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1. Introduction

This paper is part of our study of embeddings of the poset of Hilbert series into the
poset of ideals, in a standard-graded algebra R over a field k. In our earlier paper [5],
we looked into ways of embedding the set HR of all Hilbert series of graded R-ideals
(partially ordered by comparing the coefficients) into the set IR of graded R-ideals
(partially ordered by inclusion). Here we look at the behaviour of graded Betti numbers
when we replace an ideal by an ideal (with the same Hilbert function) that is in the
image of the embedding.

Examples of such embeddings, studied classically, are polynomial rings and quotient
rings of polynomial rings by regular sequences generated by powers of the variables. If
R is a polynomial ring, then for every R-ideal I, there exists a lex-segment ideal L in R

such that the Hilbert functions of I and L are identical (a theorem of F.S. Macaulay,
see [1, Section 4.2]) and, moreover, each of the graded Betti numbers of L is at least
as large as the corresponding graded Betti numbers of I (A.M. Bigatti [2], H.A. Hulett
[19] and K. Pardue [29]). Similarly, if R = k[x1, . . . , xn]/(xe1

1 , . . . , xen
n ) for some integers

2 ≤ e1 ≤ · · · ≤ en, then for every R-ideal I there exists a lex-segment k[x1, . . . , xn]-ideal L
such that I and LR have identical Hilbert functions (J.B. Kruskal [22] and G. Katona [21]
for the case e1 = · · · = en = 2, and G.F. Clements and B. Lindström [6], in general).
Again, as k[x1, . . . , xn]-modules, each graded Betti number of R/LR is at least as large
as the corresponding graded Betti number of R/I; this was proved by J. Mermin, I. Peeva
and M. Stillman [27] for the case e1 = · · · = en = 2 in characteristic zero, by S. Murai [28]
in the general case for strongly stable ideals and by Mermin and Murai [24] in full
generality. In both these cases, mapping the Hilbert series of I to L (or to LR in the
second case) gives an embedding of HR into IR, such that the graded Betti numbers do
not decrease after the embedding. See [13,14,20] for comparing the graded Betti numbers
of R/I and R/LR over k[x1, . . . , xn] and [26] for comparing the graded Betti numbers
over R.

Before we spell out what is done in this paper, let us fix some notation. By z we
mean an indeterminate over R. Set S = R[z]/(zt), where t ≥ 1 ∈ N or t = ∞; if
t = ∞, we mean that zt = 0. By A we denote a standard-graded polynomial ring
over k that minimally presents R, i.e., ker(A −→ R) does not have any linear forms.
Let B = A[z]. The graded Betti numbers of a finitely generated graded R-module M are
βR
i,j(M) = dimk TorRi (M, k)j . The Betti table of M , denoted βR(M), is

∑
i,j β

R
i,j(M)ei,j ,

where {ei,j , i ∈ N, j ∈ Z} is the standard basis of ZN×Z.
In this paper, we show that if graded Betti numbers do not decrease when we re-

place R-ideals by their embedded versions, then the same behaviour extends to S-ideals;
see Theorem 3.1 for the precise statement. This generalizes analogous results of Bigatti,
Hulett, Pardue and Murai mentioned above. Moreover, our technique gives short and self-
contained proofs of [27, Theorem 1.1] (more precisely, the key intricate step for proving it
for strongly-stable-plus-squares ideals — see [27, Section 3 and 4]) and [28, Theorem 1.1]
(which generalizes the above theorem to arbitrary powers); see Corollary 3.7.
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We show that we can obtain the Betti table of an S-ideal from the Betti table of
its embedded version by a sequence of consecutive cancellations. This is analogous to,
and motivated by, the similar result proved by Peeva comparing the Betti table of an
arbitrary homogeneous ideal in a polynomial ring with the Betti table of the lex-segment
ideal with the same Hilbert function [30, Theorem 1.1]. Additionally, we show that a
minimal graded B-free resolution of an ideal in the image of the embedding map can be
seen as an iterated mapping cone. The simplest instance of this is the Eliahou–Kervaire
resolution (see [10,31]) of strongly-stable monomial ideals in polynomial rings. Similar
iterated mapping cones have been considered for ideals containing monomial regular
sequences, and have been used to obtain exact expressions for graded Betti numbers; see
[27,28,13]. As an application of Theorem 3.1, we show that the lex-plus-powers conjecture
of E.G. Evans reduces to the Artinian situation (Theorem 4.1).

