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We give an explicit proof of a Bogomolov-type inequality for c3
of reflexive sheaves on P

3. Then, using resolutions of rank-two
reflexive sheaves on P

3, we prove that the closed points of
some strata of the moduli of rank-two complexes that are both
PT-stable and dual-PT-stable can be given by the structure of
quotient stacks. Using monads, we apply the same techniques
to P

2 and obtain similar results for some strata of the moduli
of Bridgeland-stable complexes.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let X be any smooth projective threefold over k. In previous work [10, Section 4.2],
we considered the moduli functor ∐

n

M PT∩PT∗

(r,d,β,n) (1)

* Corresponding author.
E-mail addresses: jccl@alumni.stanford.edu (J. Lo), zz505@bath.ac.uk (Z. Zhang).

1 Current address: Taimali, Taiwan.
2 Current address: Department of Mathematics, University of Bath, Claverton Down, Bath, BA2 7AY,

United Kingdom.
0021-8693/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jalgebra.2013.11.013

http://dx.doi.org/10.1016/j.jalgebra.2013.11.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:jccl@alumni.stanford.edu
mailto:zz505@bath.ac.uk
http://dx.doi.org/10.1016/j.jalgebra.2013.11.013


186 J. Lo, Z. Zhang / Journal of Algebra 400 (2014) 185–218
where the points [E] of each moduli functor M PT∩PT∗

(r,d,β,n) represent complexes E ∈ Db(X)
satisfying:

E is both PT-stable and PT-dual stable, and ch(E) = (r, d, β, n).

We also observed in [10, Section 4.2] that, when r and d are both integers that are
coprime, the points of (1) are in 1–1 correspondence with pairs of the form ([F ], [QD]),
where

• [F ] is the isomorphism class of a μ-stable reflexive sheaf F on X with

(
ch0

(
F [1]

)
, ch1

(
F [1]

)
, ch2

(
F [1]

))
= (r, d, β);

• [QD] is the isomorphism class of the dual QD := RH om(Q,OX)[3] of Q, where Q

is a quotient of the 0-dimensional sheaf E xt1(F,OX).

Under this correspondence, we have F = H−1(E) and QD = H0(E) for any point [E]
of

∐
n M PT∩PT∗

(r,d,β,n) . We can therefore think of the moduli (1) as parametrising μ-stable
reflexive sheaves F , with each isomorphism class occurring with multiplicity equal to the
number of non-isomorphic quotients of E xt1(F,OX).

This paper grew out of an attempt to find a more concrete and down-to-earth descrip-
tion of the objects parametrised by the moduli stack (1), with the hope that it might
help us understand whether the stack (1) is a quotient stack. Objects in the derived
category are often considered difficult to work with, because of the presence of quasi-
isomorphisms (i.e. two very different-looking complexes can be isomorphic in the derived
category). In Sections 3 and 4, we show that isomorphisms in the derived category for
the objects in (1) can be understood as isomorphisms between diagrams in the category
of coherent sheaves.

In Section 2, we give a Bogomolov-type inequality for μ-semistable reflexive sheaves
F on P

3. We point out, that it is already known that there is a bound for ch3 in terms
of ch0, ch1 and ch2 for μ-semistable reflexive sheaves on a smooth variety over a field of
characteristic zero. This is implicit in the proof of [12, Main Theorem], for example see
also [7, Section 3] and [15]. However, we write down such an explicit bound for ch3 in
Theorem 2.1. The proof of Theorem 2.1 follows closely the ideas in [2], and is deferred
to Section 5. As an immediate consequence of this theorem, we obtain that the moduli
stack (1) is of finite type (Corollary 2.2).

In Section 3, we build on the work of Miró-Roig [13] and use particular 2-term locally
free resolutions of reflexive sheaves to prove Theorem 3.6, which says that the closed
points of certain strata of the moduli stack (1) are in bijection with the closed points of
certain quotient stacks, when X = P

3, ch0 = −2 and ch1 = 1.
In Section 4, we adapt the techniques in Section 3 from P

3 to P
2, using the results on

monads due to Jardim [4] and Jardim–Martins [5]. This culminates in Theorem 4.9, that
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the closed points of certain strata of the moduli of Bridgeland-semistable objects in D(P2)
are in bijection with the closed points of some quotient stacks. We hope that this brings
us one step closer to understanding the connections between Bridgeland stability and the
moduli of monads, a question posed at the end of the article [6] by Jardim–Miró-Roig.

Notation. All schemes will be over an algebraically closed field k of characteristic zero.
For a variety X, we will write Coh(X) to denote the category of coherent sheaves on X,
and D(X) to denote the bounded derived category of coherent sheaves. For a coherent
sheaf F on X, we write F ∗ to denote the usual sheaf dual, i.e. F ∗ := H om(F,OX). For
objects E ∈ D(X), we write E∨ to denote the derived dual, i.e. E∨ := RH om(E,OX);
we also write Hi(E) to denote the degree-i cohomology of E.

For integers i < j, we write D[i,j](X) = D
[i,j]
Coh(X)(X) to denote the category of objects

E in D(X) such that Hs(E) = 0 for all s < i and s > j. For any nonnegative integer d,
we write Coh�d(X) to denote the category of coherent sheaves on X supported in di-
mension at most d, and Coh�d to denote the category of coherent sheaves on X with
no subsheaves supported in dimension lower than d. For integers 0 � d < e, we write
〈Coh�d(X),Coh�e(X)[1]〉 to denote the extension-closed subcategory of D(X) gener-
ated by Coh�d(X) and Coh�e(X)[1]; that is, the objects in 〈Coh�d(X),Coh�e(X)[1]〉
are the complexes E such that H−1(E) ∈ Coh�e(X) and H0(E) ∈ Coh�d(X), and
Hs(E) = 0 for all s �= −1, 0.

On a smooth projective threefold X, we write D(−) to denote the dualising functor
−∨[2] = RH om(−,OX)[2].

2. A Bogomolov-type inequality for μ-semistable reflexive sheaves

We have the following Bogomolov-type inequality for ch3 of μ-semistable reflexive
sheaves on P

3:

Theorem 2.1. Let F be a μ-semistable reflexive sheaf on P
3. Writing r = ch0(F ), c1 =

ch1(F ), ch2 = ch2(F ) and ch3 = ch3(F ), we have the following bound of ch3(F ) that
only depends on ch0(F ), ch1(F ) and ch2(F ):

|ch3| < 2
(
|c1|
r

+ r + 4 − ch2 + 1
2

r∑
i=1

(
|c1|
r

+ r

)2
)

·
(
−ch2 + 1

2

r∑
j=1

(
|c1|
r

+ r

)2
)

+ n

6

(
|c1|
r

+ r + 3
)3

+
(

2|ch2| +
11
6 |c1| + r

)
, (2)

Corollary 2.2. When X = P
3, the moduli space (1) is of finite type over k.
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Proof. This follows immediately from [9, Proposition 3.4] and Theorem 2.1. �
Since the proof of Theorem 2.1 is a little long, we have placed it in Section 5.

3. Quotient stacks of stable complexes

The aim of this section is to show that the closed points of certain strata of the moduli
stack (1) can be given by the structure of quotient stacks when X = P

3, r = −2 and
c1 = 1.

3.1. When X is an arbitrary smooth projective threefold

Let us start with the following observation: for any smooth projective variety X

of dimension n over a field k, and any complex E ∈ D(X) with cohomology only in
degrees −1 and 0 such that H0(E) is supported in dimension 0, write F = H−1(E) and
Q = H0(E). Then E is represented by a class in Ext2D(X)(Q,F ), where

Ext2D(X)(Q,F ) ∼= Hom
(
Q,F [2]

)
∼= HomD(X)

(
F∨[−2], Q∨)

∼= HomD(X)
(
F∨[−2], QD

)
where QD := E xtn(Q,OX)

∼= HomD(X)
(
F∨[n− 2], QD

)
. (3)

The conditions that E ∈ D
[−1,0]
Coh(X)(X) and H0(E) is 0-dimensional are satisfied by, for

instance, complexes that are polynomial stable at the large volume limit when X is a
surface [1, Lemma 4.2], and complexes that are stable with respect to PT-stability when
X is a threefold [9, Lemma 3.3].

