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1. Introduction

Let K be a global field and A be the ring of S-integers in K, where S be a non-empty 
finite set of places of K that contains all Archimedean places if K is a number field. 
Let D be a central division algebra D of degree n ≥ 2 over K that is definite relative 
to S. This means that for all places v ∈ S the completion Dv := D ⊗K Kv of D at v
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remains a division algebra over Kv. When K is a number field, the definite condition 
implies that K is necessarily totally real and that D is a totally definite quaternion
algebra (the completions at all real places are Hamilton quaternion algebras). There are 
extensive studies for these quaternion algebras over totally real fields in various aspects 
(mass formulas, class number formulas, modular forms, theta series etc) by Eichler and 
many others. In this paper we studies three mass formulas arising from the algebra D
and an A-order R in D.

The first one is the more classical mass associated to the pair (D, R) using algebras, 
which dates back to Deuring and Eichler; see [6], cf. [20]. Let {I1, . . . , Ih} be a complete 
set of representatives of the right locally principal ideal classes of R. Define the mass of 
(D, R) by

Mass(D,R) :=
h∑

i=1

[
R×

i : A×]−1
, (1.1)

where Ri is the left order of Ii. See Section 2.3 for detailed discussions.
Another two masses are defined by group theory. Recall that if a reductive group 

G over K has finite S-arithmetic subgroups, then for any open compact subgroup 
U ⊂ G(AS), where AS is the prime-to-S adele ring of K, one can associate the mass 
Mass(G, U) as the weight sum over the double coset space DS(G, U) = G(K)\G(AS)/U
(see Section 2.2). Now let G be the multiplicative group of D viewed as an algebraic 
group over K. Let G1 denote the reduced norm one subgroup of G and Gad the adjoint 
group of G. The definite condition implies that the groups G1(K) and Gad(K) have fi-
nite S-arithmetic subgroups (Section 2.2). Put U := R̂× ⊂ G(AS), where R̂ =

∏
v/∈S Rv

is the profinite completion of R. Put U1 := U ∩ G1(AS) and let Uad ⊂ Gad(AS) be 
the image of U . Using the vanishing of the first Galois cohomology one shows that the 
induced projection pr : G(AS) → Gad(AS) is open and surjective, particularly that Uad

is an open compact subgroup. Therefore we have defined the masses Mass(G1, U1) and 
Mass(Gad, Uad).

The main contents of this article are to compare these masses and to compute them 
explicitly. Our first main result is the following; see Theorem 3.2 and Corollary 3.8.

Theorem 1.1. We have

Mass(D,R) = hA · Mass
(
Gad, Uad), (1.2)

where hA is the class number of A. Moreover, we have

Mass
(
Gad, Uad) = c(S,U) · Mass(G1, U1), (1.3)

where

c(S,U) =
{
n−(|S|−1)[Â× : Nr(U)] if K is a function field;
−(|S|−|∞|−1) ̂× (1.4)
2 [A : Nr(U)] if K is a totally real field.
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Here Nr : G(AS) → AS,× denotes the reduced norm map, Â =
∏

v Av is the profinite 
completion of A and ∞ is the set of Archimedean places of the number field K.

Thus, knowing one of the three masses will allow us to compute the other two. For 
Mass(D, R) we obtain the following formula; see Theorem 4.2.

Theorem 1.2. We have

Mass(D,R) = hA

n|S|−1 ·
n−1∏
i=1

∣∣ζK(−i)
∣∣ ·∏

v

λv(Rv), (1.5)

where ζK(s) is the Dedekind zeta function of K, v runs through all non-Archimedean 
places of K and the local term λv(Rv) is defined in (4.10).

In the case where D is a quaternion algebra, i.e. n = 2, Theorem 1.2 gives rise to a more 
explicit formula (see Corollary 4.3) which was obtained first by Körner in the number field 
case (see [15, Theorem 1], also see [14] for the computation). The mass formula proved 
by Körner is used further by Brzezinski [3] to classify orders in all definite quaternion 
algebras over Q with class number one. We remark that definite Eichler orders O of class 
number h(O) ≤ 2 are classified in Kirschmer and Voight [13]

The proof of (1.2) is analyzing the action of the Picard group Pic(A) on the double 
coset space DS(G, U) and comparing the two masses from the definition. The proof of 
(1.3) is first to reduce the case where R is maximal, and in this case we compute the 
factor c(S, U) from the explicit formula for Mass(Gad, Uad) and Mass(G1, U1).

The proof of Theorem 1.2 is similar to that in Körner [15] which starts the (known) 
mass formula for maximal orders and computes explicitly the local terms. Using the 
interpretation of masses as volumes of fundamental domains, we can reduce the mass 
formula for maximal orders to the classical case (i.e. S = ∞ or “the place at infinity” 
in the function field case), which is well known due to Eichler in the number field case 
and is due to Denert and Van Geel [5] in the function field case (also see different proofs 
in Wei and the author [21]). In the latter case, the mass formula was used in Denert 
and Van Geel [4] to prove the cancellation property for Fq[t]-orders in definite central 
division algebras over K = Fq(t).

Though there is no new idea added in the proof of Theorem 1.2, it is convenient to 
have an explicit formula for some arithmetic and geometric applications (e.g. estimating 
class numbers and computing certain supersingular objects, see [3,13,4,9,10,22–25,27]).

