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1. Introduction

Recently derived categories of surfaces of general type attracted a lot of attention. Sev-
eral interesting semiorthogonal decompositions of the derived categories were constructed 
by Böhning, Graf von Bothmer, and Sosna on the classical Godeaux surface [7]; Alexeev 
and Orlov on the primary Burniat surfaces [1]; Galkin and Shinder on the Beauville sur-
face [12]; Böhning, Graf von Bothmer, Katzarkov and Sosna on the determinantal Barlow 
surfaces [6]; Fakhruddin on some fake projective planes [11]; Galkin, Katzarkov, Mellit 
and Shinder on some different fake projective planes and on a fake cubic surface [13]; 
Coughlan on some surfaces obtained as abelian coverings of del Pezzo surfaces [8]; Keum 
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on some fake projective planes with enough automorphisms [16]. These semiorthogonal 
decompositions consist of admissible subcategories generated by exceptional sequences 
of line bundles of maximal lengths and their orthogonal complements. These orthogonal 
complements have vanishing Hochschild homology groups. An admissible triangulated 
subcategory of a derived category of a smooth projective variety is called a quasiphantom 
category if its Hochschild homology group vanishes and its Grothendieck group is finite. 
When the Grothendieck group of a quasiphantom category also vanishes it is called a 
phantom category. Gorchinskiy and Orlov in [14] constructed phantom categories us-
ing quasiphantom categories constructed in [1,7,12]. Determinantal Barlow surfaces also 
provide examples of phantom categories [6].

Let S be a surface isogenous to a higher product (C × D)/G of unmixed type with 
pg = q = 0. If G is an abelian group, Bauer and Catanese [2] proved that G is one of 
(Z/2)3, (Z/2)4, (Z/3)2, (Z/5)2. As mentioned above, Galkin and Shinder [12] constructed 
exceptional sequences of line bundles of maximal length 4 on the Beauville surface which 
is a surface isogenous to a higher product with pg = q = 0 and G = (Z/5)2. Motivated 
by their work, we study the derived categories of the 2-dimensional family of surfaces 
isogenous to a higher product with pg = q = 0, G = (Z/3)2 and prove that there exist 
similar semiorthogonal decompositions.

Theorem 1.1. Let S = (C ×D)/G be a surface isogenous to a higher product with pg =
q = 0, G = (Z/3)2. There are exceptional sequences of line bundles of maximal length 4 
in Db(S) and the orthogonal complements of the admissible subcategories generated by 
these line bundles are quasiphantom categories.

This result gives new examples of quasiphantom categories having Grothendieck 
groups (Z/3)5 and these categories can be used to construct phantom categories by a 
theorem of Gorchinskiy and Orlov [14]. We also compute Hochschild cohomology groups 
of quasiphantom categories and prove that for some exceptional sequences we obtained 
the categories generated by those exceptional sequences are deformation invariant. While 
adding these results to this paper which was on the arXiv, similar results have been ob-
tained independently by Coughlan in [8] via different method. In his paper [8], Coughlan 
considers general type surfaces which are obtained as abelian covers of del Pezzo surfaces 
satisfying some conditions. His method can be applied to surfaces isogenous to a higher 
product with G = (Z/3)2, G = (Z/5)2 and many other surfaces of general type. He 
constructs many exceptional sequences of maximal lengths on these surfaces and studies 
deformation invariance and Hochschild cohomology groups.

This paper is organized as follows. In Section 2, we collect some basic facts about 
the surfaces isogenous to a higher product and compute the Grothendieck groups of 
these surfaces. In Section 3, we construct exceptional sequences of line bundles on 
the 2-dimensional family of surfaces isogenous to a higher product with pg = q = 0, 
G = (Z/3)2. In Section 4, we discuss quasiphantom and phantom categories. In Sec-
tion 5, we will consider the cases where G = (Z/2)3, G = (Z/2)4.
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Notations. We will work over C. A curve will mean a smooth projective curve. A surface 
will mean a smooth projective surface. Derived category of a variety will mean the 
bounded derived category of coherent sheaves on that variety. In this paper, G denotes 
a finite group and Ĝ = Hom(G, C∗) denotes the character group of G. We will use ∼ to 
denote linear equivalence of divisors.