Now, let X be a smooth projective threefold. Write Ap to denote the subcategory
〈Coh�1(X),Coh�2(X)[1]〉 of D(X). Note that Ap is the heart of a bounded t-structure
on D(X), and is an Abelian category. When r and d are coprime integers, the points
[E] of (1) are in 1–1 correspondence with isomorphism classes of complexes E of Chern
character ch = (r, d, β, n) satisfying (see [10, Proposition 4.3]):

• E ∈ Ap;
• H−1(E) is a μ-stable reflexive sheaf;
• H0(E) is a 0-dimensional sheaf;
• the map H2(δ) is surjective, where δ is the connecting morphism in the exact triangle

in D(X)

H0(E)∨ → E∨ → H−1(E)∨[−1] δ−→ H0(E)∨[1], (4)

which is obtained by dualising the canonical exact triangle

H−1(E)[1] → E → H0(E) → H−1(E)[2]. (5)
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As a first step towards producing strata of (1) whose closed points have the structure
of quotient stacks, we consider the following two sets:

A1 =
{
E ∈ Ap: H−1(E) is reflexive, H0(E) ∈ Coh�0(X),

the map H2(δ) : E xt1
(
H−1(E),OX

)
→ H0(E) is surjective

}
and

A2 =
{
morphisms F∨[1] t−→ Q in Ap: t is a surjection in Ap,

F is a reflexive sheaf, Q ∈ Coh�0(X)
}
.

On the set A1, we define the equivalence relation ∼1 to be isomorphism in the derived
category D(X). For objects in A2 (which are morphisms in the derived category of the
form F∨[1] → Q), we say two morphisms F∨

1 [1] → Q1 and F∨
2 [1] → Q2 in Ap are

equivalent with respect to ∼2 if there is a commutative diagram in the derived category

F∨
1 [1]

∼=

Q1

∼=

F∨
2 [1] Q2

(6)

where the vertical maps are isomorphisms. We have:

Proposition 3.1. Let X be a smooth projective threefold over k. There is a bijection
between the set of equivalence classes A1/∼1 and A2/∼2.

Proof. Take an equivalence class [E] in A1/∼1, and write F = H−1(E) and Q = H0(E).
Using the canonical exact triangle (5), we can consider E as a representative of a class
in Ext2(Q,F ). The string of isomorphisms (3) with n = 3 sends the complex E to a
morphism t : F∨[1] → QD.

Consider the composition

F∨[1] c−↠H0(F∨[1]
) H2(δ)−−−−−↠H3(Q∨) = QD,

where c is the canonical morphism; this composite map is exactly the morphism t from
the previous paragraph. The composite is also a surjection in Ap, because c is a surjec-
tion in Ap, while H2(δ) is a surjection in Coh�0(X) (by the definition of A1), hence a
surjection in Ap. It is then easy to see that sending E to t gives us a well-defined function
f :A1/∼1 → A2/∼2.

Given any morphism t : F∨[1] → QD in A2, we can obtain an object E ∈ Ap with
H−1(E) ∼= F and H0(E) ∼= Q using the string of isomorphisms (3). The surjectivity of
t as a morphism in Ap implies the surjectivity of H0(t) = H2(δ). Hence f is surjective.
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Lastly, let us show the injectivity of f . Suppose two equivalence classes [E1], [E2] in
A1/∼1 are taken by f to the same equivalence class in A2/∼2. Then H−1(E1)∨[1] ∼=
H−1(E2)∨[1] and H0(E1) ∼= H0(E2). Therefore, Hi(E1) ∼= Hi(E2) for all i. Replacing
the Ei by isomorphic complexes in the derived category if necessary, we can assume
that Hi(E1) = Hi(E2) for all i. Write F = H−1(Ei) and Q′ = H3(H0(Ei)∨). That
f([E1]) = f([E2]) means there is a commutative diagram in Ap

F∨[1]
t1

∼ j1

Q′

∼ j2

F∨[1]
t2

Q′

where each ti is the morphism that f sends Ei to, and each ji is an isomorphism. Then
the E∨

i can be recovered as the cones of the morphisms ti (up to shift). Hence the Ei

must be isomorphic complexes in the derived category. Therefore, f is a bijection between
A1/∼1 and A2/∼2 as claimed. �
Remark 3.2. From the proof of Proposition 3.1, we can see that if E ∈ A1 and f sends the
equivalence class of E to that of the morphism t : F∨[1] → Q, then cone(t) is isomorphic
to E∨[3]. Hence the map A2 → A1 that takes a morphism t : F∨[1] → Q to the object
cone(t)[−1] induces the inverse of f .

Let us define

As
1(ch0, ch1, ch2) :=

{
E ∈ A1: H−1(E) is μ-stable, and

chi

(
H−1(E)

)
= chi for 0 � i � 2

}
;

As
2(ch0, ch1, ch2) :=

{
F∨[1] t−→ Q in A2: F is μ-stable, and

chi(F ) = chi for 0 � i � 2
}
.

Then Proposition 3.1 immediately gives us a bijection

As
1(ch0, ch1, ch2)/∼1 ↔ As

2(ch0, ch1, ch2)/∼2 (7)

for any ch0, ch1, ch2. On the other hand, if we write |
∐

n M PT∩PT∗

(r,d,β,n) | to denote the set of
k-valued points of the moduli stack

∐
n M PT∩PT∗

(r,d,β,n) , then [10, Proposition 4.3] gives

∣∣∣∣∐
n

M PT∩PT∗

(−r,−d,−β,n)

∣∣∣∣ = As
1(r, d, β)/∼1 (8)

where r, d are coprime integers.
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We can also define

As
1(ch; l) =

{
E ∈ As

1(ch0, ch1, ch2): ch3
(
H−1(E)

)
= ch3, length

(
H0(E)

)
= l

}
.

Then putting (7) and (8) together, we have shown that there is a series of bijections∣∣∣∣∐
ch3

M PT∩PT∗

−ch

∣∣∣∣ = As
1(ch0, ch1, ch2)/∼1 =

∐
ch3,l

As
1(ch; l)/∼1

↔
∐
ch3,l

As
2(ch; l)/∼2 = As

2(ch0, ch1, ch2)/∼2 (9)

where we define

As
2(ch; l) :=

{
F∨[1] → Q in As

2(ch0, ch1, ch2): ch(F ) = ch, length(Q) = l
}
.

We further point out that, the first half of Eq. (9) can even be understood on the level
of moduli functors. In fact, if we define As

1(ch; l) to be the substack of
∐

ch3
M PT∩PT∗

−ch

consisting of complexes in As
1(ch; l), then

Lemma 3.3. We have a locally closed stratification of the moduli functor (1) as∐
ch3

M PT∩PT∗

−ch =
∐
ch3,l

As
1(ch; l). (10)

Proof. Since we already know that both sides parametrise exactly the same objects,
we are left to show that each functor As

1(ch; l) is a locally closed subfunctor of the
functor (1). In fact, whenever we have a flat family of complexes over a scheme B in the
functor (1), we can stratify its base B into locally closed subschemes, so that the strata
are indexed by the Chern character of H−1(E) and the length of H0(E), where [E] is a
fibre of the family. This shows that the morphism of moduli stacks

As
1(ch; l) ↪→

∐
ch3

M PT∩PT∗

−ch

is a locally closed embedding. �
3.2. When X = P

3

Reflexive sheaves on a smooth projective threefold have two-term locally free resolu-
tions. Stable reflexive sheaves on P

3 with particular Chern characters have very special
two-term resolutions, in which all the terms are direct sums of twists of OP3(1) (e.g.
see [13]). We now take an advantage of such resolutions. In the rest of this section, we
fix X = P

3
k.
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By [13, Lemma 2.7], if F is a stable reflexive sheaf on P
3 with rank r and Chern

classes ci satisfying

r = 2, c1 = −1, c2 > 4,

c3 = c22 − 2sc2 + 2s(s + 1) where 1 � s � (−1 +
√

4c2 − 7)/2, (11)

then F has a locally free resolution of the form

0 → R−1 → R0 → F → 0

where

R−1 = OP3(−s− 2) ⊕ OP3(s− 1 − c2),

R0 = OP3(−s− 1) ⊕ OP3(−1) ⊕ OP3(−2) ⊕ OP3(s− c2). (12)

Therefore, for any reflexive sheaf F satisfying (11), if we consider F as a 1-term complex
sitting at degree 0 in the derived category, then the object F∨[1] is isomorphic in the
derived category to a 2-term complex of the form [(R0)∗ → (R−1)∗] that sits at degrees
−1 and 0.