A word about the proofs. Problems on finding bounds for Betti numbers such as
those studied in much of the body of work above can be, inductively, reduced to studying
polynomial extensions by one variable, or their quotients. This is what we address in The-
orem 3.1. Its proof makes crucial use of [5, Theorem 3.10] (reproduced as Theorem 2.1(ii)
below) which is an analogue of the Hyperplane Restriction Theorem of M. Green [15],
and of similar results of J. Herzog and D. Popescu [18] and of Gasharov [12]. Caviglia
and E. Sbarra [8, Theorem 3.1] use Theorem 2.1(ii), again, to prove a result similar to
Theorem 3.1, where graded Betti numbers are replaced by Hilbert series of local coho-
mology modules. Also see [4] for a proof of the aforementioned result of Bigatti and
Hulett, in characteristic zero, using Green’s Hyperplane Restriction Theorem.

We thank the referee for a careful reading and suggestions that improved the ex-
position. The computer algebra system Macaulay2 [17] provided valuable assistance in
studying examples.

2. Embeddings

We recall some notation and definitions from [5]. Let k be a field and A a finitely
generated polynomial ring over k. We treat A as standard graded, i.e., the indetermi-
nates have degree one. Let a be a homogeneous A-ideal and R = A/a. Let IR = {J :
J is a homogeneous R-ideal}, considered as a poset under inclusion. For a finitely gener-
ated graded R-module M =

⊕
t∈Z

Mt, the Hilbert series of M is the formal power series

HM (z) =
∑
t∈Z

(dimk Mt)zt ∈ Z�z�.

The poset of Hilbert series of homogeneous R-ideals is the set HR = {HJ : J ∈ IR}
endowed with the following partial order: H � H ′ (or H ′ � H ′) if, for all t ∈ Z, the
coefficient of zt in H is at least as large as that in H ′. (We point out that by HI we
mean the Hilbert series of I and not of R/I.)

In [5] we studied the following question: given such a standard-graded k-algebra R, is
there an (order-preserving) embedding ε : HR ↪→ IR as posets, such that H ◦ ε = idHR

,
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where H : IR −→ HR is the function J �→ HJ? We will say that HR admits an embedding
into IR (and often, by abuse of terminology, merely that HR admits an embedding) if
this question has an affirmative answer.

Recall (from Section 1) that R = A/a, B = A[z] and S = R[z]/(zt) = B/(aB + (zt))
where t is a positive integer or is ∞. Let I = {i ∈ N : i < t}. Treat B as multigraded,
with deg xi = (1, 0) and deg z = (0, 1) and let the grading on S be the one induced by
this choice. (In order to study embeddings of HS , we think of S as standard-graded, but
we will use its multigraded structure, which is a refinement of the standard grading, to
construct them.)

Let J be a multigraded S-ideal. It is isomorphic, as an R-module, to
⊕

i∈I
J〈i〉z

i,
where for every i ∈ I, J〈i〉 = (J :S zi) ∩R. Notice that for all i ∈ I, i > 0, J〈i−1〉 ⊆ J〈i〉.
We say that J is z-stable if mRJ〈i〉 ⊆ J〈i−1〉, for all i ∈ I, i > 0 where mR denotes
the homogeneous maximal ideal of R. We denote the set {HJ : J is a z-stable S-ideal}
by Hstab

S . The main results from our earlier work [5] are:

Theorem 2.1. Let t be a positive integer or ∞. Let S = R[z]/(zt). Suppose that HR

admits an embedding εR. Then:

(i) There exists an embedding of posets εS : Hstab
S ↪→ IS such that for all H ∈ Hstab

S ,
the Hilbert function of ε(H) is H.

(ii) If J is a z-stable S-ideal and L = εS(HJ), then H(J+(zi)) � H(L+(zi)) for all i ∈ I.

Part (i) is the content of [5, Theorem 3.3], where we further assume that for all
S-ideals J , there is a z-stable S-ideal with the same Hilbert function (i.e., Hstab

S = HS)
and conclude that HS admits an embedding. If t = ∞, then Hstab

S = HS [5, Lemma 4.1].
When t is finite, if k contains a primitive tth root of unity, a is a monomial ideal in some
k-basis B of A1, lt ∈ a for all l ∈ B then, again, Hstab

S = HS [5, Lemma 4.2]. Part (ii),
which can be viewed as a hypersurface restriction theorem, is [5, Theorem 3.10]; see
Discussion 2.4.