2. Preliminaries

In this section we recall the definition and some basic facts about surfaces isogenous 
to a higher product. For details, see [2].

Definition 2.1. A surface S is called isogenous to a higher product if S = (C × D)/G
where C, D are curves with genus at least 2 and G is a finite group acting freely on 
C ×D. When G acts diagonally, S is called of unmixed type.

Remark 2.2. (See [2].) Let S be a surface isogenous to a higher product of unmixed type. 
Then S is a surface of general type. When pg = q = 0, elementary computations show 
that K2

S = 8, C/G ∼= D/G ∼= P
1 and |G| = (gC − 1)(gD − 1) where gC and gD denote 

the genus of C and D, respectively.

When S = (C × D)/G is a surface isogenous to a higher product of unmixed type 
with pg = q = 0 and G is an abelian group, Bauer and Catanese proved that G should 
be isomorphic to one of (Z/2)3, (Z/2)4, (Z/3)2 and (Z/5)2 in [2]. Recently Shabalin 
[23], Bauer, Catanese and Frapporti [3,4] computed the first homology groups of these 
surfaces independently.

Theorem 2.3. (See [3,4,23].) Let S be a surface isogenous to a higher product (C×D)/G
of unmixed type with pg = q = 0 and assume G to be abelian. Then we have the following:

(1) H1(S, Z) ∼= (Z/2)4 ⊕ (Z/4)2 for G = (Z/2)3;
(2) H1(S, Z) ∼= (Z/4)4 for G = (Z/2)4;
(3) H1(S, Z) ∼= (Z/3)5 for G = (Z/3)2;
(4) H1(S, Z) ∼= (Z/5)3 for G = (Z/5)2.

Remark 2.4. Let S be a surface with pg = q = 0 isogenous to a higher product (C×D)/G
of unmixed type and let G be abelian. From the exponential sequence

0 → Z → O → O∗ → 0

we get

Pic(S) ∼= H2(S,Z).
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The above theorem and Noether’s formula

χ(OX) = 1 = 1
12

(8 + 2b0 − 2b1 + b2) = 1
12

(K2
S + χtop(S))

imply that these surfaces have b2 = 2.
Finally the above remark and the universal coefficient theorem imply the following:

Pic(S) ∼= H2(S,Z) ∼= Z
2 ⊕H1(S,Z).

From a result of Kimura [17], we know that Bloch’s conjecture holds for S (see also 
[5]). We can compute the Grothendieck group of S by the following lemma.

Lemma 2.5. (See [7, Proposition 2.1], [12, Lemma 2.7].) Let S be a surface with pg =
q = 0 isogenous to a higher product (C × D)/G of unmixed type and let G be abelian. 
Then

K(S) ∼= Z
2 ⊕ Pic(S).

See [2,9] for more details about the geometry of S.

3. Derived categories of surfaces isogenous to a higher product with G = (ZZZ/3)2

In Section 3 and Section 4, we consider the derived categories of surfaces isogenous 
to a higher product of unmixed type with pg = q = 0, G = (Z/3)2. We recall some basic 
notions to describe the derived category of algebraic variety.

Definition 3.1. (1) An object E in a C-linear triangulated category D is called exceptional 
if

HomD(E,E[i]) =
{

C if i = 0,
0 otherwise.

(2) A sequence E1, · · · , En of exceptional objects of D is called an exceptional sequence 
if

HomD(Ei, Ej [k]) = 0, ∀i > j,∀k.

When S is a surface with pg = q = 0, every line bundle on S is an exceptional object 
in Db(S). In this paper we want to prove the following theorem.

Theorem 3.2. Let S = (C ×D)/G be a surface isogenous to a higher product of unmixed 
type with pg = q = 0, G = (Z/3)2. There are exceptional sequences of line bundles of 
maximal length 4 on S. The orthogonal complements of the admissible subcategories in 
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the derived category of S are quasiphantom categories whose Grothendieck groups are 
isomorphic to (Z/3)5.

We will construct exceptional sequences of line bundles of maximal length using 
G-equivariant line bundles on C ×D. For this we study the equivariant geometry of C
and D.