As in the proof of [13, Proposition 2.9], there is an open subspace V ′ ⊂ V :=
P(HomCoh(X)(R−1, R0)) such that the closed points of V ′, up to the actions of the au-
tomorphism groups Aut(R−1) and Aut(R0), are in bijection with all the stable reflexive
sheaves F satisfying (11), up to isomorphism. The bijection is given by(

R−1 g−→ R0) �→ coker(g).

With R−1, R0 as in (12), let R• denote a complex of the form [R−1 g−→ R0] for some
map g, sitting at degrees −1 and 0. Then d(R•) := (R•)∨[1] is also a 2-term com-
plex of locally free sheaves sitting at degrees −1 and 0. For any coherent sheaf Q,
we have HomD(P3)(d(R•), Q) ∼= HomCoh(P3)(H0(d(R•)), Q). This means that any mor-
phism d(R•) → Q in the derived category D(P3) factors through the canonical map
d(R•) → H0(d(R•)). Therefore, the set{

f ∈ HomD(P3)
(
d
(
R•), Q)

: H0(f) is surjective in Coh
(
P

3)}
is in bijection with{

f ∈ HomCoh(P3)
(
H0(d(R•)), Q)

: f is surjective in Coh
(
P

3)}.
Now, with R−1, R0 still as in (12), let As

3 denote the set of diagrams in Coh(P3) of
the form (

R0)∗ a−→
(
R−1)∗ b−→ Q
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satisfying the following conditions:

(1) a is the dual of a map R−1 g−→ R0 that corresponds to a point in V ′;
(2) Q is a 0-dimensional sheaf on P

3;
(3) b is a surjective map of coherent sheaves;
(4) the composition ab = 0.

We then place an equivalence relation ∼3 on the set As
3, where two such diagrams

(
R0)∗ a1−−→

(
R−1)∗ b1−−→ Q1

and

(
R0)∗ a2−−→

(
R−1)∗ b2−−→ Q1

are defined to be equivalent with respect to ∼3 if there is a commutative diagram in
Coh(P3)

(R0)∗
a1 (R−1)∗

b1
Q1

(R0)∗
a2 (R−1)∗

b2
Q2

where all vertical arrows are isomorphisms of sheaves. For any Chern character ch =
(ch0, ch1, ch2, ch3) on X and any nonnegative integer l, let us also define

As
3(ch; l) =

{(
R0)∗ a−→

(
R−1)∗ b−→ Q in As

3: ch
(
coker

(
a∗
))

= ch, length(Q) = l
}
.

Then we have

As
2(ch0, ch1, ch2) =

∐
ch3,l

As
2(ch; l)

and the following lemma:

Lemma 3.4. Let X = P
3. For any ch satisfying (11) and any l, there is a bijection

As
2(ch; l)/∼2 ↔ As

3(ch; l)/∼3. (13)

Proof. We can define a map h : As
3(ch; l) → As

2(ch; l) by taking a diagram (R0)∗ a−→
(R−1)∗ b−→ Q to the following composition of morphisms in D(P3)
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F∨[1]

∼=

[(R0)∗ a (R−1)∗]

b

Q

(14)

where we consider [(R0)∗ a−→ (R−1)∗] as a complex sitting at degrees −1 and 0, and
where the upper vertical map is any isomorphism in D(P3), F being any rank-two stable
reflexive sheaf with resolution 0 → R−1 a∗−−→ R0 → F → 0. It is clear that this operation
induces a well-defined map h̃ : As

3(ch; l)/∼2 → As
2(ch; l)/∼3.

We begin by checking that h̃ is surjective. Take any F∨[1] t−→ Q in As
2(ch; l). Then F

has a resolution of the form R−1 a∗−−→ R0 for some a. Write d(R•) to denote the complex
[(R0)∗ a−→ (R−1)∗] (whose terms are at degrees −1 and 0), and fix an isomorphism
d(R•) u−→ F∨[1] in D(P3). Since HomD(P3)(d(R•), Q) ∼= HomCoh(P3)(H0(d(R•)), Q), the
composition tu factorises as

d
(
R•) → H0(d(R•)) → Q

where the first map is the canonical map, a genuine chain map, and the second map is
a map of coherent sheaves. Therefore, tu can be represented by a chain map from d(R•)
to Q. We thus get a diagram of the form(

R0)∗ →
(
R−1)∗ → Q,

which is an object in As
3(ch; l), and it is taken by h into the equivalence class of t. Hence

h̃ is surjective.
Next, we show that h̃ is injective. Suppose we have two diagrams of the form(

R0)∗ ai−−→
(
R−1)∗ bi−−→ Qi (15)

in As
3(ch; l) for i = 1, 2. Let Fi be the cokernel of a∗i : R−1 → R0 for each i, and write ei

to denote the chain map [R−1 a∗
i−−→ R0] → Fi induced by the short exact sequence

0 → R−1 a∗
i−−→ R0 → Fi → 0 for each i.

Write d(R•
i ) to denote the complex [(R0)∗ ai−−→ (R−1)∗] sitting at degrees −1 and 0 for

each i. Then h̃ takes the diagrams (15) to the ∼2-equivalence classes of the composite
morphisms

F∨
i [1] e∨i [1]−−−−→ d(R•

i )
bi−−→ Qi.
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(Here, we are abusing notation and writing bi to also denote the chain map it induces.)
Let ti = bie

∨
i [1] for i = 1, 2. Suppose that t1 and t2 are equivalent with respect to ∼2.

Then by the definition of ∼2 and our construction of h̃, there is a commutative diagram
in D(P3)

F∨
1 [1]

e∨1 [1]

∼=
∼=β

d(R•
1)

b1
Q1

∼=γ

F∨
2 [1]

e∨2 [1]

∼=
d(R•

2)
b2

Q2.

(16)

From the proof of [13, Proposition 2.9], the points of V ′ correspond to isomorphism
classes of rank-two stable reflexive sheaves on P

3. Since F1 and F2 are isomorphic via
the sheaf isomorphism β∨[1] : F2 → F1, there is a chain map

R−1
a∗
1

r−1

R0

r0

F1

∼= (β∨[1])−1

R−1
a∗
2

R0 F2

(17)

where r−1, r0 are also sheaf isomorphisms. Taking the derived dual of (17) and shifting
by 1, we obtain a commutative diagram in the derived category D(P3)

F∨
1 [1]

β

d(R•
1)

(r•)∨[1]

F∨
2 [1] d(R•

2)

in which all arrows are isomorphisms in the derived category, and the horizontal maps
are merely e∨i [1]. Taking the inverses of the horizontal maps, we obtain a commutative
diagram

d(R•
1)

(r•)∨[1]

(e∨1 [1])−1

F∨
1 [1]

β

d(R•
2)

(e∨2 [1])−1

F∨
2 [1]

(18)

in which all arrows are still isomorphisms in the derived category. Concatenating dia-
gram (16) with diagram (18), we obtain a commutative square
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d(R•
1)

b1

(r•)∨[1]

Q1

γ∼=

d(R•
2)

b2
Q2

(19)

in the derived category D(P3).
The chain map (r•)∨[1] induces the morphism H0(d(R•

1)) → H0(d(R•
2)) between

cohomology sheaves at degree 0. Also, for each i, we have HomD(P3)(d(R•
i ), Qi) ∼=

HomCoh(P3)(H0(d(R•
i )), Qi), which means that bi factors in the derived category as

d
(
R•

i

) φi−−→ H0(d(R•
i

)) ψi−−→ Qi,

where φi is the canonical map (which is a chain map) and ψi = H0(bi) is a map in
Coh(P3). We thus obtain a diagram

d(R•
1)

(r•)∨[1]

φ1
H0(d(R•

1))
ψ1

H0((r•)∨[1])

Q1

γ

d(R•
2)

φ2
H0(d(R•

2))
ψ2

Q2

(20)

which is commutative in the category of chain complexes of coherent sheaves on P
3.