We remark that mass formulas for more general groups have been determined by 
Prasad [16], Gan and Gross [12], Shimura (cf. [19]) and Gan, Hanke and Yu [7,8]. We 
refer the interested reader to their papers for more mass formulas.

This paper is organized as follows. Section 2 discusses variants of masses arising from 
a definite central division algebra. Section 3 compares these masses (Theorem 1.1) and 
deduces a mass formula (Theorem 1.2) in the case where R is a maximal order. In 
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Section 4 we compute the local indices and prove Theorem 1.2. The last section discusses 
a mass formula for types of orders.

2. Definitions of masses

2.1. Setting

Let K be a global field. Let S be a non-empty finite set of places of K that contains 
all Archimedean places if K is a number field or contains a fixed place ∞ if K is a global 
function field. We also write ∞ for the set of Archimedean places when K is a number 
field. Let A be the ring of S-integers. If K is a number field and S = ∞, then A is 
nothing but the ring of integers in K which is usually denoted by OK . Let V K (resp. 
V K
f ) denote the set of all (resp. all non-Archimedean) places of K. There is a natural 

one-to-one bijection between the set of places v /∈ S and the set Max(A) of non-zero 
prime ideals of A. For any place v of K, let Kv denote the completion of K at v. If v
is non-Archimedean, then let Ov denote the valuation ring, k(v) the residue field and qv
its cardinality. In case v /∈ S, one also writes Av for Ov, the completion of A at v. Write 
|I| := |A/I| (resp. |Iv| := |Av/Iv|) if I ⊂ A (resp. Iv ⊂ Av) is a non-zero integral ideal. 
Let A denote the adele ring of K, AS :=

∏′
v/∈S Kv the prime-to-S adele ring of K and 

AS :=
∏

v∈S Kv. One has A = AS×AS . Write Â =
∏

v/∈S Av for the profinite completion 
of A. For any finitely generated A-module R, write R̂ := R⊗A Â.

Let G be a reductive algebraic group over K. Recall that an S-arithmetic subgroup of 
G is a subgroup of the group G(K) of K-rational points which is commensurable to the 
intersection of G(K) with an open compact subgroup U of G(AS). If an S-arithmetic 
subgroup of G is finite, then every S-arithmetic subgroup of G is finite.

For any open compact subgroup U ⊂ G(AS), we write DS(G, U) for the double coset 
space G(K)\G(AS)/U . By the finiteness of class numbers due to Harish-Chandra and 
Borel [2], the set DS(G, U) is always finite.

2.2. Mass of (G, U)

Suppose that any S-arithmetic subgroup of G is finite. For any open compact subgroup 
U ⊂ G(AS), we define the mass of (G, U) by

Mass(G,U) :=
h∑

i=1
|Γci |−1, (2.1)

where c1, . . . , ch are representatives for the double coset space DS(G, U) and Γci :=
G(K) ∩ ciUc−1

i for i = 1, . . . , h. Note that Γci = {g ∈ G(K) | g(ciU) = ciU} and it is 
finite.
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If GS := G(AS) is compact, then any S-arithmetic subgroup is discretely embed-
ded into the compact group GS and hence is finite. In this case the mass Mass(G, U)
associated to (G, U) is defined for any open compact subgroup U ⊂ G(AS).

There are examples of groups G with finite S-arithmetic subgroups whose
S-component GS needs not to be compact. For example, let D be a definite quater-
nion algebra over Q (with S = ∞) and G := D× be the multiplicative group of D. 
Then the group G(R) = H× of R-points, which is the group of units in the Hamilton 
quaternion algebra, is not compact. However, any arithmetic subgroup of G(Q) is finite. 
Another example is the multiplicative group G associated to a definite central division 
algebra D over a function field K with |S| = 1.

Note that if GS := G(AS) is compact, then the group G(K) is identified with a dis-
crete subgroup in G(AS) through the diagonal embedding and the quotient topological 
space G(K)\G(AS) is compact. This space provides a fertile ground for studying har-
monic analysis. Slightly more general, one has the following equivalent statements which 
characterize the groups with finite S-arithmetic subgroups:

Proposition 2.1. The following statements are equivalent.

(1) Any S-arithmetic subgroup of G(K) is finite.
(2) The group G(K) is discretely embedded into the locally compact topological group 

G(AS).
(3) The group G(K) is discretely embedded into the locally compact topological group 

G(AS) and the quotient topological space G(K)\G(AS) is compact.

Proof. See a proof in Gross [11]. �
In general, it is very difficult to calculate the class number |DS(G, U)| explicitly. The 

mass Mass(G, U) associated to (G, U), by its definition, is a weighted class number. It is 
weighted according to the extra symmetries of each double coset. The mass is easier to 
compute and it provides a good lower bound for the class number. On the other hand, 
one can interpret Mass(G, U) as the volume of a fundamental domain.

Lemma 2.2. Let G be a reductive group over K with finite S-arithmetic subgroups. Then 
Mass(G, U) = vol(G(K)\G(AS))vol(U)−1 for any Haar measure on G(AS) and the 
counting measure for the discrete subgroup G(K). In particular if the Haar measure 
is chosen so that vol(U) = 1, then Mass(G, U) = vol(G(K)\G(AS)).

Proof. Let c1, . . . , ch be representatives for DS(G, U). One has

G
(
AS

)
=

h∐
i=1

G(K)ciU

and for each class
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vol
(
G(K)\G(K)ciU

)
= vol(U)

vol(G(K) ∩ ciUc−1
i )

= vol(U)|Γci |−1.