3.1. Equivariant geometry of C

From [2], we see that C and D are curves with genus 4. The group G acts on C and 
let π : C → P

1 be the quotient map. There are 4 branch points on P1 and 4 orbits on C
where the G action has nontrivial stabilizers. This is also true for D. See [2, Section 3]
for more details. Let E1, E2, E3, E4 be the set-theoretic orbits of ramification points of 
G-action on C.

Let X be a smooth projective variety and let G be a finite group acting on X. There 
is a well-known exact sequence

0 → Ĝ → PicG(X) → Pic(X)G → H2(G,C∗),

and the last homomorphism is surjective when X is a curve (see [10]).
When G is abelian, Galkin and Shinder proved the following lemma.

Lemma 3.3. (See [12, Lemma 2.1].) Let G be a finite abelian group. Then the image of 
PicG(X) in Pic(X)G consists of equivalence classes of G-invariant divisors and there is 
a short exact sequence

0 → Ĝ → PicG(X) → Div(X)G/∼ → 0,

where ∼ denotes linear equivalence.

Using the above exact sequences, we analyze the equivariant geometry of C.

Notation 3.4. From now to Section 4, we let G = (Z/3)2 and S = (C ×D)/G where C
and D are curves with genus at least 2 on which G acts such that the diagonal action 
of G on C ×D is free.

Lemma 3.5.

(1) Div(C)G/∼ ∼= Z ⊕ Z/3.
(2) There are exactly two G-invariant effective divisors of degree 3 on C which are not 

linearly equivalent.

Proof. Let us consider the quotient map π : C → P
1. Let x1, · · · , xn be the branch 

points of π and r1, · · · , rn be the corresponding ramification indices. Then PicG(C) ∼=
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Z ⊕ Z/(d1) ⊕ Z/(d1/d2) ⊕ · · · ⊕ Z/(dn−1/dn−2) where d1 = gcd(r1, · · · , rn), d2 =
gcd(r1r2, r1r3, · · · , rn−1rn), · · · , dn−1 = gcd(r1 · · · rn−1, · · · , r2 · · · rn) (see [10, Equa-
tion (2.2)]). Because there are 4 branch points and ramification index is 3 for every 
branch point, we get PicG(C) ∼= Z ⊕ (Z/3)3. Then (1) follows from the short exact 
sequence in the above lemma. From [2] we may assume that the stabilizer elements 
of E1, E2, E3, E4 are e1, e2, −e1, −e2, respectively, where e1, e2 are basis of G = (Z/3)2. 
Consider 〈e1〉-action on C, and let φ : C → P

1 be its quotient map. Then we get E2 ∼ E4

since each of them is a pullback of a point of P1 via φ. Similarly we get E1 ∼ E3. If 
the four orbits are all linearly equivalent then Div(C)G/∼ ∼= Z which contradicts (1). 
Therefore the four orbits cannot be all linearly equivalent. Since all G-invariant divisors 
are linear combination of G-orbits, we get (2). �
Lemma 3.6.

h0(C,OC(2E1 −E2)) = 0,

h1(C,OC(2E1 −E2)) = 0,

h0(C,OC(E2 − 2E1)) = 0,

h1(C,OC(E2 − 2E1)) = 6.

Proof. From the Riemann–Roch formula we find that

h0(C,OC(2E1 −E2)) − h1(C,OC(2E1 − E2)) = 3 + 1 − 4 = 0.

Therefore it suffices to show that h0(C, OC(2E1 − E2)) = 0. We know that E1, E2 are 
G-invariant divisors on C and hence there is a G-action on H0(C, OC(2E1 − E2)). If 
h0(C, OC(2E1 −E2)) �= 0, then there is a G-eigensection f ∈ H0(C, OC(2E1 −E2)), and 
2E1 − E2 + (f) should be a G-invariant effective divisor of degree 3. Every G-invariant 
effective divisor of degree 3 on C is linearly equivalent to E1 or E2 by the above 
lemmas. It follows that 2E1 − E2 ∼ E1 or 2E1 − E2 ∼ E2. Then E1 − E2 ∼ 0 or 
2E1 − 2E2 ∼ 0 which contradicts the assumption that E1 and E2 are not linearly equiv-
alent.

