 3.1, βN NG (D) is defined and equals β ′ . Also, since θ has vertex (D, δi) and βG = B ,
it follows by Lemma 3.2(a) and [11, Lemma 5.3.3] that D is a defect group for β . In addition, as
β ′ = βN NG (D) , another application of [11, Lemma 5.3.3] gives us that D is contained in some defect
group Q of β ′ .

Since βN NG (D) = β ′ and βG = B , then Lemma 5.3.4 in [11] says that β ′ G is defined and equals B .
Now, in view of Lemma 5.3.3 of [11], since D ⊆ Q and B has defect group D , we must have Q = D .
As B̂ is the unique block of N NG(D) having defect group D and such that B̂G = B , we conclude that
β ′ = B̂ . Hence θ N NG (D) ∈ Irr(B̂).

Next, as β has defect group D and θ has vertex (D, δi) with δi linear, we have θ ∈ Irr0(β) by
Lemma 3.2(b). Then

θ N NG (D)(1)p = ∣∣N NG(D) : N NG(D, δi)
∣∣

p

∣∣N NG(D, δi) : D
∣∣

p

= ∣∣N NG(D) : D
∣∣

p .

Thus θ N NG (D) ∈ Irr0(B̂).
Since μ is good for θ , we have that θ lies over μ. Hence θ N NG (D) lies over μ and we now have

θ N NG (D) ∈ Irr0(B̂|μ). This shows that Fi ⊆ Irr0(B̂|μ), as needed.
Next, we want to show that the Fi ’s are mutually disjoint. So let i, j ∈ {1, . . . ,m} and suppose

Fi ∩ F j �= ∅. Then δ̃ jμ̃p′ is N NG(D)-conjugate to δ̃iμ̃p′ and hence (in view of [1, Proposition 7.1])
δ̃ j is N NG(D)-conjugate to δ̃i . Therefore δ̃ j = δ̃i

y
for some y ∈ NG(D). Now δ j = (δ̃ j)D = ((δ̃i)D)y = δ

y
i ,

and so (D, δ j) = (D, δi)
y . We conclude then that i = j. Therefore the Fi ’s are mutually disjoint, as

wanted.
By (1) and (2), we have |Irr0(B|μ)| � ∑m

i=1 |Fi |. But
∑m

i=1 |Fi | = |⋃m
i=1 Fi | and

⋃m
i=1 Fi ⊆ Irr0(B̂|μ).

It follows that |Irr0(B|μ)| � |Irr0(B̂|μ)|, which clearly ends the proof of the proposition. �
The proof of the following result is the same as that of [9, Lemma 5.3(i)].

Lemma 3.5. Let N �G, where G is p-solvable and suppose μ ∈ Irr(N) is invariant in G. Let (W , γ ) be a normal
nucleus of μ. If S is the stabilizer of (W , γ ) in G, then G = S N, W = S ∩ N and character induction defines a
bijection of Irr(S|γ ) onto Irr(G|μ).

In the following, the assumption in Proposition 3.4 that μ is p-factorable is removed.

Proposition 3.6. Let N � G, where G is p-solvable and let B and b be p-blocks of G and N respectively such
that B covers b. Suppose B has defect group D and μ ∈ Irr(b) is G-invariant. If B̂ is the unique p-block of
N NG(D) with defect group D such that B̂G = B, then |Irr0(B|μ)| � |Irr0(B̂|μ)|.

Proof. We may assume that Irr0(B|μ) �= ∅. Let (W , γ ) be a normal nucleus for μ, and let S be the
stabilizer of (W , γ ) in G . Choose χ0 ∈ Irr0(B|μ). By Lemma 3.5, there exists θ0 ∈ Irr(S|γ ) such that
χ0 = θG

0 . Then, in view of Lemma 3.1, if β0 is the block of S to which θ0 belongs, we have that βG
0
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is defined, βG
0 = B and some G-conjugate of D is a defect group for β0. Since μ is G-invariant, any

G-conjugate of (W , γ ) is also a normal nucleus of μ. Then, by replacing (W , γ ) by a conjugate if
necessary, we may assume that D is a defect group for β0. So, in particular, D ⊆ S .