Then we get

vol
(
G(K)\G

(
AS

))
=

h∑
i=1

vol
(
G(K)\G(K)ciU

)
= vol(U) · Mass(G,U). �

This interpretation of Mass(G, U) allows us to compare the masses Mass(G, U) and 
Mass(G, U ′) for different open compact subgroups U and U ′ in G(AS). Indeed by 
Lemma 2.2 we have

Mass
(
G,U ′) = Mass(G,U)

[
U : U ′], (2.2)

where the index [U : U ′] is defined by

[
U : U ′] :=

[
U : U ′′][U ′ : U ′′]−1 (2.3)

for any open compact subgroup U ′′ ⊂ U ∩ U ′.

2.3. Mass of (D, R)

Let D be a central algebra over K which is definite relative to S. This means that 
the completion Dv at v, for any place v ∈ S, is a central division algebra over Kv. In 
particular D is a division algebra. In the literature, definite central simple algebras are 
exactly those that do not satisfy the S-Eichler condition.

Let SD ⊂ V K denote the finite set of ramified places for D. When D is a quaternion 
algebra, the definite condition for D simply means that S ⊂ SD. However, the condition 
S ⊂ SD is not sufficient to conclude that D is definite in general. One also needs to know 
the invariants of D.

Let R be an A-order in D. Two right R-ideals I and I ′ are said to be equivalent, which 
we denote by I1 ∼ I2, if there is an element g ∈ D× such that I ′ = gI. In other words, 
I1 ∼ I2 if and only if I and I ′ are isomorphic as right R-modules. Let Cl(R) denote 
the set of equivalence classes of locally free right R-ideals. It is well known that the set 
Cl(R) is always finite, and that this set can be parametrized by an adelic class space:

Cl(R) � D×\D×
AS/R̂

×,

where R̂ =
∏

v/∈S Rv (Rv = R⊗AAv) is the profinite completion of R and DAS = D⊗KAS

is the attached prime-to-S adele ring of D.
Let I1, . . . , Ih be representatives for the ideal classes in Cl(R). Let Ri be the left order 

of Ii. Then [R×
i : A×] is finite. This follows from the Dirichlet theorem that A× is finitely 

generated Z-module of rank |S| − 1 and the following exact sequence:
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1 → R×
i,1/A

×
1 → R×

i /A
× → Nr

(
R×

i

)
/Nr

(
A×) → 1,

where Nr : D× → K× is the reduced norm, R×
i,1 = R×

i ∩ ker Nr and A×
1 := A× ∩ ker Nr. 

Note that the abelian groups Nr(A×) = (A×)deg(D/K) and Nr(R×
i ) are subgroups of 

finite index in A×. Therefore, the quotient group Nr(R×
i )/ Nr(A×) is a finite abelian 

group. As the group R×
i,1/A

×
1 is finite, one concludes that R×

i /A
× is also finite. Define 

the mass Mass(D, R) by

Mass(D,R) :=
h∑

i=1

[
R×

i : A×]−1
. (2.4)

The definition is independent of the choice of the representatives Ii.
When |S| = 1, the group G(K) = D× has finite S-arithmetic subgroups and hence 

the mass Mass(G, U) is also defined, where U := R̂×. In this case put

Massu(D,R) := Mass(G,U) =
h∑

i=1

∣∣R×
i

∣∣−1
, (2.5)

which is an un-normalized version for Mass(D, R). Clearly we have Mass(D, R) = |A×| ·
Massu(D, R).

3. Comparison of masses

In the rest of this paper we let K, S, A, D and R be as in Section 1 (or 2.3), except 
in Section 4.1 where A denotes an arbitrary Dedekind domain.

3.1. Notation

Let G = D× be the multiplicative group of D, viewed as an algebraic group over K. 
Let Z be the center of G and Gad = G/Z be the adjoint group of G. We have a short 
exact sequence of algebraic groups over K:

1 −→ Z −→ G
pr−−−→ Gad −→ 1, (3.1)

where pr is the natural projection morphism. Let Gm denote the multiplicative group 
over K, and Nr : G → Gm be the morphism induced from the reduced norm map 
Nr : D× → K×. Let G1 := ker Nr ⊂ G be the reduced norm one subgroup. We have a 
short exact sequence of algebraic groups over K:

1 −→ G1 −→ G
Nr−−−→ Gm −→ 1. (3.2)

The group G1 is an inner form of SLn and hence is semi-simple and simply connected.
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Applying Galois cohomology to (3.1) and using Hilbert Theorem 90, we have

Gad(Kv) = G(Kv)/K×
v and Gad(K) = D×/K×

and that pr : G(Kv) → Gad(Kv) (resp: pr : G(Kv) → Gad(Kv)) is a natural surjec-
tive map. When v is an unramifield place for D, we have Gad(Kv) = GLn(Kv)/K×

v . 
It is not hard to show that any maximal open compact subgroup is conjugate 
to GLn(Ov)K×

v /K×
v , for example using the Cartan decomposition. It follows that 

pr(G(Ov)) is a maximal open compact subgroup for almost all places v, and hence 
that the map pr : G(AS) → Gad(AS) is surjective and open in the adelic topology.