The outer edges of this commutative diagram then induces the following commutative
diagram in Coh(P3)

(R0)∗
a1

(r0)∗

(R−1)∗
θ1

(r−1)∗

Q1

γ

(R0)∗
a2 (R−1)∗

θ2
Q2.

Recall that the map θi is the same map as bi in (15). Hence the two diagrams (15) for
i = 1, 2 are equivalent with respect to ∼3, i.e. h̃ is injective. �

The following lemma will be the final step in showing that the closed points of certain
strata of the moduli stack (1) have the structure of quotient stacks:

Lemma 3.5. Let X = P
3. For any ch satisfying (11) and any l, the set

As
3(ch; l)/∼3

is in bijection with the set of closed points of a quotient stack.
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Proof. By our definition of As
3(ch; l), the maps

a :
(
R0)∗ →

(
R−1)∗

that appear in elements in As
3(ch; l) are parametrised by a quasi-projective scheme V ′.

Since (R−1)∗ is a fixed sheaf as constructed in (12), and any Q that appears in an element
of As

3(ch; l) is a 0-dimensional quotient sheaf of (R−1)∗ with fixed length l, and hence of
fixed Hilbert polynomial, to each map

b :
(
R−1)∗ → Q

that appears in an element of As
3(ch; l) we can associate a point of the Grothendieck

quot scheme Quot((R−1)∗, l). In other words, we have a set-theoretic map

φ : As
3(ch; l) → V ′ × Quot

((
R−1)∗, l)

that sends the diagram (R0)∗ a−→ (R−1)∗ b−→ Q to (a, b). Since we require ba = 0 for
elements in As

3(ch; l), the image of φ is a closed subscheme W of V ′ × Quot((R−1)∗, l),
which is a quasi-projective scheme. The equivalence relation ∼3 on As

3(ch; l) induces an
equivalence relation on W , which we also denote by ∼3.

We claim that, two elements in W are equivalent with respect to ∼3 if and only if
they differ by an action of the group

G = Aut
(
R−1)× Aut

(
R0)

= Aut
((
R−1)∗)× Aut

((
R0)∗).

First of all, we consider the action of a group element

(α, β) ∈ Aut
((
R−1)∗)× Aut

((
R0)∗)

on an element (
R0)∗ a−→

(
R−1)∗ b−→ Q

of As
3(ch; l). It produces again an element in As

3(ch; l), as in the second row of the
following diagram

(R0)∗ a

α

(R−1)∗ b

β

Q

=

(R0)∗ a′

(R−1)∗ b′

Q

where
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a′ = βaα−1;

b′ = bβ−1.

It is clear that both squares commute, and all vertical arrows are isomorphisms, which
are required in the equivalence relation ∼3. Therefore the group G does act on As

3(ch; l).
It is easy to see that G induces a well-defined action on W that makes φ : As

3(ch; l)↠W

a G-equivariant map.
Now we want to show that if two elements in As

3(ch; l) are equivalent under ∼3, then
up to an action of the group G, they map under φ to the same element in W . Assume
we have the following commutative diagram in Coh(P3)

(R0)∗
a1

α

(R−1)∗
b1

β

Q

γ

(R0)∗
a2 (R−1)∗

b2
Q

where all the vertical arrows are isomorphisms. We immediately have

α ∈ Aut
((
R0)∗);

β ∈ Aut
((
R−1)∗).

Note that we can factorise the above chain map in the following manner:

(R0)∗
a1

=

(R−1)∗
b1

=

Q

γ

(R0)∗
a1

α

(R−1)∗
b2◦β

β

Q

=

(R0)∗
a2 (R−1)∗

b2
Q.

In the above diagram, the first and the second rows are mapped by φ to the same
element in W ⊆ (V ′ × Quot((R−1)∗, l)); this is because points Q of the quot scheme
Quot((R−1)∗, l) are considered the same if they differ by an automorphism as quotients
of (R−1)∗. The second and the third rows obviously differ by an action of (α, β) ∈ G.

Therefore, we have shown that two elements in W are equivalent under the relation ∼3
if and only if one can be obtained from the other via the action of a group element in G.
It follows that As

3(ch; l)/∼3 is in bijection with the closed points of a global quotient
stack, namely

As
3(ch; l)/∼3 = W/∼3 = [W/G]. �
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Finally, we are ready to use Lemma 3.5 to describe some of the strata in Lemma 3.3.

Theorem 3.6. Let X = P
3. Then for any stratum of (10) with ch satisfying (11), the

set of underlying closed points is in bijection with the closed points of a global quotient
stack.

Proof. The set of underlying closed points in the stratum As
1(ch; l) is given by the set

As
1(ch; l)/∼1. When ch satisfies (11), we know from (9) and (13) that it is in bijection

with As
3(ch; l)/∼3. The result then follows from Lemma 3.5. �

Remark 3.7. Theorem 3.6 identifies stable complexes with closed points of a quotient
stack. It is a natural question to ask if the stratum of the moduli stack under considera-
tion is isomorphic to the above quotient stack [W/G]. Unfortunately, it is not the case.
A more detailed analysis can be found in Appendix A.

4. Monads and stable complexes on surfaces

Recall that a monad on a variety X is defined as a three-term complex of locally free
sheaves

0 → R−1 → R0 → R1 → 0 (21)

with Ri at degree i, and which is exact everywhere except perhaps at degree 0. The
cohomology of the monad is defined as the cohomology of the complex at degree 0. We
have:

Lemma 4.1. Let X be a smooth projective variety. Let Q be a 0-dimensional sheaf on X,
and F a coherent sheaf on X that is the cohomology of a monad 0 → R−1 → R0 →
R1 → 0. Then any morphism t : F∨ → Q in the derived category D(X) can be represented
by a chain map of the form

(R1)∗ α (R0)∗ (R−1)∗

Q.

(22)

In other words, the vertical map factors through the canonical map (R0)∗ ↠ coker(α).

Proof. In the derived category D(X), if we consider F as a one-term complex with F at
degree 0, then F is isomorphic to the complex [R−1 → R0 → R1] with R0 at degree 0.
So F∨ is isomorphic to [(R1)∗ α−→ (R0)∗ β−→ (R−1)∗] in the derived category.

Let A• denote the 2-term complex [(R1)∗ α−→ (R0)∗] with (R0)∗ sitting at degree 1,
and B• be the 1-term complex with (R−1)∗ sitting at degree 1. Then we have an exact
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triangle in D(X)

A• → B• → F∨ → A•[1].

Applying HomD(X)(−, Q) to this exact triangle, we get an exact sequence

Hom
(
A•[1], Q

)
→ Hom

(
F∨, Q

)
→ Hom

(
B•, Q

)
,

where Hom(B•, Q) = Hom((R−1)∗[−1], Q) = Ext1((R−1)∗, Q) ∼= H1(X, (R−1) ⊗ Q)
(recall that R−1 is locally free), which is zero since Q is 0-dimensional. Hence any
morphism t : F∨ → Q in the derived category is induced by a map t : A•[1] → Q

in the derived category. However, HomD(X)(A•[1], Q) ∼= HomCoh(X)(H1(A•), Q) =
HomCoh(X)(coker(α), Q), i.e. t in turn factors through the canonical map (R0)∗ ↠
coker(α). The claim then follows. �

Following the terminology in [4], by a linear monad we mean a monad on P
n of the

form

M• :=
[
0 → OPn(−1)⊕a α−→ O⊕b

Pn

β−→ OPn(1)⊕c → 0
]
.

We say a coherent sheaf on P
n is a linear sheaf if it is the cohomology of a linear monad.

Also, recall that a coherent sheaf F is said to be normalised if

− rk(F ) + 1 � c1(F ) � 0.