Similarly we get

h0(C,OC(E2 − 2E1)) − h1(C,OC(E2 − 2E1)) = −3 + 1 − 4 = −6,

and

h0(C,OC(E2 − 2E1)) = 0

because the degree of OC(E2 − 2E1) is negative. �
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Remark 3.7. From [2, Section 3], we see that D is also a curve with genus 4 and there are 
4 branch points on P1 and 4 orbits on D where the G action has nontrivial stabilizers. By 
the same argument as above, we can find two set-theoretic orbits of ramification points 
F1, F2 on D which are not linearly equivalent. Then we have

h0(D,OD(2F1 − F2)) = 0,

h1(D,OD(2F1 − F2)) = 0,

h0(D,OD(F2 − 2F1)) = 0,

h1(D,OD(F2 − 2F1)) = 6.

3.2. Exceptional sequences of line bundles on S

Let X be the product of C and D. By abuse of notation, we let OX(Ei) (respec-
tively, OX(Fi)) for i ∈ {1, 2} denote the pullback of OC(Ei) (respectively, OD(Fi)). 
For any character χ ∈ Hom(G, C∗), we can identify equivariant line bundles OX(Ei)(χ)
(respectively, OX(Fi)(χ)) with line bundles on S.

Theorem 3.8. For any choice of 4 characters χ1, χ2, χ3, χ4,

OX(χ1),OX(E2 − 2E1)(χ2),OX(F2 − 2F1)(χ3),OX(E2 − 2E1 + F2 − 2F1)(χ4)

form an exceptional sequence of line bundles of maximal length 4 on S.

Proof. Since pg = q = 0, every line bundle on S is exceptional. From the Künneth 
formula we find that

hj(X,OX(2E1 −E2)) = 0, ∀j,

hj(X,OX(2F1 − F2)) = 0, ∀j,

hj(X,OX(2E1 − E2 + 2F1 − F2)) = 0, ∀j,

hj(X,OX(−2E1 + E2 + 2F1 − F2)) = 0, ∀j.

Therefore the G-invariant parts are also trivial. Hence, we find that OX(χ1), OX(E2 −
2E1)(χ2), OX(F2−2F1)(χ3), OX(E2−2E1+F2−2F1)(χ4) form an exceptional sequence. 
Since K(S) ∼= Z

4 ⊕ (Z/3)5, the maximal length of exceptional sequences on S is 4. �
3.3. Deformations of categories generated by exceptional sequences

In this subsection we discuss the deformations of categories generated by exceptional 
sequences. In order to do this we recall definitions and basic facts about A∞-algebras. 
For details, see [15].
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Definition 3.9. (See [15].) An A∞-algebra is a Z-graded vector space

A =
⊕
p∈Z

Ap

endowed with graded maps

mn : A⊗n → A,n ≥ 1,

of degree 2 − n satisfying∑
(−1)r+stmr+1+t(1⊗r ⊗ms ⊗ 1⊗t) = 0,

where the sum runs over all decompositions n = r + s + t.

Definition 3.10. (See [15].) An A∞-algebra A is called strictly unital if it has an element 1
of degree zero such that m1(1) = 0, m2(1, a) = m2(a, 1) = a for all a ∈ A and for n ≥ 3, 
mn(a1, · · · , an) = 0 if one of ai ∈ {a1, · · · , an} ⊂ A is equal to 1.

We want to prove that the A∞-algebra of endomorphism of the exceptional sequences 
constructed above is formal. We follows the arguments in [1,7,12].

Proposition 3.11. Let T = OX(χ1) ⊕OX(E2 −2E1)(χ2) ⊕OX(F2 −2F1)(χ3) ⊕OX(E2 −
2E1 + F2 − 2F1)(χ4) be the direct sum of line bundles forming an exceptional collection 
and let B = RHom(T, T ) be the DG-algebra of endomorphisms. Then B is formal, i.e. 
H∗(B) can be chosen to be a graded algebra.