For any open compact subgroup U ⊂ G(AS), we write Uad for the image pr(U) of U
in Gad(AS), which is an open and compact subgroup. Note that Gad(Kv) = D×

v /K
×
v is 

compact for all v ∈ S as Dv is a division algebra and D×
v � Z ×O×

Dv
(unit group of the 

unique maximal order). It follows that the group Gad has finite S-arithmetic subgroups 
and that Mass(Gad, Uad) is defined.

3.2. Compare Mass(D, R) and Mass(Gad, Uad)

We now take U = R̂× and want to compare the mass Mass(D, R) with the mass 
Mass(Gad, Uad), where Uad = pr(U).

The projection map pr : G(AS) → Gad(AS) gives rise to a surjective map pr :
DS(G, U) → DS(Gad, Uad). Moreover it induces a canonical bijection

D×\G
(
AS

)
/AS,×R̂× � DS

(
Gad, Uad). (3.3)

Let Pic(A) = AS,×/K×Â× denote the Picard group of A and let hA = | Pic(A)|
denote the class number of A. The group Pic(A) acts on DS(G, U) by [a] · [c] = [ca] for 
a ∈ AS,× and c ∈ G(AS), where [a] is the class of a ∈ AS,× in Pic(A) and [c] is the class 
in DS(G, U). One has the induced bijection

pr : DS(G,U)/Pic(A) ∼−→ DS
(
Gad, Uad). (3.4)

For c ∈ G(AS), write [c]ad for the class D×cAS,×R̂× and regard it as an element in 
DS(Gad, Uad) through the canonical isomorphism in (3.3).

By definition, we have

Mass
(
Gad, Uad) =

∑
[c]ad∈DS(Gad,Uad)

∣∣Γ ad
c

∣∣−1
,

where Γ ad
c = Gad(K) ∩ pr(c)Uadpr(c)−1. We have

Γ ad
c =

(
D× ∩ cR̂×c−1AS,×)/K×. (3.5)
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This group contains (D× ∩ cR̂×c−1K×)/K× = R×
c /A

× as a subgroup, where Rc =
D ∩ cR̂c−1, which is also the left order of the ideal class corresponding to the class [c]. 
Therefore, the contribution of the class [c]ad in Mass(Gad, Uad) is equal to

∣∣Γ ad
c

∣∣−1 =
∣∣R×

c /A
×∣∣−1∣∣(D× ∩ cR̂×c−1AS,×)/(D× ∩K×cR̂×c−1)∣∣−1

. (3.6)

On the group G, we have

pr−1([c]ad) =
{
[ac]; a ∈ AS,×} � Pic(A)/ Stab

(
[c]
)
,

where Stab([c]) is the stabilizer of the class [c] under the Pic(A)-action, and

R×
ac = Γac = D× ∩ (ac)R̂×(ac)−1 = Γc = R×

c .

This says that every member in the fiber pr−1([c]ad) has the same weight. Thus, the 
weight sum over the fiber pr−1([c]ad) in Mass(D, R) is

∑
[c′]∈pr−1([c]ad)

∣∣R×
c′/A

×∣∣−1 =
∣∣R×

c /A
×∣∣−1 hA

|Stab([c])| . (3.7)

It is easy to see

[ac] = [c] ⇐⇒ D×acR̂× = D×cR̂× ⇐⇒ a ∈ AS,× ∩D×cR̂×c−1,

and we get

Stab
(
[c]
)

=
(
AS,× ∩D×cR̂×c−1)/K×Â×. (3.8)

We now show

Lemma 3.1. There is an isomorphism of finite abelian groups

Stab
(
[c]
)
�

(
D× ∩ AS,×cR̂×c−1)/(D× ∩K×cR̂×c−1). (3.9)

Proof. To simply notation, put W := cR̂×c−1. First of all for a ∈ AS,× we have

aW ∩D× �= ∅ ⇐⇒ a ∈ AS,× ∩D×W.

We now show that for each a ∈ AS,× ∩ D×W , the intersection aW ∩ D× defines an 
element in (AS,×W ∩ D×)/(K×W ∩ D×). Suppose we have two elements ax1 = d1, 
ax2 = d2, where x1, x2 ∈ W and d1, d2 ∈ D×. Then

(ax1)−1(ax2) = x−1
1 x2 = d−1

1 d2 ∈ W ∩D× ⊂ K×W ∩D×.
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Therefore, we define a map

AS,× ∩D×W →
(
AS,×W ∩D×)/(K×W ∩D×), a �→

[
aW ∩D×].

We need to show that elements which go to the identity class lie in K×Â×. Suppose 
an element ax ∈ aW ∩ D× lies in the identity class, i.e. ax = ky for some k ∈ K×

and y ∈ W . Then the element ak−1 = yx−1 lies in AS,× ∩ W = Â×. This shows that 
a ∈ K×Â×. Therefore, the above map induces a bijection

(
AS,× ∩D×W

)
/K×Â× �

(
AS,×W ∩D×)/(K×W ∩D×).

Moreover, this is an isomorphism of finite abelian groups. Combining with the isomor-
phism (3.8), one obtains an isomorphism (3.9). �
Theorem 3.2. We have the equality

Mass(D,R) = hA · Mass
(
Gad, Uad). (3.10)

Proof. It follows from (3.6) and Lemma 3.1 that

∣∣Γ ad
c

∣∣−1 =
∣∣R×

c /A
×∣∣−1∣∣Stab

(
[c]
)∣∣−1

.