Note that for a normalised sheaf, we have −1 < μ(F ) � 0.
Jardim has the following criterion for a sheaf on P

n to be a linear sheaf:

Theorem 4.2. (See [4, Theorem 3].) If F is a torsion-free sheaf on P
n satisfying:

(i) for n � 2, H0(F (−1)) = Hn(F (−n)) = 0;
(ii) for n � 3, H1(F (−2)) = Hn−1(F (1 − n)) = 0;
(iii) for n � 4, 2 � p � n− 2 and all k, Hp(F (k)) = 0,

then F is a linear sheaf, and can be represented as the cohomology of the monad

0 → H1(F ⊗Ω2
Pn(1)

)
⊗ OPn(−1) → H1(F ⊗Ω1

Pn

)
⊗ OPn

→ H1(F (−1)
)
⊗ OPn(1) → 0. (23)

We have the following easy observation:

Lemma 4.3. Let F be a normalised μ-semistable torsion-free sheaf on P
n. Then

H0(F (−1)) = Hn(F (−n)) = 0 (i.e. condition (i) of Theorem 4.2 is satisfied).
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Proof. Note that H0(F (−1)) ∼= Hom(OPn , F (−1)). Since OPn , F (−1) are both μ-semi-
stable and μ(OPn) = 0 > μ(F (−1)), we have Hom(OPn , F (−1)) = H0(F (−1)) = 0. On
the other hand,

Hn
(
F (−n)

) ∼= Extn
(
OPn , F (−n)

)
∼= Ext0

(
F (−n), ωPn

)
by Serre’s duality

∼= Hom
(
F,O(−1)

)
since ωPn ∼= O(−n− 1).

Now, since F,O(−1) are both μ-semistable and μ(F ) > −1 = μ(O(−1)), we obtain the
vanishing of Hom(F,O(−1)), and hence of Hn(F (−n)). �

On P
2, we can be a bit more specific:

Lemma 4.4. Let F be a normalised μ-semistable torsion-free sheaf on P
2. Then F is

linear and is the cohomology of a monad of the form

0 → OP2(−1)⊕d+c → O⊕r+d+2c
P2 → OP2(1)⊕c → 0 (24)

where c = −χ(F (−1)), r = rk(F ) and d = deg(F ).

Proof. By Lemma 4.3, we have H0(F (−1)) = 0. From the short exact sequence 0 →
F (k− 1) → F (k) → F (k)|H → 0 where H ⊂ P

2 is any hyperplane (i.e. a line in our case
of P2), and that H2(F (−2)) = 0 (also by Lemma 4.3), we obtain H2(F (−1)) = 0. Hence
dimH1(F (−1)) = −χ(F (−1)), which we denote by c.

In the monad (23) for F , let v = dimH1(F ⊗ Ω2
P2(1)), w = dimH1(F ⊗ ΩP2), and

u = dimH1(F (−1)). Then

d := deg(F )

= − deg
(
H1(F ⊗Ω2

Pn(1)
)
⊗ OPn(−1)

)
− deg

(
H1(F (−1)

)
⊗ OPn(1)

)
= v − u.

Similarly, r := rk(F ) = w−v−u. Hence u = c, v = d+ c and w = r+v+u = r+d+2c,
giving us the lemma. �

Following the definition in [4], we say that a torsion-free sheaf F on P
n (where n � 2)

is an instanton sheaf if c1(F ) = 0 and conditions (i)–(iii) in Theorem 4.2 are satisfied.
We call −χ(F (−1)) the charge of F .

Remark 4.5. In the case of c1(F ) = 0, Lemma 4.4 becomes [4, Theorem 17], which says
that any μ-semistable torsion-free sheaf on P

2 with c1 = 0 is instanton.

Let us consider complexes E ∈ D(P2) of the following form:
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• H−1(E) is a μ-semistable torsion-free sheaf;
• H0(E) is a 0-dimensional sheaf;
• Hi(E) = 0 for i �= −1, 0.

Examples of such complexes include stable pairs (i.e. sections OP2
s−→ F of sheaves F

where coker(s) is 0-dimensional) and polynomial-stable or Bridgeland-stable complexes.
Any such complex is determined by its cohomology sheaves H−1(E), H0(E) and a class
α ∈ Ext2(H0(E), H−1(E)). By the isomorphisms in (3), we know α corresponds to a
morphism t : H−1(E)∨ → E xt2(H0(E),OP2) in D(P2). This prompts us to define the
set

Bs
1(r, d, c; l) =

{
morphisms F∨ t−→ Q in D

(
P

2):
F is a μ-semistable, normalised torsion-free sheaf with

rk(F ) = r, deg(F ) = d, −χ
(
F (−1)

)
= c, and

Q is a 0-dimensional sheaf of length l
}
.

On the set Bs
1(r, d, c; l), we can define an equivalence relation ∼B1 in the same manner as

for ∼2 on threefolds (see diagram (6)). On the other hand, let us also define B2(r, d, c; l)
to be the set of all diagrams in Coh(P2) of the form

OP2(−1)⊕c α
O⊕r+d+2c

P2

β

γ

OP2(1)⊕d+c

Q

(25)

such that α is injective, βα = 0 (so that the three terms in a row form a complex) and
γα = 0.

On the set B2(r, d, c; l), we define an equivalence relation ∼B2 where two such diagrams
are declared equivalent if there is a commutative diagram in Coh(P2) of the form

OP2(−1)⊕c α
O⊕r+d+2c

P2

γ

β
OP2(1)⊕d+c

Q OP2(−1)⊕c α′

O⊕r+d+2c
P2

γ′

β′

OP2(1)⊕d+c

Q

in which all diagonal arrows are isomorphisms.
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For fixed r, d, c, l, we can define a map

f : Bs
1(r, d, c; l) → B2(r, d, c; l) (26)

in the following obvious manner: given any morphism t : F∨ → Q in Bs
1(r, d, c; l),

Lemma 4.4 says we can find a monad of the form

0 → OP2(−1)⊕d+c → O⊕r+d+2c
P2 → OP2(1)⊕c → 0 (27)

that is isomorphic to F in the derived category D(P2). Then F∨ is isomorphic, in the
derived category, to the dual complex of (27), namely

OP2(−1)⊕c α−→ O⊕r+d+2c
P2

β−→ OP2(1)⊕d+c. (28)

Note that, since β may not be surjective, (28) may not be a monad.
Now, with the same argument as in the proof of Lemma 4.1, we can represent the

morphism t by the chain map

OP2(−1)⊕c α
O⊕r+d+2c

P2

β

γ

OP2(1)⊕d+c

Q

where γ is the composition of the canonical map O⊕r+d+2c
P2 ↠ coker(α) followed by

some γ2. We have thus constructed a map f from Bs
1(r, d, c; l) to B2(r, d, c; l).

Note that, in the construction of f above, we had to choose a lifting γ of t, and the
choice is not necessarily unique. This makes it difficult to see whether the map f induces
a map on the sets of equivalences classes Bs

1(r, d, c; l)/∼B1 and B2(r, d, c; l)/∼B2 . We can
sidestep this problem if we add the assumption c + d = 0:

Lemma 4.6. When c + d = 0, there is a 1–1 correspondence between:

(a) the isomorphism classes of normalised μ-semistable torsion-free sheaf F of rank r,
degree d and −χ(F (−1)) = c, and

(b) the closed points of an open subscheme V ′ of V , where V is the scheme parametrising
isomorphism classes of cokernels of injective morphisms

OP2(−1)⊕c → O⊕r+c
P2 ,

up to the actions of Aut(OP2(−1)⊕c) and Aut(O⊕r+c
P2 ).
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Proof. When c+ d = 0, Lemma 4.4 says that every sheaf F of the above form is locally
free, and is the kernel of a surjection O⊕r+c

P2 → OP2(1)⊕c. Hence the (non-derived) dual
F ∗ of F has a 2-term locally free resolution of the form

0 → OP2(−1)⊕c → O⊕r+c
P2 → F ∗ → 0.

The association F �→ (OP2(−1)⊕c → O⊕r+c
P2 ) gives a surjective set-theoretic map from

the set in (a) to the set of closed points of an open subscheme V ′ of V . That this map
is an injection is clear. �

Let us write

Bs
2(r, d, c; l) :=

{
diagrams of the form (25) that are in B2(r, d, c; l): coker(α) ∈ V ′}.

Now, similar to the case of P3, we have:

Lemma 4.7. For fixed r, d, c, l satisfying c + d = 0, we have a bijection

Bs
1(r, d, c; l)/∼B1 ↔ Bs

2(r, d, c; l)/∼B2 .