Remark 2.2. Let J be a multigraded S-ideal. Write J =
⊕

i∈I
J〈i〉z

i. Then J ′ :=⊕
i∈I

εR(HJ〈i〉)zi is an S-ideal. If J is additionally z-stable, then so is J ′. To see this,
we note that, since J is z-stable, HJ〈i−1〉 � HmRJ〈i〉 , and therefore εR(HJ〈i−1〉) ⊇
εR(HmRJ〈i〉) ⊇ mRεR(HJ〈i〉), where the last inclusion follows by using embedding fil-
trations [5, Definition 2.3]. �
Remark 2.3. The map εS : Hstab

S ↪→ IS constructed in the proof of Theorem 2.1 has
additional properties inherited from εR, namely, if an S-ideal L is in the image of εS , it
is multigraded, z-stable and, when written as L =

⊕
i∈I

L〈i〉z
i, the ideal L〈i〉 is in the

image of εR for all i ∈ I, i.e. εR(HL〈i〉) = L〈i〉. �
Discussion 2.4 (Restriction to general hypersurfaces). The Hyperplane Restriction The-
orem of Green [15] (see, also, [16, Theorem 3.4]) asserts that if k is an infinite field, J is
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a B-ideal and L the lex-segment B-ideal with HI = HL, then for any general linear
form f ∈ S, HJ+(f) � HL+(z). (In the lexicographic order on B, z is the last variable.)
Herzog and Popescu [18, Theorem in Introduction] (in characteristic zero) and Gasharov
[12, Theorem 2.2(2)] (in arbitrary characteristic) generalized this to forms of arbitrary
degree: HJ+(f) � HL+(zd) for all general forms f of degree d for all d ≥ 1. Restated in
the language of embeddings, this is HJ+(f) � HεB(HJ )+(zd). Therefore, we may wonder
whether this is true more generally than for polynomial rings. More precisely, putting
ourselves in the context of Theorem 2.1, we show that if chark = 0, then

HJ+(f) � HεS(HJ )+(zd) (2.5)

for all general homogeneous elements f ∈ S of degree d and for all d ∈ I. We also show
that the conclusion fails in positive characteristic. In characteristic zero, the argument
is as follows: Let g be a change of coordinates, fixing all the xi and sending z to a
sufficiently general linear form. Let w be the weight w(xi) = 1 for all i and w(z) = 0.
In characteristic zero, inw(g · J) is z-stable. (The proofs of [5, Lemmas 4.1 and 4.2]
use many steps of distraction and taking initial ideals with respect to w, but in char-
acteristic zero, they can be replaced by a single step.) Now, HJ+(f) = Hg·J+(g·f). By
[3, 7.1.2 and 7.1.3], Hg·J+(g·f) � Hinw(g·J)+(g·f). Had we chosen f to be g−1zd, we
would have had the equality Hinw(g·J)+(g·f) = Hinw(g·J)+(zd); however since f is gen-
eral, we have Hinw(g·J)+(g·f) � Hinw(g·J)+(zd). Finally, using Theorem 2.1(ii), we see that
Hinw(gJ)+(zd) � HεS(Hinw(gJ))+(zd). Note that εS(Hinw(gJ)) = εS(HJ).

Now to show that the conclusion does not hold in positive characteristic, consider
R = k[x, y]/(xp, yp) where p = chark. Let S = R[z], l a general linear form in x, y

and J = zpS. Then, εS denoting the embedding induced by the lexicographic order on
k[x, y, z], we have

HJ+(z+l) � HεS(HJ )+(z) and HJ+(z+l) �= HεS(HJ )+(z);

contrast this with (2.5). To see this, let us look at the corresponding quotients:
S/J + (z + l) 
 R and, since xp−1y ∈ εS(HJ), we have S/εS(HJ) + (z) is a homo-
morphic image of R/(xp−1y). �
Remark 2.6. Suppose that HR admits an embedding ε. Let I = ε(H) for some H ∈ HR.
Then IR/I 
 {J ∈ IR : I ⊆ J} and HR/I 
 {HJ : J ∈ IR, I ⊆ J}. In particular,
ε induces an embedding of HR/I into IR/I [5, Remark 2.8]. Let S = R[z]. Then HS

admits an embedding εS , by Theorem 2.1. (See, also, the paragraph following the the-
orem.) Let J be an S-ideal that is in the image of εS . By the above, HS/J admits an
embedding εS/J . Moreover suppose that εR is given by images of lex-segment ideals of A,
i.e., for all H ∈ HR, there is a lex-segment A-ideal L such that εR(H) = LR. Then for
all H ∈ HS/J , there exists a lex-segment A[z]-ideal L such that εS/J(H) = L(S/J); see
[5, Theorem 3.12 and Proposition 2.16]. (In the lexicographic order on A[z], z is the last
variable.) We remark here that in [25, Theorems 4.1 and 5.1] Mermin and Peeva had
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shown that if R is the quotient of A by a monomial ideal, then the lex-segment ideals
of A[z] give an embedding of HS/J . �
Remark 2.7. Let A = k[x1, . . . , xn] and B = A[xn+1]. Let 2 ≤ e1 ≤ · · · ≤ en+1 ≤ ∞. Let
a = (xe1

1 , . . . , xen
n )A, b = (xe1

1 , . . . , x
en+1
n+1 )B, R = A/a and S = B/b. Assume that we have

inductively constructed an embedding εR of HR such that for all R-ideals I, there exists
a lex-segment A-ideal L such that εR(HI) = LR. Then Hstab