By (3.7) we have

Mass(D,R) =
∑
[c]ad

∑
[c′]∈pr−1([c]ad)

∣∣R×
c′/A

×∣∣−1 =
∑
[c]ad

∣∣R×
c /A

×∣∣−1 hA

| Stab([c])| ,

where [c]ad runs over all double cosets in DS(Gad, Uad). Thus,

Mass(D,R) =
∑
[c]ad

hA

∣∣Γ ad
c

∣∣−1 = hA · Mass(Gad, Uad). �

Corollary 3.3. If R and R′ are two A-orders in D, then we have

Mass(D,R) = Mass
(
D,R′)[R̂′ × : R̂×], (3.11)

where the index [R̂′ × : R̂×] is defined in (2.3).

Proof. Since both the groups R̂′ × and R̂× contain the center Â×, one has

[
R̂′ × : R̂×] =

[
U ′ ad : Uad],

where U ′ ad = pr(R̂′ ×) and Uad = pr(R̂×). As
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Mass
(
Gad, U ′ ad) = Mass

(
Gad, Uad)[U ′ ad : Uad],

the assertion follows immediately from Theorem 3.2. �
Remark 3.4. (1) When the class number hA of A is one, the induced map pr :
DS(G, U) → DS(Gad, Uad) below (3.3) is bijective. In this case the equality Mass(D, R) =
Mass(Gad, Uad) of different masses in Theorem 3.2 is the term-by-term equality.

(2) The action of Pic(A) on the class space DS(G, U) � Cl(R) needs not to be 
free in general. Therefore, the class number h(R) = |DS(G, U)| may not be equal to 
hA · |DS(Gad, Uad)|. To see this, let us look at the isotropy subgroup of the identity 
class [1] (c = 1 in (3.8)):

Stab
(
[1]

)
�

(
AS,× ∩D×R̂×)/K×Â×.

In the extreme case one considers the possibility of the equality

AS,× ∩D×R̂× = AS,×.

This is possible if one can find a maximal subfield L of D over K which satisfies the 
Principal Ideal Theorem (cf. Artin and Tate [1, Chapter XIII, Section 4, pp. 137–141]), 
that is, AS,× ⊂ L×B̂×, where B is the integral closure of A in L. Below is an example 
(provided by F.-T. Wei).

(3) An example. Let K = Q(
√

10) and L = K(
√
−5) = Q(

√
−5, 

√
−2). Let D be the 

quaternion algebra over K which is ramified exactly at the two real places of K. Since 
L/K is inert at the real places, we can embed L into D over K by the Hasse principle 
(cf. [17, Section 18.4]). Notice that the primes 2 and 5 are ramified in K. Let p be the 
prime of OK = Z[

√
10] lying over 5.

Claim. p =
√

10OK + 5OK and p is of order 2 in Pic(OK).

Proof of Claim. Let q be the unique prime of OK lying over 2. Then 
√

10OK = pq

and 5OK = p2. Therefore, p =
√

10OK + 5OK , and p2 = 5OK is principal. We now 
show that p is not principal. Suppose that p is principal. Then there exist x, y ∈ Z

such that Nr(x + y
√

10) = x2 − 10y2 = ±5. Then x = 5x′ for some x′ ∈ Z, and 
5x′ 2 − 2y2 = ±1 ≡ ±1 (mod 5). This implies that −2y2 ≡ ±1 (mod 5), which is a 
contradiction. �

Moreover, we have

pOL =
√

10OL + 5OL =
√
−5 (

√
−2OL +

√
−5OL) =

√
−5OL,

which is principal. Let R be a maximal order in D which contains OL. Then pR =√
−5R. This shows that the isotropy subgroup of the identity class [1] is non-trivial, and 
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particularly that the action of Pic(OK) on Cl(R) is not free. As the class number of OK

is equal to 2, we also show that the canonical map Pic(OK) → Pic(OL), sending any 
ideal class [I] to [IOL], is the zero map.

3.3. Comparison of Mass(Gad, Uad) and Mass(G1, U1)

Recall that G1 is the norm-one subgroup of G and U1 := U ∩ G1(AS), where 
U = R̂×. Let R̃ be a maximal A-order in D containing R. Put Ũ := (R̃ ⊗A Â)× and 
Ũ1 := Ũ ∩G1(AS). We compare the masses Mass(Gad, Uad) and Mass(G1, U1). Using the 
interpretation of masses as the volume of fundamental domains (Lemma 2.2), one first 
has

Mass(G1, U1) = Mass(G1, Ũ1)[Ũ1 : U1],

Mass
(
Gad, Uad) = Mass

(
Gad, Ũad)[Ũad : Uad]. (3.12)

From this we see that the comparison of these two masses depends on U and can be 
reduced to the case where R is a maximal A-order. Put

c(S,U) := Mass(Gad, Uad)
Mass(G1, U1)

. (3.13)

Lemma 3.5. One has

c(S,U) = c(S, Ũ) ·
[
Â× : Nr(U)

]
, (3.14)

where Nr : G(AS) → AS,× is the reduced norm map.

Proof. Using the relation (3.12) we get

c(S,U) = c(S, Ũ) · [Ũad : Uad]
[Ũ1 : U1]

. (3.15)

Since both U and Ũ contain the center Â×, one has [Ũad : Uad] = [Ũ : U ]. Using the 
following short exact sequences

1 −→ U1 −→ U −→ Nr(U) −→ 1,

1 −→ Ũ1 −→ Ũ −→ Nr(Ũ) = Â× −→ 1,

one easily shows that [Ũ : U ] = [Ũ1 : U1] · [Â× : Nr(U)]. Thus, [Ũad : Uad] = [Ũ1 :
U1] · [Â× : Nr(U)] and the lemma is proved. �

Recall (Section 2.3) that SD ⊂ V K denotes the finite set of ramified places for D.
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Theorem 3.6. Assume that S = ∞ and that R is a maximal A-order.