Proof. Using Lemma 4.6, the proof of Lemma 3.4 works in our case with almost no
change: we can define a map h : Bs

2(r, d, c; l) → Bs
1(r, d, c; l) in the same manner as

in (14), so that a diagram

OP2(−1)⊕c α−→ O⊕r+c
P2

γ−→ Q

is taken to the composition of morphisms in D(P2)

F ∗[1]

∼=

[OP2(−1)⊕c α
O⊕r+c

P2 ]

γ

Q,

where F is the cohomology of the monad given by α∗, i.e. F = ker(α∗). The argument
in the proof of Lemma 3.4 can then be easily adapted to show that h induces a map
h̃ : Bs

2(r, d, c; l)/∼B2 → Bs
1(r, d, c; l)/∼B1 on the sets of equivalence classes, and that it

is bijective. �
Lemma 4.8. Suppose X = P

2 and c+d = 0. Then the set Bs
2(r, d, c; l)/∼B2 is in bijection

with the set of closed points of a quotient stack.



J. Lo, Z. Zhang / Journal of Algebra 400 (2014) 185–218 205
Proof. Since all 0-dimensional sheaves are Gieseker semistable, for any nonnegative
integer l, there is a quot scheme Quotl parametrising the isomorphism classes of
0-dimensional sheaves on P

2 of length l (see [14], for instance).
Given any element

O(−1)⊕c
P2

α−→ O⊕r+c
P2

γ−→ Q

of the set Bs
2(r, d, c;Λ), we can associate to it a closed point (α,Q, γ) of the scheme

PHom
(
O(−1)⊕c

P2 ,O
⊕r+c
P2

)
× Quotl × PHom

(
O⊕r+c

P2 , Q
)
.

Note that the scheme PHom(O⊕r+c
P2 , Q) only depends on the length l of Q. That is, we

have a set-theoretic map

φ : Bs
2(r, d, c; l) → PHom

(
O(−1)⊕c

P2 ,O
⊕r+c
P2

)
× Quotl × PHom

(
O⊕r+c

P2 , Q
)
.

The image of φ is the set of all triples (α,Q, γ) such that γα = 0, and α lies in the open
subspace of PHom(OP2(−1)⊕c

P2 ,O
⊕r+c
P2 ) where coker(α) ∈ V ′ (here, V ′ is as defined in

the proof of Lemma 4.6). Let W denote the image of φ; then W is a quasi-projective
scheme.

We can now adapt the arguments in the proof of Lemma 3.5 to our current situation:
the equivalence relation ∼B2 on Bs

2(r, d, c; l) induces an equivalence relation on W , which
we also denote by ∼B2 . We can define an action of G := Aut(OP2(−1)⊕c)×Aut(O⊕r+c

P2 )
on Bs

2(r, d, c; l), which induces a well-defined action on W and makes φ a G-equivariant
map. Finally, we show that two elements in W are equivalent with respect to ∼B2 if and
only if they differ by an action of G. Hence Bs

2(r, d, c; l)/∼B2 is in bijection with the set
of closed points of a quotient stack [W/G]. �

Let M be any moduli stack of complexes in D(P2) such that any point of M corre-
sponds to a complex E such that:

• H−1(E) is torsion-free and μ-semistable;
• H0(E) is a 0-dimensional sheaf;
• Hi(E) = 0 for all i �= −1, 0.

For example, M could be a moduli stack of Bridgeland-semistable or polynomial stable
complexes (see [1, Lemma 4.2] or [11, Lemma 5.3]). Lemma 4.7 and Lemma 4.8 together
give:

Theorem 4.9. The closed points of the strata of M consisting of complexes E on P
2

further satisfying:

• H−1(E) is normalised, and
• deg(H−1(E)) − χ(H−1(E)(−1)) = 0,

are in 1–1 correspondence with the closed points of some quotient stacks.



206 J. Lo, Z. Zhang / Journal of Algebra 400 (2014) 185–218
5. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. We follow closely the idea in the
proof of Theorem D in [2]. In fact, many of the key lemmas, for instance, Lemmas 5.3,
5.6, and 5.7 in this section were adapted from [2]. To prove Theorem 2.1, we start with
the following observations:

Lemma 5.1. The Todd classes for P
2 and P

3 are given by

td
(
P

2) =
(

1, 3
2H,H2

)
;

td
(
P

3) =
(

1, 2H,
11
6 H2, H3

)
,

where H is the cohomology class represented by the hyperplane section in P
2 or P

3.

Proof. The proof is standard. �
Lemma 5.2. Let F be any sheaf on P

3, and let ch(F ) = (ch0, ch1, ch2, ch3). Let FH be
the restriction of F to any hyperplane section P

2, then we have ch(FH) = (ch0, ch1, ch2),
i.e. when we restrict a sheaf F from P

3 to a hyperplane P
2, we can simply drop the last

component of the Chern character.

Proof. Let i : P2 → P
3 be the inclusion of a hyperplane section. From the short exact

sequence

0 → F (−H) → F → i∗FH → 0,

we can obtain

ch(i∗FH) =
(

0, ch0, ch1 −
1
2ch0, ch2 −

1
2ch1 + 1

6ch0

)
.

By the Grothendieck–Riemann–Roch, we have

ch(i∗FH) · td
(
P

3) = i∗
(
ch(FH) · td

(
P

2)).
Applying Lemma 5.1 and expanding both sides of the equation above, we get

ch(FH) = (ch0, ch1, ch2). �
Recall that, for any torsion-free sheaf F of rank r on P

N where N � 1, the restriction
F |L of F to a generic line L ⊂ P

N takes the form F |L ∼=
⊕r

i=1 OL(bi) for some integers
b1 � b2 � · · · � br. The sequence of integers b := (b1, . . . , br) is called the splitting type
of F ; we usually write OPN (b) to denote

⊕r
i=1 OPN (bi). Note that c1(OPN (b)) =

∑r
i=1 bi.
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Lemma 5.3. Let F be a torsion free rank r sheaf on P
N with splitting type b = (b1, . . . , br),

then we have the following bounds for the dimension of the lowest and highest cohomology
groups of F :

h0F � h0OPN (b),

hNF � h0OPN (−b −N − 1).

Proof. We prove the inequalities by induction on N . When N = 1, the first inequality
is an identity, and the second one simply follows from Serre’s duality. We let k be an
arbitrary integer, and H be a general hyperplane section.

For the first inequality, we have the short exact sequence

0 → F (k − 1) → F (k) → FH(k) → 0,

which implies an exact sequence of cohomology

0 → H0F (k − 1) → H0F (k) → H0FH(k).

Therefore, we have

h0F (k) � h0F (k − 1) + h0FH(k).

From this and the induction hypothesis, we have

h0F (k) − h0F (k − 1) � h0FH(k)

� h0OH(b + k)

= h0OPN (b + k) − h0OPN (b + k − 1).

Note that when k � 0, we have the vanishing of h0F (k) and h0OPN (b + k). Therefore
by adding the above equation for consecutive values of k we get

h0F � h0OPN (b),

proving the first inequality.
For the second inequality, we have an exact sequence of cohomology from the above

short exact sequence of sheaves

HN−1FH(k + 1) → HNF (k) → HNF (k + 1) → 0.

Therefore, together with the induction hypothesis,
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hNF (k) − hNF (k + 1) � hN−1FH(k + 1)

� h0OH(−b −N − k − 1)

= h0OPN (−b −N − k − 1) − h0OPN (−b −N − k − 2).

When k � 0, we have vanishing of hNF (k) and h0OPN (−b− k−N − 1). Hence adding
both sides for all k � 0 and cancelling gives

hNF � h0OPN (−b −N − 1). �
Lemma 5.4. For a torsion free sheaf F on P

2 with splitting type b = (b1, . . . , br) and
Chern character ch(F ) = (r, c1(F ), ch2(F )), we have

h0F �
r∑

i=1

(
bi + 2

2

)
;

h1F � −
(
r + 3

2c1(F ) + ch2(F )
)

+
r∑

i=1

(
bi + 2

2

)
;

h2F �
r∑

i=1

(
bi + 2

2

)
.

Proof. The bounds for h0 and h2 follow directly from Lemma 5.3.

h0F � h0OP2(b) �
r∑

i=1

(
bi + 2

2

)
,

h2F � h0OP2(−b − 3) �
r∑

i=1

(
−bi − 1

2

)
=

r∑
i=1

(
bi + 2

2

)
.

To get a bound for h1F , we use h1F = h0F + h2F − χ(F ). We have

h0F + h2F � h0OP2(b) + h0OP2(−b − 3)

�
r∑

i=1

(
h0OP2(bi) + h0OP2(−bi − 3)

)
.