S admits an embedding εS ,
by Theorem 2.1. We now argue that Hstab

S = HS . Let J be any B-ideal containing b.
Replacing J by an initial ideal, we may assume that J is a monomial ideal. Therefore
it suffices to prove that for all monomial B-ideals J containing b, there is a B-ideal J ′

such that J ′S is z-stable and HJS = HJ ′S . For this we may assume that k = C. Now,
the remarks in the paragraph following Theorem 2.1 imply that Hstab

S = HS , so we have
an embedding εS of HS . Again, by [5, Theorem 3.12 and Proposition 2.16] we see that
for all S-ideals J , there exists a lex-segment B-ideal L such that εS(HJ) = LS. As a
corollary, we get the theorem of Clements–Lindström mentioned in Section 1. �
3. Graded Betti numbers

We are now ready to state and prove the main result of this paper. Let εR : HR −→ IR
be an embedding and I be an R-ideal. Then βR

1,j(R/I) ≤ βR
1,j(R/εR(HI)) [5, Re-

mark 2.5]. We do not know whether βR
i,j(R/I) ≤ βR

i,j(R/εR(HI)) for all i and j. We
show that if βA

i,j(R/I) ≤ βA
i,j(R/εR(HI)) for all i, j, then a similar inequality holds for

the extension rings considered in Theorem 2.1. (In general, there are examples with
βA
i,j(R/I) < βA

i,j(R/εR(HI)) [23, Proposition 3.2].)

Theorem 3.1. Let t be a positive integer or ∞. Let S = R[z]/(zt). Suppose that HR

admits an embedding εR and that βA
i,j(R/I) ≤ βA

i,j(R/εR(HI)) for all R-ideals I and for
all i, j. Then for all i, j and for all z-stable S-ideals J , βB

i,j(S/J) ≤ βB
i,j(S/εS(HJ)).

Suppose that t, k and A1 satisfy the conditions discussed after Theorem 2.1 that ensure
that Hstab

S = HS . Then for all S-ideals J , there exists a z-stable S-ideal J ′ such that
HJ ′ = HJ and βB

i,j(S/J) ≤ βB
i,j(S/J ′). This inequality of Betti numbers follows from

the proofs of [5, Lemmas 4.1 and 4.2], and the upper-semi-continuity of graded Betti
numbers in flat families. Hence, in these situations, we can conclude from Theorem 3.1
that for all i and j and for all S-ideals J , βB

i,j(S/J) ≤ βB
i,j(S/εS(HJ)).

We begin with a (somewhat inefficient) bound on the Hilbert series of Tor modules.

Lemma 3.2. Let R′ be any positively graded k-algebra of finite type. Let M and N be
finitely generated graded R′-modules. Then HTorR′

i (M,N) � HMHTorR′
i (N,k). In particu-

lar, if N is a graded R′-submodule of M or a graded homomorphic image of M , then
HTorR′

i (M,k) � HTorR′
i (N,k) + (HM −HN )HTorR′

i (k,k).

Proof. Let F• be a minimal graded R′-free resolution of N . Then HTorR′
i (M,N) �

HM⊗ ′Fi
= HMH R′ , proving the first assertion. For the second assertion, let
R Tori (N,k)
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L = coker(N −→ M) or L = ker(M −→ N), as the case is. Then HTorR′
i (M,k) �

HTorR′
i (N,k) +HTorR′

i (L,k) � HTorR′
i (N,k) +HLHTorR′

i (k,k) where the first inequality follows
from the exact sequence of Tor and the second one follows from the first part of this
proposition. Now note that HL = HM −HN . �

The following lemma is perhaps well-known to many readers, but we give a proof for
the sake of completeness.

Lemma 3.3. Identify A with the quotient ring B/(zB). Then for all B-ideals b,
TorBi (b,k) 
 TorAi (b/zb, k).

Proof. Let F• be a graded free B-resolution of b. We can compute the Tor modules
TorBi (b, B/(zB)) either as the homology of F• ⊗B B/(zB) or as the homology of

(
0 −→ B(−1) z−→ B −→ 0

)
⊗B b =

(
0 −→ b(−1) z−→ b −→ 0

)
.

Notice that z is a non-zerodivisor on b, so TorBi (b, B/(zB)) = 0 for all i > 0, i.e.,
F•⊗BB/(zB) is a graded (B/(zB))-free resolution of b/zb. Now, TorBi (b,k) = Hi(F•⊗B

k) = Hi((F• ⊗B B/(zB)) ⊗B/(zB) k) = TorB/(z)
i (b/zb, k) 
 TorAi (b/zb, k). �

Proof of Theorem 3.1. We will work with B-ideals. Let J be a B-ideal containing
aB + (zt) such that JS is z-stable. Write L for the preimage in B of the S-ideal
εS(HJS). We need to show that HTorBi (J,k) � HTorBi (L,k). By Lemma 3.3, it suffices
to show that HTorAi (J/zJ,k) � HTorAi (L/zL,k). Write J =

⊕
i∈N

J〈i〉z
i and L =

⊕
i∈N

L〈i〉z
i

as A-modules. Let J ′ be the preimage of the S-ideal
⊕

i∈N
εR(HJ〈i〉R)zi.