(1) If K is a totally real number field, then

Mass(D,R) = hA · (−1)[K:Q]

2[K:Q]−1 · ζK(−1) ·
∏

v∈SD∩V K
f

(qv − 1), (3.16)

Mass
(
Gad, Uad) = (−1)[K:Q]

2[K:Q]−1 · ζK(−1) ·
∏

v∈SD∩V K
f

(qv − 1), (3.17)

and

Mass(G1, U1) = (−1)[K:Q]

2[K:Q] · ζK(−1) ·
∏

v∈SD∩V K
f

(qv − 1). (3.18)

(2) If K is a global function field, then

Mass(D,R) = hA ·
n−1∏
i=1

ζK(−i) ·
∏

v∈SD

λv, (3.19)

Mass
(
Gad, Uad) =

n−1∏
i=1

ζK(−i) ·
∏

v∈SD

λv, (3.20)

and

Mass(G1, U1) =
n−1∏
i=1

ζK(−i) ·
∏

v∈SD

λv, (3.21)

where

λv =
∏

1≤i≤n−1,dv�i

(
qiv − 1

)
(3.22)

and dv is the index of Dv := D ⊗K Kv.

Proof. (1) The formulas for Mass(D, R) and Mass(G1, U1) are due to Eichler [6]; also 
see [20, Chapter V]. The formula for Mass(Gad, Uad) follows from Eichler’s formula for 
Mass(D, R) and Theorem 3.2.

(2) The formula for Mass(D, R) is obtained by Denert and Van Geel [5] and also by 
Wei and the author [21, Theorem 1.1]. The formula for Mass(G1, U1) follows from the 
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relation Mass(D, R) = hA · Mass(G1, U1); see [26, Eq. (3), p. 907].1 The formula for 
Mass(Gad, Uad) follows from the formula for Mass(D, R) and Theorem 3.2. �
Theorem 3.7. Assume that R is a maximal A-order. We have

Mass
(
Gad, Uad) = cad ·

n−1∏
i=1

∣∣ζK(−i)
∣∣ · ∏

v∈SD∩V K
f

λv,

Mass(G1, U1) = c1 ·
n−1∏
i=1

∣∣ζK(−i)
∣∣ · ∏

v∈SD∩V K
f

λv, (3.23)

where λv is given in (3.22), cad = 1/n|S|−1 and

c1 =
{

1 if K is a function field;
2−[K:Q] if K is a totally real number field. (3.24)

Proof. We write Mass(Gad, Uad, S) for Mass(Gad, Uad) to emphasize the dependence of 
the mass on S. We have

Mass
(
Gad, Uad, S

)
= vol(Gad(K)\Gad(AS))

vol(U)

= vol(Gad(K)\Gad(A∞))
vol(

∏
v∈S−∞ Gad(Ov) · U) ·

∏
v∈S−∞

[
vol(Gad(Kv))
vol(Gad(Ov))

]−1

= 1
n|S|−|∞|

vol(Gad(K)\Gad(A∞))
vol(

∏
v∈S−∞ Gad(Ov) · U)

= 1
n|S|−|∞| · Mass

(
Gad, Uad,∞

)
. (3.25)

Here Gad(Ov) = O×
Dv

/O×
v where ODv

is the valuation ring in the division algebra Dv, 
and we use the isomorphism Gad(Kv)/Gad(Ov) � Z/nZ. The computation above reduces 
to the case where S = ∞. Using the formulas (3.17) and (3.20) we compute the factor

cad = 1
n|S|−|∞| ·

1
n|∞|−1 = 1

n|S|−1 .

This settles the formula for Mass(Gad, Uad). Using G1(Kv) = G1(Ov) for v ∈ S, the 
same computation as in (3.25) shows that Mass(G1, U1, S) = Mass(G1, U1, ∞), i.e. 
Mass(G1, U1) is independent of S. Therefore, the formula for Mass(G1, U1) is given by 
(3.18) and (3.21), respectively. �
1 In the function field case with |S| = 1 the notation Mass(D, R) in [21] is defined to be the un-normalized 

mass Massu(D, R) (2.5) in this paper, which is (q − 1)−1 times the mass Mass(D, R) in this paper.
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We now show the following comparison result.

Corollary 3.8. Let R be any A-order in D. We have

Mass
(
Gad, Uad) = c(S,U) · Mass(G1, U1), (3.26)

where

c(S,U) =
{
n−(|S|−1)[Â× : Nr(U)] if K is a function field;
2−(|S|−|∞|−1)[Â× : Nr(U)] if K is a totally real number field.

(3.27)

Proof. When R is a maximal order, we compute using Theorem 3.7

c(S, Ũ) =
{
n−(|S|−1) if K is a function field;
2−(|S|−|∞|−1) if K is a totally real number field.

(3.28)

The statement then follows from Lemma 3.5. �
The proof of Corollary 3.8 when R is a maximal A-order is ad hoc. Namely, this is 

derived after knowing both Mass(Gad, Uad) and Mass(G1, U1).