Let b′ be the block of W to which γ belongs. Since θ0 lies over γ , note that β0 covers b′ . Now let
β0, . . . , βm be all the (distinct) blocks of S covering b′ , having defect group D , and such that βG

i = B
for every i ∈ {0, . . . ,m}.

In light of Lemma 3.5 and Lemma 3.1, character induction defines an injection ι from⋃m
i=0 Irr0(βi |γ ) into Irr0(B|μ). We claim that ι is onto.
Let χ be any element of Irr0(B|μ). Then, as for χ0, there exists θ ∈ Irr(S|γ ) such that θG = χ . Let

β be the block of S to which θ belongs. It is clear that β covers b′ . Also, by Lemma 3.1, βG = B , θ has
height zero and there exists g ∈ G for which D g is a defect group of β . Now, to prove our claim, it
suffices to show that β has defect group D .

Since γ is S-invariant, the block b′ is S-stable. Then by [7, Proposition 4.2], as β0 covers b′ , D ∩ W
is a defect group for b′ . Now, since γ is p-factorable, [16, Lemma 2.10] tells us that D ∩ W ∈ Sylp(W ).
We deduce, in particular, that D ∈ Sylp(DW ). As G = N S by Lemma 3.5, we may assume that g ∈ N .
Let d ∈ D . Then dgd−1 ∈ N ∩ S . Since N ∩ S = W by Lemma 3.5, we conclude that D g ⊆ DW . But we
know that D ∈ Sylp(DW ). It follows that D g ∈ Sylp(DW ), and hence D g = D w for some w ∈ W . As
W ⊆ S , we get that D is a defect group of β , as needed.

Now ι is a bijection and so, in particular,

m∑
i=0

∣∣Irr0(βi|γ )
∣∣ = ∣∣Irr0(B|μ)

∣∣. (1)

Next for each i ∈ {0, . . . ,m}, denote by β̂i the block of W N S (D) with defect group D such that
β̂i

S = βi . By Proposition 3.4 (with S , W in place of G and N , respectively) we have

∣∣Irr0(βi|γ )
∣∣ �

∣∣Irr0(β̂i|γ )
∣∣, (2)

for all i. Also, by the remark following Lemma 3.1 in [8] and [11, Lemma 5.5.7], it is easy to see that
every β̂i covers b′ , as b′ is S-stable and βi covers b′ .

The stabilizer of (W , γ ) in N NG(D) is clearly S ∩ N NG(D). We claim that S ∩ N NG(D) = W N S(D).
First, it is clear that W N S(D) ⊆ S ∩ N NG (D). Next let x ∈ S ∩ N NG(D). If d is any element of D , we
have dx = d′ y for some d′ ∈ D and y ∈ N . Then dxd′ −1 = d′ yd′ −1 ∈ N . Also, dxd′ −1 ∈ S as D ⊆ S and
x ∈ S . Hence dxd′ −1 ∈ W . It follows that Dx ⊆ DW . Now since D ∈ Sylp(DW ), we have Dx = D v for
some v ∈ W . Therefore xv−1 ∈ N S(D) and it follows that x ∈ W N S(D). We have thus shown that
S ∩ N NG(D) = W N S(D), as claimed.

Let i ∈ {0, . . . ,m}. Since β̂i covers b′ , there exists a character τ ∈ Irr(β̂i |γ ) by [11, Lemma 5.5.8].

Then by Lemma 3.5, τ N NG (D) is irreducible, and hence β̂i
N NG (D)

is defined by Lemma 3.1. Next, we
have β̂i

S = βi and βG
i = B . Then, in view of [11, Lemma 5.3.4], β̂i

G
is defined and equals B . Now

another application of the same lemma gives us that (β̂i
N NG (D)

)G is defined and equals B . Also, since
both β̂i and B have defect group D , we deduce by Lemma 5.3.3 in [11] that D is a defect group

for β̂i
N NG (D)

. Now by the uniqueness of B̂ , we are forced to have β̂i
N NG (D) = B̂ .