Define graded A-modules

M1 =
⊕
j∈I

(J〈j〉/J〈j−1〉)(−j) and

M2 =
{
A/J〈t−1〉(−t), if t ∈ N,

0, if t = ∞.

Then, as an A-module, J/zJ = J〈0〉 ⊕ M1 ⊕ M2. Similarly define A-modules M ′
1 and

M ′
2 for J ′ and N1 and N2 for L. Notice that mAM1 = mAM

′
1 = mAN1 = 0, since JS,

J ′S and LS are z-stable, by hypothesis, by Remark 2.2 and by Remark 2.3 respectively.
(Here mA is the homogeneous maximal ideal of A.) Therefore M1, M ′

1 and N1 are (as
A-modules) direct sums of shifted copies of k, so

HTorAi (M1,k) = HM1HTorAi (k,k), HTorAi (M ′
1,k) = HM ′

1
HTorAi (k,k) and

HTorAi (N1,k) = HN1HTorAi (k,k). (3.4)

Moreover,

HTorA(J/zJ,k) = HTorA(J ,k) + HTorA(M ,k) + HTorA(M ,k). (3.5)

i i 〈0〉 i 1 i 2
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Similar expressions exist for J ′ and L. By the hypothesis and the fact that HM1 = HM ′
1
,

we see that HTorAi (J/zJ,k) � HTorAi (J ′/zJ ′,k). Therefore we may replace J by J ′ and assume
that J〈i〉R is in the image of εR for all i ∈ N. Hence, by Theorem 2.1(ii), L〈0〉 ⊆ J〈0〉,
and, if t < ∞ then J〈t−1〉 ⊆ L〈t−1〉. Hence, for all values of t, there is a surjective
A-homomorphism M2 −→ N2. Since HJ = HL, we see that

HJ〈0〉 + HM1 + HM2 = HJ/zJ = HL/zL = HL〈0〉 + HN1 + HN2 . (3.6)

Therefore

HTorAi (J/zJ,k) = HTorAi (J〈0〉,k) + HTorAi (M1,k) + HTorAi (M2,k)

� HTorAi (L〈0〉,k) + HTorAi (M1,k) + HTorAi (M2,k) + (HJ〈0〉 −HL〈0〉)HTorAi (k,k)

� HTorAi (L〈0〉,k) + HTorAi (M2,k) + (HJ〈0〉 −HL〈0〉 + HM1)HTorAi (k,k)

= HTorAi (L〈0〉,k) + HTorAi (M2,k) + (HN1 + HN2 −HM2)HTorAi (k,k)

� HTorAi (L〈0〉,k) + HTorAi (N2,k) + HN1HTorAi (k,k)

= HTorAi (L〈0〉,k) + HTorAi (N1,k) + HTorAi (N2,k)

= HTorAi (L/zL,k)

where the second line uses Lemma 3.2, the third line uses (3.4), the fourth line uses (3.6),
the fifth line uses Lemma 3.2 and the next line uses (3.4). �

The proof shows that, for fixed i and j, if βA
i,j(R/I) ≤ βA

i,j(R/εR(HI)) and
βA
i−1,j(R/I) ≤ βA

i−1,j(R/εR(HI)) for all R-ideals I, then for all z-stable S-ideals J ,
βB
i,j(S/J) ≤ βB

i,j(S/εS(HJ)).
Now, as a corollary, we give a quick proof of a theorem of Mermin, Peeva and

Stillman and its generalization by Murai. First, we relabel z as xn+1 and write B =
k[x1, . . . , xn+1]. We say that a monomial B-ideal J is strongly stable if for all monomials
m ∈ I and for all 2 ≤ j ≤ n + 1 such that xj divides m, xi(m/xj) ∈ I, for all i ≤ j.

Corollary 3.7. (See [27, Theorem 3.5], [28, Theorem 1.1].) Let J be a strongly stable
monomial B-ideal. Let b = (xe1

1 , . . . , x
en+1
n+1 ), with 2 ≤ e1 ≤ · · · ≤ en+1 ≤ ∞. Then:

(i) For all i, j, the value of βB
i,j(J + b) does not depend on k.

(ii) For all i, j, βB
i,j(J + b) ≤ βB

i,j(L + b) where L is the lex-segment B-ideal such that
HL+b = HJ+b.