4. Mass formulas for arbitrary A-orders R

In the previous section we obtain the formulas for Mass(D, R), Mass(Gad, Uad) and 
Mass(G1, U1) in the case where R is maximal. We now consider the case of arbitrary 
A-orders R. Using Theorem 3.2 and Corollary 3.8, one only needs to know any of them. 
We derive a formula for Mass(D, R).

4.1. More notations

Let A be any Dedekind domain and let K be the fraction field of R. Let V be a 
finite-dimensional K-vector space. For any two (full) A-lattices X1 and X2, let χ(X1, X2)
be the unique fractional ideal of A that is characterized by the following properties (See 
Serre [18, Chapter III, Section 1]):

• If X2 ⊂ X1 and X1/X2 � A/p for a non-zero prime ideal p ⊂ A, then χ(X1, X2) = p.
• χ(X1, X2) = χ(X2, X1)−1 for any two A-lattices X1 and X2 in V .
• χ(X1, X2)χ(X2, X3) = χ(X1, X3) for any three A-lattices X1, X2 and X3 in V .

When K is a global field, we define |I| to be |A/I| for any non-zero integral ideal 
I ⊂ A and extend the definition to fractional ideals by

∣∣I1I−1
2

∣∣ = |I1||I2|−1
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for non-zero integral ideals I1 and I2 of A. In this case let Â denote the finite completion 
of A and K̂ := Â ⊗A K. Put X̂ := X ⊗A Â and V̂ := V ⊗K K̂. Then for any Haar 
measure on V̂ one has

∣∣χ(X1, X2)
∣∣ = vol(X̂1)

vol(X̂2)
. (4.1)

Now we define the discriminant of an A-lattice with respect to a bilinear form on V
(for any Dedekind domain A). Let T : V ×V → K be a non-degenerate K-bilinear map. 
Put n = dimK V . For any K-basis E = {e1, e2, . . . , en} of V , the discriminant of E with 
respect to T is defined to be

DT (E) := det
(
T (ei, ej)

)
∈ K. (4.2)

For an A-lattice X in V , the discriminant of X with respect to T is defined to be the 
fractional ideal generated by DT (E)

dT (X) :=
(
DT (E)

)
E
⊂ K (4.3)

for all K-bases E contained in X. Computation of discriminants can be reduced to the 
local computation, namely, we have

dT (X) ⊗A Ap = dT (Xp), Xp := X ⊗A Ap, (4.4)

where Ap is the completion of A at the non-zero prime ideal p.
If X1 and X2 are two A-lattices in V , then one has the formula [18, Chapter III, 

Section 2, Proposition 5, p. 49]

dT (X2) = dT (X1)χ(X1, X2)2. (4.5)

In particular, if X2 ⊂ X1 then dT (X2) = dT (X1)a2, where a = χ(X1, X2), which is an 
integral ideal of A.

Now we define the reduced discriminant of an A-lattice in a central simple algebra
over K; some authors simply call this the discriminant of the lattice. Let B be a central 
simple K-algebra and X be an A-lattice in B. Let T : B×B → K be the non-degenerate 
K-bilinear form defined by

T (x, y) := Tr(x · y),

where Tr : B → K is the reduced trace from B to K. Then dT (X) is defined and it can 
be shown to be the square of a unique fractional ideal a in K. The reduced discriminant 
of X, denoted by d(X), is defined to this fractional ideal a, namely, the square root of 
dT (X). It is easy to see that the association X �→ d(X) commutes with finite etale base 
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changes and localizations. Namely, if A′ is a finite etale extension or a localization of A
then one has

d
(
X ⊗A A′) = d(X) ⊗A A′. (4.6)

4.2. Computation of Mass(D, R)

We return to compute Mass(D, R) where R is any A-order. Let R̃ be a maximal 
A-order in D containing R. The masses Mass(D, R̃) and Mass(D, R) differ by the factor

∏
v/∈S

[
R̃×

v : R×
v

]
, (4.7)

Put κ(Rv) := Rv/rad(Rv), where rad(Rv) denotes the Jacobson radical of Rv.

Lemma 4.1.

(1) We have

[R̃v : Rv] = |d(Rv)|
|d(R̃v)|

. (4.8)

(2) We have

[
R̃×

v : R×
v

]
= |d(Rv)|

|d(R̃v)|
· |κ(R̃v)×|/|κ(R̃v)|
|κ(Rv)×|/|κ(Rv)|

. (4.9)

Proof. (1) We have [R̃v : Rv] = |χ(R̃v, Rv)| from (4.1) and d(Rv) = d(R̃v)χ(R̃v, Rv). 
Then we get |d(R)| = |d(R̃v)| · [R̃v : Rv] and (4.8).