Proof. Let H∗(B) be the minimal model of B. By [22, Lemma 2.1], we may assume that 
the H∗(B) is strictly unital. We want to show that H∗(B) does not have nontrivial mn

for n ≥ 3. Consider mn(b1, · · · , bn) for n ≥ 3. From the Künneth formula we have the 
following:

Hk(X,OX(−2E1 + E2 + 2F1 − F2)) = 0, ∀k ∈ Z,

Hk(X,OX(2E1 −E2 − 2F1 + F2)) = 0, ∀k ∈ Z.

Therefore we see that there is no morphism between OX(E2 − 2E1)(χ2) and OX(F2 −
2F1)(χ3). From this we see that if every bi is nonzero then at least one bi should be 
multiple of 1. Because we assume that H∗(B) is strictly unital, mn(b1, · · · , bn) = 0, for 
all n ≥ 3. �

In [1], Alexeev and Orlov asked the following question.

Question 3.12. (See [1].) Is true that for any exceptional collection of maximal length on 
a smooth projective surface S with ample KS and with pg = q = 0, the DG algebra of 
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endomorphisms of the exceptional collection does not change under small deformations 
of the complex structure on X?

They constructed exceptional sequences of maximal length for primary Burniat sur-
faces and proved that the above property holds for their exceptional sequences in [1]. 
This phenomenon was observed for some exceptional sequences on other surfaces of gen-
eral type (see [6–8]). We prove that for certain exceptional sequence we constructed the 
above question is true.

Proposition 3.13. There is a choice of four characters χi ∈ Ĝ, i ∈ {1, 2, 3, 4} such that 
the DG algebra of endomorphisms of T = OX(χ1) ⊕ OX(E2 − 2E1)(χ2) ⊕ OX(F2 −
2F1)(χ3) ⊕OX(E2 − 2E1 + F2 − 2F1)(χ4) does not change under small deformations of 
the complex structure of S.

Proof. From the Riemann–Roch theorem for curves and Künneth formula we have the 
following:

Hk(X,OX(E2 − 2E1)) =

⎧⎪⎨⎪⎩
C

6 if k = 1,
C

24 if k = 2,
0 otherwise.

Hk(X,OX(F2 − 2F1)) =

⎧⎪⎨⎪⎩
C

6 if k = 1,
C

24 if k = 2,
0 otherwise.

Hk(X,OX(E2 − 2E1 + F2 − 2F1)) =
{

C
36 if k = 2,

0 otherwise.

Then there are χ, χ′ ∈ Ĝ such that H1(X, OX(E2 − 2E1)(χ))G = 0 and H1(X,

OX(F2 − 2F1)(χ′))G = 0.
From the Riemann–Roch theorem for surfaces we get for any character χ′′ ∈ Ĝ,

χ(OX(E2 − 2E1 + F2 − 2F1)(χ′′))

= χ(OS) + 1
2OX(E2 − 2E1 + F2 − 2F1)(χ′′)

· OX(E2 − 2E1 + F2 − 2F1 −KC −KD)(χ′′)

= 1 + 1
18(3 · 9 + 3 · 9) = 4.

Then we get the following equalities by Künneth formula,

Hk(X,OX(E2 − 2E1 + F2 − 2F1)(χ′′))G =
{

C
4 if k = 2,

0 otherwise.
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Therefore there is a choice of four characters χi ∈ Ĝ, i ∈ {1, 2, 3, 4} such that the min-
imal model of the DG algebra of endomorphisms of T = OX(χ1) ⊕OX(E2 − 2E1)(χ2) ⊕
OX(F2−2F1)(χ3) ⊕OX(E2−2E1 +F2−2F1)(χ4) has only terms in degree 0 and 2. The 
multiplication of two elements of degree 2 is 0 since there is no Ext4 between objects. 
Hence the structure of the DG-algebra is completely determined in this case. Finally we 
get the desired result by the semicontinuity. �

We do not know whether the DG algebra of endomorphism of T = OX(χ1) ⊕OX(E2−
2E1)(χ2) ⊕OX(F2 − 2F1)(χ3) ⊕OX(E2 − 2E1 + F2 − 2F1)(χ4) does not change under 
small deformations of complex structure of S for every choice of four characters χi ∈ Ĝ, 
i ∈ {1, 2, 3, 4}.