Proof. (i): We may compute the Betti numbers using Lemma 3.3 and (3.5). Note that
J〈0〉 and J〈en−1〉 are strongly-stable-plus-(xe1

1 , . . . , xen
n ). The assertion now follows by

induction. (ii): From Remark 2.7, whose notation we adopt, we have embeddings εR
and εS of HR and Hstab

S = HS respectively. By induction on the number of variables, we
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see that the hypothesis of Theorem 3.1 is satisfied. Now εS(HJS) = LS, so Theorem 3.1
completes the proof. �

Starting with a ring whose poset of Hilbert functions admits an embedding, it is
possible to construct new examples of rings with the same property, by using Theorem 2.1
and Remark 2.6 recursively. We thus recover the following result of D.A. Shakin.

Corollary 3.8. (See [32, Theorems 3.10 and 4.1].) Let ai be a lex-segment ideal in the ring
k[x1, . . . , xi], i = 1 ≤ n, then let a =

∑n
i=1 aiA, with A = k[x1, . . . , xn]. Let R = A/a.

Then HR admits an embedding εR induced by the lexicographic order on A. Moreover
βA
i,j(R/I) ≤ βA

i,j(R/εR(HI)), for all R-ideals I and for all i, j.

Consecutive cancellation in Betti tables. We say that a Betti table βR(M) is obtained by
consecutive cancellations from βR(N) if there exists a collection Λ of triples (i, j, ni,j) ∈
N×Z×N such that βR(N) = βR(M)+

∑
Λ ni,j(ei,j + ei+1,j). (Note that ei,j + ei+1,j is

the Betti table of a complex R(−j) 1−→ R(−j) concentrated in homological degrees i+1
and i.) Now revert to the situation of Theorem 3.1. We have the following:

Proposition 3.9. If βA(R/I) can be obtained from βA(R/εR(HI)) by consecutive cancella-
tions for all R-ideals I, then βB(S/J) can be obtained from βB(S/εS(HJ)) by consecutive
cancellations for all z-stable S-ideals J .

Proof. As in the proof of Theorem 3.1, which we follow closely, we work with B-ideals.
Let J be a B-ideal containing aB+(zt) such that JS is z-stable. Write L for the preimage
of the S-ideal εS(HJS). Let J ′ be the preimage of the S-ideal

⊕
i∈N

εR(HJ〈i〉R)zi, as in
the proof of the theorem. We need to show that βB(J) can be obtained from βB(L)
by consecutive cancellations. Note that, by our hypothesis, βB(J) can be obtained from
βB(J ′) by consecutive cancellations, since these Betti tables are equal to βA(J/zJ) and
βA(J ′/zJ ′) respectively. Therefore, we may replace J by J ′ and assume that J〈i〉R is
in the image of εR for all i ∈ N. Then L〈0〉 ⊆ J〈0〉, N2 is a graded homomorphic image
of M2 (for a morphism of degree zero) and HN1 −HM1 = HJ〈0〉 −HL〈0〉 + HM2 −HN2 .
Hence we may place ourselves in the context of Lemma 3.2. We have

βB(L) − βB(J) = βA(L〈0〉) − βA(J〈0〉) + βA(N2) − βA(M2) + βA(N1) − βA(M1)

= βA(L〈0〉) − βA(J〈0〉) + βA(N2) − βA(M2) + (HN1 −HM1)βA(k)

=
[
βA(L〈0〉) − βA(J〈0〉) + (HJ〈0〉 −HL〈0〉)β

A(k)
]

+
[
βA(N2) − βA(M2) + (HM2 −HN2)βA(k)

]
.

Lemma 3.10 below, now, completes the proof of the proposition. �
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Lemma 3.10. Let A be a standard-graded polynomial ring. Let M and N be finitely gen-
erated graded A-modules. If N is a graded A-submodule of M or a graded homomorphic
image of M , then βA(M) can be obtained from βA(N)+(HM−HN )βA(k) by consecutive
cancellations. Here, for a series h =

∑
i∈N

hiz
i, we mean, by hβA(k), the (infinite) Betti

table
∑

i∈N
βA(k(−i)⊕hi).

Proof. We will prove this when N is a graded submodule of M ; the other case is similar.
From minimal graded A-free resolutions of N and M/N , we can construct a graded
A-free resolution of M that is not necessarily minimal. Every non-minimal graded A-free
resolution of M is a direct sum of a minimal graded A-free resolution of M with copies
of exact complexes of the form 0 −→ A(−j) 1−→ A(−j) −→ 0 that is concentrated in
homological degrees i and i+1 [9, Theorem 20.2]; therefore βA(M) can be obtained from
βA(N) + βA(M/N) by consecutive cancellations. Since HM/N = HM − HN , it suffices
to show that, after relabelling the modules, for any graded A-module M , βA(M) can be
obtained from HMβA(k) by consecutive cancellations.