Note that h0OP2(bi) and h0OP2(−bi − 3) cannot be both positive, and the positive one
is equal to

(
bi+2

2
)
, so

h0F + h2F �
r∑

i=1

(
bi + 2

2

)
.

On the other hand, by the Grothendieck–Riemann–Roch and Lemma 5.4, we have
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χ(F ) =
∫

ch(F ) · td
(
P

2)
=

∫ (
r, c1(F ), ch2(F )

)
·
(

1, 3
2H,H2

)
= r + 3

2c1(F ) + ch2(F ).

Hence we get the bound for h1F as well. �
Corollary 5.5. We can also write the bound for h1F in Lemma 5.4 as

h1F � −ch2(F ) + 1
2

r∑
i=1

b2i . (29)

Furthermore, this bound is invariant under twist and taking dual.

Proof. We divide the proof into three steps.
Step 1. By using the fact that c1(F ) =

∑r
i=1 bi, the stated inequality can be translated

directly from the inequality in Lemma 5.4.
Step 2. For the invariance under twist, we replace F by F (k) = F ⊗OP2(kH), then

bi
(
F (k)

)
= bi + k,

and

ch
(
F (k)

)
= ch(F ) · ch

(
OP2(kH)

)
= ch(F ) ·

(
1, kH,

k2H2

2

)
=

(
r, c1(F ) + r · kH, ch2(F ) + c1(F ) · kH + r · k

2H2

2

)
.

Now by (29), we have

h1F (k) �
(

1
2

r∑
i=1

(bi + kH)2
)

− ch2
(
F (k)

)
=

(
1
2

r∑
i=1

b2i + 1
2rk

2 + k ·
r∑

i=1
bi

)
−
(
ch2(F ) + r · 1

2k
2 +

r∑
i=1

bi · k
)

= −ch2(F ) + 1
2

r∑
i=1

b2i .

This shows the invariance of the upper bound for h1F under twist.
Step 3. If we replace F by F ∗, then every bi becomes −bi, and the Chern char-

acter (ch0(F ), ch1(F ), ch2(F )) becomes (ch0(F ),−ch1(F ), ch2(F )). Thus the bound
1
2
∑r

i=1 b
2
i − ch2(F ) remains the same. �
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Lemma 5.6. For a torsion free sheaf F on P
2 with splitting type b = (b1, . . . , br) and

Chern character ch(F ) = (r, c1(F ), ch2(F )), there exists an integer Q > 0 which only
depends on b and ch(F ), such that

h1F (k) = h2F (k) = h0F (−k) = h1F (−k) = 0

for all k � Q.

Proof. We give a choice for Q in 4 steps. For convenience we denote

bmax = max{b1, . . . , br},
bmin = min{b1, . . . , br}.

Step 1. By Lemma 5.3,

h0F (−k) � h0OP2(b − k).

Therefore we have h0F (−k) = 0 when

k > bmax.

Step 2. By Lemma 5.3,

h2F (k) � h0OP2(−b − k − 3).

Therefore we have h2F (k) = 0 when

k > −bmin − 3.

Step 3. Consider the exact sequence

0 → F (k − 1) → F (k) → FH(k) → 0.

Note that here H = P
1 and FH(k) = OP1(b + k). So we have H1FH(k) = 0 when

k > −bmin (in fact, h1OP1(m) = 0 whenever m � −1), in which case we have the exact
sequence of cohomology

H0F (k) → H0FH(k) → H1F (k − 1) → H1F (k) → 0.

We claim that, if for a certain k > −bmin, the map H1F (k − 1) → H1F (k) is not only
surjective but also injective, then for all larger values of k, it is also injective.

Note that, for k > −bmin, the injectivity of the map H1F (k − 1) → H1F (k) is
equivalent to the surjectivity of the map H0F (k) → H0FH(k). Consider the following
commutative diagram
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H0F (k) ⊗H0O(1) H0FH(k) ⊗H0OH(1)

H0F (k + 1) H0FH(k + 1).

The surjectivity of the upper horizontal arrow and the right vertical arrow together
imply the surjectivity of the lower horizontal arrow. The claim in the last paragraph
then follows. As a result, for k > −bmin, as k increases, the dimension of H1F (k − 1)
must be strictly decreasing in the beginning, and then becomes constant. Since for k

sufficiently large, H1F (k) = 0, we have the vanishing of H1F (k) for

k > −bmin + h1F (−bmin),

which can be controlled by the formula in Lemma 5.4.
Step 4. By Serre’s duality, we have h1F (−k) = h1F ∗(k − 3). Therefore, applying the

argument in step 3 to F ∗ (and noting that replacing F by F ∗ changes the sign of each
integer in the splitting type), we see that H1F (−k) vanishes for

k > bmax + 3 + h1F ∗(bmax),

where the bi still denote the splitting type of F . The right-hand side of this inequality
depends only on the splitting type and the Chern character of F by Lemma 5.4.

Taking the largest one in the bounds we obtained in the above four steps, we have a
concrete estimate of Q for the vanishing of the four cohomology groups in the statement
of the lemma. �
Lemma 5.7. For a torsion free sheaf F on P

3 with splitting type b = (b1, . . . , br) and
Chern character ch(F ) = (r, c1(F ), ch2(F ), ch3(F )), there is an upper bound for the
dimension of its cohomology groups, which only depends on the splitting type and the
Chern character of F .

Proof. Similar as in the previous lemma, we give the proof in 3 parts.
Step 1. By Lemma 5.3, we immediately get

h0F � h0OP3(b);

h3F � h0OP3(−b − 4).

Step 2. For an upper bound for h2F , we use a short exact sequence

0 → F (k) → F (k + 1) → FH(k + 1) → 0,

and get an exact sequence for cohomology groups
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· · · → H1FH(k + 1) → H2F (k) → H2F (k + 1) → H2FH(k + 1) → · · · .

Let Q be the constant for the sheaf FH as derived in Lemma 5.6. When k � Q− 1, we
have

H1FH(k + 1) = H2FH(k + 1) = 0,

which results in

H2F (k) = H2F (k + 1).

By Serre’s vanishing theorem, we know H2F (k) vanishes because it is the case when k

is sufficiently large. In particular, we have

H2F (Q− 1) = 0.

When k < Q− 1, the above long exact sequence shows that

h2F (k) � h2F (k + 1) + h1FH(k + 1).

We can add all such inequalities for all values of k between 0 and Q− 2 and obtain

h2F � h2F (Q− 1) +
Q−1∑
j=1

h1FH(j) =
Q−1∑
j=1

h1FH(j),

where all the h1FH(j) have an explicit upper bound by the formula in Lemma 5.4.
Note that, here, the choice of Q only depends on the splitting type and the Chern

character of FH . However, the Chern character of FH depends entirely on that of F by
Lemma 5.2. Also, restricting to a generic hyperplane does not alter the splitting type of
a torsion-free sheaf. Hence Q depends only on the splitting type and the Chern character
of F itself.

Step 3. For an upper bound for h1F , we follow the same procedure as in the previous
step. From the short exact sequence

0 → F (−k − 1) → F (−k) → FH(−k) → 0,

we get the long exact sequence of cohomology groups

· · · → H0FH(−k) → H1F (−k − 1) → H1F (−k) → H1FH(−k) → · · · .

When k � Q, we have

H0FH(−k) = H1FH(−k) = 0
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by Lemma 5.6. Therefore

H1F (−k) = H1F (−k − 1),

which vanishes due to Serre’s vanishing theorem. In particular,

H1F (−Q) = 0.

When k < Q, we have

h1F (−k) � h1F (−k − 1) + h1FH(−k).

Summation and cancellation results in

h1F � h1F (−Q) +
Q−1∑
j=0

h1FH(−j) =
Q−1∑
j=0

h1FH(−j),

where h1FH(−j) can still be bounded by the formula in Lemma 5.4. �
So far we have derived all necessary results for general torsion free sheaves on P

2

and P
3, from now on we want to apply these results to reflexive semistable sheaves.

Lemma 5.8. For a reflexive μ-semistable sheaf F of splitting type b = (b1, b2, . . . , br)
on P

3, assuming that b1 � · · · � br, we have

bi − bi+1 � 2

for each 1 � i � r − 1.