Now, taking into account Lemma 3.5 and Lemma 3.1, character induction defines an injective map
from

⋃m
i=0 Irr0(β̂i |γ ) into Irr0(B̂|μ). Since β0, . . . , βm are distinct, note that the blocks β̂0, . . . , β̂m are

distinct. It follows that

m∑
i=0

∣∣Irr0(β̂i |γ )
∣∣ �

∣∣Irr0(B̂|μ)
∣∣.

Then, using (1) and (2), we finally get that |Irr0(B|μ)| � |Irr0(B̂|μ)|. The proof of the proposition is
now complete. �
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We are now ready to prove the main theorem.

Proof of Theorem A. Step 1. Our objective in this step is to show that

∣∣Irr0(B|μ)
∣∣ �

∣∣∣∣
⋃
t∈T

Irr0
(

B̂|μt)∣∣∣∣.

We may clearly assume that Irr0(B|μ) �= ∅. Let I be the inertial group of μ in G and let B T be the
Fong–Reynolds correspondent of B with respect to b.

Let χ ∈ Irr0(B|μ). Then there exists a unique irreducible character χ(I) of I lying over μ such
that χ = (χ(I))

G . Now let χ(T ) be the irreducible character (χ(I))
T . Then since χ(T ) lies over μ and

μ ∈ Irr(b), Theorem 5.5.10 in [11] implies that χ(T ) belongs to BT . Also, as BT has defect group D
and χ has height zero, note that χ(T ) is of height zero. Let β be the block of I to which χ(I) belongs.
Then Lemma 3.1 says that βT = BT (and hence βG = B), χ(I) has height zero and some T -conjugate
of D is a defect group for β . Furthermore, note that β covers b.

Choose now a minimal subset U of T such that for each χ ∈ Irr0(B|μ), there is a unique u ∈ U for
which Du is a defect group for the block of I to which χ(I) belongs. Next for each u ∈ U , write Eu for
the set of all χ ∈ Irr0(B|μ) such that χ(I) belongs to a block of I having Du as a defect group. By our
choice of the set U , it is clear that {Eu: u ∈ U } is a partition of Irr0(B|μ). Hence

∣∣Irr0(B|μ)
∣∣ =

∑
u∈U

|Eu|. (1)

Let u ∈ U and let βu,1, . . . , βu,mu be all the (distinct) blocks of I covering b, having defect group Du

and such that (βu,i)
G = B for all i ∈ {1, . . . ,mu}. By the above discussion, if χ ∈ Eu , then we have

χ(I) ∈ Irr0(βu,i|μ) for some i. It follows that |Eu| � ∑mu
i=1|Irr0(βu,i |μ)|.

Next, for each i, denote by β̂u,i the unique block of N NI (Du) having defect group Du and such that

β̂u,i
I = βu,i . By Proposition 3.6, we have |Irr0(βu,i|μ)| � |Irr0(β̂u,i|μ)| for every i. Since β̂u,1, . . . , ̂βu,mu

are distinct blocks of N NI (Du), it follows that

|Eu| �
∣∣∣∣∣

mu⋃
i=1

Irr0(β̂u,i |μ)

∣∣∣∣∣. (2)

Let i ∈ {1, . . . ,mu}. In light of the remark following Lemma 3.1 of [8], since b is I-stable and βu,i
covers b, one can easily see that β̂u,i covers b. So, in particular, there exists an irreducible character θ

of β̂u,i that lies over μ. Then, as N NI (Du) is the inertial group of μ in N NG(Du), we have θ N NG (Du) ∈
Irr(N NG(Du)) by [2, Theorem 6.11]. Now Lemma 3.1 tells us that β̂u,i

N NG (Du)
is defined.

As β̂u,i
I = βu,i and (βu,i)

G = B , we have that β̂u,i
G

is defined and equals B by [11, Lemma 5.3.4].