Let (K•, ∂•) be a Koszul complex that is a minimal graded A-free resolution of k.
Note that

HTorAi (M,k) = Hker(∂i⊗AM) −HIm(∂i+1⊗AM)

= HKi⊗RM −HIm(∂i⊗AM) −HIm(∂i+1⊗AM).

The series HTorAi (M,k), 0 ≤ i ≤ n determine βA(M). Similarly HKi⊗RM , 0 ≤ i ≤ n,
determine HMβA(k). The lemma now follows by noting that for each i, HIm(∂i⊗AM) is
subtracted from HMβA(k) twice, at i and at i− 1. �
An Eliahou–Kervaire type resolution for z-stable ideals. When I is a strongly stable
A-ideal (see the paragraph above Corollary 3.7 for definition), a minimal graded A-free
resolution of I is given by the Eliahou–Kervaire complex (see [10, Theorem 2.1]), which
can be constructed as an iterated mapping cone for a specific order on the set of minimal
monomial generators of I. Iterated mapping cones can always be used to construct free
resolutions, but they need not be minimal in general. When they give minimal resolutions,
they can be used to obtain exact expressions for Betti numbers. See, for instance, [28],
which uses an iterated mapping cone from [27]. This section does not use explicit results
on embeddings, but only the calculations in the proof of Theorem 3.1. We first make an
observation:

Observation 3.11. Let φ : M −→ N be an injective map of finitely generated graded
B-modules and let F• and G• be minimal graded free B-resolutions of M and N respec-
tively. Denote the comparison map F• −→ G• by Φ. Then the mapping cone C• of Φ is a
graded free B-resolution of cokerφ. Moreover if rankB Ci = dimk TorBi (cokerφ,k), then
C• is a minimal resolution.
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Suppose that J is a z-stable S-ideal. We give an interpretation of a minimal graded
B-free resolution of S/J as an iterated mapping cone. Replace J by its preimage in B.
For i ∈ I, set J〈i〉 = (J :B zi) ∩ A. If t is finite, then, for all i ≥ t, set J〈i〉 = J〈t−1〉. Let
J ′ =

⊕
i∈N

J〈i〉z
i. Note that if t is finite then J = (J ′ + (zt)) while if t is infinite then

J = J ′. Note also that J ′R[z] is z-stable.
We first construct a minimal resolution of J ′. Let f1z

j1 , . . . , frz
jr , fzj be a set of

minimal multigraded generators of J ′ ordered such that j1 ≤ · · · ≤ jr ≤ j. We may
assume that j > 0, for, otherwise, a minimal B-free resolution of J ′ can be obtained
by applying − ⊗A B to a minimal A-free resolution of (J ′ ∩ A). Further, J〈i〉 = J〈j〉
for all i ≥ j. Write d = deg f . Let J ′′ = (f1z

j1 , . . . , frz
jr ). Then for all 0 ≤ i < j,

(J ′′ :B zi) ∩ A = J〈i〉, and for all i ≥ j, (J ′′ :B zi) ∩ A = (J ′′ :B zj) ∩ A. Moreover,
(J ′′ :B fzj) ⊇ (J〈j−1〉 :A f)B = mAB, so (J ′′ :B fzj) = mAB. Also, J〈j〉/((J ′′ :B
zj) ∩A) 
 k(−d). There is a graded exact sequence

0 −→ B

mAB
(−d− j) fzj

−−−→ B

J ′′ −→
B

J ′ −→ 0

of B-modules. Arguing as in the proof of Theorem 3.1, we see that βB(J ′) =
βA(J ′/zJ ′) = βA(J〈0〉) +

∑
i≤j z

iH J〈i〉
J〈i−1〉

βA(k) = βB(J ′′) + βA(k(−d− j)). By Observa-

tion 3.11, the mapping cone of a comparison morphism from a minimal B-free resolution
of B

mAB (−d− j) to that of B
J ′′ gives a minimal B-free resolution of B

J ′ .
If t is infinite, then we have by now constructed a minimal B-free resolution of S/J

as an iterated mapping cone.
Now suppose that t is finite. Then, as we noted earlier, J = (J ′ + (zt)). Observe that

j < t and hence that (J ′ :B zt) = J〈t−1〉B. We have a graded exact sequence

0 −→ B

J〈t−1〉B
(−t) zt−−→ B

J ′ −→
B

J
−→ 0

of B-modules. As we saw above, βB(J ′) = βA(J〈0〉) +
∑

1≤i<t z
iH J〈i〉

J〈i−1〉

βA(k). Since

βB( B
J〈t−1〉B

(−t)) = βA( A
J〈t−1〉

(−t)), we see from (3.5) that βB(J) = βB(J ′) +
βB( B

J〈t−1〉B
(−t)). Again, by Observation 3.11, the mapping cone for the comparison

map of the minimal B-free resolutions of B
J〈t−1〉B

(−t) and B
J ′ gives a minimal B-free

resolution of B/J .