4. Quasiphantom categories and phantom categories

In this section we consider Hochschild homology groups and cohomology groups of 
the orthogonal complements of the categories generated by exceptional sequences.

4.1. Hochschild homology and cohomology

We recall the definition and some basic facts about Hochschild homology and co-
homology of a smooth projective variety. For details about Hochchild homology and 
cohomology, see [18].

Definition 4.1. (See [18].) Let S be a smooth projective variety. The Hochschild homology 
and cohomology of S are defined by

HH∗(S) = Hom∗(S × S,Δ∗OS ⊗ Δ∗OS),

HH∗(S) = Hom∗
S×S(Δ∗OS ,Δ∗OS).

Hochschild homology and cohomology of a smooth projective variety can be computed 
using the following theorem.

Theorem 4.2 (Hochschild–Kostant–Rosenberg isomorphisms). (See [18, Theorem 8.3].) 
Let S be a smooth projective variety of dimension n. Then

HHt(S) ∼=
n⊕

p=0
Ht+p(S,Ωp

S),

HHt(S) ∼=
n⊕

p=0
Ht−p(S,∧pTS).

Let S be a smooth projective variety. Kuznetsov furthermore defined Hochschild ho-
mology and cohomology for any admissible subcategory A ⊂ Db(S) in [18].
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Definition 4.3. (See [18, Definition 4.4].) Let S be a smooth projective variety, and 
A ⊂ Db(S) be an admissible subcategory. Let EA be a strong generator of A and CA =
RHom∗(EA, EA). Then the Hochschild homology and cohomology of A are defined as 
follows:

HH∗(A) := CA ⊗L
CA⊗Copp

A
CA,

HH∗(A) := RHomCA⊗Copp
A

(CA, CA).

Then Kuznetsov proved the additivity of Hochschild homology with respect to the 
semiorthogonal decomposition in [18] which is a main tool to compute the Hochschild 
homology of the orthogonal complement of an admissible subcategory.

Theorem 4.4. (See [18, Corollary 7.5, Corollary 8.4].)

(1) For any semiorthogonal decomposition Db(S) = 〈A1, · · · , An〉, there is an isomor-
phism

HH∗(S) ∼= HH∗(A1) ⊕ · · · ⊕HH∗(An).

(2) If E is an exceptional object in Db(S), then HH∗(〈E〉) ∼= HH∗(〈E〉) ∼= C.

In the rest of this subsection we compute the Hochschild cohomology groups of the or-
thogonal complements of the exceptional sequences. The method to compute Hochschild 
cohomology groups was developed by Kuznetsov in [19]. He introduced the notion of 
the height to understand the restriction morphisms HH∗(X) → HH∗(A) and he proved 
that it is easy to determine the height when the exceptional sequence satisfies some 
conditions.

Definition 4.5. (See [19].) Let E1, · · · , En be an exceptional sequence on S.

(1) E1, · · · , En, E1 ⊗ω−1
S , · · · , En ⊗ω−1

S is called Hom-free if Extk(Ei, Ej) for k ≤ 0 and 
all i < j ≤ i + n.

(2) A Hom-free sequence E1, · · · , En, E1⊗ω−1
S , · · · , En⊗ω−1

S is cyclically Ext1-connected 
if there is a chain 1 ≤ a0 < a1 < · · · < ap ≤ n such that Ext1(Eas

, Eas+1) �= 0, for 
s = 0, 1, · · · , p − 1 and Ext1(Eap

, Ea0 ⊗ ω−1) �= 0.

Now we compute the Hochschild cohomology groups of the orthogonal complements 
of our exceptional sequences.