(2) For any Haar measure on Dv we have

[
R̃×

v : R×
v

]
= vol(R̃×

v )
vol(R×

v )
= vol(R̃v)

vol(Rv)
· |κ(R̃v)×|/|κ(R̃v)|
|κ(Rv)×|/|κ(Rv)|

Then we obtain the formula (4.9) from the formula (4.8). �
For any non-Archimedean place v ∈ S, we define Rv to be the unique maximal order 

ODv
in the division algebra Dv, noting that this is not the completion of R, which does 

not make sense. For any non-Archimedean place v, we define

λv(Rv) := |d(Rv)|
|κ(Rv)×|/|κ(Rv)|

·
∏

1≤i≤n

(
1 − q−i

v

)
. (4.10)

Clearly λv(Rv) = 1 when Rv � Matn(Av). Now we prove the following formula.
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Theorem 4.2. Notations as above. We have

Mass(D,R) = hA · 1
n|S|−1 ·

n−1∏
i=1

∣∣ζK(−i)
∣∣ · ∏

v∈V K
f

λv(Rv). (4.11)

Proof. By Theorem 3.2, Corollary 3.3 and Theorem 3.7 we have

Mass(D,R) = hA · 1
n|S|−1 ·

n−1∏
i=1

∣∣ζK(−i)
∣∣ ·∏

v

(
λv ·

[
R̃×

v : R×
v

])
, (4.12)

where λv is defined in (3.22). Thus, it suffices to check

λv ·
[
R̃×

v : R×
v

]
= λv(Rv). (4.13)

The left hand side of (4.13) is equal to (using Lemma 4.1)

λv ·
|d(Rv)|
|d(R̃v)|

· |κ(R̃v)×|/|κ(R̃v)|
|κ(Rv)×|/|κ(Rv)|

. (4.14)

Suppose Dv = Matm(Δ), where Δ is a central division algebra with index d, thus n = dm. 
Note that

λv ·
1

|d(R̃v)|
· |κ(R̃v)×|/

∣∣κ(R̃v)
∣∣

=
∏

1≤i≤n−1,d�i

(
qiv − 1

)
· 1
q
m2·d(d−1)/2
v

·
∏

1≤j≤m

(
1 − q−dj

v

)

=
∏

1≤i≤n

(
1 − q−i

v

)
. (4.15)

This verifies the equality (4.13) and completes the proof of the theorem. �
In the rest of this section we restrict to the case n = 2. If the order Rv is not isomorphic 

to Mat2(Av), then define the Eichler symbol e(Rv) by

e(Rv) =

⎧⎨
⎩

1 if κ(Rv) = κ(v) × κ(v);
−1 if κ(Rv) is a quadratic field extension of κ(v);
0 if κ(Rv) = κ(v).

(4.16)

Corollary 4.3. Assume that n = 2. Then we have

Mass(D,R) = hA|ζK(−1)|
2|S|−1

∏ ∣∣d(Rv)
∣∣ (1 − q−2

v )
(1 − e(Rv)q−1

v )
, (4.17)
v∈SR
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where SR consists of all non-Archimedean places v of K such that either v is ramified in 
D or Rv is not maximal.

Proof. By Theorem 4.2, it suffices to check

|κ(Rv)×|
|κ(Rv)|

=
(
1 − q−1

v

)(
1 − e(Rv)q−1

v

)
. (4.18)

But this is clear. �
In the case where K is a totally real number field and S = ∞ Corollary 4.3 was 

obtained by Körner [15, Theorem 1].

5. Mass formulas for types of orders

Let R be the genus of R, that is, the set consists of all A-orders in D which are 
isomorphic to R locally everywhere. A type of R is a D×-conjugacy class of orders in R. 
The set of D×-conjugacy classes of orders in R is denoted by T (R). This is a finite set 
and its cardinality |T (R)|, denoted by t(R), is called the type number of R.

Definition 5.1. Let {R1, . . . , Rt} be a set of A-orders representing the D×-conjugacy 
classes in R. Define the mass of the types of R by

Mass
(
T (R)

)
:=

t∑
i=1

[
N(Ri) : K×]−1

, (5.1)

where N(Ri) is the normalizer of Ri in D×.

We know that there is a natural bijection

T (R) � D×\G
(
AS

)
/N (R̂), (5.2)

where N (R̂) is the normalizer of R̂ in D̂× = G(AS).
The following result evaluates Mass(T (R)). In the computation, one also shows that 

each term [N(Ri) : K×] is finite so that Mass(T (R)) is defined.

Theorem 5.2. We have

Mass
(
T (R)

)
= 1

n|S|−1 ·
n−1∏
i=1

∣∣ζK(−i)
∣∣ ·∏

v

λv(Rv) ·
[
N (R̂) : AS,×R̂×]. (5.3)

Proof. Let N ad denote the image of the open subgroup N (R̂) ⊂ G(AS) in Gad(AS). We 
now show

Mass
(
T (R)

)
= Mass

(
Gad,N ad). (5.4)
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Let c1, . . . , ct ∈ G(AS) be representatives for the double coset space in (5.2). For each 
i = 1, . . . , t, put

Γ ad
i := Gad(K) ∩ pr(ci)N adpr(ci)−1, and Γi := G(K) ∩ ciN (R̂) c−1

i . (5.5)

It is clear that Γ ad
i = Γi/K

×. So it suffices to show that Γi = N(Ri). Notice Ri =
D∩ciR̂c−1

i , so R̂i = ciR̂c−1
i . Let x ∈ Γi. Then x = ciyc

−1
i for some y ∈ N (R̂). Therefore, 

c−1
i xci ∈ N (R̂). This gives x(ciR̂c−1

i )x−1 = (ciR̂c−1
i ). Therefore,

x ∈ Γi ⇐⇒ x(R̂i)x−1 = R̂i,

and hence Γi = N(Ri). This shows (5.4).
Using (5.4), we have Mass(T (R)) = Mass(Gad, Uad) · [N ad : Uad]. Then formula (5.3)

follows from Theorems 4.2 and 3.2 and [N ad : Uad] = [N (R̂) : AS,×R̂×]. �
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