Next, since β̂u,i
N NG (Du)

is defined, a second application of the same lemma gives us that (β̂u,i
N NG (Du)

)G

is defined and equals B . Also, we know that both β̂u,i and B have Du as a defect group. Then by

Lemma 5.3.3 in [11], we deduce that β̂u,i
N NG (Du)

has defect group Du . However, B̂u is the only
block of N NG(Du) that has defect group Du and such that (B̂u)G = B . We are then forced to have

β̂u,i
N NG (Du) = B̂u .
By [2, Theorem 6.11], character induction defines an injection from the set

⋃mu
i=1 Irr0(β̂u,i |μ) into

Irr(N NG(Du)|μ). Now suppose η ∈ ⋃mu
i=1 Irr0(β̂u,i |μ). Then ηN NG (Du) ∈ Irr(B̂u) by Lemma 3.1. More-

over, since Du is a defect group for B̂u and for each β̂u,i , the character ηN NG (Du) is of height zero. It
follows that

∣∣∣∣∣
mu⋃

Irr0(β̂u,i |μ)

∣∣∣∣∣ �
∣∣Irr0

(
B̂u|μ)∣∣.
i=1
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But |Irr0(B̂u |μ)| = |Irr0(B̂|μu−1
)|. Then we get

∣∣∣∣∣
mu⋃
i=1

Irr0( β̂u,i |μ)

∣∣∣∣∣ �
∣∣Irr0

(
B̂|μu−1)∣∣. (3)

Now by (1), (2) and (3), we have

∣∣Irr0(B|μ)
∣∣ �

∑
u∈U

∣∣Irr0
(

B̂|μu−1)∣∣. (4)

Our next task is to show that the character sets Irr0(B̂|μu−1
) are mutually disjoint. So let u1, u2 ∈ U

and assume Irr0(B̂|μu−1
1 ) ∩ Irr0(B̂|μu−1

2 ) �= ∅. Then μu−1
2 = (μu−1

1 )g for some g ∈ NG(D). Therefore
u−1

1 gu2 ∈ I , and it follows that Du1 is I-conjugate to Du2 . Now by the choice of the set U , we must

have u1 = u2. This shows that the sets Irr0(B̂|μu−1
) are mutually disjoint.

Now
∑

u∈U |Irr0(B̂|μu−1
)| = |⋃u∈U Irr0(B̂|μu−1

)|. Since
⋃

u∈U Irr0(B̂|μu−1
) ⊆ ⋃

t∈T Irr0(B̂|μt), then
in view of (4), we conclude that |Irr0(B|μ)| � |⋃t∈T Irr0(B̂|μt)|, as needed to be shown.

Step 2. Here we show that |Irr0(B|μ)| = |⋃t∈T Irr0(B̂|μt)|. Let T act by conjugation on Irr(b), and
let μ1 = μ, . . . ,μn be a complete set of representatives for the orbits of this action.

Since B covers b, we have Irr0(B) = ⋃n
i=1 Irr0(B|μi). Next let 1 � i, j � n and suppose Irr0(B|μi) ∩

Irr0(B|μ j) �= ∅. Then μi is G-conjugate to μ j . Now, as μi,μ j ∈ Irr(b), it follows that μi is T -conjugate
to μ j . We must then have i = j. Now it holds that |Irr0(B)| = ∑n

i=1|Irr0(B|μi)|.
For each i ∈ {1, . . . ,n}, denote by Ci the character set

⋃
t∈T Irr0(B̂|μt

i ). We claim that the Ci ’s are

mutually disjoint. So let 1 � i, j � n and assume Ci ∩ C j �= ∅. Then there exist t1, t2 ∈ T such that μ
t1
i

is N NG(D)-conjugate to μ
t2
j . Since μ

t1
i ,μ

t2
j ∈ Irr(b), it follows that μ

t1
i is N NT (D)-conjugate to μ

t2
j ,

which forces i = j. This clearly proves our claim.
By Step 1, we have

∣∣Irr0(B|μi)
∣∣ � |Ci| (5)

for every i. Then

∣∣Irr0(B)
∣∣ =

n∑
i=1

∣∣Irr0(B|μi)
∣∣ �

n∑
i=1

|Ci| =
∣∣∣∣∣

n⋃
i=1

Ci

∣∣∣∣∣.

However,
⋃n

i=1 Ci ⊆ Irr0(B̂), and by Okuyama and Wajima’s theorem [15], |Irr0(B)| = |Irr0(B̂)|. It fol-
lows that

∑n
i=1|Irr0(B|μi)| = ∑n

i=1 |Ci |, and hence, in view of (5), |Irr0(B|μi)| = |Ci | for every i. This
clearly finishes the proof of the theorem. �
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