Proposition 4.6. Let A be the orthogonal complement of the exceptional collection 
OX(χ1), OX(E2 −2E1)(χ2), OX(F2 −2F1)(χ3), OX(E2 −2E1 +F2 −2F1)(χ4). Then we 
have HHi(S) = HHi(A), for i = 0, 1, 2, and HH3(S) ⊂ HH3(A).
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Proof. It is enough to show that the exceptional sequence is Hom-free and not cyclically 
Ext1-connected (see [19] for more details). From the Künneth formula and degree compu-
tation we find that OX(χ1), OX(E2 −2E1)(χ2), OX(F2 −2F1)(χ3), OX(E2 −2E1 +F2 −
2F1)(χ4), OX(χ1) ⊗ ω−1

S , OX(E2 − 2E1)(χ2) ⊗ ω−1
S , OX(F2 − 2F1)(χ3) ⊗ ω−1

S , OX(E2 −
2E1 + F2 − 2F1)(χ4) ⊗ ω−1

S is Hom-free.
Let us compute Ext1(OX(E2 − 2E1 + F2 − 2F1)(χ4), OX(χ1) ⊗ ω−1

S ). By the Serre 
duality we have the following isomorphisms

Ext1(OX(E2 − 2E1 + F2 − 2F1)(χ4),OX(χ1) ⊗ ω−1
S )

∼= Ext1(OX ,OX(E2 − 2E1 + F2 − 2F1)(χ4 − χ1) ⊗ ω2
S)∗

∼= H1(S,OX(E2 − 2E1 + F2 − 2F1)(χ4 − χ1) ⊗ ω2
S)∗.

From Kleiman’s criterion we see that OX(E2 − 2E1 + F2 − 2F1)(χ4 − χ1) ⊗ ωS is an 
ample line bundle and from Kodaira vanishing theorem we have

H1(S,OX(E2 − 2E1 + F2 − 2F1)(χ4 − χ1) ⊗ ω2
S) = 0.

Similarly the above Hom-free sequence cannot be cyclically Ext1-connected by Serre 
duality and Kodaira vanishing theorem. Then the height of the exceptional collection 
OX(χ1), OX(E2 − 2E1)(χ2), OX(F2 − 2F1)(χ3), OX(E2 − 2E1 + F2 − 2F1)(χ4) is 4. 
Therefore we get the desired result by [19, Theorem 4.5]. �
4.2. Quasiphantom categories and phantom categories

We recall the definitions of quasiphantom and phantom category.

Definition 4.7. (See [14, Definition 1.8].) Let S be a smooth projective variety. Let A
be an admissible triangulated subcategory of Db(S). Then A is called a quasiphantom 
category if the Hochschild homology of A vanishes, and the Grothendieck group of A is 
finite. If the Grothendieck group of A also vanishes, then A is called a phantom category.

We now prove the second part of our main theorem.

Proposition 4.8. Let A be the left orthogonal complement of the admissible category gen-
erated by OX(χ1), OX(E2−2E1)(χ2), OX(F2−2F1)(χ3), OX(E2−2E1 +F2−2F1)(χ4). 
Then we have K(A) = (Z/3)5 and HH∗(A) = 0. Therefore A is a quasiphantom cate-
gory.

Proof. This follows from the additivity of Grothendieck groups and Hochschild homology 
groups with respect to semiorthogonal decomposition. �
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Gorchinskiy and Orlov constructed phantom categories using the quasiphantom cate-
gories constructed in [1,7,12]. From the same construction, we can provide more examples 
of phantom categories.

Remark 4.9. Quasiphantom categories of surfaces isogenous to a higher product with 
pg = q = 0, G = (Z/3)2 and quasiphantom categories constructed in [1,7,12] can be used 
to provide more examples of phantom categories by a result of Gorchinskiy and Orlov 
[14, Theorem 1.12].

5. Discussions

The construction of exceptional sequences of line bundles on S = (C ×D)/G of this 
paper does not extend to the cases where G = (Z/2)3, (Z/2)4, (Z/5)2. For the G = (Z/5)2
case, Div(C)G/∼ ∼= Z [12, Lemma 2.3]. (However there are exceptional sequences of 
line bundles of maximal length due to the construction of Galkin and Shinder.) For 
the G = (Z/2)3, G = (Z/2)4 cases, the following propositions imply that if there is 
an exceptional sequence of line bundles of maximal length 4 on S we need another 
construction to find it.