Proof. We consider the grassmannian G(1, 3) of all lines in P
3, which is a quadric hy-

persurface in P
5 via the Plücker embedding. By the definition of splitting type, there is

an open sense subset U ⊂ G(1, 3), such that for any line L ∈ U , the restriction of F on
L decomposes in the same way as specified by the splitting type.

Choose a smooth hyperplane section S ⊂ G(1, 3) whose intersection with U is non-
empty. Then S ∩ U is open and dense in S. For any line L ∈ S ∩ U , the decomposition
of the restriction of F on L agrees with the splitting type. By [3, Proposition 7.1], we
know that any gap in the splitting type is at most 2. �
Corollary 5.9. For a reflexive μ-semistable sheaf of rank r on P

3 with splitting type
b = (b1, . . . , br), we have

±bi � |c1|
r

+ r, (30)

for each i.
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Lemma 5.10. Let E be a μ-semistable reflexive sheaf on P
3 with splitting type b =

(b1, . . . , br), and F be the restriction of E to a generic hyperplane. Then the constant Q
for F in Lemma 5.6 can be chosen as

Q = |c1|
r

+ r + 4 − ch2 + 1
2

r∑
i=1

b2i .

Proof. From the proof of Lemma 5.6, we know that the vanishing conditions for the four
cohomology groups H1F (k), H2F (k), H0F (−k), H1F (−k) are:

k > bmax,

k > −bmin − 3,

k > −bmin + h1F (−bmin), and

k > bmax + 3 + h1F ∗(bmax).

By Corollary 5.9, we have that

±bmax,±bmin � |c1|
r

+ r.

And by Lemma 5.5, we have that

h1F (−bmin) � −ch2 + 1
2

r∑
i=1

b2i ;

h1F ∗(bmax) � −ch2 + 1
2

r∑
i=1

b2i .

Hence the value of Q as proposed in the statement of the lemma. �
Now we summarise all the above results for sheaves on P

2 to get a bound for the Euler
characteristic of a μ-semistable reflexive sheaf on P

3.

Lemma 5.11. For any μ-semistable reflexive sheaf F on P
3 with splitting type b =

(b1, . . . , bn) and Chern character ch(F ) = (n, c1, ch2, ch3), there is a bound for its Euler
characteristic χ(F ), depending only on ch0(F ), ch1(F ) and ch2(F ).

Proof. We first note that, by Lemma 5.2, for any hyperplane H in P
3, we have

ch(FH) = (n, c1, ch2).

By Lemma 5.7 and Corollary 5.5, we obtain
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h2F �
Q−1∑
j=1

h1FH(j) � Q ·
(
−ch2 + 1

2

r∑
i=1

b2i

)
;

h1F �
Q−1∑
j=0

h1FH(−j) � Q ·
(
−ch2 + 1

2

r∑
i=1

b2i

)
.

Hence

h1F + h2F < 2Q ·
(
−ch2 + 1

2

r∑
i=1

b2i

)

= 2
(
|c1|
r

+ r + 4 − ch2 + 1
2

r∑
i=1

b2i

)(
−ch2 + 1

2

r∑
i=1

b2i

)
(by Lemma 5.10)

� 2
(
|c1|
r

+ r + 4 − ch2 + 1
2

r∑
i=1

(
|c1|
r

+ r

)2
)(

−ch2 + 1
2

r∑
i=1

(
|c1|
r

+ r

)2
)
,

where the last inequality follows from Corollary 5.9.
Furthermore, by Lemma 5.3, we have

h0F � h0OP3(b) =
r∑

i=1
h0OP3(bi);

h3F � h0OP3(−b − 4) =
r∑

i=1
h0OP3(−bi − 4).

Note that for every bi, h0OP3(bi) and h0OP3(−bi− 4) cannot be both positive, therefore,

h0OP3(bi) + h0OP3(−bi − 4) �
∣∣∣∣ (bi + 3)(bi + 2)(bi + 1)

3 · 2 · 1

∣∣∣∣.
By Corollary 5.9 again, for each i we have bi � |c1|

r + r, and hence

h0OP3(bi) + h0OP3(−bi − 4) < 1
6

(
|c1|
r

+ r + 3
)3

.

So finally we have

h0F + h3F <
r

6

(
|c1|
r

+ r + 3
)3

.

Combining the above results, we get a bound for χ(F ), the Euler characteristic of F ,
in terms of only ch0 = n, ch1 = c1 and ch2 and not involving ch3:
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∣∣χ(F )
∣∣ � h0F + h1F + h2F + h3F

< 2
(
|c1|
r

+ r + 4 − ch2 + 1
2

r∑
i=1

(
|c1|
r

+ r

)2
)

·
(
−ch2 + 1

2

r∑
j=1

(
|c1|
r

+ r

)2
)

+ r

6

(
|c1|
r

+ r + 3
)3

. �

Finally, we are ready to prove Theorem 2.1, the Bogomolov-type inequality for
μ-semistable reflexive sheaves on P

3.

Proof of Theorem 2.1. Continuing the notation above, we write r = ch0(F ) and c1 =
ch1(F ) in this proof. By the Grothendieck–Riemann–Roch theorem and Lemma 5.1,

χ(F ) =
∫

ch(F ) · td
(
P

3)
=

∫
(r, c1, ch2, ch3) ·

(
1, 2H,

11
6 H2, H3

)
= ch3 + 2ch2 + 11

6 c1 + r.

Then by Lemma 5.11, we obtain (2). �
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Appendix A. The two stacks in Theorem 3.6 are different

In this appendix, we make an observation that, the moduli stack As
1(ch; l) and the

quotient stack [W/G] that we considered in Theorem 3.6 are not isomorphic, although
their underlying sets of closed points are bijective.

We consider a very special case: l = 0. Then any object in As
1(ch; 0) is a complex

E with the only non-trivial cohomology F = H−1(E), which is itself a stable reflexive
sheaf. Therefore the definition simply reduces to

As
1(ch; 0) =

{
stable reflexive sheaf F : ch(F ) = ch

}
.
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And the corresponding stratum As
1(ch; 0) of the moduli stack (1) becomes the moduli

stack of these stable reflexive sheaves with prescribed Chern character ch. For As
3(ch; 0),

due to the lack of cohomology in degree 0 for any complex in As
1(ch; 0), the quotient sheaf

Q becomes trivial. It is obvious “taking dual” is no longer necessary and the definition
of As

3(ch; 0) simply reduces to

As
3(ch; 0) =

{
morphism g :R−1 → R0: g is injective, and coker(g)

is any stable reflexive sheaf in As
1(ch; 0)

}
.

We take a close look at of the two stacks. For the “moduli” stack As
1(ch; 0), since it

parametrises simple objects, by [8, Corollary 4.3], its inertia stack is naturally identified
as Gm. In other words, the stabiliser at every closed point of this stack is always Gm.
In fact, if we ignore this trivial Gm action, it is proved in [13, Theorem 2.2] that these
sheaves can be parametrised by an irreducible non-singular scheme.

On the other hand, due to the vanishing of Q, the “quotient” stack structure becomes
[V ′/G]. We claim that the inertia stack of this quotient stack is not Gm. In fact, take
any g : R−1 → R0 in V ′, the stabiliser Ig of the G action at this point is given by

Ig =
{(

r−1, r0): r−1 ∈ Aut
(
R−1), r0 ∈ Aut

(
R0), gr−1 = r0g

}
.

It has been computed in [13, Proof of Proposition 2.9], that under our assumptions
in (11), we have

dim Ig = 1 +
(
c2 − 2r + 1

3

)
.

In fact, it is easy to find that under the assumptions in (11), we have

c2 − 2r + 1 � 4,

therefore dim Ig always has a much larger dimension than Gm. Together with our knowl-
edge of the moduli stack discussed above, we conclude that the two stacks As

1(ch; 0) are
not the same as the quotient stack structure in Lemma 3.5, and therefore Theorem 3.6.

The situation for arbitrary values of l comes with the same spirit, namely, the group
G in the quotient stack is too large and produces extra “stacky” structure which doesn’t
appear in the moduli stack. For our purpose, the above special case has already showed us
that, a bijection between the closed points of the two stacks is the best we can hope for.
However, the result still provides us a very concrete way to understand some Bridgeland
stable objects in the derived category, which a priori cannot be so explicitly described.
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