4. The lex-plus-powers conjecture reduces to the Artinian situation

In this section, we discuss some examples of applications of Theorem 3.1. We be-
gin with a recursive application of the result. Then we use the theorem to reduce the
lex-plus-powers conjecture to the Artinian situation.

Let f = f1, . . . , fc be a homogeneous A-regular sequence (where A = k[x1, . . . , xn]) of
degrees e1 ≤ · · · ≤ ec. Let a be the ideal generated by f and let b be the ideal generated
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by xe1
1 , . . . , xec

c . We say f satisfies the Eisenbud–Green–Harris conjecture if there ex-
ists an inclusion of posets HA/a ⊆ HA/b. (Since HA/b admits an embedding induced
by the lexicographic order on A by the Clements–Lindström theorem, this definition is
equivalent to the seemingly stronger condition that for each H ∈ HA/a there exists a
lex-segment A-ideal L such that HLA/b = H.) It is known that the Eisenbud–Green–
Harris conjecture reduces to the Artinian case. More precisely, after a linear change of
coordinates (by replacing k by a suitable extension field, if necessary), we may assume
that f1, . . . , fc, xc+1, . . . , xn is a maximal regular sequence. Now, write f = f1, . . . , f c

for the image of f after going modulo xc+1, . . . , xn. Then f is a maximal regular se-
quence in k[x1, . . . , xc]. If f satisfies the Eisenbud–Green–Harris conjecture, then so does f
[7, Proposition 10].

The lex-plus-powers conjecture of Evans (see [11]) asserts that if f satisfies the
Eisenbud–Green–Harris conjecture, I is an A-ideal containing f and L is the lex-segment
A-ideal such that HI = HLA/b, then βA

i,j(I) ≤ βA
i,j(L + b) for all i, j. We show now

that, similarly, the lex-plus-powers conjecture reduces to the Artinian case. We keep the
notation from the above, and, further denote L + b by lppf (I).

Theorem 4.1. If f satisfies the Eisenbud–Green–Harris and the lex-plus-powers conjec-
tures, then so does f .

Proof. By [7, Proposition 10], f satisfies the Eisenbud–Green–Harris conjecture. Hence
we need to show that if J is an A-ideal containing f , then HTorAi (J,k) � HTorAi (lpp

f
(J),k).

We may assume that c < n. Let f̃ = f̃1, . . . , f̃c the images of f in Ã := k[x1, . . . , xn−1]. In-
ductively we can assume that for all Ã-ideals I containing f̃ , HTorÃi (I,k) � HTorÃi (lpp

f̃
(I),k).

Let J be an A-ideal containing f . By taking the initial ideal with respect to a weight w,
w(x1) = · · · = w(xn−1) = 1 and w(xn) = 0, we may assume that J contains f̃ and that it
has a decomposition (as an Ã-submodule of A) J =

⊕
i J〈i〉x

i
n where the J〈i〉 are Ã-ideals

containing f̃ . By applying [5, Lemma 4.1] we may assume that J(A/a) is xn-stable. The
proof of this lemma involves taking initial ideals and applying distraction. The values of
βA
i,j(−) do not decrease while taking initial ideals (which can be argued, e.g., the same

way as in [9, Theorem 15.17]), and remain unchanged while applying distraction (since
distraction can be interpreted as polarization followed by going modulo a regular element
[8, Section 1.3]). Let J ′ =

⊕
i lppf̃ (J〈i〉)xi

n, where, for each i, lppf̃ (J〈i〉) is the lex-plus-
powers ideal of Ã for the sequence f̃ . Note that we can obtain the ideals lppf̃ (J〈i〉)Ã/b

by embedding their Hilbert functions, so J ′A/b is xn-stable. We now claim that for all i,
HTorAi (J ′,k) � HTorAi (J,k). Assume the claim. Now lppf (J) is the preimage of εA/b(HJ ′),
so by Theorem 3.1, HTorAi (lpp

f
(J),k) � HTorAi (J,k).

Now to prove the claim, we follow the strategy of the proof of Theorem 3.1. Note that
since J ′ and J are xn-stable,

J ′/xnJ
′ = lppf̃ (J〈0〉) ⊕M and J/xnJ = J〈0〉 ⊕N
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for some Ã-modules M and N that are annihilated by (x1, . . . , xn−1). Since Hlpp
f̃
(J〈0〉) =

HJ〈0〉 , we see that HM = HN . By the induction hypothesis, HTorÃi (lpp
f̃
(J〈0〉),k) �

HTorÃi (J〈0〉,k). Hence HTorAi (J ′,k) � HTorAi (J,k). �
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