Proposition 5.1. Let G = (Z/2)3, X := C × D and S := (C × D)/G be a surface 
isogenous to a higher product with pg = q = 0 of unmixed type. Then C is a curve 
of genus 3 and D is a curve of genus 5 (see [2]). Let E1, E2 be 2 linear combinations 
of set-theoretic orbits on C, and F1, F2 be 2 linear combinations of set-theoretic orbits 
on D. By abuse of notation, we let OX(Ei) (respectively, OX(Fi)) denote the pullback 
of OC(Ei) (respectively, OD(Fi)) for i ∈ {1, 2}. For any choice of characters χ1, χ2 ∈
Hom(G, C∗), we can identify the equivariant line bundles OX(Ei + Fi)(χi) on X with 
line bundles on S for i ∈ {1, 2}. Then

OX ,OX(E1 + F1)(χ1),OX(E2 + F2)(χ2)

cannot be an exceptional sequence on S.

Proof. Suppose that OX , OX(E1 +F1)(χ1), OX(E2 +F2)(χ2) is an exceptional sequence 
of line bundles on S. Then we get χ(OX(Ei + Fi)(χi), OX) = 0 for i ∈ {1, 2}, and 
χ(OX(E2 + F2)(χ2), OX(E1 + F1)(χ1)) = 0. From the Riemann–Roch formula we get

χ(OX(−Ei − Fi)(χ−1
i )) = χ(OS) + 1

16O(−Ei − Fi) · O(−Ei − Fi + KC + KD)

1 + 1
16(−ei(−fi + 8) − fi(−ei + 4)) = 1

8(ei − 2)(fi − 4) = 0,

where ei = degEi, fi = degFi, i ∈ {1, 2}. Because the stabilizer subgroup of a point of a 
finite group action on a Riemann surface is finite cyclic group, degrees of all set-theoretic 
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orbits on C and D are multiples of 4. Therefore we get f1 = f2 = 4. However then we 
have

χ(OX(E1 + F1 −E2 − F2)(χ1 + χ−1
2 ))

= χ(OS) + 1
16O(E1 + F1 − E2 − F2) · O(E1 + F1 −E2 − F2 + KC + KD)

= 1 + 1
16((e1 − e2)(f1 − f2 + 8) + (f1 − f2)(e1 − e2 + 4))

= 1
8(e2 − e1 − 2)(f2 − f1 − 4) �= 0.

Therefore OX , OX(E1 + F1)(χ1), OX(E2 + F2)(χ2) cannot be an exceptional sequence 
on S. �
Proposition 5.2. Let G = (Z/2)4, X := C × D and S := (C × D)/G be a surface 
isogenous to a higher product with pg = q = 0 of unmixed type. Then C and D are 
curves of genus 5 (see [2]). Let E be a linear combination of set-theoretic orbits on C, 
F be a linear combination of set-theoretic orbits on D. By abuse of notation, we let 
OX(E) (respectively, OX(F )) denote the pullback of OC(E) (respectively, OD(F )). For 
any character χ ∈ Hom(G, C∗), we can identify the equivariant line bundles OX(E +
F )(χ) on X with a line bundles on S. Then

OX ,OX(E + F )(χ)

cannot be an exceptional sequence on S.

Proof. If OX , OX(E+F )(χ) is an exceptional sequence of line bundles, then χ(OX(E+
F )(χ), OX) = 0. From the Riemann–Roch formula we get

χ(OX(−E − F )(χ−1)) = χ(OS) + 1
32O(−E − F ) · O(−E − F + KC + KD)

1 + 1
32(−e(−f + 8) − f(−e + 8)) = 1

16(e− 4)(f − 4),

where e = degE, f = degF . Because the stabilizer subgroup of a point of a finite group 
action on a Riemann surface is finite cyclic group, degrees of all set-theoretic orbits on C
and D are multiples of 8. Therefore χ(OX(E + F )(χ), OX) �= 0 and OX , OX(E + F )(χ)
cannot be an exceptional sequence on S. �

We show that there exist exceptional sequences of line bundles of maximal length 4 
on surfaces isogenous to a higher product of unmixed type with pg = q = 0, G = (Z/2)3
or G = (Z/2)4 or some nonabelian G via different method in [20,21].
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